2,432 research outputs found

    Preliminary candidate advanced avionics system for general aviation

    Get PDF
    An integrated avionics system design was carried out to the level which indicates subsystem function, and the methods of overall system integration. Sufficient detail was included to allow identification of possible system component technologies, and to perform reliability, modularity, maintainability, cost, and risk analysis upon the system design. Retrofit to older aircraft, availability of this system to the single engine two place aircraft, was considered

    Optical/Near-Infrared Observations of GRO J1744-28

    Full text link
    We present results from a series of optical (g and r-band) and near-infrared (K'-band) observations of the region of the sky including the entire XTE and ROSAT error circles for the ``Bursting Pulsar'' GRO J1744-28. These data were taken with the Astrophysical Research Consortium's 3.5-m telescope at Apache Point Observatory and with the 2.2-m telescope at the European Southern Observatory. We see no new object, nor any significant brightening of any known object, in these error circles, with the exception of an object detected in our 8 February 1996 image. This object has already been proposed as a near-infrared counterpart to GRO J1744-28. While it is seen in only two of our ten 8 February frames, there is no evidence that this is an instrumental artifact, suggesting the possibility of near-infrared flares from GRO J1744-28, similar to those that have been reported from the Rapid Burster. The distance to the ``Bursting Pulsar'' must be more than 2 kpc, and we suggest that it is more than 7 kpc.Comment: 21 pages, 5 JPEG plates, 2 postscript figures. This paper will appear in the May 1, 1997 edition of the Astrophysical Journa

    A feasibility study for advanced technology integration for general aviation

    Get PDF
    An investigation was conducted to identify candidate technologies and specific developments which offer greatest promise for improving safety, fuel efficiency, performance, and utility of general aviation airplanes. Interviews were conducted with general aviation airframe and systems manufacturers and NASA research centers. The following technologies were evaluated for use in airplane design tradeoff studies conducted during the study: avionics, aerodynamics, configurations, structures, flight controls, and propulsion. Based on industry interviews and design tradeoff studies, several recommendations were made for further high payoff research. The most attractive technologies for use by the general aviation industry appear to be advanced engines, composite materials, natural laminar flow airfoils, and advanced integrated avionics systems. The integration of these technologies in airplane design can yield significant increases in speeds, ranges, and payloads over present aircraft with 40 percent to 50 percent reductions in fuel used

    Anxiety: An Epidemic Through the Lens of Social Media

    Get PDF
    Anxiety: An Epidemic was originally inspired by the mental health crisis in my hometown, Palo Alto, California, and evolved to specifically focus on social media-related anxiety. I examined the question: How has social media evolved over the last decade and what effect does the proliferation of social media have on the young adult population? I hypothesized that social media would have a predominately negative effect, especially on young women, and set out to create a theatrical piece inspired by my research. In my meta-analysis of studies conducted, I found that more data needs to be collected on the relatively new phenomena surrounding social media usage both as positive and negative forces. The research I conducted inspired two new artistic works: a physical theatre piece entitled MASKS: An Ode to Young Women, and a children’s story entitled “The King Who Lost His Smile” (both artistic works can be found in full in appendix A). I discovered that while more research needs to be conducted to definitively find if social media usage has a predominantly positive or negative effect, the artistic works I created can serve as a forum to start important conversations between young adults and their communities at large about their experiences with anxiety, stress, and depressive symptoms

    Investigation of the Benefits of Interlocked Synchronous Pipelines

    Get PDF
    The majority of today’s digital circuits use synchronous pipelines. As the technology nodes get smaller, these pipelines are facing problems with area, power, and timing. One of the major sources of power consumption is the global clock and stall signals. These signals have to be routed across large sections of the chip, and with regards to stalling the pipeline, often face significant timing issues. One solution, developed by Hans M. Jacobson et al., is “Synchronous Interlocked Pipelines”. This pipeline design combines synchronous pipelines with the handshaking of asynchronous pipelines. Asynchronous pipelines are less power intensive because they send acknowledge and request signals to neighboring stages that allow stages to turn off when not being used. Jacobson et al. use this handshaking technique to create local valid and stall signals instead of using global ones. To test the benefits of this design, an asynchronous pipeline, synchronous pipeline, and interlocked synchronous pipeline were built using a generic 45 nm library. Comparisons showed that while the asynchronous and interlocked synchronous pipelines took up 4 times more area than the synchronous pipeline, the asynchronous pipeline had the highest throughput of the three pipeline designs, followed by the interlocked synchronous pipeline. The synchronous pipeline had the worst throughput

