7,224 research outputs found

    Edge-disjoint spanning trees and eigenvalues of regular graphs

    Get PDF
    Partially answering a question of Paul Seymour, we obtain a sufficient eigenvalue condition for the existence of kk edge-disjoint spanning trees in a regular graph, when k{2,3}k\in \{2,3\}. More precisely, we show that if the second largest eigenvalue of a dd-regular graph GG is less than d2k1d+1d-\frac{2k-1}{d+1}, then GG contains at least kk edge-disjoint spanning trees, when k{2,3}k\in \{2,3\}. We construct examples of graphs that show our bounds are essentially best possible. We conjecture that the above statement is true for any k<d/2k<d/2.Comment: 4 figure

    K1,3K_{1,3}-covering red and blue points in the plane

    Get PDF
    We say that a finite set of red and blue points in the plane in general position can be K1,3K_{1,3}-covered if the set can be partitioned into subsets of size 44, with 33 points of one color and 11 point of the other color, in such a way that, if at each subset the fourth point is connected by straight-line segments to the same-colored points, then the resulting set of all segments has no crossings. We consider the following problem: Given a set RR of rr red points and a set BB of bb blue points in the plane in general position, how many points of RBR\cup B can be K1,3K_{1,3}-covered? and we prove the following results: (1) If r=3g+hr=3g+h and b=3h+gb=3h+g, for some non-negative integers gg and hh, then there are point sets RBR\cup B, like {1,3}\{1,3\}-equitable sets (i.e., r=3br=3b or b=3rb=3r) and linearly separable sets, that can be K1,3K_{1,3}-covered. (2) If r=3g+hr=3g+h, b=3h+gb=3h+g and the points in RBR\cup B are in convex position, then at least r+b4r+b-4 points can be K1,3K_{1,3}-covered, and this bound is tight. (3) There are arbitrarily large point sets RBR\cup B in general position, with r=b+1r=b+1, such that at most r+b5r+b-5 points can be K1,3K_{1,3}-covered. (4) If br3bb\le r\le 3b, then at least 89(r+b8)\frac{8}{9}(r+b-8) points of RBR\cup B can be K1,3K_{1,3}-covered. For r>3br>3b, there are too many red points and at least r3br-3b of them will remain uncovered in any K1,3K_{1,3}-covering. Furthermore, in all the cases we provide efficient algorithms to compute the corresponding coverings.Comment: 29 pages, 10 figures, 1 tabl

    K1,3-covering red and blue points in the plane

    Get PDF
    We say that a finite set of red and blue points in the plane in general position can be K1, 3-covered if the set can be partitioned into subsets of size 4, with 3 points of one color and 1 point of the other color, in such a way that, if at each subset the fourth point is connected by straight-line segments to the same-colored points, then the resulting set of all segments has no crossings. We consider the following problem: Given a set R of r red points and a set B of b blue points in the plane in general position, how many points of R ¿ B can be K1, 3-covered? and we prove the following results: (1) If r = 3g + h and b = 3h + g, for some non-negative integers g and h, then there are point sets R ¿ B, like {1, 3}-equitable sets (i.e., r = 3b or b = 3r) and linearly separable sets, that can be K1, 3-covered. (2) If r = 3g + h, b = 3h + g and the points in R ¿ B are in convex position, then at least r + b - 4 points can be K1, 3-covered, and this bound is tight. (3) There are arbitrarily large point sets R ¿ B in general position, with r = b + 1, such that at most r + b - 5 points can be K1, 3-covered. (4) If b = r = 3b, then at least 9 8 (r + b- 8) points of R ¿ B can be K1, 3-covered. For r &gt; 3b, there are too many red points and at least r - 3b of them will remain uncovered in any K1, 3-covering. Furthermore, in all the cases we provide efficient algorithms to compute the corresponding coverings

    Tubular free by cyclic groups act freely on CAT(0) cube complexes

    Get PDF
    AbstractWe identify when a tubular group (the fundamental group of a ûnite graph of groups with ℤ2 vertex and ℤ edge groups) is free by cyclic and show, using Wise’s equitable sets criterion, that every tubular free by cyclic group acts freely on a CAT(0) cube complex.</jats:p

