22 research outputs found

    Some initial results and observations from a series of trials within the Ofcom TV White Spaces pilot

    Get PDF

    Radio frequency interference to DVB-T reception from LTE systems in adjacent bands

    Get PDF
    Australians have recently benefited from the switch-over to digital television which has freed many channels called digital dividend. Australia's digital dividend is the frequency range of 694 MHz to 820 MHz which is used to operate Long Term Evolu- tion (LTE) technology. In Australia there were 57 VHF and UHF channels used for television broadcasting. After the completion of switch-over process, UHF channels 52 to 69 were freed up which is considered as Australian digital dividend. When LTE Frequency Division Duplex (FDD) system and digital television services operate in adjacent UHF bands, LTE FDD transmitters can cause harmful interference to digital video broadcasting-terrestrial (DVB-T). So in this study, we have presented the compatibility of operating LTE FDD services in the digital dividend spectrum identified in Australia. We have used interference analysis method to calculate the minimum separation distance between LTE FDD and DVB-T sys- tem and Monte Carlo Simulation for calculating the probability of location within considered DVB-T area that suffer maximum level of interference. Also, there are some unused channels where digital television operates called TV White Spaces (TVWS). TVWS can be utilized to operate the secondary devices such as LTE Time Division Duplex (TDD) which helps to address spectrum scarcity issue. We have presented the study of the interference on DVB-T when LTE TDD are operating on TVWS. We have used interference analysis method to calculate mini- mum separation distance between LTE TDD and DVB-T. The results of our study show that increasing the guard band reduces the interference to adjacent channel

    Field Measurements in Determining Incumbent Spectrum Utilization and Protection Criteria in Wireless Co-existence Studies

    Get PDF
    Studies of spectrum sharing and co-existence between different wireless communication systems are important, as the current aim is to optimize their spectrum utilization and shift from static exclusive spectrum allocation to more dynamic co-existence of different systems within same frequency bands. The main goal of this thesis is to provide measurement methodologies for obtaining realistic results in modeling incumbent spectrum utilization and in determining incumbent protection criteria. The following research questions are considered in this thesis: Q1) How should field measurements be conducted and used to model incumbent spectrum utilization? Q2) How should field measurements be conducted and used to determine protection criteria for incumbents in a co-existence scenario with mobile broadband? and Q3) Which licensing methods and technological solutions are feasible to enable spectrum sharing in frequency bands with incumbents? To answer to Q1, this thesis describes the development of a spectrum observatory network concept created through international collaboration and presents measurement methodologies, which allow to obtain realistic spectrum occupancy data over geographical areas using interference map concept. A cautious approach should be taken in making strong conclusions from previous single fixed location spectrum occupancy studies, and measurements covering larger geographical areas might be needed if the measurement results are to be used in making spectrum management decisions. The field interference measurements considered in Q2 are not covered well in the current research literature. The measurements are expensive to conduct as they require substantial human resources, test network infrastructure, professional level measurement devices and radio licenses. However, field measurements are needed to study and verify hypotheses from computer simulations or theoretical analyses in realistic operating conditions, as field measurement conditions can not or are not practical to be adequately modeled in simulations. This thesis proposes measurement methodologies to obtain realistic results from field interference measurements, taking into account the propagation environments and external sources of interference. Less expensive simulations and laboratory measurements should be used both to aid in the planning of field measurements and to complement the results obtained from field measurements. Q3 is investigated through several field interference measurement campaigns to determine incumbent protection criteria and by analyzing the spectrum observatory data to determine the occupancy and trends in incumbent spectrum utilization. The field interference measurement campaigns have been conducted in real TV White Space, LTE Supplemental Downlink and Licensed Shared Access test network environments, and the obtained measurement results have been contributed to the development of the European spectrum regulation. In addition, field measurements have been conducted to contribute to the development and technical validation of the spectrum sharing frameworks. This thesis also presents an overview of the current status and possible directions in spectrum sharing. In conclusion, no single spectrum sharing method can provide universally optimal efficiency in spectrum utilization. Thus, an appropriate spectrum sharing framework should be chosen taking into account both the spectrum utilization of the current incumbents and the future needs in wireless communications.Siirretty Doriast

