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This paper considers a framework where data from correlated sources are transmitted

with the help of network coding in ad hoc network topologies. The correlated data are

encoded independently at sensors and network coding is employed in the intermediate

nodes in order to improve the data delivery performance. In such settings, we focus on

the problem of reconstructing the sources at decoder when perfect decoding is not

possible due to losses or bandwidth variations. We show that the source data similarity

can be used at decoder to permit decoding based on a novel and simple approximate

decoding scheme. We analyze the influence of the network coding parameters and in

particular the size of finite coding fields on the decoding performance. We further

determine the optimal field size that maximizes the expected decoding performance as

a trade-off between information loss incurred by limiting the resolution of the source

data and the error probability in the reconstructed data. Moreover, we show that the

performance of the approximate decoding improves when the accuracy of the source

model increases even with simple approximate decoding techniques. We provide

illustrative examples showing how the proposed algorithm can be deployed in sensor

networks and distributed imaging applications.

& 2012 Elsevier B.V. All rights reserved.
1. Introduction

The rapid deployment of distributed networks such as
sensor networks, cloud networks has motivated a
plethora of researches that study the design of low
complexity and efficient solutions for information deliv-
ery. Since the coordination among intermediate nodes is
often difficult to achieve, the information dissemination
in the intermediate nodes has often to be performed in a
distributed manner on ad hoc or overlay mesh network
topologies. Network coding [1] has been recently pro-
posed as a method to build efficient distributed delivery
algorithms in networks with path and source diversity. It
ll rights reserved.

rk).
is based on a paradigm where the network nodes are
allowed to perform basic processing operations on infor-
mation streams. The network nodes can combine infor-
mation packets and transmit the resulting data to the
next network nodes. Such a strategy permits to improve
the throughput of the system and to approach better the
max-flow min-cut limit of networks [2,3]. When the
decoder receives enough data, it can recover the original
source information by performing inverse operations (e.g.,
with Gaussian elimination).

These advantages motivate the deployment of network
coding in various scenarios where the network diversity is
significant (e.g., [4–9]). Many of these solutions are based on
random linear network coding (RLNC) [10] that permits to
implement distributed solutions with low communication
costs. RLNC represents an interesting solution for the
deployment of practical systems where it can work in
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conjunction with data dissemination protocols such as
gossiping algorithms [8]. The resulting systems are robust
against link failures, do not require reconciliation between
the network nodes, and can significantly improve the
performance of data delivery compared to ‘‘store and
forward’’ approaches. Most of the research so far has
however focused either on theoretical aspects of network
coding such as achievable capacity and coding gain or on its
practical aspects such as robustness and increased through-
put when the number of innovative packets is sufficient for
perfect decoding. However, it generally does not consider
the problematic cases where the clients receive an insuffi-
cient number of innovative packets for perfect decoding due
to losses or timing constraints for example. This is the main
problem addressed in this paper.

We consider a framework where network coding is
used for the delivery of correlated data that are discre-
tized and independently encoded at the sensors. The
information streams are delivered with the help of RLNC
in lossy ad hoc networks. When an insufficient number of
symbols at decoder prevent exact data recovery, we
design a novel low complexity approximate decoding

algorithm that uses the data correlation for signal recon-
struction. The information about source similarity typi-
cally provides additional constraints in the decoding
process, such that well-known approaches for matrix
inversion (e.g., Gaussian elimination) can be efficiently
used even in the case where the decoding problem is a
priori underdetermined. We show analytically that the
use of source models at decoding process leads to an
improved data recovery. Then, we analyze the impact of
accurate knowledge of data similarity at decoder, where
more precise information leads to better performance in
the approximate decoding. We further analyze the influ-
ence of the choice of the Galois Field (GF) size in the
coding operations on the performance of the approximate
decoding framework. We demonstrate that the field size
should be selected by considering the tradeoff between
the resolution for representing the source signal and the
approximate decoding performance. Specifically, when
the GF size increases, the quantization error of the source
data decreases, while the decoding error probability
increases with the GF size. We show that there is an
optimal value for the GF size when the approximate
decoding is enabled at the receivers. Finally, we illustrate
the performance of the network coding algorithm with
the approximate decoding on two types of correlated
data, i.e., seismic data and video sequences. The simula-
tion results confirm the validity of the GF size analysis
and show that the approximate decoding scheme leads to
efficient reconstruction when the accurate correlation
information is used during decoding. In summary, the
main contributions of our paper are (i) a new framework
for the distributed delivery of correlated data with net-
work coding, (ii) a novel approximate decoding strategy
that exploits data similarity with low complexity when
the received data does not permit perfect decoding, (iii)
an analysis of the influence of the accuracy of the data
similarity information and the GF size on the decoding
performance, and (iv) the implementation of illustrative
examples with external or intrinsic source correlation.
In general, the transmission of correlated sources is
studied in the framework of distributed coding [11] (i.e.,
in the context of the Slepian–Wolf problem), where sources
are typically encoded by systematic channel encoders and
eventually decoded jointly [12,13]. DSC (distributed source
coding) is combined with network coding schemes [14–17]
in the gathering of correlated data. Alternatively, network
coding techniques are used while jointly performing data
compression [18,19]. Our focus is however not on the
design of a distributed compression scheme, which gener-
ally assumes that sensors are aware of the similarity
between the data sources. Rather, we focus on the trans-
mission of correlated data that are encoded independently,
transmitted with the help of network coding enabled net-
work nodes over an overlay network and jointly decoded at
the receivers. However, due to the network dynamics, there
is no guarantee that each node receives enough useful
packets for successful data recovery. Hence, it is essential
to have a low complexity methodology that enables the
recovery of the original data with a good accuracy, when
the number of useful packets is not sufficient for perfect
decoding. When RLNC is implemented in the network, the
encoding processes in each node are based on linear
operations (e.g., linear combinations, inverse of linear
matrix, etc.) in a finite algebraic field. In the case of
insufficient number of innovative packets for perfect decod-
ing, one can simply deploy an existing regularization
technique that may minimize the norm of the errors using
the pseudo-inverse of the encoding matrix. However, it is
generally known that this type of regularization techniques
may result in significantly unreasonable approximation
[20]. Alternatively, Tikhonov regularization provides an
improved performance by slightly modifying the standard
least square formula. However, this technique requires to
determine additional optimization parameters, which is
nontrivial in practice. Sparsity assumptions might also be
used [21] for regularized decoding in underdetermined
systems in cases where a model of the signal of interest is
known a priori. However, all these regularization techni-
ques have been designed and developed in the continuous
domain, but not for finite fields that are used in network
coding approaches. Thus, they may show significantly poor
performance if they are applied blindly in our framework, as
they cannot consider several properties (e.g., cyclic proper-
ties) of finite field operations. Underdetermined systems
can also be solved approximately based on the maximum
likelihood estimation (MLE) techniques (see e.g., [22] (Part
II)) or based on mixed integer linear programming [23], but
these techniques require effective data models and typically
involve large computational complexity.

The paper is organized as follows. In Section 2, we
present our framework and describe the approximate
decoding algorithm. We discuss the influence of the
source model information in the approximate decoding
process in Section 3. In Section 4, we analyze the relation
between the decoding performance and the GF size, and
then determine an optimal GF size that achieves the
smallest expected decoding error. Sections 5 and 6 pro-
vide illustrative examples that show how the proposed
approach can be implemented in sensor networks or
video delivery applications.



