
PROGRAMMER'S MANUAL

for the

Mission Analysis Evaluation and Space

Trajectory Operations Program

MAESTRO
(NASA-CR-132910) PROGRAMMER'S MANUAL FOR N74-16538
THE MISSION ANALYSIS EVALUATION AND SPACE
TRAJECTORY OPERATIONS PROGRAM (?AESTRO)
BAnalytical Mechanics Associates, Inc.) Unclas

-* p IHC $26.25 CSCL 22C G3/30 29268
Contract No. NAS 5-11.900

March 1973

Report No. 73-10

Prepared by

Analytical Mechanics Associates

11691 National Boulevard

Los Angeles, California 90034 A51677

for

Goddard Space Flight Center

Greenbelt, Maryland 9

ANALYTICAL MECHANICS ASSOCIA.TES, INC.
11691 NATIONAL BOULEVARD

LOS ANGELES, CALIFORNIA 90064

https://ntrs.nasa.gov/search.jsp?R=19740008425 2020-03-23T12:52:37+00:00Z

PROGRAMMER'S MANUAL

for the

Mission Analysis Evaluation and Space

Trajectory Operations Program

MAESTRO

Contract No. NAS 5-11900

March 1973

Goddard Spaceflight Center
Contracting Officer
Mr. Robert Flick

Technical Officer
Mr. Charles Newman

Prepared by

David Lutzky

William Bjorkman

James Schafer

TABLE OF CONTENTS

Section Title Page

I Introduction 1

II MAESTRO Structure 2

III Cross Reference Map 9

IV Common Blocks 13
ANKOR. 14
AVG 15
CETBL2 16
CETBL3 17
CETBL9 18

CNTRL 19
CONST 21
DUM 22
ELMNT 23
FIELDM 24
GRAVTY 25
INPUT 26
INPUTS 43
INTER 44
INTVAR 45
INTVRX 46
MCCOM 47
MOON 52
OBSIT 53
PERT 54

PIT 55
PLNET 56
SAVE 57
SHAD 58
STATE 59

V Input/Output Units 61

VI Subroutine Description 64
MAIN 65
ACCEL 66
APROCH 68
ARMPIT 79
ATMO 83
AVEQNS 84
AVERGE 89
AVSTRT 93

BCONIC 97

BELL 107

BIGMAT 114
BLOCK DATA 116

BURND 122

BVE 125
CALEND 132
CLOSE 133
CONTRL 136

COVERT 138
CRASH 140
CROSS 144
DATE 145
DOPLER 146
DOT 152
DRAG 153
DVMAG 155
EQNS 156
FIELD2 166

FIND 171
FIXATG 173
FOWARD 177
GETTAP 179
GRAV 182
HSDTHR 185

INPUTF 186
INTEG 190

INTERP 195
JET 201
LUNA 212
MATMPY 219
MCBURN 221
MCSET 229
MCVERF 233
MDCORS 237
MINTF 248
MINV 251
MONTE 255
MOTORS 264
MULCON 267
MVTRN 277
M50EPM 278
M50JPM 281
M50LEQ 284

LLL

M50MDT 288
NUTAIT 290
NUTATE 293
OBLATE 305

OBLE 313
OBLTY 315
OBSET 317
ORBIT 322
ORIENT 327
OUTPUT 330
OUT1 333
PLANET 335
POST 337
PRINT 340
PROTO 342
PUTELS 347
QUARTC 349
QUIKIE 352
RANDM1 356
READE 357
RETDV 359
RETRO 361

RKSEVN 365
ROTAIT 370
ROTATE 371
SADOUT 372
SENSO 373
SETUP2 376
SHADOW 382
SHORB2 391
SOL 397
SOLP 399
SPER 402
SPNM 403
SUNMIN 406
TABINT 409
TARGET 411
TIMEC 422
TOBODY 430
TRIM 432
TRIM2 437
TRMN 447

iv

TUBE1 *.............. 452

TWELVE 453

TWOPIT 460

UPDATE 465

VIEW 466
VISIB 471
VNORM 473

V

LIST OF FIGURES

Page

2.1.1 Main Control Flow Chart 6

2.2.1 Subroutine Foward Structure 7

2.3.1 Midcourse Guidance Structure 8

vi

LIST OF TABLES

Page

3.1 MAIN Control Logic Cross Reference Map 10

3.2 Midcourse Guidance Cross Reference Map 11

3.3 Subroutine FOWARD Cross Reference Map 12

5.1 Input/Output Units 62

vii

MAESTRO Subroutine Listing

MAIN Initiates MAESTRO.

ACCEL Determines spacecraft acceleration.

APROCH Control subroutine for an approach analysis.

ARMPIT Determines post injection trim requirements.

ATMO Determines atmospheric density.

AVEQNS Determines state derivatives when averaging.

AVERGE Determines mean solar and lunar accelerations for use in

multi-conic.

AVSTRT Determines initial averaged elements from osculating elements.

BCONIC Solves Lambert's problem.

BELL Propagates midcourse execution errors.

BIGMAT Determines eigenvalues and eigenvectors of a matrix.

BLOCKDATA Initializes common blocks.

BURND Computes burn time from impulsive velocity.

BVE Calculates the impact parameter vector.

CALEND Converts modified julian date to calendar date.

CLOSE Determines central planet.

CONTRL- Initialization routine.

COVERT Transforms a covariance matrix from local tangent plane
to inertial.

CRASH Determines time of closest approach.

CROSS Vector cross product computation.

DATE Converts calendar date to modified julian date.

DOPLER Determines doppler effect.

DOT Performs vector dot product computation.

viii

DRAG Calculates acceleration due to atmospheric drag.

DVMAG Determines magnitude of a vector.

EQNS Determines derivatives of the state.

FIELD2 Evaluates the disturbing acceleration due to an oblate

central planet.

FIND Retrieves elements from the GTDS 24-hour hold file.

FIXATG Controls logic for fixed-attitude midcourse scan.

FOWARD Propagates the state forward in time.

GETTAP Reads ephemeris tape.

GRAV Determines disturbing acceleration due to the planets.

HSDTHR Determines thrust/weight characteristics of midcourse motor.

INPUTF Data input and editing routine.

INTEG Sets up arrays for numerical integration.

INTERP Interpolates for the state as a function of time.

JET Midcourse pre-targeting determination.

LUNA Approximate Lunar ephemeris.

MATMPY Generalized matrix multiplication routine.

MCBURN Provides the post-midcourse state.

MCSE T Midcourse initialization.

MCVERF Midcourse verification analysis logic.

MDCORS Midcourse guidance package.

MINTF Controls minimum fuel guidance logic.

MINV Determines minimum post-injection trim velocity for

an approach hyperbola.

MONTE Control subroutine for a Monte-Carlo analysis.

MOTORS Determines engine thrust/weight characteristics.

MULCON State propagator using Multi-conic.

ix

MVTRN Matrix multiplication.

M50EPMT Detpermines Erth mean of 1950 to Earth prime
meridian rotation matrix.

M50JPM Determines Earth mean of 1950 to prime meridian
of planet J rotation matrix.

M50LEQ Determines Earth mean of 1950 to selenographic
rotation matrix.

M50MDT Determines Earth mean of 1950 to Earth mean of
date rotation matrix.

NUTAIT Determines rotation matrix from Earth mean of
date to prime meridian.

NUTATE Determines rotation matrices from Earth mean of date to
Earth prime meridian and selenographic.

OBLATE. Determines approximate effect due to J2 when using
multiconic.

OBLE Determines disturbing acceleration due to an oblate Earth.

OBLTY Determines matrix that rotates through the mean obliquity
of the ecliptic.

OBSET Gravitational field initiation.

ORBIT Determines cartesian state from orbital elements and vice versa.

ORIENT Determines rotation so that two vectors have desired dot
product.

OUTPUT Outputs trajectory time history.

OUT1 Determines time to output trajectory.

PLANET Determines the positions of the planets.

POST Computes post=targeting information for output.

PRINT Outputs common blocks

PROTO Controls midcourse analysis.

PUTELS Outputs elements into a hold file for later use by the
GTDS program.

x

QUARTC Solves a quartic.

QUIKIE Determines the number of days an orbit has shadows.

RANDM1 Determines a random nunber uniformly distributed

between 0 and 1.

READE Determines the planet's ephemerides from tape or disk

ephemeris.

RETDV Impulsive velocity calculation for retro motor.

RETRO Determines the retro firing conditions.

RKSEVN Seventh-order Runge-Kutta numerical integration.

ROTAIT Rotates two vectors in a plane.

ROTATE Matrix vector multiplier for 3 x3 matrix (entry name for MVTRN)

SADOUT Outputs shadow times.

SENSO Computes gradient of end constraints w.r.t. midcourse
velocity.

SETUP2 Initialization of constants and flags.

SHADOW Determines times of shadow crossing.

SHORB2 Determines the intersections of an orbit with the shadow cone.

SOL Approximate Solar ephemeris.

SOLP Determines the acceleration due to solar pressure.

SPER Determines spherical coordinates from cartesian coordinates.

SPNM Calculates Legendre polynomials

SUNMIN Determines minimum angle between spin axis and Sun as

spacecraft is reorientated.

TABINT Determines thrust and weight from tabular input .

TARGET Determines midcourse constraint vector at target planet.

TIMEC Numerical integration control.

TOBODY Flies along a Keplerian conic for a time interval.

TRIM Determines post-injection trim velocity.

xi

TRTM2 Determines two-impn!ll pnline eb nge mnneuvP.r

TRMN Determines mean from true anomaly and vice versa.

TUBE1 Generates graphics data base for use on IBM 2250.

TWELVE Twelfth-order multi-step numerical integrator.

TWOPIT Determines optimum position on orbit for 2-impulse plane

change maneuver.

UPDATE Establishes array of back values for interpolation.

VIEW Determines lighting characteristics of planets.

VISIB Computes tracking station visibility.

VNORM Determines unit vector.

xii

Section 1

INTRODUCTION

This manual contains a description of the Mission Analysis Evaluation and Space

Trajectory Operations program known as MAESTRO. MAESTRO is an all FORTRAN,

block style, computer program designed to perform various mission control tasks.

It is intended that this manual serve as a guide to MAESTRO, thereby providing

individuals the capability of modifying the program to suit their needs. Of most

importance to this task, this manual contains descriptions of each of the subroutines

which comprise MAESTRO. These subroutine descriptions consist of input/output

description, theory,. subroutine description and a flow chart where applicable. The

programmer's manual also contains a detailed description of the common blocks, a

subroutine cross reference map and a general description of the program structure.

1

Section 2

MAESTRO STRUCTURE

MAESTRO is an all FORTRAN, block style, computer program designed to perform

various mission control tasks. These tasks include

1. Retro motor firing time and attitude determination, APROCH.

2. Midcourse correction determination, PROTO.

3. Verification of midcourse correction, MCVERF.

4. Lunar lifetime prediction, FOWARD.

5. Post-injection ti-im determination, ARMPIT.

The subroutines responsible for performing the mission control tasks are also shown

above. All of these subroutines are essentially self-contained except for PROTO which

controls the midcourse determination. The logic involved in this task is more complex

than the others, therefore, it will be discussed in detail later in this section.

All of the mission analysis tasks require a means of propagating the state forward in

time. Subroutine FOWARD and its related subroutines accomplish this task. The

subroutines that make up subroutine FOWARD comprise the major portion of MAESTRO.

The second subsection describes the structure of FOWARD.

2.1 Main Control Logic

MAESTRO computation is initialized in the MAIN program. Figure 2.1.1 presents

a flow chart of this routine.

The first task of the MAIN program is to clear some common blocks and call subroutine

INPUTF. Subroutine INPUTF reads the input data cards and establishes INPUT and

FIELDM common blocks. MAIN calls subroutine CONTRL to initialize common blocks.

Most of the initialization is actually accomplished in subroutine SETUP2. After the

initialization process is complete, MAIN calls one of the mission analysis subroutines

to perform the desired analysis, The MODE flag of input common is used to key

2

the proper subroutine. The logic flow is returned to the input of data to initiate a

second case after the analysis is complete.

2.2 Trajectory Propagation, FOWARD

A call to subroutine FOWARD will propagate the state forward in time. The state will

be propagated by numerical integration or by the multiconic algorithm. Subroutine

MULCON is used when the .multiconic algorithm is employed to propagate the state.

Subroutines TIMEC, INTEG, EQNS, and ACCEL are employed for numerical integration.

Figure 2.1.1 presents a flow chart of the basic control logic involved in trajectory

propagation. The initial state is brought into the subroutines via STATE common.

The METH flag in INPUT common is used to determine the trajectory propagation

scheme. If the multi-conic technique is desired, subroutine MULCON is called and

the state propagated forward in that routine. If one of the numerical intregration schemes

is requested, subroutine FOWARD calls subroutine TIMVIEC to initiate the numerical

integration. As seen from Figure 2.1.1, the numerical integration logic consists of

looping through subroutines TIMVEC, INTEG and RKSEVN or TWELVE. Each loop

through the subroutines numerically integrates the state one compute interval. The

size of the compute interval is determined in TIMEC. Thus, when flow returns to

TIMEC at the end of a loop, the state in STATE common corresponds to the space-

craft's state at the end of the time step.

Subroutine INTEG is used to establish the integration array before integration and

determine the position and velocity vectors after the step is complete. An intermediate

array is used in the numerical integration subroutines RKSEVN and TWELVE. This

array is necessary because a variety of variables can be integrated. The trajectory

propagation flag, METH, determines which set of variables are transferred from

STATE common to the integration array in INTVAR common. After integration is

complete, the variables at the end of the state are transferred back into STATE

common. The position and velocity vectors are also determined because they are

needed for use in other auxiliary calculations after integration. The integration array

separates the numerical integration logic from the trajectory propagation logic. Thus,

new numerical integration or trajectory propagation techniques can be easily added

3

without affecting logic in the other segment. Integration of other quantities can also

easily be included. For example, the equations which describe the state transition

matrix can be included in the numerical integration without any changes to the

numerical integration subroutines.

The actual integration that is carried out is a loop comprised of subroutines. EQNS,

ACCEL and RKSEVN or TWELVE. Subroutines RKSEVN and TWELVE are single

and multi-step numerical integration schemes. The derivatives of the quantities to

be integrated are determined in subroutines ACCEL and EQNS. EQNS contains logic

to determine the derivatives according to the trajectory propagation scheme employed.

The derivatives are transferred to the numerical integration routines via RATES of

INTVAR common.

There are many other subroutines besides the ones mentioned which are involved

in propagating the state forward in time. These routines are used in the determination

of shadow times, closest approach times, trajectory output and interpolation. Most

of the calls to perform these auxiliary calculations are made from subroutine TIMEC.

2.3 Midcourse Guidance Structure

The objective of the midcourse guidance package is to determine the velocity correction

which nulls a constraint vector at the target planet. The velocity correction is determined

through a generalized Newton-Raphson technique. The partial derivatives of the constraints

with respect to the velocity correction are determined by finite differences.

The midcourse guidance calculations are initiated in subroutine PROTO, (see Figure 2.3.1).

PROTO's functions are to initialize constants, increment execution times, write the

midcourse tape and output displays.

The Newton-Raphson logic to determine the correction is contained in a loop inside

subroutine MDCORS. This loop uses subroutines SENSO, MCBURN and TARGET to

perform many of the midcourse calculations along with subroutine JET to pre-target.

Subroutine JET uses a variety of conic techniques to determine an initial value of the

correction velocity. This velocity is used as the initial guess in the Newton-Raphson

iteration process. The iteration process consists of the following steps in MDCORS:

1. The constraint vector is determined at the target planet. Subroutines

SENSO, MCBURN and TARGET are required. SENSO sets up the logic

to propagate the state to the target planet and calls MCBURN to apply

the current correction. SENSO next calls FOWARD to obtain the state

at the target planet and then TARGET to convert the state to the con-

straint vector.

2. Tests are made on the constraint vector to determine if each component

is within tolerances. If the vector is within the desired tolerances,

the solution is converged and flow transferred back to subroutine PROTO.

3. The secant matrix is determined if the solution is outside the bounds.

The secant matrix is determined by incrementing each of the control

variables independently. The constraint vector is found for each control

variable in the same manner as described in step 1.

4. The.velocity correction is found by inverting the secant matrix and

multiplying by the difference of the current constraint vector from the

desired constraint vector.

5. Flow is transferred to step 1.

After the midcourse correction is determined, subroutine PROTO calls POST to

obtain auxiliary output quantities. These quantities along with the correction and the

pre-midcourse state are written on an output device. If more midcourse execution

times are to be analyzed, flow is transferred back to the call to MDCORS to evaluate

the next correction. After the last correction is determined, the midcourse tape is

read and the appropriate displays output.