    Telecommunication Systems

    Get PDF
    This book is based on both industrial and academic research efforts in which a number of recent advancements and rare insights into telecommunication systems are well presented. The volume is organized into four parts: "Telecommunication Protocol, Optimization, and Security Frameworks", "Next-Generation Optical Access Technologies", "Convergence of Wireless-Optical Networks" and "Advanced Relay and Antenna Systems for Smart Networks." Chapters within these parts are self-contained and cross-referenced to facilitate further study

    Recent Star Formation in Sextans A

    Full text link
    We investigate the relationship between the spatial distributions of stellar populations and of neutral and ionized gas in the Local Group dwarf irregular galaxy Sextans A. This galaxy is currently experiencing a burst of localized star formation, the trigger of which is unknown. We have resolved various populations of stars via deep UBV(RI)_C imaging over an area with diameter \sim 5.'3. We have compared our photometry with theoretical isochrones appropriate for Sextans A, in order to determine the ages of these populations. We have mapped out the history of star formation, most accurately for times \lesssim 100 Myr. We find that star formation in Sextans A is correlated both in time and space, especially for the most recent (\lesssim 12 Myr) times. The youngest stars in the galaxy are forming primarily along the inner edge of the large H I shell. Somewhat older populations, \lesssim 50 Myr, are found inward of the youngest stars. Progressively older star formation, from \sim 50--100 Myr, appears to have some spatially coherent structure and is more centrally concentrated. The oldest stars we can accurately sample appear to have approximately a uniform spatial distribution, which extends beyond a surface brightness of \mu_B \simeq 25.9 mag arcsec^{-2} (or, a radius r \simeq 2.'3$). Although other processes are also possible, our data provides support for a mechanism of supernova-driven expansion of the neutral gas, resulting in cold gas pileup and compression along the H I shell and sequential star formation in recent times.Comment: 64 pages, 22 figures, to appear in A

    Doctor of Philosophy

    Get PDF
    dissertationCommunication surpasses computation as the power and performance bottleneck in forthcoming exascale processors. Scaling has made transistors cheap, but on-chip wires have grown more expensive, both in terms of latency as well as energy. Therefore, the need for low energy, high performance interconnects is highly pronounced, especially for long distance communication. In this work, we examine two aspects of the global signaling problem. The first part of the thesis focuses on a high bandwidth asynchronous signaling protocol for long distance communication. Asynchrony among intellectual property (IP) cores on a chip has become necessary in a System on Chip (SoC) environment. Traditional asynchronous handshaking protocol suffers from loss of throughput due to the added latency of sending the acknowledge signal back to the sender. We demonstrate a method that supports end-to-end communication across links with arbitrarily large latency, without limiting the bandwidth, so long as line variation can be reliably controlled. We also evaluate the energy and latency improvements as a result of the design choices made available by this protocol. The use of transmission lines as a physical interconnect medium shows promise for deep submicron technologies. In our evaluations, we notice a lower energy footprint, as well as vastly reduced wire latency for transmission line interconnects. We approach this problem from two sides. Using field solvers, we investigate the physical design choices to determine the optimal way to implement these lines for a given back-end-of-line (BEOL) stack. We also approach the problem from a system designer's viewpoint, looking at ways to optimize the lines for different performance targets. This work analyzes the advantages and pitfalls of implementing asynchronous channel protocols for communication over long distances. Finally, the innovations resulting from this work are applied to a network-on-chip design example and the resulting power-performance benefits are reported
    • …
    corecore