Fig. 1. Illustrative example of network coding with N¼3 source data

and three network coding nodes. The input data sn, which is mapped

into xn in GF, are linearly combined with random coefficients in each

network coding node, to generate vector y.
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2. Approximate decoding framework

We begin by describing the general framework con-
sidered in this paper and present the proposed distributed
delivery strategy for correlated data sources. We also
discuss the concept of approximate decoding that enables
receivers to estimate the source information when the
number of data packets is not sufficient for perfect
decoding.

2.1. RLNC encoding

We consider an overlay network with sources, inter-
mediate nodes, and clients distributed over a network
(e.g., ad hoc network). We denote by s1, . . . ,sN the symbols
generated by N discrete and correlated sources, where
sn 2 Sð� RÞ for 1rnrN. S is an alphabet set of sn and 9S9
denotes the size of S. These source data are transmitted to
the clients via intermediate nodes that are able to perform
network coding (i.e., RLNC). Hence, each sn also needs to
be considered as an element in a GF. In order to explicitly
specify whether sn is in the field of real numbers or in a
GF, we define identity functions, defined as

1RG : R-GF, 1RGðsiÞ ¼ xi

1GR : GF-R, 1GRðxiÞ ¼ si

(
ð1Þ

which means that xi is an element in GF representing si.
Thus, an intermediate node k using RLNC transmits a
packet generated as

yðkÞ ¼
XN

n ¼ 1

�fcnðkÞ � xng9ðc1ðkÞ � x1Þ

�ðc2ðkÞ � x2Þ � � � � � ðcNðkÞ � xNÞ

which is a linear combination of xn and coding coefficients
cnðkÞ in GF. � and � denote an additive operation and a
multiplicative operation defined in GF, respectively. The
coding coefficients are uniformly and randomly chosen
from GF with size 2r , denoted by GFð2r

Þ. This implies that
the GF size is determined by r and that cnðkÞ 2 GFð2r

Þ. In
our implementation, the addition in GF with character-
istic 2, i.e., GFð2r

Þ, is performed by the exclusive-OR (XOR)
operation. The size of the field determines the set of
coding operations that can be performed on source
symbols. We thus assume that the size of the input set
is 9S9r2r . If 9S942r , the input set is reduced (using e.g.,
source binning or quantization), such that the input set
does not exceed the GF size (i.e., 2r).

The encoded symbols in each node are transmitted to
neighboring nodes towards the client nodes. If a decoder
receives K innovative (i.e., linearly independent) symbols
yð1Þ, . . . ,yðKÞ, where all yðkÞ 2 GFð2r

Þ, a linear system
y¼ C� x can be formed as1

yð1Þ

^

yðKÞ

2
64

3
75¼ ½c1 � � � cN � �

x1

^

xN

2
64

3
759 XN

n ¼ 1

�fcn � xng ð2Þ
1 In this paper, vectors and matrices are represented by boldfaced

lowercase and boldfaced capital letters, respectively.
where � denotes the multiplication between matrices in a
finite field. The K � N matrix C is referred to as the coding
coefficient matrix, which consists of column vectors
cn ¼ ½cnð1Þ,cnð2Þ, . . . ,cnðKÞ�

T , where AT denotes the trans-
pose of a matrix A. An illustrative example for N¼3 is
shown in Fig. 1, where the symbols s1, s2, and s3, which
are mapped into x1, x2 and x3 respectively, from sources
are network encoded at intermediate nodes using ran-
domly chosen coding coefficients.
2.2. Approximate decoding

Upon receiving a set of symbols y generated by (2), the
decoder attempts to recover the source data. If K¼N, i.e.,
the coding coefficient matrix C is full-rank as N innovative
symbols are available, then x is uniquely determined as
x¼ C	1

� y (and correspondingly, s¼ 1GRðxÞ) from the
linear system in (2). Note that C	1 represents the inverse
of the coding coefficient matrix C and can be obtained by
well-known approaches such as the Gaussian elimination
method over a GF.

However, if the number of received symbols is insuffi-
cient (i.e., KoN), there may be an infinite number of
solutions x̂ ¼ ½x̂1, . . . ,x̂N �

T to the system in (2), as C is not
full-rank. Hence, additional constraints should be
imposed so that the coding coefficient matrix becomes
full-rank. Hence, we modify the decoding system in (2) in
order to include external information as coding con-
straints that permits decoding. This leads to approximate
decoding, where the correlation of the input data is
exploited to construct additional constraints D (all ele-
ments of D are in GF as well) and m in the decoding
process so that the system becomes solvable. With the
additional constraints determined by D and m, an approx-
imate decoding solution can be expressed as

x̂ ¼
C

D

� �	1

�
y

m

� �
ð3Þ

which again can be implemented by the Gaussian elim-
ination method in a finite field. The additional constraints
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D and m typically depend on the problems under con-
sideration, i.e., the source models.2 For example, if
rankðCÞ ¼ KoN, then exactly ðN	KÞ independent con-
straints in the matrix D are added to form a full rank
system of linear equations. Note that adding more than
ðN	KÞ additional constraints in matrix D does not
improve the performance, as some of constraints are
redundant.

An approximation ŝ of the original data can then be
obtained by the identity functions defined in (1), i.e.,
ŝ ¼ 1GRðx̂Þ. The distortion between s and ŝ is denoted by
Js	ŝJl, where J � Jl denotes the l-norm operation [24]. An
illustrative example of approximate decoding algorithm is
described in Algorithm 1.

Algorithm 1. Approximate decoding.

Given: received symbols y, coefficient matrix C, data source model,

data size N, GF size 2r .

1: if rankðCÞ ¼N, then

2: ŝ ¼ 1GRðC
	1
� yÞ

3: else // rankðCÞoN and use approximate decoding

4: Construct D and m based on available source model information

5: Compute ŝ ¼ 1GR

C

D

� �	1

�
y

m

� � !

6: end if

2.3. Simple implementation of approximate decoding

While the approximate decoding framework is generic,
we present a simple instance of the algorithm in this paper.3

Thus, our focus is on highlighting the potential advantages
achieved by deploying a simple approximate decoding
approach for delivery of correlated data in resource con-
strained environments. Since K innovative symbols are
received, the rank of C in (3) is K, and correspondingly, D
in (3) is an ðN	KÞ � N matrix of coefficients. The coefficients
in D are determined based on the source correlation or
similarity model. The source similarity is measured by the
distance between data [25,26]. More specifically, the most
similar data si and sj have the smallest distance 9si	sj9. Then,
we construct D with each row consisting of zeros (i.e.,
additive identity of GF(2r)), except two elements of value
‘‘1’’ and ‘‘1’’ (because 1 is also an additive inverse of 1 in
GF(2r)) that correspond to the positions of the most similar
data xi and xj. Accordingly, m is set as a zero vector with size
of ðN	KÞ, which is also appended to y and represents the
results of the additional conditions set in D. Thus, the
implementation is expressed as

x̂ ¼
C

D

� �	1

�
y

0ðN	KÞ

" #
ð4Þ

This enables the decoder to approximately reconstruct the
original symbols whenever the number of symbols is not
2 Alternatively, the source model information and the received

symbols can be translated from GF into the field of real numbers, and

the decoding process is performed. However, this may incur more

computational complexity (e.g., [23]).
3 By deploying more general source models and sophisticated

algorithms on top of the proposed framework, better performance can

be achieved.
sufficient for perfect decoding. With these additional equa-
tions, the decoder can then invert the linear system and
approximate the data x with classical decoding algorithms.

