967 research outputs found

    Lossy network correlated data gathering with high-resolution coding

    Get PDF
    Sensor networks measuring correlated data are considered, where the task is to gather data from the network nodes to a sink. A specific scenario is addressed, where data at nodes are lossy coded with high-resolution, and the information measured by the nodes has to be reconstructed at the sink within both certain total and individual distortion bounds. The first problem considered is to find the optimal transmission structure and the rate-distortion allocations at the various spatially located nodes, such as to minimize the total power consumption cost of the network, by assuming fixed nodes positions. The optimal transmission structure is the shortest path tree and the problems of rate and distortion allocation separate in the high-resolution case, namely, first the distortion allocation is found as a function of the transmission structure, and second, for a given distortion allocation, the rate allocation is computed. The second problem addressed is the case when the node positions can be chosen, by finding the optimal node placement for two different targets of interest, namely total power minimization and network lifetime maximization. Finally, a node placement solution that provides a tradeoff between the two metrics is proposed

    Entropy of Highly Correlated Quantized Data

    Get PDF
    This paper considers the entropy of highly correlated quantized samples. Two results are shown. The first concerns sampling and identically scalar quantizing a stationary continuous-time random process over a finite interval. It is shown that if the process crosses a quantization threshold with positive probability, then the joint entropy of the quantized samples tends to infinity as the sampling rate goes to infinity. The second result provides an upper bound to the rate at which the joint entropy tends to infinity, in the case of an infinite-level uniform threshold scalar quantizer and a stationary Gaussian random process. Specifically, an asymptotic formula for the conditional entropy of one quantized sample conditioned on the previous quantized sample is derived. At high sampling rates, these results indicate a sharp contrast between the large encoding rate (in bits/sec) required by a lossy source code consisting of a fixed scalar quantizer and an ideal, sampling-rate-adapted lossless code, and the bounded encoding rate required by an ideal lossy source code operating at the same distortion

    Approximate Decoding Approaches for Network Coded Correlated Data

    Get PDF
    This paper considers a framework where data from correlated sources are transmitted with help of network coding in ad-hoc network topologies. The correlated data are encoded independently at sensors and network coding is employed in the intermediate nodes in order to improve the data delivery performance. In such settings, we focus on the problem of reconstructing the sources at decoder when perfect decoding is not possible due to losses or bandwidth bottlenecks. We first show that the source data similarity can be used at decoder to permit decoding based on a novel and simple approximate decoding scheme. We analyze the influence of the network coding parameters and in particular the size of finite coding fields on the decoding performance. We further determine the optimal field size that maximizes the expected decoding performance as a trade-off between information loss incurred by limiting the resolution of the source data and the error probability in the reconstructed data. Moreover, we show that the performance of the approximate decoding improves when the accuracy of the source model increases even with simple approximate decoding techniques. We provide illustrative examples about the possible of our algorithms that can be deployed in sensor networks and distributed imaging applications. In both cases, the experimental results confirm the validity of our analysis and demonstrate the benefits of our low complexity solution for delivery of correlated data sources

    A Comprehensive Review of Distributed Coding Algorithms for Visual Sensor Network (VSN)

    Get PDF
    Since the invention of low cost camera, it has been widely incorporated into the sensor node in Wireless Sensor Network (WSN) to form the Visual Sensor Network (VSN). However, the use of camera is bringing with it a set of new challenges, because all the sensor nodes are powered by batteries. Hence, energy consumption is one of the most critical issues that have to be taken into consideration. In addition to this, the use of batteries has also limited the resources (memory, processor) that can be incorporated into the sensor node. The life time of a VSN decreases quickly as the image is transferred to the destination. One of the solutions to the aforementioned problem is to reduce the data to be transferred in the network by using image compression. In this paper, a comprehensive survey and analysis of distributed coding algorithms that can be used to encode images in VSN is provided. This also includes an overview of these algorithms, together with their advantages and deficiencies when implemented in VSN. These algorithms are then compared at the end to determine the algorithm that is more suitable for VSN

    Antioxidants: nanotechnology and biotechnology fusion for medicine in overall

    Get PDF
    Antioxidant is a chemical substance that is naturally found in our food. It can prevent or reduce the oxidative stress of the physiological system. Due to the regular usage of oxygen, the body continuously produces free radicals. Excessive number of free radicals could cause cellular damage in the human body that could lead to various diseases like cancer, muscular degeneration and diabetes. The presence of antioxidants helps to counterattack the effect of these free radicals. The antioxidant can be found in abundance in plants and most of the time there are problems with the delivery. The solution is by using nanotechnology that has multitude potential for advanced medical science. Nano devices and nanoparticles have significant impact as they can interact with the subcellular level of the body with a high degree of specificity. Thus, the treatment can be in maximum efficacy with little side effect

    Rate-distortion Balanced Data Compression for Wireless Sensor Networks

    Get PDF
    This paper presents a data compression algorithm with error bound guarantee for wireless sensor networks (WSNs) using compressing neural networks. The proposed algorithm minimizes data congestion and reduces energy consumption by exploring spatio-temporal correlations among data samples. The adaptive rate-distortion feature balances the compressed data size (data rate) with the required error bound guarantee (distortion level). This compression relieves the strain on energy and bandwidth resources while collecting WSN data within tolerable error margins, thereby increasing the scale of WSNs. The algorithm is evaluated using real-world datasets and compared with conventional methods for temporal and spatial data compression. The experimental validation reveals that the proposed algorithm outperforms several existing WSN data compression methods in terms of compression efficiency and signal reconstruction. Moreover, an energy analysis shows that compressing the data can reduce the energy expenditure, and hence expand the service lifespan by several folds.Comment: arXiv admin note: text overlap with arXiv:1408.294

    Gossip Algorithms for Distributed Signal Processing

    Full text link
    Gossip algorithms are attractive for in-network processing in sensor networks because they do not require any specialized routing, there is no bottleneck or single point of failure, and they are robust to unreliable wireless network conditions. Recently, there has been a surge of activity in the computer science, control, signal processing, and information theory communities, developing faster and more robust gossip algorithms and deriving theoretical performance guarantees. This article presents an overview of recent work in the area. We describe convergence rate results, which are related to the number of transmitted messages and thus the amount of energy consumed in the network for gossiping. We discuss issues related to gossiping over wireless links, including the effects of quantization and noise, and we illustrate the use of gossip algorithms for canonical signal processing tasks including distributed estimation, source localization, and compression.Comment: Submitted to Proceedings of the IEEE, 29 page
    corecore