61 research outputs found

    Determination of crustal motions using satellite laser ranging

    Get PDF
    Satellite laser ranging has matured over the last decade into one of the essential space geodesy techniques. It has demonstrated centimeter site positioning and millimeter per year velocity determinations in a frame tied dynamically to the mass center of the solid Earth hydrosphere atmosphere system. Such a coordinate system is a requirement for studying long term eustatic sea level rise and other global change phenomena. Earth orientation parameters determined with the coordinate system have been produced in near real time operationally since 1983, at a relatively modest cost. The SLR ranging to Lageos has also provided a rich spectrum of results based upon the analysis of Lageos orbital dynamics. These include significant improvements in the knowledge of the mean and variable components of the Earth's gravity field and the Earth's gravitational parameter. The ability to measure the time variations of the Earth's gravity field has opened as exciting area of study in relating global processes, including meteorologically derived mass transport through changes in the satellite dynamics. New confirmation of general relativity was obtained using the Lageos SLR data

    Apollo experience report: Onboard navigational and alignment software

    Get PDF
    The onboard navigational and alignment routines used during the nonthrusting phases of an Apollo mission are discussed as to their limitations, and alternate approaches that have more desirable capabilities are presented. A more efficient procedure for solving Kepler's equation, which is used in the calculation of Kepler's problem and Lambert's problem is included, and a sixth-order predictor scheme with a Runge-Kutta starter is recommended for numerical integration. The extension of the rendezvous navigation state to include angle biases and the use of a fixed coordinate system is also evaluated

    The study of comets, part 2

    Get PDF
    Flyby missions and systematic observations of comets are projected for studying comet nuclei and cometary dust tail structures

    Control of colocated geostationary satellites

    No full text
    Control of the inter-satellite distances within a cluster of colocated satellites located in the same GEO window is examined with regards to the close approaches between pairs of satellites. Firstly, the orbital evolution and station keeping control of a single GEO satellite is examined and a new IBM PC based software program capable of performing both these functions autonomously from initial values of the orbital position and date is detailed and validated. Cluster design ideas are then examined in detail and the propagation software is used to generate data for a cluster of four satellites. Two test cases are examined to quantify the frequency of close approaches between individual satellite pairs, each test case using a different orbital element separation strategy but the same station keeping control scheme. The results of the study are then compared with previous research and discussions are presented on the advantages of each method. Finally, a cluster geometry correction manoeuvre, based on Hill's equations of relative motion, is presented which requires only those thrusters used by typical station keeping. This manoeuvre is integrated into the computer software and the two test cases noted previously are again propagated and the close approach results analysed to demonstrate the reduction in the number of close approaches below 5 km

    Optimal selenodetic control

    Get PDF

    Programmer's manual for the Mission Analysis Evaluation and Space Trajectory Operations program (MAESTRO)

    Get PDF
    The Mission Analysis Evaluation and Space Trajectory Operations program known as MAESTRO is described. MAESTRO is an all FORTRAN, block style, computer program designed to perform various mission control tasks. This manual is a guide to MAESTRO, providing individuals the capability of modifying the program to suit their needs. Descriptions are presented of each of the subroutines descriptions consist of input/output description, theory, subroutine description, and a flow chart where applicable. The programmer's manual also contains a detailed description of the common blocks, a subroutine cross reference map, and a general description of the program structure

    Launch window analysis of satellites in high eccentricity or large circular orbits

    Get PDF
    Numerical methods and computer programs for studying the stability and evolution of orbits of large eccentricity are presented. Methods for determining launch windows and target dates are developed. Mathematical models are prepared to analyze the characteristics of specific missions

    Numerical residual perturbation solutions applied to the problem of a close satellite of the smaller body in the restricted three-body problem

    Get PDF
    Numerical residual perturbation solution for prediction of satellite position in restricted three-body proble

    The propulsion and trajectory design for the energetic transient array astrophysics mission

    Get PDF
    Thesis (M.S.)--Massachusetts Institute of Technology, Dept. of Aeronautics and Astronautics, 1997.Includes bibliographical references (p. 199-201).by Christopher John McLain.M.S

    The study of comets, part 1

    Get PDF
    Papers are presented dealing with observations of comets. Topic discussed include: photometry, polarimetry, and astrometry of comets; detection of water and molecular transitions in comets; ion motions in comet tails; determination of comet brightness and luminosity; and evolution of cometary orbits. Emphasis is placed on analysis of observations of comet Kohoutek
    • …
    corecore