83,476 research outputs found
Potential of heat pipe technology in nuclear seawater desalination
The official published version of this article can be found at the link below.Heat pipe technology may play a decisive role in improving the overall economics, and public perception on nuclear desalination, specifically on seawater desalination. When coupled to the Low-Temperature Multi-Effect Distillation process, heat pipes could effectively harness most of the waste heat generated in various types of nuclear power reactors. Indeed, the potential application of heat pipes could be seen as a viable option to nuclear seawater desalination where the efficiency to harness waste heat might not only be enhanced to produce larger quantities of potable water, but also to reduce the environmental impact of nuclear desalination process. Furthermore, the use of heat pipe-based heat recovery systems in desalination plant may improve the overall thermodynamics of the desalination process, as well as help to ensure that the product water is free from any contamination which occur under normal process, thus preventing operational failure occurrences as this would add an extra loop preventing direct contact between radiation and the produced water. In this paper, a new concept for nuclear desalination system based on heat pipe technology is introduced and the anticipated reduction in the tritium level resulting from the use of heat pipe systems is discussed
Heat pipe radiator
A 15,000 watt spacecraft waste heat rejection system utilizing heat pipe radiator panels was investigated. Of the several concepts initially identified, a series system was selected for more in-depth analysis. As a demonstration of system feasibility, a nominal 500 watt radiator panel was designed, built and tested. The panel, which is a module of the 15,000 watt system, consists of a variable conductance heat pipe (VCHP) header, and six isothermalizer heat pipes attached to a radiating fin. The thermal load to the VCHP is supplied by a Freon-21 liquid loop via an integral heat exchanger. Descriptions of the results of the system studies and details of the radiator design are included along with the test results for both the heat pipe components and the assembled radiator panel. These results support the feasibility of using heat pipes in a spacecraft waste heat rejection system
Theoretical investigation of the thermal performance of a novel solar loop-heat-pipe façade-based heat pump water heating system
The aim of the paper was to present a dedicated theoretical investigation into the thermal performance of a novel solar loop-heat-pipe façade based heat pump water heating system. This involved thermo-fluid analyses, computer numerical model development, the model running up, modelling result analyses and conclusion. An energy balance network was established on each part and the whole range of the system to address the associated energy conversion and transfer processes. On basis of this, a computer numerical model was developed and run up to predict the thermal performance of such a system at different system configurations, layouts and operational conditions. It was suggested that the loop heat pipes could be filled with either water, R134a, R22 or R600a; of which R600a is the favourite working fluid owing to its relatively larger heat transfer capacity and positive pressure in operation. Variations in the system configuration, i.e., glazing covers, heat exchangers, would lead to identifiable differences in the thermal performance of the system, represented by the thermal efficiency and COP. Furthermore, impact of the external operational parameters, i.e., solar radiation and ambient air temperature, to the system's thermal performance was also investigated. The research was based on an innovative loop-heat-pipe façade and came up with useful results reflecting the thermal performance of the combined system between the façade and heat pump. This would help promote development and market penetration of such an innovative solar heating technology, and thus contribute to achieving the global targets in energy saving and carbon emission reduction
A Conceptual Design Study on the Application of Liquid Metal Heat Transfer Technology to the Solar Thermal Power Plant
Alkali metal heat transfer technology was used in the development of conceptual designs for the transport and storage of sensible and latent heat thermal energy in distributed concentrator, solar Stirling power conversion systems at a power level of 15 kWe per unit. Both liquid metal pumped loop and heat pipe thermal transport were considered; system configurations included: (1) an integrated, focal mounted sodium heat pipe solar receiver (HPSR) with latent heat thermal energy storage; (2) a liquid sodium pumped loop with the latent heat storage, Stirling engine-generator, pump and valves located on the back side of the concentrator; and (3) similar pumped loops serving several concentrators with more centralized power conversion and storage. The focus mounted HPSR was most efficient, lightest and lowest in estimated cost. Design confirmation testing indicated satisfactory performance at all angles of inclination of the primary heat pipes to be used in the solar receiver
The Capillary Pumped Loop Flight Experiment (CAPL): A pathfinder for EOS