There are subroutines involved in the midcourse calculation other than those already

discussed. Most of these are used to perform calculations necessary in JET, TARGET,

MCBURN and POST. A complete description of all the subroutines is presented

in Section 5.

5

MAIN CONTROL FLOW CHART

Clear common blocks

INPUTF

no more data

more data

SETUP
Initialize common
blocks and state

Set compute interval

table

- MODE

=1,2 3 4 5 =7

FOWARD APROCH PROTO MONTE CVERF ARMPIT

6

FIGURE 2.2.1
SUBROUTINE FOWARD

ENTER

FOWARD

Propagate State
with Multiconic Yes lticonic

Used

No

RETURN

TIME C

Determine Compute Interval

T > T JYes RETURN

No

EQNS

INTEG Determine Derivatives According to

.! Simulation Technique
State - Integration Array

Simulation Technique

1. Cowell
2. Encke

Integration Scheme:
3. NICE/True

1. 7th-Order Runge-Kutta 4. NICE/Mean

2. 12th-Order Multistep 5. Averaged Equations of4
7. NICE/e sin w, etc.

8. Averaged equations of 7

Integration Array-+ State ACCEL

Calculate PerturbingAcceleration-

Figure 2.3.1

MIDCOURSE GUIDANCE STRUCTURE

Initialize

Constants

Pre- ves JET
target

no

SENSO TARGE'I
Determine constraints,

at target planet

within tolerancesConstraints -- p

outside tolerances
rmn'd, g"" TARGET

Determine secant
matrix MCBURN

Determine
correction

POST
Calculate auxiliary
output variable

Write midcourse

tape

yes more no Outputcorrections Displays
8 ReturnDisplays

8 Return)

Section 3

CROSS REFERENCE MAP

3.0 Introduction

The MAESTRO system is comprised of more than 90 subroutines. It is difficult to

understand the structure of a program of this complexity without some sort of a

visual guide. The maps on the following pages are designed to meet this need. These

maps present a hierarchy of subroutine calls for each division of the program.

The program is divided into three sections for clarification. The first section consists

of the prime control logic. The second division presents the midcourse logic, while

the third section consists of the hierarchy of subroutine FOWARD.

3.1 Primary Control Logic

The primary control logic consists of those subroutines required for input, initialization

and selecting the analysis modes of MAESTRO. The cross reference map of the primary

control logic is shown in Table 3. 1.

3.2 Midcourse Logic

The midcourse guidance section comprises a substantial portion of MAESTRO. The

midcourse logic can be entered directly from the MAIN program by a call to PROTO or

from subroutine MONTE via calls to MDCORS, SENSO and MCBURN. A cross reference

map of the subroutines involved in the midcourse logic is presented in Table 3.2.

3.3 Subroutine FOWARD Logic

Subroutine FOWARD's sole aim is to propagate the state forward in time. This subroutine

comprises the major portion of MAESTRO and is called from many other subroutines.

Table 3.3 presents a cross reference map of the subroutines involved in this portion of

the logic.

9

TABLE 3.1

MAIN CONTROL LOGIC CROSS REFERENCE MAP

TRIM, M50MDT, QUIKIE, VIEW
APROCH TRMN, CROSS, MVTRN, PUTELS

ORBIT, VNORM, FOWARD, NUTATE

FOWARD - See Table 3.3

C CROSS
COVERT VNORM

RETRO MINV

MONTE M50LEQ NUTATE

MDCORS, MCBURN, SENSO See Table 3.2

VNORM, CALEND, CROSS, FOWARD r-ORBIT
PUTELS, FOWARD TWOPIT - TRIM2 -MVTR

ARMPIT ARMPIT M50EMMDT - TRIM - ROTATE
EM M50MDT

NUTAIT ORBIT
MAIN M50LEQ [NUTATE TRMN

LUNA

PMCELANER PLANET- READE PUTELS
•MCVERF SOL

SOL
CROSS, FOWARD, PUTELS,
VNORM, CALEND

PROTO See Table 3.2

MCSET

PRINT

CONTRL FIND, MVTRN, ORBIT, NUTATE, M50MDT
NUTAIT, DVMAG, TRMN, DATE, OBLTY
PLANET - SOL, LUNA, READE

SETUP2 CLOSE TRMN, INTEG, UPDATE
-DVMAG, ORBIT

M50EPM - M50MDT, NUTAIT

10 MI50JPM - M50LEQ, M50MDT, M50EPM

Table 3.2

MIDCOURSE GUIDANCE CROSS REFERENCE MAP

.DOT, MVTRN, DVMAG
ISIB LM50EPM-----M50MDT, NUTAIT

TRMN, MVTRN, VNORM, ORBIT, VISIB-POST-POST DOT, CROSS, ORBIT, VNORM

RETRO-MINV 'ORIENT, TRIM, DVMAG

-FOWARD - See Table 3.3

DOT, SPER, MVTRN, MINTF, VNORM
FOWARD, CROSS, RETDV

ORS JET ROSS, DOT, MVTRN, VNORM, ORIENT

MDCORS JTETDV, ROTAIT, TRMN, DVMAG

FOWARD
PROTO SENSO ARrC ROSS, MVTRN, RETDV, VNORM, DVMAG

POTO TARGET IORBIT, RETRO, ROTAIT, M50LEQ

[ORIENT, CROSS, DOT, VNORM

MCBURN DOT, DVMAG, FOWARD, BURND

-M50LEQ M50MDT, NUTAIT

FIXATG SENSO, FOWARD, VNORM

-MVTRN

CROSS

DOT

Table 3.3

SUBROUTINE FOWARD CROSS REFERENCE MAP

LUNA
PLANET - READE

SOL
TRMN, MVTRN, ORBIT, M50MDT, DVMAG

-OUTPUT M50JPM, NUTATE, OBLTY,
SHORB2- QUARTC, ROTATE

DVMAG, OUTPUT, TOBODY
-MULCON AVERGE, ORBIT, PLANET

OBLATE -TRMN, ORBIT, DVMAG

ORBIT
INTEG RKSEVN EQNS

TWELVE EQNS, RKSEVN, DVMAG

GRAV, SOLP, PLANET, DVMAG, DRAG-ATMO

FOWARD ACCEL FIELD2 - M50JPM, ROTATE
MOTORS - TABINT
OBLE - M50MDT, ROTATE, NUTATE

EQNS ORBIT, DVMAG, TRMN

AVEQNS--ACCEL, ROTATE, ORBIT, TRMN

INTEG, UPDATE, PRINT, MOTORS, TRMN, ORBIT, OUTPUT

SADOUT- CALEND
CLOSE -- UPDATE, INTEG, TRMN, ORBIT, DVMAG
DOPLER- ROTATE, DVMAG, M50EPM

-TIMEC SHADOW-DVMAG, PLANET, DOT, INTERP
OUT PLANET, OUTPUT

INTERP TRMN, ORBIT

CRASH- INTERP, DOT, PLANET, DVMAG

-PRINT, TRMN, ORBIT, DOT

SECTION 4

COMMON BLOCKS

Currently, there are 25 common blocks established in MAESTRO. Most of these

common blocks are required for the numerical integration portion of MAESTRO.

The table below presents a list of the current common blocks:

Used in Numerical Used in Ephemeris Used in Auxiliary
Integration Calculation Calculations

AVG CETBL2 ANKOR

CNTRL CETBL3 ELMNT

CONST CETBL9 INPUTS

DUM MOON INTER

FIELDM MCCOM

GRAVTY OBSIT

INPUT PIT

INTVAR SHAD

INTVRX

PERT

PLNET

SAVE

STATE

The following pages in this section present a description of each of the above common

blocks. The descriptions include the usage of the common block, its length, the sub-

routines which required the common block, and a description of each of the elements

that comprise the common block.

13

COMMON ANKOR

Description: This common block contains the current anchor vector

Length: 6 8-byte words

Subroutines Using: CONTRL MONTE PROTO SETUP2

Symbolic
Location Name Description

1 ANKUE(6) Cartesian position and velocity vectors of the
current anchor vector in Earth mean equator
and equinox of 1950, km and km/sec.

14

COMMON AVG

Description: This common block contains the weights and the
corresponding abscissa for the Gaussian quad-
rature formulae.

Length: 156 8-byte words

Subroutines Using: AVEQNS, BLOCK DATA, MAIN

LOCATION SYMBOLIC NAME DESCRIPTION

1 WEIGHT (78) Weights for Gaussian quadra-
ture formulae*

79 ABSCIS (78) Abscissa for Gaussian
quadrature formulae*

*See Scarborough, James B, Numerical Mathematical Analysis, The Johns
Hopkins Press, 1930.

15

COMMON CETBL2

Description: This common block contains arrays that determine

which planets are desired in the disk or tape ephemeris

call using subroutine READE

Length: 15 4-byte integer words

Subroutines Using: MAIN GETTAP PLANET READE

SETUP2

Symbolic
Location Name Description

1 ICW Flag indicating the status of the common

block CETBL3

2 ICENTR Central planet number defined as

1 Mercury 4 Mars 7 Uranus
2 Venus 5 Jupiter 8 Neptune
3 Earth 6 Saturn 9 Pluto

10 Sun
11 Moon

12 Oddball

3 IREQ(13) Array used to determine which planets the
ephemeris is desired. The planets 'correspond
to the index of the array as described in ICENTR.
The value of IREQ is determined from:

IREQ(J) = 0 no ephemeris
= 1 position only

= 2 position and velocity

16

COMMON CETBL3

Description: This common block is used to transfer information read

from the ephemeris tape to subroutines GETTAP and

READE.

Length: 829 8-byte words followed by
205 real 4-byte words

Subroutines Using: MAIN GETTAP PLANET READE

SETUP2

Symbolic
Location Name Description

1 TAB3(829) Array of raw data obtained from the JPL ephemeris

tape. Data contains 8 days of information.

830 NUT(204) Array of 4-byte real words describing the nutation
data obtained from the JPL ephemeris tape.

1034 CKSUM A 4-byte word used for checksum.

17

COMMON CETBL9

Description: This common block contains quantities required in

the tape or disk ephemeris calculations.

Length: 3 8-byte words followed by
1 4-byte integer word

Subroutines Using: GETTAP READE

Symbolic
Location Name Description

1 JD1 Reference julian date of ephemeris call.

2 TDAY . Time since reference julian date ephemeris
is desired, days.

3 JDIF Difference in the time of the desired ephemeris
minus the time of the ephemeris data read from
the tape or disk.

4 IERR1 Error return flag from subroutine GETTAP

18

COMMON CNTRL

Description: CNTRL common is used to store flags that control
state propagation.

Length: 28 4-byte integer words

Subroutines Using: MAIN ACCEL APROCH AVEQNS

AVSTRT BELL CLOSE CRASH
DOPLER DRAG EQNS FIELD2
FIXATG FOWARD GETTAP GRAV
INTEG INTERP LUNA MCBURN
MCVERF MDCORS MONTE MOTORS
MULCON OBLE OUTPUT PLANET
PRINT PROTO RKSEVN SETUP2
SHADOW SOL TARGET TIMEC
TRIM2 TWELVE

Symbolic
Location Name Description

1 Not used

2 KTHRST Thrusting flag. Set to 1 when an engine is thrusting.

3-4 Not used

5 KDIS Discontinuity flag. Flag equals 1 when the current
time is a discontinuity time, otherwise set to 0.

6 KHALT Error return flag. Flag is set to 1 to cause an error
return from the numerical integration.

7 JC Central planet number.

8 KREAD Flag used to determine if the ephemeris tape or
disk is to be read at the current time.

9 KNT Counter that contains the number of calls to the
derivative subroutine, EQNS.

10 KDOPWT Doppler write flag. Flag equals zero on the first call
to DOPLER. On subsequent calls this flag is set to 1.

11 KCA Counter used in the closest approach iteration between
subroutines CRASH and TIMEC. KCA equals the
number of iterations.

19

Symbolic
Location Name Description

12 KFIRST First pass flag. Flag equals one on the first step
of a numerical integration

13 IEVG Engine number of engine thrusting

14-28 Not used

20

COMMON CONST

Description: This common block contains physical constants

and unit conversion factors

Length: 50 8-byte words

Subroutines Using: MAIN APROCH ARMPIT AVEQNS

AVERGE AVSTRT BLOCK DATA BURND

CLOSE CONTRL DOPLER DRAG

EQNS FIELD2 FIXATG FOWARD

GRAV INTEG INTERP JET

LUNA MCBURN MCSET MCVERF

MDCORS MINV MONTE MULCON

M50EPM M50JPM OBLATE OBLE

OBLTY ORBIT OUTPUT POST

PRINT PROTO QUIKIE RETDV

SETUP2 SHADOW SOL SOLP

SPER SUNMIN TARGET TIMEC

TOBODY TRIM TRIM2 TRMN

TWELVE TWOPIT VISIB
SYMBOLIC

LOCATION NAME DESCRIPTION

1 RAD Radian to degree conversion factor

2 PI Pi,

3 PI2 Twice pi

4 Au Number of kilometers in an astronomical unit

5 GM(12) Gravitational coefficients of the planets, km3 /sec 2 .

The planets are ordered in the array as follows,

1. Mercury 4. Mars 7. Uranus 10. Sun

2. Venus 5. Jupiter 8. Neptune 11. Moon

3. Earth 6. Saturn 9. Pluto 12. Oddball

17 RE(12) Equatorial radii of the planets, km. The order is the

same as the gravitational coefficients.

29 WP(12) Rotation rates of the planets, rad/sec. The order is

the same as the gravitational coefficients.

41 THS Hour to second conversion factor

42 TSH Second to hour conversion factor

43 TDS Day to second conversion factor

44 TSD Second to day conversion factor

45 G Gravitation acceleration at the surface of the

Earth, km/sec2

21

COMMON DUM

Description: This common block contains quantities used to propagate
the state using the multi-conic scheme.

Length: 12 8-byte words

Subroutines Using: AVERGE MULCON OBLATE TOBODY

Symbolic
Location Name Description

1 A1S(3) Acceleration due to the Moon's indirect term, kms/sec2

4 A2S(3) Acceleration due to the Sun, km/sec2

7 PM Spacecraft's mean motion, rad/sec

8 Not used

9 AM Value of mean anomaly at end of a compute step, rad

10 DT Current multi-conic compute step, sec.

11 AMO Value of the mean anomaly at the beginning of
the step, rad.

12 Not used.

22

COMMON ELMNT

Description: This common block is used to transfer input data

read from the 24-hour hold file, It is also used for

writing data for GTDS retrieval.

Length: 40 8-byte words followed by
8 4-byte integer words.

Subroutines Using: APROCH FIND MCVERF PUTELS

SETUP2

Symbolic
Location Name Description

1 DATE Epoch date in year, month and day
written as YYMMDD.

2 TIME Epoch GMT time in hours, minutes and seconds

written as HHMMSS. SSS.

3 X(3) Position vector, km.

6 DX(3) Velocity vector, km/sec.

9 ELM(6) Orbital elements

15 COV(21) Covariance matrix of the state. Upper triangle
presented.

36-40 Not used.

41 ID Satellite identification number.

42 ICOR Coordinate system of state.
1 = Earth mean equator and equinox of 1950.

43 ICENT Central body indicator.

1 = Earth
2 = Moon

44 ISET Element set number of desired data.

45-48 Not used

23

COMMON FIELDM -

Description: This common block contains constants that describe

the1~ gravittioal eIIUI o a plant.

Length: 297 8-byte words followed by
2 4-byte integer words.

Subroutines Using: MAIN FIELD2 INPUTF OBSET

Symbolic
Location Name Description

1 ZONL(16) Zonal coefficients of the spherical harmonic potential

term. ZONL(i) = - Ci0 i = 1,16

17 TSRL(16, 17). Tesseral coefficients of the spherical harmonic
potential term.
TSRL (i, j) = C.. i = 1, 16 0<j i

13

TSRL(j,i+1)= S.. i=1,16 0<j:i

513 SELNEQ(9) Rotation matrix from the Earth mean equator and
equinox of 1950 to true equator and prime meridian
of the planet for which the gravitational field is to
be evaluated.

522 NMOD Maximum number of zonals used to define the
gravity field.

523 MMOD Maximum number of tesserals used to define
the gravity field.

24

COMMON GRAVTY

Description: This common block contains vectors used in the

determination of the disturbing acceleration when

numerically integrating

Length: 6 8-byte words

Subroutines Using: ACCEL AVEQNS DRAG EQNS

FIELD2 GRAV OBLE SOLP

Symbolic
Location Name Description

1 POS(3) . Position vector with respect to central planet in

Earth mean equator and equinox of 1950, kmn

4 VEL(3) Velocity vector in same system, km/sec

25

COMMON INPUT

Description: This common block contains the data input to MAESTRO.