Note that the coding coefficient matrix in (4) is
assumed here to be non-singular, which happens with
high probability if the size of the GF is large enough.
However, the probability that the coding coefficient
matrix becomes singular increases as the size of D is
enlarged. In this case, the system includes a large number
of similarity-driven coefficient rows with respect to the
random coefficients of the original coding matrix. The
impact of the singularity of the coding coefficient matrix
on the performance of the approximate decoding is
quantified in Section 6.2. Finally, we generally consider
that there exists a solution to the decoding problem
formed by the augmented coefficient matrix in (4).
Otherwise, the decoder outputs a decoding error signal.

We study in the next sections the influence of the
accuracy of the source model information and the influ-
ence of the finite field size (GF size) in the proposed
approximate decoding algorithm. Specific implementa-
tions of the approximate decoding are later discussed in
detail in Sections 5 and 6 with illustrative examples.

3. Approximate decoding based on a priori information
on source model

We discuss in this section the performance of the
proposed approximate decoding algorithm for recovering
the source data from an insufficient number of network
coded packets. In particular, we analyze and quantify the
impact of the accuracy of the source model information
(i.e., the expected similarity between source values) at
decoder when the augmented system in (4) enforces that
the most similar data have similar values after decoding.
Recall that if approximate decoding is not deployed,
conventional network decoding approaches for the net-
work coded data cannot recover any source data.

We first show that the decoding error in our approx-
imate decoding algorithm decreases as source data are
more similar. This is described in Property 1.

Property 1. The reconstruction error decreases as the

sources are more similar.

Proof. Let y be a set of K received innovative packets
(with K smaller than the number of original symbols N,
i.e., KoN). Let further C be the corresponding coding
coefficient matrix and x be original source data as in (2).
Since only KoN innovative packets are available at
decoder, ðN	KÞ additional constraints are imposed into
the coding coefficient matrix D based on the approach
discussed in Section 2.3. This leads to the approximate
decoding solution x̂ in (4).

We now analyze the error incurred by the proposed
approximate decoding algorithm. The recovered symbol
ŝ ¼ 1GRðx̂Þ from the approximate solution x̂ is compared
to the exact solution s. This exact solution is recon-
structed based on the set of coding coefficients C and
the coefficients D, but with the exact constraints d (all the
elements in d are in GFð2r

Þ) and not their approximation
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by a zero vector as done in (4). We denote these actual
constraints by the vector d, defined as

d¼D� x¼ ½dð1Þ, . . . ,dðN	KÞ�T ð5Þ

which is computed by applying the additional coefficients
in D on the original vector x. Equivalently, x can be
computed by

x¼
C

D

� �	1

�
y

d

� �
ð6Þ

Note that x̂ in (4) and x in (6) are obtained based on the
operations defined in GFð2r

Þ, and thus, the resulting ele-
ments in x or x̂ are in GFð2r

Þ. However, they originally
represent data in R (e.g., source data). Hence, in order to
quantify the performance of the proposed algorithm, we are
interested in the error between the exact and approximate
solutions, i.e., Js	ŝJl.

From the assumption that ½CT DT
�T in (4) is not singular,

its inverse, ½CT DT
�	T can be written as

½MðKÞ MðN	KÞ� ¼ ½mð1Þ � � � mðKÞ mðKþ1Þ � � � mðNÞ�

where MðKÞ and MðN	KÞ indicate sub-matrices with
fmð1Þ, . . . ,mðKÞg and fmðKþ1Þ, . . . ,mðNÞg column vectors. Thus,
ŝ and s can be expressed from (4) and (6), respectively, as

ŝ ¼ 1GRðx̂Þ ¼ 1GRðMðKÞ � yÞ ð7Þ

s¼ 1GRðxÞ ¼ 1GRððMðKÞ � yÞ � ðMðN	KÞ � dÞÞ ð8Þ

Therefore, the error between the exact and the approximate
solutions can be expressed as

Js	ŝJl ¼ J1GRðxÞ	1GRðx̂ÞJl ð9Þ

¼ J1GRfðMðKÞ � yÞ � ðMðN	KÞ � dÞÞ	1GRðMðKÞ � ygJl ð10Þ

rJ1GRfðMðKÞ � yÞ � ðMðN	KÞ � dÞ � ðMðKÞ � yÞgJl ð11Þ

¼ J1GRðMðN	KÞ � dÞJl ¼ 1GR

XN	K

k ¼ 1

�fmKþk � ðxi,k � xj,kÞg

 !�����
�����

l

ð12Þ

r
XN	K

k ¼ 1

1GRfmKþk � ðxi,k � xj,kÞg

�����
�����

l

ð13Þ

The inequalities from (10) and (11) and from (12) and (13)
stem from the properties of operations in the field of real
numbers and GF, i.e.,

si	sjr1GRðxi � xjÞrsiþsj ð14Þ

where xi and xj are the GF representation of si and sj,
respectively (see (1)). Moreover, d¼ ½dð1Þ � � � dðN	kÞ�T ,
where dðkÞ ¼ xi,k � xj,k, 0r i,jrN, as each element in d
depends on two non-zero elements in each row of D, and
thus, on our choice of the additional constraints.

For the data si
h

and sj
h

with higher similarity and for the
data si

l
and sj

l
with lower similarity, we have by definition

9sh
i 	sh

j 9r9sl
i	sl

j9

As shown in Appendix A.1, it can be easily confirmed that

Prð1GRðx
h
i � xh

j ÞrEÞrPrð1GRðx
l
i � xl

jÞrEÞ

given a certain E. Therefore, given the vectors mKþ1, . . . ,mN

in (13), the error Js	ŝJl between the exact and approximate
solutions decreases on average when the data have more
similarity. &

Property 1 implies that the decoding error is bounded,
and that this bound becomes smaller when original data
are more similar. This means that the best way to
construct D consists in building additional constraints
with source symbols that are expected to have the highest
similarity. In order to show this analytically, consider D
and ~D (with ~DaD), where ~D is constructed with a set of
data that are less similar than the ones in D which is itself
constructed by the most similar data. From (13), it means
that the upper bounds of the errors with D and ~D are
respectively

XN	K

k ¼ 1

1GRfmKþk � ðxi,k � xj,kÞg

�����
�����

l

ð15Þ

and

XN	K

k ¼ 1

1GRfmKþk � f ~xi,k � ~xj,kgg

�����
�����

l

ð16Þ

Since xi,k and xj,k are specified by D while ~xi,k and ~xj,k are
specified by ~D, it is true with high probability that

xi,k � xj,kr ~xi,k � ~xj,k ð17Þ

as discussed in Appendix A.1. Therefore, we can conclude
from (9)–(13), (15), (16) and (17) that D leads to better
performance (or equivalently less errors) than ~D on
average if the approximate decoding is deployed in
conjunction with the implementation proposed in
Section 2.3. An illustrative set of simulation results are
shown in Fig. 2.

In summary, we observe that the efficiency of approx-
imate decoding improves with the source similarity and
with the accuracy of the correlation information that is
used to derive additional constraints for decoding.

4. Optimal finite field size

We study here the design of the coding coefficient
matrix, and in particular, the influence of the size of the
finite field (i.e., GF) on the performance of the approx-
imate decoding framework. This size has an influence on
the reconstruction error when the number of symbols is
insufficient for perfect decoding. The GF size determines
the resolution of the source encoding since only a finite
number of symbols (that is equal to the GF size) can be
uniquely represented by the identity functions defined in
Section 2.1. Thus, as the GF size is enlarged, the error that
may be incurred by quantizing source data becomes
smaller. At the same time, however, there is higher
probability that a large distortion is induced by the
approximate reconstruction. We therefore determine the
optimal GF size that minimizes the expected decoding
error by trading off source approximation error and
decoding error probability.