    Coexistence of DTT and Mobile Broadband: A Survey and Guidelines for Field Measurements

    Get PDF
    This article provides a survey and a general methodology for coexistence studies between digital terrestrial television (DTT) and mobile broadband (MBB) systems in the ultra high frequency (UHF) broadcasting band. The methodology includes characterization of relevant field measurement scenarios and gives a step-by-step guideline on how to obtain reliable field measurement results to be used in conjunction with link budget analyses, laboratory measurements, and simulations. A survey of potential European coexistence scenarios and regulatory status is given to determine feasible future use scenarios for the UHF television (TV) broadcasting band. The DTT reception system behavior and performance are also described as they greatly affect the amount of spectrum potentially available for MBB use and determine the relevant coexistence field measurement scenarios. Simulation methods used in determining broadcast protection criteria and in coexistence studies are briefly described to demonstrate how the information obtained from field measurements can be used to improve their accuracy. The presented field measurement guidelines can be applied to any DTT-MBB coexistence scenarios and to a wide range of spectrum sharing and cognitive radio system coexistence measurements

    TV White Space Network Interference Measurements and Application Pilot Trials. Final report from field measurement campaigns and application pilot trials in WISE projects during 2011-2014

    Get PDF
    This report describes TV white space network measurements and trials conducted in Finnish WISE projects during 2011-2014. A TV White Space test network environment was developed and built in Turku, Finland, to aid in standardization and to demonstrate technical capabilities of TV white space networks. The test network environment was the first in Europe having a geolocation database to control the frequency use. This report introduces interference measurements conducted to aid in the standardization work in CEPT/ECC SE43 group. These measurements and the work in the SE43 group served as base information in the creation of an ETSI harmonised standard for TV white space devices, ETSI EN 301 598. The report also presents two application pilot trials conducted to demonstrate the technical feasibility of TV white space networks: a long-term video surveillance trial in Turku and Helsinki area public transport ticket sales and transit information screens trial.Siirretty Doriast

    Coexistence of DTT and Mobile Broadband: A Survey and Guidelines for Field Measurements

    Get PDF
    This article provides a survey and a general methodology for coexistence studies between digital terrestrial television (DTT) and mobile broadband (MBB) systems in the ultra high frequency (UHF) broadcasting band. The methodology includes characterization of relevant field measurement scenarios and gives a step-by-step guideline on how to obtain reliable field measurement results to be used in conjunction with link budget analyses, laboratory measurements, and simulations. A survey of potential European coexistence scenarios and regulatory status is given to determine feasible future use scenarios for the UHF television (TV) broadcasting band. The DTT reception system behavior and performance are also described as they greatly affect the amount of spectrum potentially available for MBB use and determine the relevant coexistence field measurement scenarios. Simulation methods used in determining broadcast protection criteria and in coexistence studies are briefly described to demonstrate how the information obtained from field measurements can be used to improve their accuracy. The presented field measurement guidelines can be applied to any DTT-MBB coexistence scenarios and to a wide range of spectrum sharing and cognitive radio system coexistence measurements.</p

    Using hypergraph theory to model coexistence management and coordinated spectrum allocation for heterogeneous wireless networks operating in shared spectrum