Length: 1000 8-byte real words followed by
100 4-byte integer words

Subroutines Using: MAIN ACCEL APROCH ARMPIT
AVEQNS AVSTRT BELL BLOCK DATA
BURND CALEND CLOSE CONTRL

CRASH DOPLER DRAG EQNS
FIELD2 FIXATG FOWARD GRAV
INPUTF INTEG INTERP JET
LUNA MCBURN MCSET MCVERF
MDCORS MINV MONTE MOTORS
MULCON OBLATE OBLTY OUTPUT

OUT1 PLANET POST PRINT
PROTO RETDV RETRO RKSEVN
SADOUT SENSO SETUP2 SHADOW
SOL SOLP TABINT TARGET
TIMEC TRIM TRIM2 TWELVE
TWOPIT UPDATE VISIB

26

MAESTRO INPUT ARRAY*

FORTRAN PRESET
LOCATION SYMBOL USE*** VALUE DESCRIPTION

Error control for automatic integration
step size. If = 0 assume in fixed-step

mode.

Initial computer step when in automatic

2 DELTO I mode. Note: Need not be input when
fixed-step.

Minimum compute interval. Note: Not
necessary in fixed-step mode.

4 TF I Run stop-time.

Unit conversion factor for positions. The
value is determined such that, when PCON

5 PCON . 0 multiplies the input units, they will be
converted to KMS. The output units will
be scaled by 1/PCON so that the output
units will be the same units as input.

6 VCON I 1.0 Used the same as PCON except that
velocities are scaled to KMII/SEC.

7 EMPTY

Corrector convergence tolerance in
twelfth-order predictor-corrector

8 TOL I 0.0 integration scheme. Values used depend
on the accuracy requirements. They
range from 10 - 6 to 10 - 1 2 .

9 'EMPTY

* unless otherwise stated, the units of the input quantities are: KI, SEC, KG,degrees
** preset value depends on program operating mode
*** I integration V Midcourse verification

A approach analysis L Lifetime analysis
M midcourse analysis P Post-injection trim
C Monte Carlo analysis

27

FORTRAN PRESET

LOCAON SYMBOL USE VALUE DESCRIPTION

10-12 METH(3) ** Times for method Labie. See CKMETH

(location 1036) for description.

13-19 EMPTY

20 XMONL
21 DAYL
22 YRL
22 YRL I - Launch epoch
23 HRL
24 XMINL
25 SECL

26-29 EMPTY

30 Input initial conditions as orbital
31 elements. The order is a,e,f,w, i, C7.
32 The initial conditions may be accepted
33 as position and velocity vectors (see
34 locations 40-45). The coordinate system
35 is defined in KINPT (location 1019).

36 EMPTY

37 DJL Modified julian launch date. Not a program

input.

38 WTO I 331.40 Initial weight

Ephemeris time correction. If no input,
the ephemeris time correction will be

39 ETC I - calculated from ETC = 38. 66 + .0025921DJ
where DJ is the number of days since
the julian date of 2440000.0.

40 Initial conditions as position and velocity
41 X(3) I - vectors or spherical coordinates. When

spherical coordinates are used the order
is velocity, flight path elevation angle,

43 flight path azimuth angle, radius, geocentric
44 DX(3) - latitude, geocentric longitude. The input

45 coordinate system is defined by KINPT
(location 1019)

46 DJO Modified julian launch date. Not a
program input.

47 RA Initial right ascension and declination
in Earth equator and equinox of 1950

48 DEC I

28

FORTRAN PRESET
LOCATION SYMBOL USE VALUE DESCRIPTION

50 XMONO
51 DAYO Initial time
52 YRO
53 HRO I Input is month, day and year,

54 MINO hour, min, second (GMT).
55 SECO

Upper right-hand triangle of the
tracking covariance matrix loaded across
the rows. Can be input in mean equator
and equinox of 1950 or in a local tangent

56-76 COV C plane. Location 1085 determines the system.
When mean of 1950 is used, the order is
X, Y, Z, X, Y, Z. When local tangent plane is
input;the order is the position components as
R, (RxV) x R, RxV and then the velocity
components along the same axes.

77-99 EMPTY
Gravitational coefficient. The order of the100-111 GM(12) I ***
planets is defined in locations 1001-1012.

112-123 RE(12) I *** Planetary radii.

124-135 WP(12) I *** Planetary rotation rates

136-169 EMPTY

Compute interval table when in fixed compute
interval mode, (loc (1) = 0.).

170-179 TCOMP(10) I ** Compute interval = DELT (1)

180-189 DELT(10) when TCOMP (I-1) <T < TCOMP(I) or
Compute interval = DELT (1)
when T<TCOMP(1). Complete compute
interval table must be loaded when
alterations are made to preset values.

190-192 XWMQN(3) I Initial position of Moon if osculating
elements are used for Moon's position;

193-195 DXMUN(3) I - Earth radii and Earth radii/mean solar day.

196 TMM I - Moon's epoch in modified julian date.

197 SPRESS I 4.7(10) Solar pressure at 1 AU, dynes/cm2

*** See Table 3.3 of User's Manual

29

FORTRAN PRESET

LOCATION SYMBOL USE VALUE DESCRIPTION

198 REFLK I 0.2 Solar pressure reflectivity coefficient

199 EMPTY
Tabular thrust history of Motor 1.

200-219 TFI(20) I,A,M,V ** TF1(20) are times since ignition and
F1(20) are the thrust values (newtons)

260-279 F1(20) I,A,M,V *** at the corresponding'times. For the
RAE-B application, this motor is used
as the midcourse motor.

220-239 TF2(20) I Thrust table for motor 2.
280-299 F2(20) I -

240-259 TF3(20) I - Thrust table for motor 3.

300-319 F3(20) I

Tabular weight flow rate for motor 1.
320-329 TWDOT1(10) I,A,M,V *** TWDOT1 is the time past ignition and

350-359 W 110 A V DOT is the flow rate at the corres-
350-359 WDOT1(10) I, A, M, V ***

ponding time. The flow rate is in
KG/sec.

330-339 . TWDOT2(10) I - Flow rate table for motor 2.
360-369 WDOT2(10) I

.340-349 TWDOT3(10) I -
Flow rate table for motor 3.

370-379 WDOT3(10) I

380-382 TIG(3) I, V Ignition times for motors 1, 2 and 3.

383-385 TB0(3) I,V - Burnout times for motors 1, 2 and 3.

386-399 EMPTY
First and last trial retro firing time on400 TFIRE1 A -
an approach analysis. Time reference

401 TFIRE2 A - to liftoff epoch. Used when IKAPOPT = 3
(location 1055)

402 DTFIRE A - Increment in retro firing time.

403 RAG A - Initial right ascension and declination

used in the attitude sweep in the approach404 DECO A -
analysis. If both zero, velocity vector
at closest approach is used.

*** See Table 3. 3
30

FORTRAN PRESET
LOCATION SYMBOL USE VALUE DESCRIPTION

405 DELRA A - Increment in right ascension and

declination in attitude sweep.
406 DELDEC A -

Used when KAPOPT = 2 or 3

407 EMPTY

408 CAR1 V 4. 0095D8 Telemetry carrier frequency No. 1

409 CAR2 V 4.0D8 Telemetry carrier frequency No. 2

410-419 OBSLON(10) A, M,V Observation site geocentric longitude
for sites 1-10.

420 PSID(1) M 2838. Lunar radius

421 PSID(2) M 116.5 inclination w. r. t. target
planet equator. Midcourse

422 PSID(3) M .396D6 time of flight w.r.t. analysis
liftoff desired end'

423 PSID(4) M 0.62 Hyperbolic excess speed conditions

424 PSID(5) M 0.0 circular excess speed

425-429 PSID(6-10) M Empty

Impulsive velocity of engines 1 to 3.
430-432 DV(3) IUsed when KFMON (location 1047) is set

to 2. Velocities are added at ignition
times in location (380-382).

Area of the spacecraft used in solar
433 SOLARA I 13560 pressure calculation, square centimeters

434 DELTMC M 7200. Increment in execution time

435 SIGATM C, M 0.7 One sigma pointing error during
midcourse maneuver.

436 SIGDVM C, M 0.02 One sigma percentage error of
midcourse velocity. Loaded as percent/100.

437 SIGATR C 0.7 One sigma pointing error during retro.

- 31

FORTRAN PRESET
LOCATION SYMBOL USE VALUE DESCRIPTION

One sigma percentage error of
438 SIGDVR C 0. 0003

retro velocity. Loaded as percent/100.

439 TMC1 C 36000. Time of first correction

440 TMC2 C 324000. Time of second correction

441 ASPMC A,M,C 226.0 Midcourse motor specific impulse

442 ASPR A, M, C 282. 5 Retro motor specific impulse

443 WRETRO A, M, C 71.44 Ma ss of retro fuel

444 RO A, M, C, P 2838. Desired lunar orbit radius used in trim
maneuver

Circular velocity at RO. Program445 VC A, M, C, P calculation, not to be input.

446 CIO A,M,C,P 116.5 Desired lunar orbit inclination w.r. t.
lunar equator used in trim maneuver

447 BVD(1) M 6000. Midcourse analysis
desired end conditio~

set to 1. (loc 1062)

Tolerance band on inclination correction

449 TRINC M, C, P 0. during post-injection trim. If inclination
change is less than TRINC, no inclination
adjustment is made.

450-459 TOUT(10) I TOUT(1)= Print table
1.D20

Print interval = DTOUT(1) when
460-469 DTOUT(10) I DTOUT(1)= TOUT(I-1) < T < TOUT(I) or print

18000. interval = DTOUT(1) when T < TOUT(1)

470 ATFULA C 6.0 Available attitude control fuel and constant
to determine attitude control fuel, KG/RAD.

471 AFUEL C 0.1678 Attitude fuel used = AFUEL * attitude
angle change.

472 FTOT C 20.4 Total midcourse fuel available

32

FORTRAN PRESET

LOCATION SYMBOL USE VALUE DESCRIPTION

Retro drop weight. Weight dropped
473 WVDROP A, M, C 13.77 after retro firing.

Cone angle used in approach analysis.

The attitude range is this cone angle
474 CONE A, M 5.0 about the velocity vector or input attitude

when KAPOPT=1 (loc 1055). Also used

in midcourse fixed attitude scan.

True anomaly range for trial retro firings

in approach analysis, deg. Trial retro

475 TRUE A,M, C 20 firings are made from -True to +True

true anomaly on the approach hyperbola.

Used when KAPOPT =1. Also used as

firing range in retro optimization.

Midcourse motor burn time. Used when
476 BURNT V the initial state is not obtained from a

477 EMPTY midcourse analysis.

478 TMC M 7200. Initial execution time

Secant partial step size in midcourse
479 DINK M 0. 0003 analysis also velocity increment when

using the fixed attitude mode.

480-489 OBSLAT(10) A, M,V *** Observation site geocentric latitude
for sites 1-10

490 T L(1) M 10. B.T

491 TOL(2) M 10. B- R Midcourse

492 T L(3) M 10. time of flight
493 TOL(4) M .0001 hyperbolic excess speed

494 TOL(5) M .0001 circular excess speed tolerances on

495 TOL(6) M .02 Total fuel optimization

496 T1OL(7) M 5. closest approach radius desired end

497 TOL(8) M. .2 inclination conditions

498-499 TOL(9, 10) Empty

Spheres of influence of the planets used

-to determine the central planet. If the

distance from the planet is less than the
value in RSWTCH,the planet is the central

planet. If none of the planets are central,

then the Sun is considered central.

*** See Table 3.3 33

FORTRAN PRESET
LOCATION SYMBOL USE VALUE DESCRIPTION

512 RBURN A 20. Retro burn time

513 TCATST I 0. Time to begin closest approach
testing logic.

516 SPNRA I 12.0 Spin rate, RPM.

517 PTI i 238.0 Initial midcourse motor tank
pressure, PSIA.

518 TPI I 20. Initial midcourse motor
temperature, oC.

519 FMC I 20.4 Current midcourse motor
fuel, ke.

520 FMULT I 1. Thrust multiplier.

521 WMULT I 1. Weight multiplier.

522 WDOTT M .0183 Midcourse motor weight flow used
with Hamilton Standard thrust in
midcourse targeting.

523 DTM M 0. Compute interval diring motor
burn in midcourse targeting.
Compute interval equals burntime
when value is zero.

34

FORTRAN PRESET
LOCATION SYMBOL USE VALUE DESCRIPTION

1001-1012 KP(12) BI odies in system. Set to 1 if only

position is necessary, 2 if both

position and velocity are desired.
The order is as follows:

1001 MERCURY 1005 JUPITER 1009 PLUTO

1002 VENUS 1006 SATURN 1010 SUN

1003 EARTH 1007 URANUS 1011 MOON

1004 MARS 1008 NEPTUNE 1012 ODDBALL

Note: 1003 = 2, 1010 = 1, 1011 = 2 are preset

1013 METH Current trajectory propagation method.
Not a program input.

Numerical Integration Scheme

1014 KINT I 3 3. 7th-Order Runge-Kutta

5. 12th-Order Multistep,
single step size only

1015 JL I 3 Launch planet number.

1016 ENGID A 2 Engine number of the retro motor.
Used in a MODE=1 analysis.

Lunar and solar ephemeris flag

1. Mean elements
2. Mean elements for Sun

Mean elements + 1st-order
corrections for Moon

3. Ephemeris tape
1017 JMN I 5 4. Mean elements for Sun, osculating

elements for Moon (loaded in
locations 190-196)

5. Ephemeris tape using Goddard's
direct read feature

1018 KOBLTE I 1 Set to 1 for Earth oblateness. Should be
set to 0 when 1029 = 3.

35

FORTRAN PRESET

LOCATION SYMBOL USE VALUE DESCRIPTION
Input coordinate system flag

1. Mean equator and equinox of 1950

2. Mean equator and equinox of date

3. Mean ecliptic and equinox of date

1019 KINPT I 1 4. True equator and prime meridian
of launch planet

5. True equator and equinox of date
6. True lunar equator and node.
7. Earth spherical. See location 40-50

of INPUT common

1021-1028 EMPTY
1029 KOBL I ** Set to the number of the planet in which

the gravitational field is to be simulated
using FIELD2. See location 1035.

1030 KOUT I ** If 1, output according to print table. If

zero, output only at beginning and end of
run. If -1, no output.

1031 JT I 11 Target planet number

1032 KCRASH I ** Closest approach flag

0 No closest approach test

1 Continue after closest approach
2 Stop on closest approach

1033 EMPTY

1034 JOCC I 0 Occultation flag. Set to the planet
number where the observer is located.

1035 MODLEM I, L 1 Lunar gravity model flag

1 for Houston L1 model of Lunar field

2 for Earth J2 ,J3 4
3 for JPL 15 by 8 Lunar Field
5 zeroes initial field so new field can be

input
10 Used field set in last case

Trajectory propagation method
If T < TMETH(1) METH = KMETH(1)
If TMETH (I-1)<TC<TMETH(I)

METH = KMETH (I)
TMETH is in location 10.

1. Cowell
2. Encke

1036-1038 KMETH(3) I ** 3. NICE/True
4. NICE/Mean
5. Averaged Equations of 4
6. Multiconic, fixed stepsize only
7. Integrals e cos W, W+ f

8. Equations 7 are used in averaging

36

FORTRAN PRESET

LOCATION SYMi\1BOL USE VALUE DESCRIPTION

Output coordinate systems - Launch and

target planets
1. Mean equinox and ecliptic of date

2. True equator and prime meridian
1039-1040 KOUTPT() I 3,2 3. Mean Earth equator and equinox of 1950

4. True Earth equator and equinox of date

5. No output

Number of right ascensions and

declination angles used in the attitude
sweep of the approach analysis. Must

1042 JDEC A,. M 15 be less than 16. Also used in midcourse
fixed attitude analysis.

1043 KFIRE A, M 20 Number of trial retro firing times on
approach analysis less than 20

Program mode

0 Fly to TF or closest approach

1, 2 Approach analyses
3 Midcourse analyses

1044 MODE ALL 4 MonteCarlo analyses
5 Midcourse verification mode

6 Lunar lifetime mode
7 Post-injection trim

1045 KDOP V 0 Set to one for doppler analysis:

Set to one if retro firing time analysis

is to be output for each attitude

Thrusting mode

1047 -KFMOD I 0 0 Tabular thrust / weight
2 Impulsive velocity
3 Hamilton Standard subroutine

1048 KAPSAD A 1 Set to one for lunar orbit shadow
calculations during approach analysis.

Shadow calculation flag during trajectory
1049 KSADW I. 0 propagation:

0 No shadows determined.
1 Shadow time determined by interpolation

while numerically integrating trajectory.
2 Osculating orbit used to determine times.