We first prove the following property, which states
that the decoding errors increase as the GF size is
enlarged. While this property seems contradictory, it is
true because a source model cannot perfectly identify the
source data in general. Rather, the source model can only
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provide the information about the most similar data, so
that the approximate decoding can use it for data recov-
ery. In the analysis, we consider a worse-case scenario,
where data recovered by the constraints in matrix D of the
approximate decoding are uniformly distributed over S.4

Property 2. Given a finite set of data S, the average

reconstruction error increases as the GF size for the coding

operations increases.

Proof. Let s 2 S be an original symbol, where the size of
the original data space is given by 9S9¼ 2r . Let further
ŝr ¼ 1GRðx̂rÞ and ŝR ¼ 1GRðx̂RÞ be the decoded symbols
when coding is performed in respectively GFð2r) and
GF(2R) with R4r, for r,R 2 N, i.e., GF(2R) is an extended
GF from GF(2r). In this scenario, the decoding errors are
uniformly distributed over S. Thus, the probability mass
function of ŝk is given by

pkðŝkÞ ¼
1=2k if ŝk 2 ½0,2k

	1�

0 otherwise

(

for k 2 fr,Rg. To prove that a larger GF size results in a
higher decoding error, we have to show that

Prð9s	ŝR9Z9s	ŝr9Þ41
2 ð18Þ

If this condition is satisfied, the expected distortion is
larger for sR than sr, or equivalently, for the larger GF size.
The left hand side of (18) can be expressed as

Pr ŝRZ ŝr ,sr
ŝRþ ŝr

2

� �
þPr ŝRo ŝr ,s4

ŝRþ ŝr

2

� �

¼ PrðŝRZ ŝrÞPr sr
ŝRþ ŝr

2

����ŝRZ ŝr

� �

þPrðŝRo ŝrÞPr s4
ŝRþ ŝr

2

����ŝRo ŝr

� �

¼ ð1	2r	R	1
ÞP̂þ2r	R	1

ð1	P̂Þ ¼ 2r	R	1
þð1	2r	R

ÞP̂
4 If distribution of the decoded data is known, it can be used for

better approximate decoding. This may be an interesting future research

direction.
because ŝR and ŝr are both uniformly distributed. In the
previous equations, we have posed P̂9Prðsr ðŝRþ ŝrÞ=

29ŝRZ ŝrÞ. We further show in Appendix A.2 that P̂ 4 1
2.

Therefore, we have

2r	R	1
þð1	2r	R

ÞP̂ 42r	R	1
þð1	2r	R

Þ � 1
2 ¼

1
2 ð19Þ

which completes the proof. &

Property 2 implies that a small GF size is preferable in
terms of expected decoding error. In particular, it is
preferred not to enlarge the GF size more than the size
of the input space since approximate decoding performs
worse in very large field.

Alternatively, if the GF size becomes smaller than the
size of the input alphabet size, the maximum number of
source symbols that can be distinctively represented
decreases correspondingly. Specifically, if we choose a
GF size of 2r0 such that 9S942r0 for r0or, part of the data
in S needs to be discarded to form a subset S0 such that
9S09r2r0 . In this case, we assume that if the GF size is
reduced from GF(2r) to GF(2r	z), where 0rzð2 ZÞrr	1,
the least significant z bits in the representation of the
original data are discarded first from x 2 S. Then, all the
data in S0 can be distinctly encoded in GF(2r0 ).

In summary, while reducing the GF size may result in
lower decoding error, it may induce larger information loss in
the source data. Based on this clear tradeoff, we present
below Property 3 that shows the existence of an optimal GF
size. Note that discarding part of source data information
results in errors at the source, similar to data quantization.
Thus, we assume that the corresponding source information
loss is uniformly distributed and that the decoded data is also
uniformly distributed in the following analysis. Moreover, if
quantization is necessary, the quantization levels are deter-
mined such that the size of quantized source data is the same
as the GF size. This is because GF sizes larger than the size of
source data may result in larger errors as found in Property 2.

Property 3. There exists an optimal GF size that minimizes

the expected error in data reconstruction at decoder. The
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optimal GF size is given by GF(2r	zn ), where zn ¼ dðr	1Þ=2e
or zn ¼ bðr	1Þ=2c.

Proof. Suppose that the number of original source sym-
bols is 9S9¼ 2r and that the coding field is GF(2r). As
discussed in Property 2, the GF size does not need to be
enlarged more than 2r , as this only increases the prob-
ability of the expected decoding error. If the GF size is
reduced from GF(2r) to GF(2r	z), the approximate decod-
ing is more efficient and the decoding errors are uni-
formly distributed over ½	rD,rD�, where rD ¼ 2r	1	z

	1, i.e.,

peD
ðeDÞ ¼

1=ð2rDþ1Þ if eD 2 ½	rD,rD�

0 otherwise

�
ð20Þ

At the same time, if the GF size is reduced, the input
data set S is reduced to S0 and the number of input
symbols is decreased. By discarding the z least significant
bits, the number of input symbols becomes 9S09¼ 2r	z.
Such an information loss also results in errors over ½	rI ,rI�,
where rI ¼ 2z

	1, i.e.,

peI
ðeIÞ ¼

1=ð2rIþ1Þ if eI 2 ½	rI ,rI�

0 otherwise

�
ð21Þ

Based on these independent distortions, the distribution
of the total error, peT

ðeT Þ ¼ peD
ðeDÞþpeI

ðeIÞ, is given by [27]

peT
ðeT Þ ¼

H

2
f9eTþrIþrDþ19	9eTþrI	rD9

	9eT	rIþrD9þ9eT	rI	rD	19g

for 9eT9rrIþrD9emax
T and H¼ ð2rIþ1Þ	1

ð2rDþ1Þ	1. Since
eTþrIþrDþ1Z0 and eT	rI	rD	1r0 for all 9eT9remax

T

ð ¼ rIþrDÞ, by substituting rI and rD, we have

peT
ðeT Þ ¼

H

2
f2ð2z

þ2r	1	z
	1Þ	9eTþ2z

	2r	1	z9

	9eT	2z
þ2r	1	z9g ð22Þ

By denoting aðzÞ92z
	2r	1	z and bðzÞ92z

þ2r	1	z, the
expected decoding error can be expressed as

E½9eT9� ¼
X1

eT ¼ 	1

9eT9 � peT
ðeT Þ

¼
Xemax

T

eT ¼ 	emax
T

H

2
9eT9 � ½2ðbðzÞ	1Þ	9eTþaðzÞ9	9eT	aðzÞ9�

ð23Þ

Since both 9eT9 and ½2ðbðzÞ	1Þ	9eTþaðzÞ9	9eT	aðzÞ9� are
symmetric on z¼ dðr	1Þ=2e and z¼ bðr	1Þ=2c (see
Appendix A.3), E½9eT9� is also symmetric. Thus,

E½9eT9� ¼H
Xemax

T

eT ¼ 1

eT � f2ðbðzÞ	1Þ	9eTþaðzÞ9	9eT	aðzÞ9g

¼H
Xemax

T

eT ¼ 1

eT � f2ðbðzÞ	1Þg	H
Xemax

T

eT ¼ 1

eT � f9eTþaðzÞ9

þ9eT	aðzÞ9g

¼H � ðbðzÞ	1Þemax
T ðe

max
T þ1Þ	H

Xemax
T

eT ¼ 1

eT � f9eTþaðzÞ9

þ9eT	aðzÞ9g ð24Þ
If we consider the case where aðzÞ40, which corresponds
to r=2ozrr	1, we have

Xemax
T

eT ¼ 1

eT � f9eTþaðzÞ9þ9eT	aðzÞ9g ¼
XaðzÞ	1

eT ¼ 1

eT

� 2aðzÞþ
Xemax

T

eT ¼ aðzÞ

eT � 2eT

¼
1

3
emax

T ðe
max
T þ1Þð2emax

T þ1Þþ
1

3
aðzÞðaðzÞ2	1Þ

Note that emax
T ¼ bðzÞ	2. Therefore, for the case where

aðzÞ40, E½eT � can be expressed as

E½eT � ¼H � ½ðbðzÞ	1Þ2ðbðzÞ	2Þ	1
3ðbðzÞ	1ÞðbðzÞ	2Þð2bðzÞ	3Þ

	1
3aðzÞðaðzÞ2	1Þ�

¼H � ½13 bðzÞðbðzÞ	1ÞðbðzÞ	2Þ	1
3aðzÞðaðzÞ2	1Þ� ð25Þ

which is an increasing function for r=2ozrr	1 (see
Appendix A.4). Since E½eT � is symmetric on z¼ dðr	1Þ=2e
and z¼ bðr	1Þ=2c, and is an increasing function over
r=2ozrr	1, E½eT � is convex over 0rzrr	1. Therefore,
there exists an optimal zn that minimizes the expected
decoding error.