The CAPL shuttle flight experiment will provide microgravity verification of the prototype capillary pumped loop (CPL) thermal control system for EOS. The design of the experiment is discussed with particular emphasis on the new technology areas in ammonia two-phase reservior design and heat pipe heat exchanger development. The thermal and hydrodynamic analysis techniques and results are also presented, including pressure losses, fluid flow, and non-orbit heat rejection capability. CAPL experiment results will be presented after the flight, presently planned for 1993
Advanced spacecraft thermal control techniques
The problems of rejecting large amounts of heat from spacecraft were studied. Shuttle Space Laboratory heat rejection uses 1 kW for pumps and fans for every 5 kW (thermal) heat rejection. This is rather inefficient, and for future programs more efficient methods were examined. Two advanced systems were studied and compared to the present pumped-loop system. The advanced concepts are the air-cooled semipassive system, which features rejection of a large percentage of the load through the outer skin, and the heat pipe system, which incorporates heat pipes for every thermal control function
Sintered aluminium heat pipe (SAHP)
This work is the product of an ongoing PhD project in the School of the Built and Natural Environment of Northumbria University in collaboration with the University of Liverpool and Thermacore Europe Ltd. The achievements at the end of the first year are summarized. The main objective of the project is to develop an aluminum ammonia heat pipe with a sintered wick structure. Currently available ammonia heat pipes mainly use extruded axially grooved aluminum tubes as a capillary wick. There have been a few attempts of employing porous steel or nickel wicks in steel tubes with ammonia as the working fluid (Bai, Lin et al. 2009)although it is a common practice in loop heat pipes but there is no report of aluminum-ammonia heat pipes porous aluminium wick structures. The main barrier is the difficulty of sintering aluminum powders to manufacture porous wicks. So far during this project promising sintered aluminum heat pipe samples have been manufactured using the Selective Laser Melting (SLM) technique with various wick characteristics. This SLM method has proven to be capable of manufacturing very complicated wick structures with different thickness, porosity, permeability and pore sizes in different regions of a heat pipe. In addition the entire heat pipe including the end cap, outer tube wall, wick and the fill tube can be generated in a single process
Two-phase distribution in the vertical flow line of a domestic wet central heating system
The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are
reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The
latter systems are mostly operated through the circulation of heated standard tap water through a closed loop
circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at
the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase
flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal
pipes was measured through a consideration of the volumetric void fraction, quantified through photographic
techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi
homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the
pipe wall. Such a reduction was more evident at lower bulk fluid velocities
Two-phase distribution in the vertical flow line of a domestic wet central heating system
The theoretical and experimental aspects of bubble distribution in bubbly two-phase flow are reviewed in the context of the micro bubbles present in a domestic gas fired wet central heating system. The latter systems are mostly operated through the circulation of heated standard tap water through a closed loop circuit which often results in water supersaturated with dissolved air. This leads to micro bubble nucleation at the primary heat exchanger wall, followed by detachment along the flow. Consequently, a bubbly two-phase flow characterises the flow line of such systems. The two-phase distribution across the vertical and horizontal pipes was measured through a consideration of the volumetric void fraction, quantified through photographic techniques. The bubble distribution in the vertical pipe in down flow conditions was measured to be quasi-homogenous across the pipe section with a negligible reduction in the void fraction at close proximity to the pipe wall. Such a reduction was more evident at lower bulk fluid velocities
Thermal Interface Evaluation of Heat Transfer from a Pumped Loop to Titanium-Water Thermosyphons
Titanium-water thermosyphons are being considered for use in the heat rejection system for lunar outpost fission surface power. Key to their use is heat transfer between a closed loop heat source and the heat pipe evaporators. This work describes laboratory testing of several interfaces that were evaluated for their thermal performance characteristics, in the temperature range of 350 to 400 K, utilizing a water closed loop heat source and multiple thermosyphon evaporator geometries. A gas gap calorimeter was used to measure heat flow at steady state. Thermocouples in the closed loop heat source and on the evaporator were used to measure thermal conductance. The interfaces were in two generic categories, those immersed in the water closed loop heat source and those clamped to the water closed loop heat source with differing thermal conductive agents. In general, immersed evaporators showed better overall performance than their clamped counterparts. Selected clamped evaporator geometries offered promise
- …