Note: KSADOW=1 should not be used when

averaging.

37

FORTRAN PRESET
LOCATION SYMBOL USE VALUE DESCRIPTION

1050 MCOUT M 0 Extra output flag in midcourse analysis.

1. Outputs targeted solution from PROTO

2. Prints AV, constraint errors for each
iteration.

3. Prints jet iteration information along
with 2.

1051 JMC M 10 Number of midcourse execution times
simulated

Monte Carlo description flag

1. retro only
2. midcourse and retro

1052 KMONTE C 2 3. two midcourses and retro

If negative, the first correction will be
calculated from the nominal assuming that
the tracking data is good.

1053 KMAX C 50 Sample size of Monte Carlo analysis.

1054 KSTART C 17 Random number starter.

Approach analysis option flag.

KAPOPT = 1 Firings made between an
input range of true anomaly about perigee
on the approach hyperbola. The attitude
range is an input cone angle about the
velocity vector at closest approach.

1055 KAPOPT A 1 KAPOPT = 2 Firings made from asymptote
to asymptote on the approach hyperbola.
The attitude range is input as initial right
ascension and declination, increment in
right ascension and declination, and number
of attitude angles.
KAPOPT = 3 Firings made between input
times. The attitude range is input as in 2.

If positive, Element set number, for MAESTR

1056 NGRAPH graphics data base.
If negative, replace NGRAPH I element set.

Integer used to obtain initial conditions from
a midcourse analysis. KREAD corresponds

1057 KREAD A,V - to the midcourse correction number desired.
If KREAD is zero, this option is ignored
and the initial state must be input.

1058 KOUT9 I, L ** Auxiliary peripheral output unit number

38

FORTRAN PRESET

LOCATION SYMBOL USE VALUE DESCRIPTION

Extra output flag. Used when KOUT9 '0

0. Orbital elements printed
059. KTERM I, L 0 1. Position and velocity vectors

printed
2. Both 0 and 1

Input array write flag
1060 INPWT I 1 0 no write

1 write

1061 MCUNIT A,M,V 11 Unit number of auxiliary midcourse

output unit.

Miss vector option flag in Midcourse

Analysis

1062 IBTR M 2 1. Use B* T and B* R loaded in BVD

2. Use PSID(1) and PSID(2)

Midcourse guidance law

1. Minimum fuel
2. Fixed time of arrival
3. Fixed target energy
4. Variable target energy
5. Total fuel optimization

1064 NGROPT M 1 Number of trials for which secant matrix
is recomputed in Midcourse Analysis.

1065 NT M 10 Number of trials allowed in Midcourse
convergence.

1066 JET M 1 If set, preliminary targeting will be done
in the Midcourse Analysis.

Limiting factor in the Midcourse Analysis.

1067 MCLIM M 100 The midcourse correction is limited to

MCLIM * DINK (IA/SEC) on each iteration.

39

FORTRAN PRESET
LOCATION SYMBOL USE VALUE DESCRIPTION

1068 NORD I, L 6 Number of ordinates in averaging -
less than 16.

10G INT I, L 3 Number of intrvals in vPraging -
less than 16

1070 KPROB M 95 Output probability for midcourse
execution error. Second midcourse
execution time and errors are input
through locations 440, 435, and 436.
Negative or zero skips error propagation.

1071 IBURN M 6 Trajectory propagation method during
finite burn of midcourse motor. Impulsive
calculations are used when set to zero.

1072 KROUT M, C 0 Extra output flag during retro optimiza-
tion calculations.

1073 KORECT I 0 If set nonzero, the derivative at the
end of an integration step will not be
calculated.

1074 KMTOUT C 0 Flag used to output initial state for
each sample in a Monte Carlo analysis.

1075 KMETHP M 6 Trajectory propagation method when
generating partial derivatives.

1076 IFIND All - Element set number of the anchor vector to
be transferred from the differential
correction program.

1077 KTF M 0 Flag used to determine the type of
Midcourse analysis.

= 0 One-dimensional scan of midcourse
execution times

> 0 Two-dimensional scan of midcourse
execution times and flight times. Flight
times are scanned in KTF one-hour steps
beginning at the desired flight time in
location 422.

< 0 Two-dimensional scan of midcourse
execution times and midcourse impulsive
velocity. The impulsive velocity is
centered about value, loaded into 426 and
varied in -KTF steps of size DINK
(location (479).

40

FORTRAN PRESET

LOCATION SYMBOL USE VA LUE DESCRIPTION

1078 IVTI M 0 Overburn option key
0. in-plane retro antiparallel at

periapsis,
± 1. variable inclination procedure

approaching above or below desired

inclination
+ 2. variable periapsis procedure cir-

cularizing in-plane before or after

periapsis.

1079 KHIGH I 0 Farthest approach flag. If set, furthest

approach will be found.

1080 NORMIN M, C 0 Retro optimization flag

0 in-plane at periapsis maneuver for

underburns, according to IVTI for

overburns
- 1. optimize retro to trim inclination

in PROTO
2. Same as 1, but in TARGET also.

1081 NREV A 0 Number of revolutions the transfer orbit

completes before stopping at closest

approach in an approach analysis

1082 KAPWT A 0 Flag used to write information from the

approach analysis in an auxiliary unit. It

is set to the output unit number when the

option is desired.

1083 NAPUNT P, L 11 Unit numbers where initial conditions
are stored from a previous approach
analysis on post-injection trim analysis.

1084 KSOLP I 0 Solar pressure flag.
0. no solar pressure
1. pressure in radial direction only

(s/c assumed to be sphere)

2. spacecraft assumed to be a cylinder

spinning along attitude vector.

1085 KCOV C 0 Coordinate system of covariance matrix

0. mean Equator and equinox of 1950t

1. local tangent plane

1086 Used in PEST version

1087 IDATT all 0 Element set number of attitude file.
Used when attitude is to be input via
read from ADP.

41

FORTRAN PRESET
LOCATION SYMBOL USE VALUE DESCRIPTION

108 NA TUTI all 12 Unit mnmher of attitude data.

1089 IDSAT all 1234567 Satellite identification number.

1090 INIT all 0 Initial line number of MAESTRO's
space allotted on the director's display.
If INIT is zero, no writes are made on
the director's display. This option is
only used during real-time operations.

1091 KPIT P 0 Flag used to indicate post-injection
trim targeting.

1092 ISET all 0 Element set number when using sub-
routine PUTELS to transfer state to
GTDS program.

1093 KPLOT all 0 Set to the plot unit number when
plotting.

1094 NMOD I, L 0 Maximum number of zonals and
tesserals used to define the gravity1095 NMOD I, L 0
field.

1096 Used in PEST version.

1097 KATMOS I 0 Atmosphere drag flag. Set to 3 for
Earth Drag.

1098 KASTRT all 0 Flag used to initiate start-up procedure
to obtain average elements from
osculating elements.

1099 KTIST I 0 Flag used to determine thrusters used
in Hamilton Standard program

0 both thrusters
1 first thruster only
2 second thruster only

42

COMMON INPUTS

Description: This common block contains the saved input array.
This common block is required to stack cases.

Length: 1000 8-byte real words followed by
100 4-byte integer words

Subroutines Using: MAIN INPUTF

This common block is essentially the same as INPUT common.

43

COMMON INTER

Description: This common block contains quantities used in the

interpolation logic of state propagation by numerical

integration.

Length: 130 8-byte words followed by
1 4-byte integer word

Subroutines Using: CLOSE INTERP TIMEC UPDATE

Symbolic

Location Name Description

1 X(10) Table of times corresponding to the saved values

11 POS(6, 10) Array of saved values of the integration variables

at the times corresponding to X.

71 ACL(6, 10) Array of derivatives of the integration variables at

the times corresponding to X.

131 INT Integer used to indicate the current value of the

arrays X, POS and VEL.

44

COMMON INTVAR

Description: This common block contains the variables used in

numerical integration

Length: 14 8-byte words

Subroutines Using: MAIN ARMPIT AVEQNS AVSTRT

CRASH EQNS FIELD2 FOWARD

GRAV INTEG JET LUNA

MOTORS OUTPUT OUT1 PLANET

POST RKSEVN SETUP2 SHADOW

SOL TIMEC TWELVE UPDATE

Symbolic

Location Name Description

1 X Independent variable of the numerical integration,

usually time (sec)

2 Y(6) Dependent variables of the numerical integration.

The quantities depend upon the trajectory propagation

technique in use.

8 RATES(6) Derivatives of the dependent variables with respect

to the independent variable

14 H Compute interval is used, same units as X.

45

CMM/rFNnW TRTTDV

Description: INTVRX is used in averaging osculating elements.

Length: 12 8-byte words plus
1 4-byte integer word

Subroutines Using: AVSTRT EQNS RKSEVN

Symbolic
Location Name Description

1 Z Osculating elements, Method 7

7 QATES Time derivatives of Z

13 NQ Number of elements to be averaged (6)

46

COMMON MCCOM

Description: This common block contains variables pertaining to
the midcourse correction analysis.

Length: 150 8-byte words followed by
50 4-byte integer words

Subroutines Using: APROCH BELL BURND FIXATG

JET MCBURN MCSET MCVERF

MDCORS MINTF MONTE POST

PROTO SENSO SETUP2 TARGET

Symbolic
Location Name Description

1 ALIMIT Maximum allowable change in mideourse velocity
on each iteration, km/sec.

2 TR Epoch of target planets state XS (location 32 in
MCCOM common), seconds since state epoch.

3 PRX Probability level of midcourse execution errors,
percent.

4-5 Not used.

6 XMC(6) Midcourse pre-maneuver state. Cartesian position
and velocity vectors in Earth mean equinox and

equator of 1950, km and km/sec.

12 DV(3) Midcourse impulsive velocity correction vector
in Earth mean equator and equinox of 1950, km/sec

15 DVS(3) Spherical components of midcourse velocity DV.
Magnitude, declination and right ascension,
respectively, km/sec and deg.

18 TMCS Midcourse correction execution time, seconds
since state epoch.

19 BVD(2) Desired impact parameter vector at target planet,
B*T and B*R, respectively, kms.

21 XSUN(3) Vector from the spacecraft to the Sun in
Earth mean equator of 1950.

47

Symbolic
Location Name Description

2A DTB4 T M/oiircz implsiveP velncitv corrpction on

previous correction, km/sec.

25 DVRET Impulsive velocity of retro motor, km/sec

26 EXFUEL Expected second midcourse fuel due to first
midcourse errors (kg)

27 TV(3) Unit vector along the spin-axis at retro maneuver
time (true equator and prime meridian of target
body)

30 DVT Required post-injection trim velocity, km/sec.

31 FUELT Fuel required for the post-injection trim
maneuver, kg.

32 XS(6) Cartesian target planet state resulting from current
midcourse maneuver in true equator and prime
meridian of target planet, km and km/sec.

38 PFAC Midcourse variable target energy guidance constant.
Set to

PFAC = ASPR * WRETRO/ASPMC

where
ASPR is the retro motor's specific

impulse,- sec.
ASPMC is the midcourse motoi's specific

impulse, sec.
WRETRO is the retro motor's fuel, kg.

39 DJDIF Time from liftoff to state epoch, sec.

40 SIGOUT(1) Time, sec.
41 SIGOUT(2) Hyperbolic excess speed, errors at

km/sec km/sec target planet due
42 SIGOUT(3) Arrival circular excess

speed, km/sec to midcourse
43 SIGOUT(4) Required post injection execution

trim fuel, kg.
44 SIGOUT(5) Radius, km errors.
45 SIGOUT(6) Inclination, deg.

48

Symbolic
Location Name Description

46 FFIRE True anomaly of retro-fire on the approach

hyperbola (rad)

47 WTF Spacecraft weight after midcourse correction, kg.

48 TMC2 Time of second midcourse, seconds since state

epoch.

49 EXV2 Expected magnitude of second midcourse
correction, km/sec

50 DPT(3, 10) Partial derivative matrix. This matrix represents

the partial derivative of the output variables with

respect to the midcourse correction velocity.
The order of the output quantities is the same as

the PSI Array starting in location 100.

80 PSID(1) Radius, km.
81 PSID(2) Inclination, deg. Desired end conditions

82 PSID(3) Time of flight, sec. at target planet. Array

83 PSID(4) Hyperbolic excess speed, is ten long, only six
km/sec. are currently in use.

84 PSID(5) Circular excess speed,
km/sec.

.85 PSID(6) Total fuel, kg.

86 PSID(7) Central velocity value for fixed- attitude guidance
scan (km/sec)

90 TOL(1) .B. T, km.
91 TOL(2) B.R, km. Convergence tolerance

92 TOL(3) Time of flight, sec. on end conditions. Only

93 TOL(4) Hyperbolic excess speed six locations of a ten

km/sec long array are currently

94 TOL(5) Circular excess speed in use.

km/sec.
95 TOL(6) Minimum gain in total

fuel, kg.

49

Symbolic
Location Name Description

100 PSI(1) B T, km
101 PSI(2) B-R, lun" CunsLrainu error
102 PSI(3) Time of flight, sec. vector. Difference
103 PSI(4) Hyperbolic excess between the desired

velocity, km/sec. parameters and the
104 PSI(5) Circular excess actual parameters.

velocity, km/sec
105 PSI(6) Fuel expended

110 DW(10) Expended weight table - See MCSET, MCBURN(kg)

120-129 - Not used

130 XMCOM(3) Vector from s/c to Moon in Earth mean
equator of 1950

133 XEARTH(3) Vector from s/c to Earth in Earth mean
equator of 1950

136-139 - Not used

140 EC Eccentricity of post trim orbit

141 SEMT Semi-major axis of post trim orbit

142-150 - Not used

151 NT Maximum number of iterations allowed

152 KM Minimum total fuel return key

153 JUMPTF Minimum total fuel (MINTF) logic indicator

154 KBURN Midcourse motor burn computation method

= 0 impulsive

=1-8 corresponds to the trajectory propagation
methods. See location 1013 of INPUT
common

155 13 Indicator for third constraint parameter in MDCORS

156 KENTRY Entry key for MDCORS - skips initialization

157 IT Current iteration number

158 IR Return key set by subroutine MDCORS

159 KMC Midcourse execution counter

160 NP Number of constraints

= 2 when minimum fuel guidance is used
= 3 otherwise

161 KT Flight time scan counter

162 - Not used

50

Symbolic

Location Name Description

163 NGROPT Number of trials to recompute secant matrix

164 KGLAW Guidance law

= 1 Minimum fuel

2 Fixed time of arrival

3 Fixed target energy

4 Variable target energy

5 Minimum total fuel

165 ICB Central body number of XMC state in

location 6.

166 ISP Key to determine if gradient has been computed.

167 IBTR Miss vector option key

= 1 B.TandB.R

2 Radius of closest approach and inclination

169 IPD(3) Constraint indicator array - constraints pointed

out by this array are tested against tolerances

for convergence.

172 KEL(10) Array of elevation angles of the spacecraft

at the midcourse execution time. The array

corresponds to observation sites 1 - 10,

(deg / 10)

182 KELR(10) An array similar to KEL except at the retro

firing time.

51

COMMON MOON

Description: This common block is used to describe the Lunar
ephemeris when the Moon is represented by osculating
elements.

Length: 15 8-byte words

Subroutines Using: LUNA SETUP2

Symbolic
Location Name Description

1 ELMMN(12) Osculating orbital elements of the Moon and their
sines and cosines, km and rad

13 TMOON Epoch of the orbital elements, days since
2400000 julian date

14 PM Mean motion, rad/sec

15 FOM Mean anomaly of osculating Moon at TMOON
epoch, rad.

52

COMMON OBSIT

Description: This common block contains quantities which describe

the location of the observation sites on the Earth.

Length: 140 8-byte words

Subroutines Using: DOPLER MCVERF SETUP2 VISIB

Symbolic
Location Name Description

1 DOBS(10, 2) Velocity of the 10 observation sites in the Earth
true equator and prime meridian, km/sec.

21 XOBS(10, 3) Position vector of the 10 observation sites with
respect to the center of the Earth in Earth true
equator and Greenwich, km.

51 OBSROT(9, 10) The nine elements of a rotation matrix for each of
the 10 tracking stations. The rotation matrix
transforms a vector in the Earth true equator and
Greenwich to an observation site local with the
X-axis north, Y-axis west and the Z-axis up.

53

COMMON PERT

Description: This common contains quantities which have to do with

the evaluation of the disturbing acceleration and the current

Encke reference orbit.