Finally, since E½eT � is symmetric on dðr	1Þ=2e and
bðr	1Þ=2c, the minimum E½eT � can be achieved if
zn ¼ dðr	1Þ=2e or zn ¼ bðr	1Þ=2c. The two optimum points
can be the same for odd r. &

5. Approximate decoding in sensor networks

5.1. System description

We illustrate in this section an example, where the
approximate decoding framework is used to recover the
data transmitted by sensors that capture a source signal
from different spatial locations. We consider a sensor
network, where sensors transmit RLNC encoded data.
Specifically, each sensor measures its own observations
and receives the other observations from its neighbor
sensors. Then, each sensor combines the received data
with its own data using RLNC. It transmits the resulting
data to its neighbor nodes or receivers. In the considered
scenario, there are 30 sensors which measure seismic
signals placed at a distance of 100 m by each other.

A sensor h captures a signal Sh that represents a series
of sampled values in a time window of size w, i.e.,
Sh ¼ ½s

1
h , . . . ,sw

h �
T . We assume that the data measured at

each sensor are in the range of ½	smin,smax�, i.e., sl
h 2

S ¼ ½	smin,smax� for all 1r lrw. We further assume that
they are quantized and mapped to the nearest integer
values, i.e., sl

h 2 Z. Thus, if the measured data exceed the
range of ½	smin,smax�, then they are clipped to the mini-
mum or maximum values of the range (i.e., sl

h ¼	smin or
sl

h ¼ smax).
The data captured by the different sensors are corre-

lated, as the signals at different neighboring positions are
mostly time-shifted and energy-scaled versions of each
other. The captured data have lower correlation with
other signals, as the distance between sensors becomes
larger. An illustrative example is shown in Fig. 3(a) that
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Fig. 3. Measured original seismic data (a) and decoded seismic data based on approximate decoding (b).

Fig. 4. Illustrative example of network coding in sensor networks.
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presents seismic data recorded by three different sensors.
The data measured by sensor 1 has much higher temporal
correlation with the data measured by sensor 2 in terms
of time shift and signal energy than the data measured by
sensor 30. This is because sensor 2 is significantly closer
to sensor 1 than sensor 30.

We consider that the nodes perform network coding
for data delivery. We denote by HnðDHÞ a set of sensors
that are in the proximity of a sensor n 2 H. The number of
sensors in Hn is 9Hn9¼Nn. A sensor n receives data Sh from
all the sensors h 2 Sn in its proximity and encodes the
received data with RLNC. The coding coefficients chðkÞ are
randomly selected from GF ð2r

Þ where the field size is
determined such that 9S9r2r . The encoded symbols are
then transmitted to the neighboring nodes or to the
receiver. The kth encoded data packets for a window of
samples are denoted by YðkÞ ¼

P
h2Hn
� fchðkÞ � Xhg,

where Xh ¼ 1RGðShÞ. An illustrative example is shown in
Fig. 4. This example presents a set of four sensors denoted
by H that consists of two subsets of neighbors, i.e.,
H1 ¼ f1,3,4g and H2 ¼ f2,4g. The encoded data packets
that the receiver collects from sensors 2 and 4 are denoted
by Yðk1Þ and Yðk2Þ.

When a receiver collects enough innovative packets, it
can solve the linear system given in (6) and it can recover
the original data. However, if the number of packets is not
sufficient, the receiver applies our proposed approximate
decoding strategy that exploits the similarity between the
different signals. With such a strategy, the decoding
performance can be improved as discussed in Property
1. We assume that the system setup is approximately
known by the sensors. In other words, a simple correla-
tion model can be computed, which includes the relative
temporal shifts and energy scaling between the signals
from the different sensors. In particular, since the sensor
positions are known, one can simply assume that the data
similarity depends only on the distance between sensors.

5.2. Simulation results

We analyze an illustrative scenario, where the receiver
collects encoded packets from sensors 1, 2 and 30 and
tries to reconstruct the original signals from these three
sensors. We consider temporal windows of size w¼300
for data representation. The captured data is in the range
of [0, 1023]. Thus, the maximum GF size is 210, i.e.,
GF(210). We assume that 2/3 of the linear equations
required for perfect decoding are received with no error,
and that the rest of 1/3 of equations are not received.
Thus, 1/3 of the system constraints at decoder is built on,
which is imposed into the coding coefficient matrix based
on the assumption that the signals from sensors 1 and 2
are highly correlated.

We study the influence of the size of the coding field
on the decoding performance. Fig. 5 shows the MSE (mean
square error) distortion for the decoded signals for differ-
ent number of discarded bits z, or equivalently for
different GF sizes 210	z. The conclusion drawn from
Property 3 is confirmed from these results, as the decod-
ing error is minimized at zn ¼ dð10	1Þ=2e ¼ 5.

An instantiation of seismic data recovered by the
approximate decoding is further shown in Fig. 3, where
a GF(210	zn )¼GF(25) is used. Since the additional con-
straints are imposed into the coding coefficient matrix
based on the assumption of high correlation between the
data measured by sensors 1 and 2, the recovered data of
sensors 1 and 2 in Fig. 3(b) are very similar, but at the
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Fig. 6. Illustrative examples of patches in a group of images (L¼2).
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same time, the data are quite accurately recovered. We
observe that the error in correlation estimation results in
higher distortion in the signal recovered by sensor 30.

6. Approximate decoding of image sequences

6.1. System description

In this section, we illustrate the application of approx-
imate decoding to the recovery of image sequences. We
consider a system, where information from successive
frames is combined by linear coding operations. The
encoded packets are transmitted to a common receiver.
Packets may however be lost or delayed, which prevents
perfect reconstruction of the images. Thus, for improved
decoding performance, we exploit the correlation
between successive frames. Note that the purpose of the
example (i.e., uncompressed image transmission) is to
illustrate how the proposed approximate decoding algo-
rithm can be applied in different setting and to visually
show the impact of the proposed algorithm in imaging
applications. In practical image transmission applications,
images are generally compressed before transmission.

We consider a group of successive images in a video
sequence. Each image Sn is divided into N patches Sn,p, i.e.,
Sn ¼ ½Sn,1, . . . ,Sn,N�. A patch Sn,p contains L� L pixels sb

n,p,
1rbrL� L, i.e., Sn,p ¼ ½s1

n,p, . . . ,sL�L
n,p �. Such a representa-

tion is illustrated in Fig. 6. The system implements RLNC
and combines patches at similar positions in different
frames to produce encoded symbols. In others words, it
produces a series of symbols YpðkÞ ¼

PN
n ¼ 1�cn,pðkÞ � Xn,p,

where Xn,p ¼ 1RGðSn,pÞ, for a location of patch p. The coding
coefficients cn,pðkÞ are randomly chosen in GFð2r

Þ. We
assume that the original data (i.e., pixels) can take values
in [0, 255], and thus, we choose the maximal size of the
coding field to be 9S9¼ 256¼ 28.