    Get PDF
    Electromagnetic waves in the Radio Frequency (RF) spectrum are used to convey wireless transmissions from one radio antenna to another. Spectrum utilisation factor, which refers to how readily a given spectrum can be reused across space and time while maintaining an acceptable level of transmission errors, is used to measure how efficiently a unit of frequency spectrum can be allocated to a specified number of users. The demand for wireless applications is increasing exponentially, hence there is a need for efficient management of the RF spectrum. However, spectrum usage studies have shown that the spectrum is under-utilised in space and time. A regulatory shift from static spectrum assignment to DSA is one way of addressing this. Licence exemption policy has also been advanced in Dynamic Spectrum Access (DSA) systems to spur wireless innovation and universal access to the internet. Furthermore, there is a shift from homogeneous to heterogeneous radio access and usage of the same spectrum band. These three shifts from traditional spectrum management have led to the challenge of coexistence among heterogeneous wireless networks which access the spectrum using DSA techniques. Cognitive radios have the ability for spectrum agility based on spectrum conditions. However, in the presence of multiple heterogeneous networks and without spectrum coordination, there is a challenge related to switching between available channels to minimise interference and maximise spectrum allocation. This thesis therefore focuses on the design of a framework for coexistence management and spectrum coordination, with the objective of maximising spectrum utilisation across geographical space and across time. The amount of geographical coverage in which a frequency can be used is optimised through frequency reuse while ensuring that harmful interference is minimised. The time during which spectrum is occupied is increased through time-sharing of the same spectrum by two or more networks, while ensuring that spectrum is shared by networks that can coexist in the same spectrum and that the total channel load is not excessive to prevent spectrum starvation. Conventionally, a graph is used to model relationships between entities such as interference relationships among networks. However, the concept of an edge in a graph is not sufficient to model relationships that involve more than two entities, such as more than two networks that are able to share the same channel in the time domain, because an edge can only connect two entities. On the other hand, a hypergraph is a generalisation of an undirected graph in which a hyperedge can connect more than two entities. Therefore, this thesis investigates the use of hypergraph theory to model the RF environment and the spectrum allocation scheme. The hypergraph model was applied to an algorithm for spectrum sharing among 100 heterogeneous wireless networks, whose geo-locations were randomly and independently generated in a 50 km by 50 km area. Simulation results for spectrum utilisation performance have shown that the hypergraph-based model allocated channels, on average, to 8% more networks than the graph-based model. The results also show that, for the same RF environment, the hypergraph model requires up to 36% fewer channels to achieve, on average, 100% operational networks, than the graph model. The rate of growth of the running time of the hypergraph-based algorithm with respect to the input size is equal to the square of the input size, like the graph-based algorithm. Thus, the model achieved better performance at no additional time complexity.Electromagnetic waves in the Radio Frequency (RF) spectrum are used to convey wireless transmissions from one radio antenna to another. Spectrum utilisation factor, which refers to how readily a given spectrum can be reused across space and time while maintaining an acceptable level of transmission errors, is used to measure how efficiently a unit of frequency spectrum can be allocated to a specified number of users. The demand for wireless applications is increasing exponentially, hence there is a need for efficient management of the RF spectrum. However, spectrum usage studies have shown that the spectrum is under-utilised in space and time. A regulatory shift from static spectrum assignment to DSA is one way of addressing this. Licence exemption policy has also been advanced in Dynamic Spectrum Access (DSA) systems to spur wireless innovation and universal access to the internet. Furthermore, there is a shift from homogeneous to heterogeneous radio access and usage of the same spectrum band. These three shifts from traditional spectrum management have led to the challenge of coexistence among heterogeneous wireless networks which access the spectrum using DSA techniques. Cognitive radios have the ability for spectrum agility based on spectrum conditions. However, in the presence of multiple heterogeneous networks and without spectrum coordination, there is a challenge related to switching between available channels to minimise interference and maximise spectrum allocation. This thesis therefore focuses on the design of a framework for coexistence management and spectrum coordination, with the objective of maximising spectrum utilisation across geographical space and across time. The amount of geographical coverage in which a frequency can be used is optimised through frequency reuse while ensuring that harmful interference is minimised. The time during which spectrum is occupied is increased through time-sharing of the same spectrum by two or more networks, while ensuring that spectrum is shared by networks that can coexist in the same spectrum and that the total channel load is not excessive to prevent spectrum starvation. Conventionally, a graph is used to model relationships between entities such as interference relationships among networks. However, the concept of an edge in a graph is not sufficient to model relationships that involve more than two entities, such as more than two networks that are able to share the same channel in the time domain, because an edge can only connect two entities. On the other hand, a hypergraph is a generalisation of an undirected graph in which a hyperedge can connect more than two entities. Therefore, this thesis investigates the use of hypergraph theory to model the RF environment and the spectrum allocation scheme. The hypergraph model was applied to an algorithm for spectrum sharing among 100 heterogeneous wireless networks, whose geo-locations were randomly and independently generated in a 50 km by 50 km area. Simulation results for spectrum utilisation performance have shown that the hypergraph-based model allocated channels, on average, to 8% more networks than the graph-based model. The results also show that, for the same RF environment, the hypergraph model requires up to 36% fewer channels to achieve, on average, 100% operational networks, than the graph model. The rate of growth of the running time of the hypergraph-based algorithm with respect to the input size is equal to the square of the input size, like the graph-based algorithm. Thus, the model achieved better performance at no additional time complexity