Length: 30 8-byte words

Subroutines Using: MAIN ACCEL AVEQNS DRAG

EQNS FIELD2 GRAV INTEG

INTERP MOTORS OBLE OUT1

PRINT SETUP2 SOLP TIMEC

Symbolic TWELVE

Location Name Description

1 RCART(3) Perturbing acceleration in Earth mean equator and

equinox of 1950, km/sec2

4 RSW(3) Perturbing acceleration with respect to orbit plane.

In radial, circumferential and normal to orbit

plane, kms/sec2

7-9 Not used

10 REFORB(12) Orbital elements and sine and cosine of orbital
elements representing Encke's reference orbit,
km and rad.

22 EN Mean motion of Encke's reference orbit, rad/sec

23 TREF Epoch of Encke's reference orbit, time since state
epoch, sec.

24 RECT Parameter used to determine when to rectify Encke's
reference orbit.

25 DOM(6) Current position and velocity vectors of Encke's
reference orbit, kms and kms/sec.

54

COMMON PIT

Description: PIT is used for communication during orbit
trim calculations

Length: 20 8-byte words

Subroutines Using: ARMPIT TRIM2

Symbolic
Location Name Description

1 CIF Cosine of final orbital inclination.

2 SIF Sine of final orbital inclination.

3 DV1 First trim maneuver's velocity impulse.

6 DV2 Second trim maneuver's velocity impulse.

9 DV3 Third trim maneuver's velocity impulse.

12 XS Initial state vector.

18 DMGG Storage vector of length 3.

55

COMMON PLNET

Description: This common block contains quantities that describe

the position and velocity of the planets with respect to

the central planet.

Length: 100 8-byte words

Subroutines Using: MAIN ACCEL APROCH ARMPIT
AVERGE CLOSE CRASH DRAG

FIXATG GRAV JET LUNA
MCVERF MDCORS MULCON OBLE
OUTPUT OUT1 POST PRINT
READE SETUP2 SHADOW SOL
SOLP TARGET UPDATE VISIB

Symbolic
Location Name Description

1 XP(6, 12) Position and velocity vectors of the planets with
respect to the central planet in Earth mean equator
and equinox of 1950, km and km/sec. The first
index denotes the vectors while the second index
denotes the planet number. The order of the

planets is,

1 Mercury :5 Jupiter 9 Pluto
2 Venus 6 Saturn 10 Sun
3 Earth 7 Uranus 11 Moon
4 Mars 8 Neptune 12 Oddball

73 DST(12) Distance from the central planet to the planets,
except that DST (JC) is distance to spacecraft
where JC is central planet number.

85 NUT(4) Earth nutation variables. Only available when
tape ephemeris is used.

89-100 Not used

56

COMMON SAVE

Description: This -common block is principally used to save various

quantities for use in restoring the state.

Length: 45 8-byte words

Subroutines Using: MAIN CRASH FOWARD OUT1
PRINT SE TUP2 TIME C

Symbolic
Location Name Description

1 SAVE(6) Saved position and velocity vectors in mean equator
and equinox of 1950, km and km/sec

7 TSAV ' Epoch of saved variables, time since state epoch, sec

8 SAVE1(6) Saved integration variables at time corresponding
to TSAV.

14 SAVE2(14) Saved Encke's reference orbit, mean motion and
epoch of reference orbit.

28 SRATES(6) Saved derivatives of the integration variables
at TSAV.

34-39 Not used

40 TOUTL Last time trajectory output was obtained during
numerical integration, sec. since state epoch.

41 RSAV Last sine of the flight path angle with respect to target
planet. Used during closest approach iteration of the
numerical integration.

57

COMMON SHAD

Description: This common block contains quantities used to
determine the times of umbral and penumbral crossings.

Length: 28 8-byte words

Subroutines Using: FOWARD SADOUT SHADOW

Symbolic
Location Name Description

1 DSAD(3, 5) Saved distances from the shadow cone, km. The
first index corresponds to 3 back times. The
second index corresponds to the type of shadow
as follows:

1. launch planet umbra
2. launch planet penumbra
3. target planet umbra
4. target planet penumbra
5. occultation

16 TSAD(3) Times of the 3 back values of the DSAD array

19 TSX(10) Times of crossings, seconds from state epoch.
This array is segmentated into groups of 2. The
first of a group is the entrance time while the
second is the time of exit from the shadow cone.
The 5 groups are ordered in the same manner as
the DSAD array.

58

COMMON STATE

Description: STATE common contains information which describes

the state of the spacecraft at the end of a numerical

integration step.

Length: 40 8-byte words

Subroutines Using: APROCH ARMPIT AVEQNS AVERGE

AVSTRT BELL CLOSE CONTRL

CRASH DOPLER EQNS FIELD2

FIXATG FOWARD INTEG JET

LUNA MCBURN MCSET MCVERF

MDCORS MONTE MOTORS MULCON

OBLATE OBLE OUTPUT OUT1

PLANET POST PRINT PROTO

SADOUT SETUP2 SHADOW SOL
SOLP TARGET TIMEC TOBODY

UPDATE MAIN
Symbolic

Location Name Description

1 X(3) Spacecraft's position vector in Earth mean equator
and equinox of 1950, kms.

4 DX(3) Spacecraft's velocity vector in Earth mean equator
and equinox of 1950, kms/sec.

7 D2X(3) Spacecraft's acceleration vector in Earth mean equator

and equinox of 1950, kms/sec2 .

10 T Epoch of the above state, second since state epoch.
Note: state epoch in location 46 of INPUT common.

11 ATT(3) Unit vector along spacecraft's attitude in Earth mean
equinox and equator of 1950.

14 ELM(6) An array of quantities that describe the current state.
Location 13 of INPUT common. METH, determines:the
quantities:

METH = 1. not used

2 Encke's variables
3, 6 Orbital elements
4, 5 Orbital elements with mean anomaly, ,

7 Orbital elements with e cos cL, e sin w
and f + w.

8 Same as 7 except f+M instead of f + w

59

Symbolic
Location Name Description

20-25 Not used

26 EJO Modified ephemeris date of state epoch,

days since 2400000 julian date.

27 TRU Contains true or mean anomaly according to
the setting of the METH flag in location 1013

of INPUT common.
METH = 4, 5 mean anomaly
METH = 8 true anomaly plus argument

of perigee

28 EJT Current ephemeris time, days since 2400000
julian date. Also valid at intermediate times
of integration.

29 TCA Time of closest approach, seconds since

state epoch.

30-31 Not used

32 UJT Current modified julian date, days since
2400000. Also valid at intermediate times
of integration.

33 THRUST Engine thrust, newtons.

34 WT Spacecraft mass at engine ignition, kg.

35 W Current spacecraft mass, kg.

36 SOL Solar pressure constant.
= solar pressure :ea x solar pressure
at 1 au from the Sun x au2 x 1 (10) - 8.

37 ACL Magnitude of thrust acceleration (km/sec2)

38-40 Not used

60

SECTION 5

Input/Output Units

This section describes the purpose of the input/output units required for the

operation of MAESTRO. A description of these units is shown in Table 5.1.

Some of the unit numbers are program inputs. If the unit number is greater

than 1000, the number under unit number specifies the location in the input

array where the unit number is to be input.

61

TABLE 5.1

Input/Outout Units

Unit Record Subroutine Purpose
Number Length (Bytes) Used

1 3512 FIND Directory of the GTDS 24 -hour
hold file. Required when input
input location 1076 is non-zero.

5 36 INPUTF Program data inputs. Unit
required for all operations.

6 variable Many routines Program primary output device.
Unit required for all operations.

10 7452 GETTAP Ephemeris disk or tape. Direct
read used with disk. Input
location 1017 used to specify whether
disk or tape. Unit required when
1017 equals 3 or 5.

12 280 SETUP2 Attitude input unit. Used to pass
attitude from Attitude Determination
Program to MAESTRO. Required
when input location 1087 is non-zero.

13 80 MAIN Director's display. Used during
in-flight operations. Required when
input location 1090 is non-zero.

21 64 POST, PROTO Plot Unit. Used to write tape for
post processing. Required when
input location 1093 is set to 21.

26 7112 FIND State input unit. Used to pass state
from GTDS to MAESTRO via the
24-hour hold file. Required when
input location 1076 is non-zero.

27 7200 PUTELS State output unit. Used to transfer
state to GTDS program. Required
when input location 1092 is non-zero.

62

Unit Record Subroutine

Number Length (Bytes) Used Purpose

*1058 variable OUTPUT Auxiliary output unit. Required

PROTO when input location 1058 is non-

POST zero.

*1061 360 POST Midcourse output unit. Unit

PROTO number in input location 1061 must

be specified when the midcourse

analysis mode is used.

* The unit number is a program input. The number shown is the input location where

the unit number is input.

63

SECTION 6

SUBROUTINE DESCRIPTION

This section presents a description of the subroutines which comprise the MAESTRO

program. The descriptions include

1. Calling sequence

2. Purpose

3. Common Blocks Required

4. Subroutines Required

5. Input / Output descriptions

6. Theory

7. Description

8. Flow chart where applicable

64

MAIN PROGRAM

Purpose: The main program initializes some common blocks and
calls the subroutine (s) which perform the desired
MAESTRO analysis.

Common Blocks Required: AVG, CETBL2, CETBL3, CNTRL, CONST, FIELDM,
INPUT, INPUTS, INTVAR, PERT, PLNET, SAVE,
STATE

Subroutines Required: APROCH, ARMPIT, CONTRL, FOWARD, MCSET,
MCVERF, MONTE, PROTO, INPUTF

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

O ICW 1 CETBL2(1) Tape ephemeris error flag
Flag used to write

I INIT 1 INPUT(1090) director's file

I MODE 1 INPUT(1044) MAESTRO analysis flag

O TAB3 829 CETBL3(1) Raw ephemeris tape data

Description:

The main program initializes some common blocks and calls the appropriate subroutines

to perform the desired MAESTRO analysis. No computations are done in this routine.

MAIN is also used to define the length of many of the common blocks.

Initially common blocks CNTRL, PLNET and STATE are cleared. Next subroutine

INPUTF is called to initialize the input array from program inputs. Writes on unit 13

are made if INIT is not equal to zero. These writes are messages which are displayed

on a file known as the director's file and are only used in real-time operations. Next,

the saved common is cleared and subroutines CONTRL and MCSET are called to initialize

variables for later use. Finally, subroutines APROCH, MONTE, MCVERF, ARMPIT

or PROTO are called according to the setting of the MODE flag. These subroutines

are used to control the logic for one of the MAESTRO analysis modes. After the analysis

is complete, flow returns to the call to INPUTF to initiate the next case.

65

SUBROUTINE ACCEL

Calling Sequence: CALL ACCEL

Purpose: This subroutine evaluates the acceleration
of the spacecraft.

Common Blocks Required: CNTRL, INPUT, GRAVTY, PERT, PLNET

Subroutines Required: DVMAG, FIELD2, GRAV, MOTORS, OBLE,
PLANET, SOLP

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

I JC 1 CNTRL(7) Central planet number
Planet number of the planet used in

I KOBL 1 INPUT(1029) the gravitation field evaluation

I KOBLTE 1 INPUT(1018) Earth oblateness flag

I KSOLP 1 INPUT(1084) Solar pressure flag

I KTHRST 1 CNTRL(2) Thrusting flag

I K 1 CNTRL(5) Discontinuity flag
Position of the spacecraft w.r.t.

I POS 3 GRAVTY(1) central planet

O RCART 3 PERT(1) Spacecraft's acceleration

Description:

This subroutine controls the logic to determine the spacecraft's acceleration. Initially,

the acceleration in RCART is cleared. Next, subroutine PLANET is called to obtain the

current position of the planets. Subroutines OBLE, FIELD2, MOTORS and SOLP are

called to evaluate the acceleration due to Earth oblateness, general gravitational field,

engine firing and solar pressure. These subroutines are called only if input flags are

set. Finally subroutine GRAV is called to determine the acceleration due to the planets

in the system and the central planet if the Cowell trajectory propagation scheme is used.

66-

SUBROUTINE ACCEL

ENTER

Clear perturbing acceleration,
RCART

Get positions of planets using
subroutine PLANET

Set distance to central planet
DST(JC) = IPOS 1

KOBLTE = oblateness
OBLE

KOBL =JC gravity

SJc

Determine KTHRST Enginesspacecraft]

acceleration

=67

KDIS 0

SOLP 0 r

Other planets and
central planet

GRAVTY

67

T1JRPOTTTTNT. APRPCr.T-T

Calling Sequence: CALL APROCH

Purpose: This subroutine performs the analysis to determine the
retromotor's firing time and attitude

Common Block Required: CNTRL, CONST, ELMNT, INPUT, MCCOM, PLNET,
STATE

Subroutines Required: CROSS, FOWARD, M50MDT, NUTATE, ORBIT, QUIKIE,
PUTELS, TRIM, TRMN, VNORM, VIEW, VISIB

Input / Output

SYMBOLIC COMMON
I/O

NAME DIMENSION BLOCK DEFINITION

O TF 1 INPUT (4) Final time

I DJI 1 INPUT(37) Launch epoch

I WO 1 INPUT(38) Initial S/C mass

I DJO 1 INPUT(46) State epoch

O RTAC 1 INPUT(47) Right ascension in retro

motor altitude

O DECL 1 INPUT(48) Declination of retro

motor altitude

I HRO 1 INPUT(53) Hour of state epoch

I XMINO 1 INPUT(54) Minutes of state epoch

I SECO 1 INPUT(55) Seconds of state epoch

68

Input / Output

SYMBOIC COnMMON
I/O NAME DmUENSION BLOCK DEFINITION

O TCOMP 10 INPUT(170) Switching times of com-

pute interval table

O DELT 10 INPUT(180) Compute intervals

O TIG 1 INPUT(381) Retro motor ignition time

O TBO 1 INPUT(384) Retro motor burnout time

I TFIRE1 1 INPUT(400) Initial retromotor firing

time

I TFIRE2 1 INPUT(401) Final retro motor firing

time
Initial right ascension

I RAO 1 INPUT(403) of retro

I DECO 1 INPUT(404) Initial declination of retro

I DELRA 1 INPUT(405) Increment in right as-

cension

I DELDEC 1 INPUT(406) Increment in declination

I/O DELV 1 INPUT(407) Retro motor's impulsive

velocity

I ASPMC •1 INPUT(441) Midcourse motor's ISP

I ASPR 1 INPUT(442) Retro motor's ISP

I WRETRO.. 1 INPUT(443) Mass of retro fuel

I WDROP 1 INPUT(473) Retro drop mass

I- CONE 1 * INPUT(474) Altitude cone angle

I- TRUE 1 INPUT(475) True anomaly firing range

69

Input / Output

SYMBOLIC COMMON
I/O NAME ' DIMENSION BLOCK ' DEFINITION

I RBURN . 1 INPUT(512)_ Retro motor burn time

O TCATST 1 INPUT(513) Time to begin closest

approach testing

I JRA 1 INPUT(1041) Number of trial right

ascensions

I JDEC 1 INPUT(1042) Number of trial decli-

nations

I KFIRE 1 INPUT(1043) Number of firing times

I MODE 1 INPUT(1044) Program mode flag

I KAPOUT 1 INPUT(1046) Firing analysis output

___ _ ...__...flag

I KAPSAD 1 INPUT(1048) Lunar orbit shadow flag

I- KAPOPT I- INPUT(1055) Retro analysis option flag

I KREAD 1 INPUT(1057) Midcourse firing number
when initial conditions
from midcourse analysis

I MCVNIT 1 INPUT(1061) Midcourse unit number

I NREV 1 INPUT(1081) Number of transfer tra-

jectory revolutions

I KAPWT 1 INPUT(1082) Unit number where ap-

proach firings are saved

I/O X- 3 STATE(1) S/C position vector

I/O DX 3 STATE (4) S/C velocity vector

70

Input / Output

SYMIBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

I/O T .1- STATE(10) Time since state epoch

O ATT 3 STATE(11) Unit vector along S/C

.. .. __ ___ altitude

O ELMD 6 STATE(14) S/C orbital elements ,

I UJT 1 STATE(32) Current modified julian

.. d a te

I WT 1 STATE(34) S/C mass prior to motor

.... __ ignition

I - JC 1 CNTRL(7) Central planet number

Description:

This subroutine is used to determine the retro firing time ani altitude in order to meet

specific mission criteria. This version of subroutine APROCH was designed for the

RAE-B mission. The most important criterion for this mission is the post injection

trim fuel requirement. Other constraints are the spin axis-sun angle at firing,

tracking station coverage, shadow times and orbit orientation. The retro conditions

are determined in a brute-force manner. Repeated trial retro firings are made at

various altitudes and firing times. The mission constraints are determined for each

firing and output in displays so that the user can determine the firing time and

altitude.