When the receiver collects enough innovative symbols
per patch, it can recover the corresponding sub-images in
each patch, and eventually the group of images. If, how-
ever, the number of encoded symbols is insufficient,
additional constraints are added to the decoding system
in order to enable approximate decoding. These
constraints typically depend on the correlation between
the successive images. As an illustration, in our case, the
constraints are imposed based on similarities between
blocks of pixels in successive frames, i.e., xb1

n,p ¼ xb2

nþ1,p,
where 1rb1, b2rL� L. The matched pixels, b1 and b2, are
determined based on the motion information in succes-
sive image frames n and nþ1, such that the similarity
between patch p is maximized. The motion information
permits to add additional constraints to the decoding
system so that estimations of the original blocks of data
can be obtained by Gaussian elimination techniques. Due
to our design choices, the decoding system can be
decomposed into smaller independent sub-systems that
correspond to patches.

6.2. Performance of approximate decoding

In our experiments, we consider three consecutive
frames extracted from the Silent standard MPEG sequence
with QCIF format (174�144). The patches are con-
structed with four blocks of 8�8 pixels. We assume that
only 2/3 of the linear equations required for perfect
decoding are received. The decoder implements approx-
imate decoding by assuming that the correlation informa-
tion is known at the decoder. The missing constraints are
added to the decoding system based on the best matched
pairs of blocks in consecutive frames, in the sense of the
smallest distance (i.e., highest similarity) between the
pixel values in blocks in different frames.

In the first set of experiments, we analyze the influ-
ence of the size of the coding field, by changing the GF
sizes from GF(28) to GF(28	z). We reduce the size of the
field by discarding the z least significant bits for each pixel
value. Fig. 7 shows the normalized MSE achieved from the
decoded frames for different numbers of discarded bits z.
As discussed in Property 3, the expected decoding error
can be minimized if zn ¼ dðr	1Þ=2e and zn ¼ bðr	1Þ=2c,
which corresponds to zn ¼ 3 and zn ¼ 4. This can be
verified from this illustrative example, where the max-
imum normalized MSE is achieved at z¼4 for frames 1
and 2, and at z¼3 for frame 3. The corresponding decoded
images for two different GF sizes are presented in Fig. 8.
From the decoded images, we can observe that several
patches are completely black or white. This is because the
coding coefficient matrices are singular, leading to the
failure of Gaussian elimination during the decoding
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process. Note that the goal of results shown in Fig. 7 is to
verify Property 3, but is not to maximize the MSE
performance. In order to further improve the MSE perfor-
mance, several image and video enhancement techniques
such as error concealment [28] can be deployed.

Next, we compare the approximate decoding approach
with MLE based decoding for RLNC coded data, as the MLE
can also use the joint probability distribution of sources
for solving an underdetermined system. In this experi-
ment, our focus is on the case where clients receive a set
of encoded packets that is insufficient for building a full-
rank coefficient matrix, as this case is meaningful for both
the approximate decoding and the MLE-based decoding.
The source data are the first three frames of QCIF Foreman
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and Silent sequences. They have different characteristics
as the Foreman sequence has much higher motion than
the Silent sequence. For fair comparison, the same corre-
lation information, i.e., the most similar data should be set
equal, is used both for the MLE decoding and approximate
decoding. For the approximate decoding, we assume that
if the Gaussian elimination for a patch fails due to the
singular coefficient matrix having D constraints, the
resulting decoded patch is set to the average value of
image pixel blocks. An MLE-based decoding is performed
using exhaustive search. This choice is motivated by the
fact that the MLE-based decoding always selects a solu-
tion even though the selected solution is not the best.

The results are presented in Fig. 9 with respect to the
number of discarded bitplanes z, where the size of GF is
determined by GFð28	z

Þ. From Fig. 9(a), we can observe
that the approximate decoding outperforms the MLE for
the Silent sequence in all range of z values. While the MLE
shows a better performance than the approximate decod-
ing for the Foreman sequence in Fig. 9(b), there are
several values of the GF sizes that show similar perfor-
mance for both methods. The gain of the MLE for the
Foreman sequence mainly comes from the selection of
brighter colors for representing the blocks, while the
approximate decoding selects grayer colors.

However, in terms of complexity, the approximate
decoding requires significantly less complexity than the
MLE, as the Gaussian elimination is applied to very sparse
matrices. In particular, assume that we have y unknowns
and x equations are received. Then, it is known that the
Gaussian elimination requires asymptotically at most Oðy3Þ

operations [29], while the MLE with exhaustive search
requires asymptotically Oðqy	xx3Þ, where qZ2 is a GF size
[22] (Part II). As y increases, qy	x increases much faster than
ðy=xÞ3, which means that the approximate decoding can
perform significantly faster than MLE-based approach.
Therefore, we can conclude that the approximate decoding
ver GF(256)

over GF(32)

or two different sizes of the coding field.
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represents an effective solution for decoding with insuffi-
cient data and moderate complexity.

We also illustrate the influence of the accuracy of the
correlation information by considering zero motion at the
decoder. In other words, additional constraints for
approximate decoding simply impose that the consecu-
tive frames are identical. For the consistency of simulation
settings with the previous scenarios, we again assume
that the packet loss rate is 1/3. Fig. 10 shows the frames
decoded with no motion over GF(32). We can see that the
first three frames still provides an acceptable quality since
the motion between these frames is actually very small.
However, in frames 208, 209, and 210, where motion is
higher, we clearly observe significant performance degra-
dation, especially in the positions where high motion
exists.

Next, we study the influence of the size of the group of
images (i.e., window size) that is considered for encoding.
It has been discussed that the coding coefficient matrices
can be singular, as the coefficients are randomly selected
in a finite field. This results in performance degradation
for the approximate decoding. Moreover, it is shown that
the probability that random matrices over finite fields are
singular becomes smaller as the size of matrices becomes
larger [30]. Thus, if the group of images (i.e., window size)
becomes larger, the coding coefficient matrix becomes
larger. As a result, the probability that Gaussian elimina-
tion fails is correspondingly smaller. This is quantitatively
investigated from the following experiment.

We consider 24 frames extracted from the Silent

sequence and a set of different window sizes that contains
3, 4, 6, 8, and 12 frames. For example, if window size is 3,
then there are 24/3¼8 windows that are used in this
experiment. The average normalized MSE achieved in the
lossless case, where the decoder receives enough packets
for decoding, is presented in Fig. 11. The normalized MSE
decreases as the window sizes are enlarged. The only
reason why all the frames are not perfectly recovered is
the failure of the Gaussian elimination, when the coding
coefficient matrices become singular. This confirms the
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above-mentioned discussion, i.e., if window size
increases, the size of coding coefficient matrix also
increases. Since the probability that the enlarged coding
coefficient matrices are singular becomes smaller, higher
average MSEs can correspondingly be achieved for larger
size of window.