    On Generalizations of Supereulerian Graphs

    Get PDF
    A graph is supereulerian if it has a spanning closed trail. Pulleyblank in 1979 showed that determining whether a graph is supereulerian, even when restricted to planar graphs, is NP-complete. Let κ2˘7(G)\kappa\u27(G) and δ(G)\delta(G) be the edge-connectivity and the minimum degree of a graph GG, respectively. For integers s0s \ge 0 and t0t \ge 0, a graph GG is (s,t)(s,t)-supereulerian if for any disjoint edge sets X,YE(G)X, Y \subseteq E(G) with Xs|X|\le s and Yt|Y|\le t, GG has a spanning closed trail that contains XX and avoids YY. This dissertation is devoted to providing some results on (s,t)(s,t)-supereulerian graphs and supereulerian hypergraphs. In Chapter 2, we determine the value of the smallest integer j(s,t)j(s,t) such that every j(s,t)j(s,t)-edge-connected graph is (s,t)(s,t)-supereulerian as follows: j(s,t) = \left\{ \begin{array}{ll} \max\{4, t + 2\} & \mbox{ if $0 \le s \le 1$, or $(s,t) \in \{(2,0), (2,1), (3,0),(4,0)\}$,} \\ 5 & \mbox{ if $(s,t) \in \{(2,2), (3,1)\}$,} \\ s + t + \frac{1 - (-1)^s}{2} & \mbox{ if $s \ge 2$ and $s+t \ge 5$. } \end{array} \right. As applications, we characterize (s,t)(s,t)-supereulerian graphs when t3t \ge 3 in terms of edge-connectivities, and show that when t3t \ge 3, (s,t)(s,t)-supereulerianicity is polynomially determinable. In Chapter 3, for a subset YE(G)Y \subseteq E(G) with Yκ2˘7(G)1|Y|\le \kappa\u27(G)-1, a necessary and sufficient condition for GYG-Y to be a contractible configuration for supereulerianicity is obtained. We also characterize the (s,t)(s,t)-supereulerianicity of GG when s+tκ2˘7(G)s+t\le \kappa\u27(G). These results are applied to show that if GG is (s,t)(s,t)-supereulerian with κ2˘7(G)=δ(G)3\kappa\u27(G)=\delta(G)\ge 3, then for any permutation α\alpha on the vertex set V(G)V(G), the permutation graph α(G)\alpha(G) is (s,t)(s,t)-supereulerian if and only if s+tκ2˘7(G)s+t\le \kappa\u27(G). For a non-negative integer sV(G)3s\le |V(G)|-3, a graph GG is ss-Hamiltonian if the removal of any ksk\le s vertices results in a Hamiltonian graph. Let is,t(G)i_{s,t}(G) and hs(G)h_s(G) denote the smallest integer ii such that the iterated line graph Li(G)L^{i}(G) is (s,t)(s,t)-supereulerian and ss-Hamiltonian, respectively. In Chapter 4, for a simple graph GG, we establish upper bounds for is,t(G)i_{s,t}(G) and hs(G)h_s(G). Specifically, the upper bound for the ss-Hamiltonian index hs(G)h_s(G) sharpens the result obtained by Zhang et al. in [Discrete Math., 308 (2008) 4779-4785]. Harary and Nash-Williams in 1968 proved that the line graph of a graph GG is Hamiltonian if and only if GG has a dominating closed trail, Jaeger in 1979 showed that every 4-edge-connected graph is supereulerian, and Catlin in 1988 proved that every graph with two edge-disjoint spanning trees is a contractible configuration for supereulerianicity. In Chapter 5, utilizing the notion of partition-connectedness of hypergraphs introduced by Frank, Kir\\u27aly and Kriesell in 2003, we generalize the above-mentioned results of Harary and Nash-Williams, of Jaeger and of Catlin to hypergraphs by characterizing hypergraphs whose line graphs are Hamiltonian, and showing that every 2-partition-connected hypergraph is a contractible configuration for supereulerianicity. Applying the adjacency matrix of a hypergraph HH defined by Rodr\\u27iguez in 2002, let λ2(H)\lambda_2(H) be the second largest adjacency eigenvalue of HH. In Chapter 6, we prove that for an integer kk and a rr-uniform hypergraph HH of order nn with r4r\ge 4 even, the minimum degree δk2\delta\ge k\ge 2 and kr+2k\neq r+2, if λ2(H)(r1)δr2(k1)n4(r+1)(nr1)\lambda_2(H)\le (r-1)\delta-\frac{r^2(k-1)n}{4(r+1)(n-r-1)}, then HH is kk-edge-connected. %κ2˘7(H)k\kappa\u27(H)\ge k. Some discussions are displayed in the last chapter. We extend the well-known Thomassen Conjecture that every 4-connected line graph is Hamiltonian to hypergraphs. The (s,t)(s,t)-supereulerianicity of hypergraphs is another interesting topic to be investigated in the future

    The balanced 2-median and 2-maxian problems on a tree

    Full text link
    This paper deals with the facility location problems with balancing on allocation clients to servers. Two bi-objective models are considered, in which one objective is the traditional p-median or p-maxian objective and the second is to minimize the maximum demand volume allocated to any facility. An edge deletion method with time complexity O(n^2) is presented for the balanced 22-median problem on a tree. For the balanced 2-maxian problem, it is shown the optimal solution is two end vertices of the diameter of the tree, which can be obtained in a linear time.Comment: 19 page
    corecore