The retro motor can be simulated numerically or with the impulsive velocity ap-

proximation. Also, the pre-retro state can be determined numerically or with conic

approximations. The MODE flag is used to determine which approximations apply.

If the MODE flag is set to one, the entire analysis is performed using numerical

techniques. The impulsive velocity and conic approximations are used when the

MODE flag equals two,

71

The first part of the subroutine sets up constants and has logic to pick up the initial

conditions from the midcourse tape if desired. The KREAD flag is used for this

option. Logic is also included to set the closest approach test start time , TCATST,

if more than one orbit of the transfer trajectory is desired. This option was in-

cluded for Earth orbit missions and does not apply to a RAE-B type of mission.

NREV should equal zero. At this point the logic flow divides according to the type

of analysis desired - approximate or precise.

Lets discuss the approximate case first. When MODE = 2,the closest approach

flag is set to 2 to cause the propagator to stop at closest approach. Next, sub-

routine FOWARD is used to propagate the state to the closest approach of the target

planet. The coordinate rotation is determined from the integration frame (Earth

mean of 1950) to the true equator of the target planet. Subroutines M50MDT and

NUTATE are used. The state at the closest approach is rotated to the desired system

using MVTRN and orbital elements determined using subroutine ORBIT. These ele-

m ents are the elements of the approach hyperbola,

The firing time on the approach hyperbola and altitude are varied in one of three

ways through the KAPOPT flag as follows:

KAPOPT=1

The true anomaly of the firing is determined from

KFIRE
f = (fo- TRUE) + i 1 i* (2 TRUE/KFIRE)

where
f is the true anomaly at closest approach

TRUE is the input true anomaly range
KFIRE is the input number of firings

72

The attitude is determined by

JRA
ra. = (RAO - CONE) + = 1 i * (2CONE/JRA)

JDEC
DEC. = (DECO - CONE) + C i * (2CONE/JDEC)

1 i=l

Where RAO is the input starting right ascension

DECO is the input starting declination
JRA is the input number of right ascensions
JDEC is the input number of declinations
CONE is the input altitude cone angle

If the starting right ascension and declination are not input (equal to zero), the right

ascension and declination of the velocity vector at closest approach will be used.

KAPOPT=2

The starting increment and number of altitudes must be input. Then the altitude

is determined from

JRA
RA. = RAO+F1 i*DELRA

JDEC
DEC. = DECO + i * DELDEC

i=l

The firing true anomaly is determined in a manner similar to the KAPOPT=1 option

except that the range in true anomaly is from asymptote to asymptote instead of

CONE.

KAPOPT=3

The first and last firing point on the approach hyperbola is input via the firing time

since liftoff. The firings are made at KFIRE number of constant true anomaly

steps between the bounds specified by the times. The altitude is varied as de-

scribed for KAPOPT=2.

73

The IF statement just before statement 8 is used to transfer to the logic which

sets up the necessary constants to increment the true anomaly and altitude.

The logic flow for the precise case, MODE=1, differs slightly from the case

discussed above. Instead of flying to closest approach to the target planet,

the final time is set to the first firing time, TFIRE1. The KAPOPT flag must

be set to 3 for this mode; thus, flow transfers to Statement 11.

At this point, DO LOOPS are established to increment the right ascension,

declination and firing time. The range of these loops extends to almost the

end of the subroutine. The mission constraints are calculated for each attitude

and firing time and saved in arrays for output or output inside the loops. When

the MODE-2 is used, the position and velocity vectors are determined from sub-

routine OR31IT where the true anomaly is determined by the DO 10 loop. The

impulsive velocity of the retro is added to the spacecraft's velocity in the direction

specified by the attitude. This calculation is performed at statement 13. Next,

the post retro orbit is determined and desired mission constraints calculated

using subroutines QUIKIE and TRIM. The firing time display is output if the

KAPOUT is set.

Subroutine FOWARD is used to simulate the retro motor when MODE=1. When

this case is desired, subroutine FOWARD is first called to propagate the space-

craft to the ignition time, next, the compute interval is adjusted and the engine

ignition and burnout times set. Finally, FOWARD is used to propagate through

the burn. This logic is located between statements 100 and 110. Flow then trans-

fers to the same place where the post retro orbit is determined when MODE-2.

The above logic is repeated until all attitudes and firing times are simulated.

When the DO 30 loop is completed, the minimum eccentricity and trim fuel grids

are output. This completes the subroutine.

74

Set initial weights and
constants

TF = TFIRE1

OD =1 KCRASH = O

KCRASH = 2

Propagate state with
FOWARD

Get rotation matrices
from mean 50 to lunar equator

NUTATE, M50MDT

Get sun vector, XS, in lunar
system

and weight I 2575

75

Rotate to lunar equator and
Calculate elements: MUTRN, ORBIT

-2 =1

KAPOP

set increment in attitude set increment in attitude

from asymptotes and firing 16 from COLE and increment in

time increments from time true anomaly from TRUE

Set increments in attitude

and firing times from inputs

Increment right ascension,
and declination

Increment firing time

=1 Write firing
,POUTtime heading

-2
MODE 110

100

76

100

Set state to last pre-ignition state

Set final time to engine ignition time

and propagate to the time with FOWARD

Save pre-ignition state

Simulate engine using FOWARD

120

Get pre-ignition state from ORBIT

Add retro impulsively and determine
firing. time from true anomaly

SUse PUTELS to write

ST 0out state for GTDS

=O0

Calculate pre-trim

lunar orbit from ORBIT

Calculate constraints, spin axis - sun

angle, shadow with QUIKIE, trim velocity
with TRIVI and save pre-trim state

77

=1
KAPOUT Wr Wite out firing analysis

=0

20

End of firing time loop

Determine minimum fuel
and minimum eccentricity

=1 Write out saved pre-trim
P orbits

30

End of attitude loop

Write out eccentricity
and minimum fuel scans

Return

78

SUBROUTINE ARMPIT

Calling Sequence: CALL ARMPIT

Purpose: This subroutine determines the post injection

time requirements and outputs the post injection

trim displays.

Common Block Required: CONST, INPUT, INTVAR, PIT, PLNET, STATE

Subroutines Required: M50LEQ, ORBIT, PUTELS, ROTATE, TRIM,
TRMN, TWOPIT

Input/Output

SYMBOLIC PROGRAM COMMON
I/O NAME DIMENSION BLOCK. DE FINITION

Inclination of desired final

I CID 1 INPUT(446) orbit w, r. t. target planet
equator.
Modified Julian launch

I DJL 1 INPUT(37) date
Modified Julian date

I DJO 1 ... INPUT(46) of epoch
Cosine of desired

O CIF 1 PIT (1) inclination
First trim velocity

I DV1 3 PIT (3) maneuver
Second trim velocity

I DV2 3 IT (6) maneuver

I IDSAT 1 INPUT(1089) Satellite ID number
Element set number when

I ISET 1 NPUT(1092) state is saved from GTDS

I JT 1 INPUT(1031) Target planet number

I RD 1 NPUT(444) Radius of final orbit
Inclination of the transfer

I TRINC 1 INPUT(449) orbit

O SIF 1 PIT(2) Sire of desired inclination

79

Input/Output

SYMBOLIC PROGRAM COMMON
I/O NAME DT DFsNQN TO~ EFNITTON

Current modified
I UJT 1 STATE(32) Julian date

Position and velocity
I X 6 STATE(1) of spacecraft

Positions & velocities
I XP 6, 12 PLNET(l) of the planets

Position and velocity
of spacecraft just

I XS 6 PIT(12) prior to first
maneuver

Description:

This subroutine determines the post injection maneuver required to achieve a

circular orbit with a desired radius and inclination. Two maneuvers are

determined. First, a two impulse maneuver with a plane change and, second, a

Hohmann transfer maneuver with no plane change. The maneuvers are determined

in subroutines TWOPIT and TRIM, respectively.

The initial orbital elements are determined using subroutine ORBIT and supplied as

inputs to subroutines TRIM and TWOPIT. The calculated maneuver is passed back to

ARMPIT via DVl and DV2 of PIT common. Also the state just prior to the first man-

euver is passed back in XS of PIT common. The first maneuver is added to the

state in XS to determine the transfer orbit. Subroutine ORBIT is used to determine

the transfer orbit' elements, ELMT. A 180 degree transfer is specified. Thus, the

true anomaly of the second maneuver on the transfer orbit is,

F = ELMT(3) + 7r

The cartesian state is determined at this true anomaly, the second maneuver applied,

and the final orbit, ELMF, determined using ORBIT. The desired output quantities

are determined and the appropriate displays presented.

80

The above logic is surrounded by a loop using the flag ISTEP. The purpose of the

loop is to pass through the calculation of the orbits once for the plane change man-

euver and a second time for the Hohmann transfer maneuver.

The state after the first trim can be written as a hold file for retrieval by the GTDS

Program. The ISET flag is used to key this option. Subroutine PUTELS is used to

write this file.

81

SUBROUTINE ARMPIT

Get state in selenographic

system using M50LEQ and ROTATE

Determine initial elements

ORBIT

Write plane change maneuver header

e erminine pane c ange maneuver
TWOPIT

X = XS = DV1

Determine transfer orbit
ORBIT

Determine state prior to
second maneuver, XS, using

ORBIT

X = X +DV2

Determine final orbit
ORBIT

ISTEP--2

Calculate output quantities

and print displays

ISTE RETURN
=1

Determine Hohmann transfer
maneuver and write Hohmann

transfer maneuver header, TRIM

82

FUNCTION ATMO

Calling Sequence: CALL ATMO(JC, N, H)

Purpose: To compute the atmospheric density for drag
calculations.

Common Blocks Required: None

Subroutines Required: None

Inputs/Outputs

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

I JC 1 Call List Central body number

I N 1 Call List Atmospheric model number

I H 1 Call List Altitude

Discussion:

Atmospheric density is computed as an exponential function of altitude for
Mercury, Venus, Earth, or Mars when altitude is below 50, 000 km. The density
data is tabulated as a function of altitude.

p = exp [pkl+s(tnh - h nhk-l)

where

hk- 1 : h< hk

and

s = (pk- pk_)/(n hk - n h _ 1)

83

SUBROUTINE AVEQNS

Calling Sequence: CALL AVEQNS

Purpose: To average, by Gaussian quadrature integration, the
planetary equations over one revolution of the satellite

in its orbit.

Common Blocks Required: INPUT, CNTRL, STATE, AVG, INTVAR, PERT,
CONST, GRAVTY

Subroutines Required: TRMN, ORBIT, ACCEL, ROTATE

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

I METH 1 INPUT(1013) Trajectory propagation method
Number of ordinates to be used for each

I NORD 1 INPUT(1068) interval of Gaussian quadraturc integratior
Number of intervals into which the orbit is

I INT 1 INPUT(1069) divided for Gaussian quadrature integratim

I DJ 0 1 INPUT(46) Modified Julian date at liftoff epoch
Modified ephemeris date at

I EJ 0 1 STATE(26) liftoff epoch

I JC 1 CNTRL(7) Central planet number

I PI2 1 CONST(3) Twice pi

I GM 12 CONST(5-16) Gravitational constants of the planets
The current time (independent

I X 1 INTVAR(1) integration variable)
The current array of dependent

I Y 6 INTVAR(2-7) integration variables

Weights for Gaussian
I WEIGHT 78 AVG (1-7 8), quadrature formula

Abscissa for Gaussian

I ABSCIS 7 8 AVG (9-156) quadrature formula
The time derivatives of the current depen-

_ RATES 6 INTVAR(8-13) dent integration variables

84

Input/Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

I PI 1 CONST(2) Pi
Mean or true anomaly plus

I F 1 STATE(27) argument of perigee

O EJT 1 STATE(28) Current ephemeris date

O UJT 1 STATE(32) Current modified julian date

85

Theory:

Reference 1 gives a description of the theoretical basis for the numerical averaging.

The planetary equations are written in Gauss's form where the perturbations enter

directly as accelerations rather than as the partial derivatives of a potential function.

The planetary equations exist in several forms in the program. They are symbolically

represented by

E. f. (E, t) i,j =1,6, (1)

where the E. represent a set of 6 independent osculating orbital elements.
1

The averaging operation is accomplished numerically rather than analytically and is

represented by
t + /2

Sfi d t (2)

t-,/2

where 7 is the orbital period. The mean values of the orbital elements are defined

by t +*/2

- 1
E = E (t) d t. (3)

The important thing to note is that the numerical averaging method essentially trades

the set of 6 differential equations for the osculating orbital elements for a set of 6

differential equations for the mean orbital elements.

The mechanical averaging is done with respect to true anomaly rather than with the time

directly. The Keplerian relation

2
r

86

is used to transform the integrals in (2) from time to true anomaly giving

f (t + /2)

_ 2 d f (4)

i 2r N4 (l+e cosf)

f (t - /2)

where f is the true anomaly and the other symbols represent Keplerian elements

and constants as given in Reference 1.

Description:

This subroutine is a modified version of a variable-order, variable interval Gaussian

quadrature integrator. The weights and abscissae for the quadrature formula are stored

sequentially in AVG common, in the arrays called WEIGHT and ABSCIS. The values

stored correspond to quadrature formulae of order 2 - 16 as given in reference 2. The

single weight required for a two-point quadrature is stored in WEIGHT(1), the two

weights required for a three point quadrature in WEIGHT(2) and WEIGHT(3), and the two

weights required for a four point quadrature in WEIGHT(4) and WEIGHT(5). The pattern

continues up through and including the eight weights required for a 16 point quadrature

stored in WEIGHT (64-71). The corresponding abscissae are stored in the corresponding

locations of the ABSCIS array.

The order (NORD) of the quadrature is specified by the user as well as the number of

subintervals (INT) to be used in the integration. The full range of the independent variable

(true anomaly) is divided into INT intervals and the current (mean) value of the true

anomaly is calculated from the mean mean anomaly and stored. The coding near statements

50 and 51 establishes the proper limits of integration and performs the transformation

from mean anomaly to true anomaly for either the Method 5 or Method 8 variables. Throughout

the subroutine, appropriate tests are made to distinguish between the two methods.

Certain quantities that are calculated only once are established before the quadrature

summation begins at the DO 507 loop. This outer loop is for the summation of the sub-

interval quadrature formula. The actual Gaussian quadrature algorithm starts at statement

87

150 where the time and the sine and cosine of the true anomaly are calculated for

each required evaluation of the integrands for the 6 differential equations to be

numerically averaged. The values of the integrands are calculated as shown in

reference 1, multiplied by the appropriate weight, and the results are stored in

the array SUM.

The results of each subinterval quadrature are accumulated in the array called ANS

until all subintervals are completed at statement 507. The 6 stored integrals are

then multiplied by the constants outside the integral signs of the averaged equations

and the results are loaded into the RATES array of INTVAR common for use in

the numerical solution of the averaged differential equations of motion.

References

1. Uphoff, C., Numerical Averaging in Orbit Prediction, Presented at AIAA/AAS
Astrodynamics Conference, Palo Alto, Calif., AIAA preprint No. 72-934,
September 1972.

2. Abramowitz, Milton and Stegun, Irene A., Handbook of Mathematical
Functions, published by The National Bureau of Standards, Applied
Mathematics Series No. 55, May 1968.

88

SUBROUTINE AVERGE

Calling Sequence: CALL AVERGE (KSET)

Purpose: AVERGE calculates the average perturbing
acceleration due to the Sun and the Moon's indirect
term over one step of the multiconic trajectory
scheme.

Common Block Required: DUM, STATE, PLNET, CONST

Subroutines Required: DVMAG

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION .

Earth-Moon acceleration
I/O A1S 3 DUM(1) at beginning of step

Sun acceleration at
I/O A2S 3 DUM(4) beginning of step

I DT 1 DUM(10) Step time interval
Gravitational constants

I GM 12 CONST(5) of planets
CALLING Flag for adding or subtracting

I KSET 1 OPERAND accelerations
Position and velocity of

I/O X 6 STATE(1) spacecraft
Positions and velocities of

I XP 72 PLNET(1) planets wrt central planet

89

Theory:

AVERGE corrects the position and velocity of the spacecraft during each step in

order to account for perturbing accelerations that are not included in the conic

assumptions.

These perturbing accelerations are caused by the Sun and also by the effect of

the Moon on the planet. Let Al be the acceleration vector due to the Earth-

Moon term at the present time, and A1S be the same vector from the previous

time (T-DT). Similarly let A2 and A2S be the Sun term accelerations corresponding

to T and T-DT.

3

Then Al=GM * R/ Re

And A2= GM * (R / [R1 + R / 3 svl3)

Where subscripts m, e, s, svrefer to Moon, Earth, Sun and

space vehicle respectively and R esis the vector from the Earth

to the Sun, etc.