Finally, we study the influence of the window size in
the lossy case. We assume that we have a loss rate of 1/24
in all the configurations and the approximate decoding is
implemented. Fig. 11 shows the achieved average MSE
across the recovered frames for different window sizes.
Since the decoding errors incurred by the approximate
decoding are limited to a window and do not influence
the decoding of the other windows, a small window size
is desirable for limited error propagation. However, as
discussed, a smaller window size can result in higher
probability that the coding coefficient matrices become
singular, and that the Gaussian elimination fails. Due to
this tradeoff, we can observe that the achieved MSE
becomes high when window size is 4 in our example.
Note that the computational complexity for decoding (i.e.,
Gaussian elimination) also increases as the window size
increases. Hence, the proper window size needs to be
determined based on several design tradeoffs in practice.

6.3. Performance in various network conditions

We thus far considered a network having a fixed
packet loss rate (i.e., a dedicated final node receives 2/3
of the required linear equations and does not receive 1/3
of the required linear equations). We now examine more
general network scenarios, which may result in different
packet loss rates for the final decoder. As an illustration,
we consider a network which consists of three pairs of
sources and destinations with several network nodes
performing network coding operations. We assume that
there are no loss in the sources and destinations and they
are properly dimensioned. However, the links between
nodes performing network coding operations are lossy
with different packet loss rates. We study the achieved
performance (MSE) that corresponds to different packet
loss rates. The results are shown in Fig. 12. These results
show the average MSE that the final node achieves when
it experiences a variety of packet loss rates and decodes
the received data with the proposed approximate decod-
ing method for binary symmetric channel (BSC) and
Gilbert Elliot channels (GEC) [31], respectively. The source
images are from the Container sample MPEG sequences
with QCIF resolution. In all cases, the data is encoded with
RLNC and a window of four packets is considered. We
simulate loss with a GEC model [31] that consists of a
two-state Markov chain where the good and bad states
represent the correct reception or the loss of a packet,
respectively. We choose the average length of burst of
errors to nine packets, and we vary the average packet
loss rate in order to study the performance of our
approximate reconstruction algorithm in different chan-
nel conditions. For the BSC model, the experiments are
performed with a set of different average packet loss
rates. As expected, the performance worsens as the packet
loss rate increases. Moreover, these results show that the
approximate decoding enables the decoder to achieve a
noticeable gain in terms of decoded quality compared to
traditional network coding based systems, which may
completely fail to recover data. Alternatively, this means
that the approximate decoding may require less network
loads than traditional decoding algorithms in order to
achieve the same decoding quality.

7. Conclusions

In this paper, we have described a framework for the
delivery of correlated information sources with the help
of network coding along with a novel low complexity
approximate decoding algorithm. The approximate
decoding algorithm permits to reconstruct an approxima-
tion of the source signals even when an insufficient
number of innovative packets are available for perfect
decoding. We have analyzed the tradeoffs between the
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decoding performance and the size of the coding fields.
We have determined an optimal field size that leads to
the highest approximate decoding performance. We also
have investigated the impact of the accuracy of the data
similarity information used in building the approximate
decoding solution. The proposed approach is implemen-
ted in illustrative examples of sensor network and dis-
tributed imaging applications, where the experimental
results confirm our analytical study as well as the benefits
of approximate decoding solutions as an efficient way to
decode underdetermined systems with reasonable com-
plexity when source data are highly correlated.
Fig. 14. An illustration for Appendix A.2.
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Appendix A

A.1. Supplemental material for Property 1

In this appendix, we provide illustrative examples that
verify the arguments, where smaller values of 9si	sj9 can
indeed lead to smaller values of 1GRðxi � xjÞ, which is
discussed in the proof of Property 1. In this example, we
consider GF(512), and study several examples of
9si	sj9¼ 0,1,2,50,100,150,256. In the cases where smaller
differences between si and sj (e.g., 9xi	xj9¼ 0,1,2), we can
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Fig. 13. The probability mass function for different values of 1GRðx
observe that the most of the values of 1GRðxi � xjÞ are
concentrated around 0. In the cases where larger differ-
ences between si and sj (e.g., 9si	sj9¼ 50,100,150,256),
however, the values of 1GRðxi � xjÞ are spread over the
elements in GF. Therefore, it is obviously confirmed that
smaller values of 9si	sj9 indeed result in 1GRðxi � xjÞ.
These are depicted in Fig. 13.

A.2. Supplemental proof for Property 2

In this appendix, we show that P̂ Z
1
2, where P̂ is

defined as P̂9Prðsr ðŝRþ ŝrÞ=29ŝRZ ŝrÞ in (19). Note that
both ŝr and ŝR are reconstructed data, and thus, they are
real values. Using Bayes’ rule,

P̂ ¼ Pr sr
ŝRþ ŝr

2

����ŝRZ ŝr

� �

¼
X2r
	1

z ¼ 0

Pr zr
ŝRþ ŝr

2

����ŝRZ ŝr ,s¼ z

� �
Prðs¼ zÞ

¼
1

2r

X2r
	1

z ¼ 0

Pr zr
ŝRþ ŝr

2

����ŝRZ ŝr ,s¼ z

� �

Thus, we need to first compute Prð2zr ŝRþ ŝr9ŝRZ

ŝr ,s¼ zÞ, which corresponds to the number of grids satis-
fying such conditions among feasible grids in Fig. 14. The
number of feasible grids is 2r

� 2R
¼ 2rþR. For a particular

z, z¼ 0,1, . . . ,2r
	1, the grids satisfying both ŝRZ ŝr and

2zr ŝRþ ŝr are the grids in the area of the right side of line
ŝR ¼ ŝr and 2z¼ k where k¼ 0,2, . . . ,2ð2r

	1Þ. Therefore,
1GR (xi ⊕ xj) in GF(512)
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we have

X2r
	1

z ¼ 0

Pr zr
ŝRþ ŝr

2

����ŝRZ ŝr ,s¼ z

� �

¼
1

2rþR

X2r
	1

z ¼ 0

2rþR
	 2r	1

ð2r
	1Þþ2

Xz

l ¼ 0

l

( )" #

¼
1

2rþR
22rþR

	
1

6
ð5 � 23r

	3 � 22r
	2 � 2r

Þ

� 	

Thus, P̂ can be expressed as

P̂ ¼
1

2r

1

2rþR
22rþR

	
1

6
ð5 � 23r

	3 � 22r
	2 � 2r

Þ

� 	� �

¼ 1	
1

6
5 �

2r

2R
	

3

2R
	

2

2rþR

� �

Since r,R 2N and R4r, R can be expressed as R¼ rþa,
where a 2N. Thus,

P̂ ¼ 1	
1

6
5 �

1

2a	
3

2rþa	
2

22rþa

� �

Since limr-1P̂ ¼ 1	 5
6 � 1=2a4 1

2 for all a 2 N and P̂ is a
non-increasing function of r, P̂ 4 1

2 for all r,R.

A.3. Supplemental proof for Property 3

In this appendix, we prove that the function gðzÞ ¼ 2
ðbðzÞ	1Þ	9eTþaðzÞ9	9eT	aðzÞ9 is symmetric on dðr	1Þ=2e,
which is used in the proof of Property 3. To show this, we
need to prove that gðzÞ ¼ gðr	1	zÞ for all 0rzð2 ZÞrr	1.
Note that aðr	1	zÞ ¼ 2r	1	z

	2r	1	ðr	1	zÞ
¼ 	ð2z

	2r	1	z
Þ

¼	aðzÞ and bðr	1	zÞ ¼ 2r	1	z
þ2r	1	ðr	1	zÞ

¼ 2z
þ

2r	1	z
¼ bðzÞ. Thus,

gðr	1	zÞ ¼ 2ðbðr	1	zÞ	1Þ	9eTþaðr	1	zÞ9	9eT	aðr	1	zÞ

¼ 2ðbðzÞ	1Þ	9eT	aðzÞ9	9eTþaðzÞ9¼ gðzÞ

which completes the proof.