    Survey of Spectrum Sharing for Inter-Technology Coexistence

    Full text link
    Increasing capacity demands in emerging wireless technologies are expected to be met by network densification and spectrum bands open to multiple technologies. These will, in turn, increase the level of interference and also result in more complex inter-technology interactions, which will need to be managed through spectrum sharing mechanisms. Consequently, novel spectrum sharing mechanisms should be designed to allow spectrum access for multiple technologies, while efficiently utilizing the spectrum resources overall. Importantly, it is not trivial to design such efficient mechanisms, not only due to technical aspects, but also due to regulatory and business model constraints. In this survey we address spectrum sharing mechanisms for wireless inter-technology coexistence by means of a technology circle that incorporates in a unified, system-level view the technical and non-technical aspects. We thus systematically explore the spectrum sharing design space consisting of parameters at different layers. Using this framework, we present a literature review on inter-technology coexistence with a focus on wireless technologies with equal spectrum access rights, i.e. (i) primary/primary, (ii) secondary/secondary, and (iii) technologies operating in a spectrum commons. Moreover, we reflect on our literature review to identify possible spectrum sharing design solutions and performance evaluation approaches useful for future coexistence cases. Finally, we discuss spectrum sharing design challenges and suggest future research directions

    TV white spaces for railway wireless applications

    Get PDF
    Train-to-ground communication is one of the most crucial features of modern railway systems. The extensive use of emerging wireless technologies helps to achieve the rail industry vision of implementing intelligent trains, having a customised experience for travelling passengers, and running trains closer together. The Global System for Mobile Communications-Railway (GSM-R) is an international wireless communications standard introduced for train-to-ground communications in mainline railways. However, GSM-R currently suffers from severe interference and capacity problems that impede the consideration of this technology for emerging rail applications. The prospect of opportunistic access to an inefficiently utilised frequency spectrum, known as TV White Spaces (TVWS), that exploits desirable railway propagation characteristics is proposed to solve the spectrum scarcity problem. In order to provide full protection for spectrum Primary Users (PUs), The IEEE 802.22 standard sets strict policies for mobile platforms. This research proposes a handover procedure and channel access scheme that maintain seamless connectivity for various railway wireless applications in the mobility-restrictive TVWS. The suitability of the approach is tested through its application in Remote Condition Monitoring (RCM) systems whose telecommunication requirements can tolerate the uncertainty in the TVWS spectrum availability. The method is applicable to other rail applications if special considerations are given to the specific application requirements. Prior knowledge of the train’s trajectory enables the method to pre-select a list channels that last for long distances, which minimises unnecessary control messages overhead. The newly proposed method indicates an improvement of 37.8% in the channel utilisation distance, as the train can have an uninterrupted connection for an average consecutive distance of 1.188 km using the new scheme compared with an average of 0.862 km for the IEEE 802.22 standard. Besides that, for the same data rate, an extra 6.5% of maintenance data can be transmitted using the new approach if compared with the IEEE 802.22 standard under various spectrum availability. The results also reflect 0% probability of channel collision under all spectrum availability, due to the first-come-first-served spectrum access adopted, and 0% probability of overall network blocking at spectrum availability that is (� 30%). Finally, the new method does not cause any interference to the surrounding PUs and enables better transmission power for the spectrum Secondary Users (SUs) that can reach up to 42.2 dBm under different channel availability, which directly improves the overall network throughput
    corecore