The average accelerations on the spacecraft with respect to the Earth over

the interval DT are:

Al = - (Al +AS) /2.a

A2a = -(A2 +A2) /2.

If X and DX represent the position and velocity of the spacecraft respectively,

then the corrected position and velocity are

X = X + 1/2 * (Al +A2) *DT 2

DX = DX +(A1+A2) * DT

90

If KSET . LT. O,then the orbit is to be retraced, in which case the following

equations are substituted for those above:

X = X - 1/2 * (Al + A2) * DT 2

DX = DX - (Al + A2) * DT

Description:

AVERGE is used in connection with the multiconic scheme. It calculates the

acceleration of the Earth due to the Moon at the present time and adds it to

the acceleration at the last time and divides by two for the average acceleration

over the step. The present acceleration is then saved for future use.

The same procedure is followed for the calculation of the acceleration due to

the Sun on the Earth and on the spacecraft.

Once these two average acceleration vectors have been calculated, the position

and velocity of the spacecraft are updated to reflect the accelerations. The

changes in position and velocity are either added or subtracted depending on the

flag KSET. If KSET .GE. 0, then forward propagation is desired and the terms

are added. Otherwise, the terms are subtracted and the orbit path is retraced.

91

SUBROUTINE AVERGE

Call AVERGE

(KSET)

Calculate present

acceleration

Calculate average

acceleration

NO YES

Add effect of Subtract effect of
average acc. to average ace.
X and DX from

X and DX

RETURN RETURN

92

SUBROUTINE AVSTRT

Calling Sequence: CALL AVSTRT

Purpose: To average the input osculating elements over one
revolution of the satellite in its orbit. This pro-
cedure yields the mean orbital elements at a time
halfway through the first revolution and these ele-

ments are used to start the numerical averaging
techniques for long-term orbit prediction.

Common Blocks Required: CONST, INTVRX, STATE, INPUT, INTVAR, CNTRL

Subroutines Required: INTEG, ORBIT, EQNS (indirectly)

Reference: Uphoff, C., Numerical Averaging in Orbit Prediction,
AAS/AIAA Preprint No. 72-934, Palo Alto, California,
September 1972

Input / Output

SYMBOLIC PROGRAM COMMON
I/O NAME DIMENSIONS BLOCK DEFINITION

I/O XX 6 STATE(1) Position and velocity (osculating on
entry,mean on exit)

I/O TT 1 STATE(10) TIME (advanced by one-half revolution
on exit)

Theory:

In the reference, it was suggested that the numerical averaging method should be started

with mean orbital elements and an algorithm for performing the start-up was presented.

The averaging technique is properly started from osculating elements by performing a

one-revolution integration of the actual equations of motion and, at the same time,

forming the integrals

= - i E. dt .

093

93

At each step of the integration, the period 7 given by the running mean semi-major

axis is calculated. The averaging start-up is terminated when the time t is equal

to this running mean value of the period. The procedure is implemented by a

simple linear search when t is found to be greater than 7. The mean values of

the elements are then calculated from

E. = - E. dt
1E 1

and are associated with the mean value of the time _/2.

Description:

The averaging startup is invoked by setting KAVST (location 1098) to 1. This single

value of the flag will cause a call to AVSTRT at the beginning of subroutine FOWARD,

the position and velocity will be changed to values corresponding to the mean elements

at time 7/2 and the time is advanced accordingly.

The startup will be performed in FOWARD only if KAVST is equal to 1. The asso-

ciated logic in subroutine EQNS, .however, will be in effect for any non-zero value

of KAVST so that the startup may be called from other subroutines before entrance to

FOWARD.

To use the subroutine, put the osculating state (position and velocity) into STATE common

and the corresponding time into STATE(10). Set KAVST non-zero and call AVSTRT, The

averaging integration will be performed using METH = 7 with an internally set automatic

computing interval. On return from AVSTRT, the position and velocity are changed to

represent averaged values and the time is advanced by 1/2 revolution. All other quan-

tities except ELM (STATE(14-19)) are restored to the values they had before the call

to AVSTRT.

The integration of the six additional equations is accomplished simultaneously with the

one revolution propagation of the state. Subroutine INTEG is used to integrate forward

in time using Method 7 with the automatic computing interval control logic. The

94

additional integrals are accumulated in INTVTRX common and, at the end of each

step, the current time is tested against the running mean orbital period. When

t r the computing interval is changed to take the state from its value at the

previous step to the desired time when t = 7,as obtained by linear interpolation on

the current and previous values of t and 7. The tolerance on this simple hunting

procedure is set at 10 seconds.

95

AVSTRT

ENTER

Save Integration and

Method Control Variables

Initialize for Method 7

integration with automatic

step control, Call INTEG(-1)

INTEG(1)

Calculate running

average of orbital

periodT
Calculate required

computing interval

No t>s

(within tolerance)

Calculate mean elements and corresponding state

Advance time to t + 7 /2.

96

SUBROUTINE BCONIC

Calling Sequence: CALL BCONIC (UIN, X1, X2, TIN, OUT, VO, DVO)

Purpose: BCONIC uses Lambert's Theorem to solve for the
Keplerian conic trajectory which connects two given
radius vectors in a specified transfer time.

Common Blocks Required: None

Subroutines Called: DOT, CROSS

Input/Output

SYMBOLIC PROGRAM COMMON DEFINITION
NAME DIMENSION BLOCK

I UIN 1 Call List GM (km3/sec2) of the central body

Position (km) and velocity (km/sec) vec-
I X1 6 Call List

tors at the first terminal
Position (km) and velocity (km/sec) vec-

I X2 6 Call List
tors at the second terminal

I TIN 1 Call List Transfer time (sec)

I OUT 1 Call List Iteration's tolerance on transfer time
I OUT 1 Call List

error (fraction of transfer time)

0 V0 6 Call List Terminal velocity vectors (km/sec)

0 DVO 6 Call List Terminal excess velocity vectors (km/sec)

97

Theory:

BCONIC implements the Schmidt-Bjorlkman method to solve Lambert's problem,

which is to find the conic section connecting two terminal radii in a specified trans-

fer time. The implemented method bears similarities to several of the methods

described in Ref. 1.

The conic parameters are not explicit functions of transfer time, although the con-

verse is true, setting up the requirement for iteration to solve the problem. The

conic sections connecting the two terminal radii can be parameterized by a single

independent variable (in which flight time is a monotonic function). The independent

variable of the S/B method is flight path angle, y, at the first terminal, R 1.

The necessary equations for iterating to a solution are derived as follows. The

distance from the force center is given by

r= p1)+ e cos f

where p is semi-latus rectum, e is eccentricity, and f is true anomaly -

none of which is known a priori. We presume to know the two terminal radii, r1

and r 2 , and the transfer angle, 0. Since r1 and r 2 are points on the same

conic section,

= (2)

S 1 + e cos f(3)
2 1 +ecos (fl +) 1 + e cos f cos 0- e sin fl sin '

The relationship of fl to y at r1 is shown by

e sin f = tan y (4)r1

and we can eliminate e and fl from equations (2) and (3) and solve for p as a

function of y and the geometry.

98

rl r2 (1-cos) d3

(r - r2 cos)+ r2 sin tan y dl +d 2 tan y (5)

The potential problems in computation of Eq. (5) are eliminated by properly

limiting the range of y. This range will be discussed later. The velocity at

rl can be calculated by

v= (6)
r cos Y

where 1i is the force center's gravitational constant. The semi-major axis of

the transfer is given by

a = ri u(v) (7)

One might worry about parabolic transfers when studying Eq. (7); however, the

special treatment of parabolic transfers will be described later.

At this point, we launch into a discussion of the calculation of transfer time.

BCONIC's formulation of transfer time is written in terms of incremental ec-

centric anomaly, p, on the conic section connecting r1 and r 2 .

ri r v sin y
nt = a[(C-S) +- S+ (1 -C) (8)

In this equation, n is the mean motion (/(a) 3) while a, Sp, and Cp

are defined by the following table.

Elliptical Hyperbolic

Sp sin c sinh p

C 0 cos P cosh p

a +1 -1

It has been shown in Ref. 2 that:

99

sinz = nrr ['(1 c4p)- asp] (9)

r r 2
1 a F 2 1

os = -(a)(1-C0)+a Sp] (10)
r2 r r2

r l r l v siny
where - and a= . It is easy to solve these equations for S4pa A

and (1 -C p), rendering Eqs. (11) and (12) in which dl= r - r2 cos $ and

d2= r2 sin 0 ,

S = _12 (a 2-cr)d2+adl] (11)P 2

1-CPp = ad 2 +dll (12)

If the transfer orbit is elliptical, (p= 2 tan- 1 while if it is hyperbolic,

qc= tn (Scp+Co). It should be noted that <p is the only transcendental function to

be evaluated in computing the transfer time.

Iteration:

Equations (5) through (12) provide the recipe for computing transfer time as a

function of flight path angle at the first terminal. The discussion which follows

is concerned with the iteration to compute the unique flight path angle which ren-

ders the "desired" transfer time between the two terminals. BCONIC uses a

simple Newton-Raphson iteration which invariably provides rapid convergence.

n+1 n + (d- tn) t -t (13)
n n-1

Flight time is a monotonic-increasing function over the allowable range of y.

100

Limits:

The allowable transfer orbit regions are sketched in Fig. 1 for 4< 180 and for

> 1800.

18>180

SE
E

" 180 - . 2 E

1 1

\),, \ , \

No orbits traveling from R 1 to R 2 are permitted in the shaded regions of the

figure. The upper limit on flight path angle is, in either case, the path angle of

the escape parabola P2 at R 1 . This flight path angle is derivable in terms of

the geometry if we solve Eqs. (2), (3), and (4) for y with the conditions that

e =1 and fl= 2y .

dl cos 2y+d2 sin2y = r2- r (14)

1 -1 r2 - rl + tan-1(d (15)

pd2+ d 21 2

If the second term in Eq. (15) is evaluated with regard for quadrant in the range

of 00 to 3600, the arccosine ambiguity still leads to two solutions for yp. The

larger solution is the flight path angle of the escape parabola. The smaller solu-

tion is the flight path angle of the prograde transfer parabola connecting R1 and

R2 . The transfer time for this prograde parabola is computed according to

pp = 2r cos2 ypl (16)

101

t 1 3 ~ 3 3 1
pp j 4 tan / 2 tan yp= tan + + -tan1 2 (17)

p 2 1 2 3J 3 np 3

If the desired transfer time is equal to the parabolic transfer time (within tolerance),

no iteration is required and the potential parabolic singularity in Eq. (7) is avoided.

Otherwise, the desired transfer time will be less than t (hyperbolic solution) or

greater than t (elliptical solution). Thus, the flight path angle limits for the en-

suing iteration may be set as follows:

Elliptical

Lower: ypl Upper: yp2

Hyperbolic t-1(dif 0PS- tanl - if $ 180
Lower: d 2 Upper: ypl

L - /2 if > 180°

The lower limits on the hyperbolic solution correspond to the straight-line path if

S<1800 and to the path along -R 1 and then along R2 if 0>1800 . Equation (5) has

no singularities within the above limits.

Starting:

If the solution is expected to be hyperbolic, the initial y is taken to be a little less

than ypl, the prograde parabolic value. The amount less is chosen simply as 1%

of the allowed range of y. The starting value for y when the solution is expected

to be elliptical is the first-terminal flight path angle of the minimum-period ellipse

joining R1 and R 2 . The minimum-period ellipse is characterized by the following

semi-major axis and semi-latus rectum (Ref. 3).

amin= ~ 1 + r2 + d + d (18)

2 2
min= 2 (2 amin - r)(2 amin- r2/ d + d 2 (19)

102

The flight path angle is then found by substituting pmin into Eq. (5).

Y = tan (d3p d) (20)
min 2

I/O Computations:

BCONIC is entered with a 6-vector of Cartesian position and velocity components

for each terminal. The magnitudes of the position vectors, R1 and R2 , are r

and r2 , respectively. The velocity vector, V1, at the first terminal is used in

determining whether 4 is less or greater than 1800. The cosine of 4 is given by

R1 R
cos 4 = (21)

rr2

-2
but the sine of 4, computed as 1-cos 2 , has a sign ambiguity. This ambiguity

is resolved by comparing the cross-product, RxV 1 , with the cross-product R xR 2.

If these cross-products have a negative dot product, sin 0 must be negative to exclude

retrograde orbits with respect to V at R1 .

(R 1 xV1) (R 1 xR 2) > 0 : sin = 1 - cos 2
2

(R1 xV1) (R 1 xR 2) 0 sin = - 1 - cos2 4

The transfer angle is then defined by

' = tan cos 4 O < ~ 3600 (22)
cos. 0

At the conclusion of the iteration, BCONIC computes the vector velocity, V*, of

the transfer orbit at each terminal. If the transfer angle is not 1800 or 3600, R 1

and R 2 define a unique plane for the transfer orbit. Then the velocities are

V1 = c1 R 1 + c2 (R1 xR 2) xR 1 (23)

and
V2* = c 3R 1 + cV1 (24)

103

where

S = v sin y/r (25)

c2 = vcosy (d2 r) (26)

c3 = - a S r 1 r2) (27)

and
c4 = (r 1 Cp+raa Sp)/r 2 (28)

-6
If Isin < 1 0- 6 , the transfer orbit plane is ill-defined by R 1 and R2, so the

plane of R 1 and V1 is chosen. In this case,

V1 = c R 1 + c 2 (R 1 xV1) xR 1 (29)
where

where2 = v cos y (RxV)xR (30)

The other calculations are unchanged. BCONIC also computes the terminal velocity

differences for output.

AV = V*- V (31)

AV2 = V2*-V 2 (32)

104

CALL
BCONIC

Initialize constants of
the iteration

Compute the parabolic
transfer time, TP

No is Yes

Set limits, y Set limits, y

for hyperbolic i for elliptical
transfer transfer

Compute T(y)
First time

is Compute Cartesian velocities,
No tT(y)-TIN j Yes > VO and DVO from y and

<OUT * TIN other solution parameters

C ompute RETURN
incremental y

Add incremental y to y,
test limits and number

of iteration steps

105

REFERENCES

1. Battin, R. H.; Astronautical Guidance, McGraw-Hill, 1964.

2. "Programer's Manual for Quick-Look Mission Analysis Program," Philco-

Ford WDL TR-2217, January 1964.

3. "Design Parameters for Ballistic Interplanetary Trajectories - Part I:

One-Way Transfers to Mars and Venus," JPL TR-32-77, January 1963.

106

SUBROUTINE BELL

Calling Sequence: CALL BELL

Purpose: BELL computes statistical estimates of end constraint

errors and second-midcourse requirements based on

estimated first-midcourse execution error statistics.

Common Blocks Required: CNTRL, INPUT, MCCOM, STATE

Subroutines Required: CROSS, DOT, DVMAG, FOWARD, MCBURN,
MVTRN, RETDV, SENSO, VNORM

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

I JC 1 CNTRL(7) Central body number of state

Trajectory stop-time (sec).
I TFINAL 1 INPUT(4) Input value matters not.

I WTO 1 INPUT(38) Initial spacecraft weight (kg)

I SIGAT 1 INPUT(435) Attitude execution error statistic (rad)

Proportional velocity execution error

I SIGDV 1 INPUT(436) statistic (km/sec)

I PRX 1 MCCOM(3) Scale factor for printed statistics

I XMC 6 MCCOM(6) Pre-midcourse state (km, km/sec)

I DV 3 MCCOM(12) Midcourse velocity impulse (km/sec)

I DVMG 1 MCCOM(15) Magnitude of DV (km/sec)
Midcourse time (seconds from

I TMCS 1 MCCOM(18) anchor epoch)

Velocity impulse magnitude expended
O DVB4 1 MCCOM(24) prior to current maneuver (km/sec)

Expected fuel required at next maneuver
O EXFUEL 1 MCCOM(26) to correct errors of this one (kg)

Expected end constraint error statistics
O SIGOUT 6 MCCOM(40) (tf-sec, _> m/sec,vc-m/sec, f-kg, rp-kn

107

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

Weight (kg) after the first
I WTF 1 MCCOM(47) midcourse maneuver

Time(sec) of the next midcourse
I TMC2 1 MCCOM(48) maneuver relative to anchor epoch

Expected next-maneuver velocity

O EXV2 1 MCCOiM(49) magnitude (m/sec)
Sensitivity matrix (transposed) of
end constraints to midcourse

I DPT 3, 10 MCCOM(50) velocity variations

O KBURN 1 MCCOM(154) Midcourse burn option key

O IR 1 MCCOM(158) Sensitivity option key

I KGLAW 1 MCCOM(164) Guidance law selection key
Central body number

O ICB 1 MCCOM(165) at midcourse

O X 6 STATE(1) State (kin, km/sec) relative to JC
Time (sec) to which

O T 1 STATE(10) X corresponds

Theory:

Errors in the miss vector, B, are assumed to be entirely attributable to errors in

executing the required midcourse maneuver. Deviations in B are assumed linearly

related to deviations in the corrective velocity impulse, AV, by

6 = B 6 (AV) (1)
AV

Deviations in V are, in turn, related to errors along AV (cut off error, cS and

normal to AV (pointing errors, Ce and n) by

6 (V) C(2)

108

The pointing errors ce and En , are components of the error vector eastward and

northward, respectively, from AV on the celestial sphere as shown in the figure.