A.4. Supplemental proof for Property 3

In this appendix, we show that

hðzÞ ¼ 1
3 bðzÞðbðzÞ	1ÞðbðzÞ	2Þ	1

3aðzÞðaðzÞ2	1Þ ð26Þ

is an increasing function for z 2 Z where r=2ozrr	1.
This is used in the proof of Property 3. Note that (26) is
equivalent to function h(z) with z 2 R where
r=2ozrr	1, sampled at every z 2 Z. Thus, we focus on
showing that h(z) is an increasing function over z 2 R

where r=2ozrr	1. To show that h(z) is an increasing
function, we may show that dhðzÞ=dz40 for r=2ozrr	1.
Note that

d

dz
aðzÞ ¼ ln 2 � ð2z

þ2r	1	z
Þ ¼ bðzÞ ln 2

and

d

dz
bðzÞ ¼ ln 2 � ð2z

	2r	1	z
Þ ¼ aðzÞln 2

Therefore,

d

dz
hðzÞ ¼

ln 2

3
3bðzÞ2

dbðzÞ

dz
	6bðzÞ

dbðzÞ

dz
þ2

dbðzÞ

dz

� ��
	 3aðzÞ2
daðzÞ

dz
	

daðzÞ

dz

� �	

¼
ln 2

3
f3aðzÞbðzÞðbðzÞ	aðzÞ	2Þþ2aðzÞþbðzÞg

Since aðzÞbðzÞ ¼ 22z
	22ðr	1	zÞ40 and bðzÞ	aðzÞ ¼ 2 � 2r	1	z

Z2 for r=2ozrr	1,

d

dz
hðzÞ ¼

ln 2

3
f3aðzÞbðzÞðbðzÞ	aðzÞ	2Þþ2aðzÞþbðzÞg40

which implies that h(z) is an increasing function over
r=2ozrr	1.
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[7] S. Acedański, S. Deb, M. Médard, R. Koetter, How good is random
linear coding based distributed networked storage? in: Proceedings
of the Workshop on Network Coding, Theory, and Applications
(NetCod 2005), 2005.

[8] S. Deb, M. Médard, C. Choute, On random network coding based
information dissemination, in: Proceedings of the IEEE Interna-
tional Symposium on Information Theory (ISIT ’05), Adelaide,
Australia, pp. 278–282.

[9] P.A. Chou, Y. Wu, K. Jain, Practical network coding, in: Proceedings
of the Allerton Conference on Communication, Control, and Com-
puting, Monticell, IL, USA, 2003.

[10] T. Ho, M. Médard, J. Shi, M. Effros, D.R. Karger, On randomized
network coding, in: Proceedings of the Allerton Conference on
Communication, Control, and Computing, Monticello, IL, USA, 2003.

[11] D. Slepian, J.K. Wolf, Noiseless coding of correlated information
sources, IEEE Transactions on Information Theory 19 (1973)
471–480.

[12] T.P. Coleman, E. Martinian, E. Ordentlich, Joint source-channel
coding for transmitting correlated sources over broadcast net-
works, IEEE Transactions on Information Theory 55 (2009)
3864–3868.

[13] S.L. Howard, P.G. Flikkema, Integrated source-channel decoding for
correlated data-gathering sensor networks, in: Proceedings of the
IEEE Wireless Communications and Networking Conference (WCNC
’08), Las Vegas, NV, USA, pp. 1261–1266.

[14] T. Ho, M. Médard, M. Effros, R. Koetter, Network coding for
correlated sources, in: IEEE International Conference on Informa-
tion Sciences and Systems (CISS’04), Princeton, NJ, USA.

[15] J. Barros, S.D. Servetto, Network information flow with correlated
sources, IEEE Transactions on Information Theory 52 (2006)
155–170.

[16] A. Ramamoorthy, K. Jain, P.A. Chou, M. Effros, Separating distrib-
uted source coding from network coding, IEEE Transactions on
Information Theory 52 (2006) 2785–2795.

[17] Y. Wu, V. Stankovic, Z. Xiong, S.-Y. Kung, On practical design for
joint distributed source and network coding, IEEE Transactions on
Information Theory 55 (2009) 1709–1720.

[18] N. Nguyen, D. Jones, S. Krishnamurthy, Netcompress: coupling
network coding and compressed sensing for efficient data commu-
nication in wireless sensor networks, in: Proceedings of the IEEE
Workshop on Signal Processing Systems, 2010, pp. 356–361.

[19] S. Shintre, S. Katti, S. Jaggi, B.K. Dey, D. Katabi, M. Med�ard, Real and
complex network codes: promises and challenges, in: Proceedings



H. Park et al. / Signal Processing 93 (2013) 109–123 123
of the International Symposium on Network Coding (NetCod 2008),
2008, pp. 1–6.

[20] A. Neumaier, Solving ill-conditioned and singular linear systems: a
tutorial on regularization, SIAM Review 40 (1998) 636–666.

[21] E.J. Cand�es, M.B. Wakin, An introduction to compressive sampling,
IEEE Signal Processing Magazine 25 (2008) 21–30.

[22] S.S. Bhattacharyya, Handbook of Signal Processing Systems,
Springer, 2010.

[23] L. Iwaza, M. Kieffer, L. Liberti, K.A. Agha, Joint decoding of multiple-
description network-coded data, in: Proceedings of the International
Symposium on Network Coding (NetCod 2011), 2011, pp. 1–6.

[24] S. Boyd, L. Vandenberghe, Convex Optimization, Cambridge Uni-
versity Press, New York, NY, 2004.

[25] R. Zwick, E. Carlstein, D.V. Budescu, Measures of similarity among
fuzzy concepts: a comparative analysis, International Journal of
Approximate Reasoning 1 (1987) 221–242.

[26] R. Hanneman, M. Riddle, Introduction to Social Network Methods,
University of California, Riverside, CA, 2005.
[27] D.M. Bradley, R.C. Gupta, On the distribution of the sum of n non-
identically distributed uniform random variables, Annals of the
Institute of Statistical Mathematics 54 (2002) 689–700.

[28] M. van der Schaar, P.A. Chou (Eds.), Multimedia over IP and
Wireless Networks, Academic Press, 2007.

[29] X.G. Fang, G. Havas, On the worst-case complexity of integer
Gaussian elimination, in: Proceedings of the International Sympo-
sium on Symbolic and Algebraic Computation (ISSAC ’97), 1997,
pp. 28–31.

[30] J. Kahn, J. Komlós, Singularity probabilities for random matrices
over finite fields, Combinatorics, Probability and Computing 10
(2001) 137–157.

[31] E.O. Elliott, Estimates of error rates for codes on burst-noise
channels, Bell System Technical Journal 42 (1963) 1977–1997.

[32] H. Park, N. Thomos, P. Frossard, Transmission of correlated infor-
mation sources with network coding, in: European Signal Proces-
sing Conference (EUSIPCO-2010), Aalborg, Denmark, 2010,
pp. 1389–1393.


	Approximate decoding approaches for network coded correlated data
	Introduction
	Approximate decoding framework
	RLNC encoding
	Approximate decoding
	Simple implementation of approximate decoding

	Approximate decoding based on a priori information on source model
	Optimal finite field size
	Approximate decoding in sensor networks
	System description
	Simulation results

	Approximate decoding of image sequences
	System description
	Performance of approximate decoding
	Performance in various network conditions

	Conclusions
	Acknowledgments
	Supplemental material for Property 1
	Supplemental proof for Property 2
	Supplemental proof for Property 3
	Supplemental proof for Property 3

	References