The partial derivative in Equation (2) is therefore written as

SAV = E N] (3)

A(Yv Ce n)

V, E, and N are unit column vectors defined by

V = AV/AVI (4a)

E = KxV/IKxVI (K (4b)

N = VxE (4c)

The partial derivative in Equation (1) is the gradient needed for computing the

required midcourse maneuvers and is therefore available. It is computed by

the secant method in the vicinity of the solution. Because B has six components

(time of flight, v , vc , total fuel, rp, i) BB / aAVis a 6 x 3 matrix.

Defining P by

P B _-pAV
(5)

109

we can combine Equations (1) and (2) to obtain

v
6B = P (6)

The covariance matrix of miss vector errors, C, is given by

C =E BBT] PE , I (7)

where E is the expectation operator and where P, being deterministic, is not

affected by E. Assuming no correlation among ,' e' en'

Cv ?2 0 0

E Cee (% e 0 = 2 0 (8)

n 0 0 2

If we input values for v, e, and on, we can then calculate the covariance matrix

of miss vector errors by Equation (7).

Then the standard deviations of the miss-vector components are computed as

uncorrelated errors by simply square-rooting the appropriate diagonal element

of C. These are then multiplied by PRX to be displayed as "Probability P" values.

The problem of appropriately supplying execution error statistics now arises. If

we assume cut-off error to be comprised of independent resolution and proportional

errors,

V = Cres + rop IAVi10)

then a2 2 2+ 1V12 (11)
v rres prop

The resolution error is coded into the program as a uniformly distributed random

variable on a .1 m/s interval centered at zero. The proportional error is normally

110

distributed with input standard deviations.

Pointing errors are conveniently specified as normally-distributed along orthogonal

axes with the same variance on each axis. The distributions and axis orientations

would more appropriately be related to the plane of the attitude maneuver, but this

is more difficult to simulate. The pointing error is input as a single number which

represents the standard deviation of equal normal distributions along the E and N

axes.

Second Maneuver Requirements

We now consider the requirements of a second maneuver, executed at t2 , to correct

the errors made in executing the first maneuver at t1 , t1 <t2 . We must develop a

mapping, M, of first midcourse execution errors, 6 (AV1); into a second-midcourse

velocity impulse, &V2. The end constraint errors, 6B related to 6 (AV) by Equation

(1) are the very ones to be corrected by AV 2 , so

6B B B (12)
6V - aV 2 AV2

or (_B 'a B
AT2 =B AV 6 (AV1) = M 6 (V 1) (13)

2 1

The particular constraint error set to be nulled by AV2 depends on the guidance law

invoked. We assume that the guidance law for the second maneuver is the same as

for the first. If the guidance law is FTA, FTE, VTE, or MTF, B has three

components and, assuming the independence of their gradients with respect to AV2 ,

the indicated inverse exists. For the MFG law where there are only two end

constraints, a B/aV 2 is made invertible by adjoining a row perpendicular to the

two rows it has. The third column of the inverse is then zeroed before the multi-
-1

plication, BB B , takes place because a third-constraint error must
AV AV 1

have no influence on the MFG solution. The expected value of the second-midcourse

velocity is computed as the square root of the trace of the following matrix.

111

E (AV2 AV2) = ME (6(AV 1) (Av)T) MT

MP 0 0 (14)
= MP y 2

0 0 e20

This expected value is then scaled by PRX to bring it up to a specified probability

(univariate Gaussian) level for printout.

It would be desirable, perhaps, to present the expected spherical probable second-

midcourse velocity, but the computation of this measure is too complex and time-

consuming to be merited. The expected fuel is computed from the expected velocity

by means of the rocket equation.

The sensitivity matrix, 5B/F AV1 , is usually available, since BELL is called right

after the first-midcourse maneuver has been calculated. If not, however, it is

computed by finite differences by calling SENSO. The second-midcourse sensitivity

matrix, B is computed at t by finite differences about the trajectory which
MAV 2

would result rom a perfectly-executed maneuver at t1 .

112

SUBROUTINE BELL

Compute the transformation [VEN]
from local tangent of AV to EE50
coordinates

Call SENSO to compute DPT, the
sensitivity of end conditions to
midcourse variations

Compute predicted end
condition variations

(SIGOUT)

TMC2!TMCS esRETURN

no

Save certain computed
values for PROTO

Call MCBURN to compute post-
burn state

Call FOWARD to propagate to second
midcourse time. Set XMC = X

TMCS = T

Call SENSO for sensitivities
to AV at TMC2

Compute M =
-1

AV
2 V 1

Compute measure of
second mideourse
requirements

Restore saved values j
for PROTO

RETURN

113

SUBROUTINE BIGMAT

Calling Sequence: CALL BIGMAT (A, VALU, EVE, NN, NEIG, NVEC)

Purpose: BIGMAT calculates eigenvalues and eigenvectors of a
symmetric array using Householder's method.

Common Blocks required: None

Subroutines required: None

Reference: Householder, A. S., and Bauer, F. L., "On Certain
Methods for Expanding the Characteristic Polynomial",
Numerische Mathematik 1. Bank, 1. Heft, p. 29. (1959).

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

C alling
I/O A 21 Operand Symmetric Array *

Calling
O EVE 6, 6 Operand Eigenvectors

C alling
I NEIG 1 Operand Number of eigenvalues desired

Calling
I NN 1 Operand Dimension of array *

C alling
I NVEC 1 Operand Number of eigenvectors desired

Calling
O VALU 6 Operand Eigenvalues

* The square symmetric array B has dimensions NN x NN, however, it is loaded
into BIGMAT as A, a column vector that includes only diagonal and lower diagonal
elements. Thus A(N) corresponds to B ((N-1) /NN + 1, MOD (N-1,NN) + 1).

Theory:

BIGMAT uses the Householder method of calculation. This method involves a codiagonalization

of the original matrix before the roots are calculated. See the above reference for details

of the method.

Description:

Given the column vector A, its dimension NN (see *), the number of eigenvalues desired

114

NEIG, and the number of eigenvectors desired NVEC, BIGMAT will calculate the

corresponding number of eigenvalues and eigenvectors. The eigenvalues will be

output largest first in the vector VALU. The eigenvectors will be output in the

matrix EVE so that the elements in the ith column correspond to the ith eigenvalue.

Since the eigenvalue is needed for the calculation of the corresponding eigenvector,

NVEC must be less than or equal to NEIG. It is inportant to note that the elements

in A are changed in the subroutine and the values output are in general not the same

as those input. If NVEC is not equal to zero, then there will be output written on

Unit 6 as follows: first a value "EPS" will be printed and then several lines indicating

the eigenvalues and their corresponding eigenvectors. The value of EPS represents

the accuracy of the eigenvalue calculation. For good calculations of the eigenvectors,

EPS must be small compared to the difference of any two eigenvalues.

115

BLOCK DATA

Calling Sequence: Preloaded

Purpose: BLOCK DATA initializes various constants in the

program.

Common Blocks Required: AVG, CONST, INPUT

Subroutines Required: None

Reference: Scarborough, James B., NUMERICAL MATHEMATICAL

ANALYSIS, The Johns Hopkins Press, 1930.

Input / Output

SYMBOLIC
I/O NAME DIMENSION DEFINITION

O A 1000 Real portion of input array

O ABSCIS 78 Abscissa for Gaussian quadrature formula

O CONST 50 Program constants

O KOPT 100 Integer portion of input array

O- WEIGHT 78 Weights for Gaussian quadrature formula

Description:

The arrays A and KOPT contain initialized values for variables which control program

operations and may be changed through input. These initialized values are listed in

Tables I and II. For a detailed description of these variables, see write-up of

INPUT common.

116

The arrays WEIGHT and ABSCIS contain the weights and corresponding abscissa

for the Gaussian quadrature formula. The values stored in these arrays are listed

in Tables III and IV. For a description of the Gaussian quadrature and the use of

these values, see the above reference.

The array CONST contains general mathematical constants in addition to constants

pertaining to the planets. BLOCK DATA initializes only the mathematical constants.

These constants and their preset values are as follows:

SYMBOLIC
LOCATION NAME PRESET VALUE DESCRIPTION

1 RAD 57.29577951308232 Degrees per radian

2 PI 3.141592653589793

-3, PI2 6.283185307179586 2 ,

4 AU 149597893. Kilometers per astro-

nomical unit.

41 THS 3600. - Seconds per hour

42 TSH 2.7777777777778D-4 Hours per second

43 TDS 86400. Seconds per day

44 TSD 1. 1574074074074D-5 Days per second

45 G .0098066 Average surface gravity

..... on Earth (KM/sec)

117

TT

00O00000*1 TZS
00000000*iT z OOO0OTV*OZ 615 0000000*OL 8TS
000000' LL5 o0uGoolzi 9C5S 000000.06 STS
000GO0000*; I 00000000oz 00 0000011OT 015

IT QOOOOOOOUL'O 605 010000L0EZ SOS O*000000(98 LOS
O'OUuOuls 9013 0*O0000ovs S0S 0*0000001' 1z0s
OG0*0OC59J LOS5 00000OS(16 '(fs 000,000919 105
oooouuooi/o £61' OooooocoVs 96Q "LO-aOOOOOCGOZ:o SG1'

[cU-GUuOUoUuuvO v6V LoOU0000000'0CV0 i ~61 0000000.0 I OT z
COOIOUGO "U 6bi7 0000000*0i 06;' OSEGSLG*ZL- L~t,
O99LO016*c 987 OSlsLLo*SE Sot 0 c v IE zrl C',
O6000uvv~sc- E 8 f OL0SL SL *v Z- zsV 01ilcZE0 G *:T- 1017
o '' u,.sL L *(-U- Uv' L O-cI00CC00001'0 6L17 000000OCL Ut
oGoooc0C~o SLV COCCOUCCS 1;'LIV OCOOLLUE Ct
000000vCZ 00000 OOO8L9VC* ML1 00000000*9 OLV

OG~~t/u~uST 01'7 CIOOOCOCOOVO 051 100 00C -7

00000*0009 L vl oocooCooGs 9171', 0 0 C00E c 8l
C0CCILM'L 0 0 G00 ,*ZOz Z 00000C9ZZ T
0 c0UCs~ *11 u 000.- C GOCCUSI UPI c£0-C000CCCOGC 8Ct

I1c-iGCCCLuOCG47O L 41 V L 0-c0100CUCOu*0 9Ct 17COOO.OOOOCLO S.EV
GO0OO'CU. vEt' O000'O')cVT El'_zt OO0OOOZ9*0 EZM'
000*000960 6 cv 0000000*6S- I~1 i0lo0000ESi 0 4,
6 6 9 *OL -ILl7 05O96(-'V8*cL- 911', 0'r-- 09L[; i8- ST1D'
ZLLTS*LVL- vlv 19 6 01S u- 8v T E fL1 ZLi:QLV[1T Z

I- v * LL. 001 C, GOC, 0C 601'
* 0 0G.C; C 0T- Uu 0000COU0 0 L Ov 100000000TVO Sc C

[Z GOUOOOOOVO 0 12' EOOUOV E; EI 1 0 00 00CO OTO zec

I2 CiOOU0OOOOOLO(; 18E LZ GOCOOCOC0GVO MUE Oc0005555E T9E
00C, 0ci S .u9tE l0CU00) S 10-QG 0 00CIO- *0 TSE

0 -C!0 0u "v 0,'%,(0 u S'L 0000002J UL 00000 O TEL
000006z I- 000000*006 1 2E 00)0 ZVL9* L 8 G TO

Z, 1 .fA6 -CS1 000ociU9,9z C 000689,9k t9Z
OUOOOC:SU' 09(0000000'S M-1ooo0u00G' T
0CO0ThuoCz (ozO00*06 luz 00000000 1;6c

vO-QlOUO CUOUS v C L61 S 0-C 0 56G691 cl"l' 0 itL LG-0O0GVS8 S L *0 (1l
VO0 CuU Q6 l' 8b (L 0 L.C (v0-, 1L-9 E: ZI C-Z L0 5,G7 1 0 0 0 60 ECL L

0 0C *0 '0 0-L L CL CC.00G 0S v9 0 0 00 *E U 6 v (,T L
0 0 C * 1 C000%SOSLS L1 T 0CCCMvTL 9T1T
0OLI *Gu;VE -YL 00Cv"L 8 U9 R'l 00II9*906O9 CL
u 0 18 6t'-12Z 068iL LOt UV[T T C-0Svc51LZT *0 60-1
0' 6 o L-ULL S 01. Cu 11 01 L 9 't OL 0 SS* 16 t' E-I
008* C; L) U L-T C0Lvi"L I O1 00ESS191* 001.f
00000ov L Z. 'oE I Z" 0 CC 0 0 ,0 G 0 -- ;C CG' 0 0 Cl C 8
c)) .0 9 u 0 u OOCU(1 S OGOVCuoG1S j7

A~~~ddVT LfdL ..i N IJi ?l

.io kui a iiiTI '

TABLE II

INTEGER PORTION OF INPUT ARRAY

LOCAT I ON VALUE LOCATION VALUE LO CATION VALUE

3 2 10 1 11 2
14 3 15 3 17 .5
18 1 19 1 31 1!
32 2 35 1 36 4
39 3 40 2 41 10
42 15 43 .21 48 1
51 10 52 2 53 50
54 17 55 1 60 i
61 11 62 2 63 2
64 1 65 10 66 .
67 100 68 6 69 3
70 95 71 6 75 6
83 .1 88 12 89 123 4567

119

ONT

t~91.C -5i STI .iV 6L1 1 L L 0CCL6f1 0 0 9JL
G Sc L~Q La 10 -v (11 . L P)*0 VL 10-(Civ1C-u v 0U I.L

L-LL06VIrL .L.L 6 (L I U-C! v S i' !L~ U L I 0-Ul6E iYS: Si 9 0 (
I O-CLIT SSST S6 0 69- 8~tL' 9 666S6S6vTu L.

69' L;v C; LVfO CsU S9 0-1 D0 C V 6 t>T u -v 9
T 6- U .L u Lu L 9 LGLVL L VU -,EU 0 69 LZc 6 IL 01 *u 19

8LjGLS6L-2C* 0 '0G b19[*U 6S 0 0 0T 31% IL,& 0 69
S ,v IE:u 6L-u L'S dL :06 0u -L 10-QC 0 $;i6Y V L*0 ~s

10-&i L o (,,2L- v c 11LV lSC 00 Es L STE0':ciSV * , s
L6 LiC Uo I V , ~ 6 u 'U L) £EE Zslzl 6'

'10- ;u oi6 v0t v , v T U-cG6 v Iicc/ 6'0 L v 01SE.L88E-.T0 9
f CV L, s. 0v0 -d L 0 u* 0 v CT : b; 9 L0 0 E:

~E O S 'l ,cv 'IO-iv E &tlL vu Iv 9L EGL 6 9 l0 G tv
6 il'L L C LU U3 L Z:v L 5 L0 6 b~ E L13 >20V L E
9 v uL V076(J A L-IIY: S 0 SEC ;L Cu" cc..10 d
-CL c, U,- : LE u ; c S6A2 5 vPob ;9 i *u I E
L6 O 6iL/iU GE OCI 0cV ~0 6 Z/ 6 v CI clV 6 v I*G 8

S, S iU L4 S~z,2 S Gil' 0 S
T 'o LL :v I~ L4'-)LL 1u 9 6 9090.Z;0 ZL i

L uL k I~ Sl 6U0 oz 51E S8 z T CT0 6-1
, -UI C)' v- 9 -C.--1 u L I C8 L; cA>Z ;ccu) T

S v b i 0CI ; Sa L OL 6 6U l"f i5cOEW8VLu E I
170 6 S i. V 0 c:. b'vil ."f u I I CL S IG 9E *0 0-1
SEUL6L9)V*C 6 eb-,c6.Ac:0 b 0L9ZA~LivU L

U6 0 6io0 :2*V 9 S vs, L*u s Si SL CLG11Z S-Q 0 V

xvll0GC000 V 1~"1IL

I II T- lfi

TABLE IV

M3SCISSA ARPAY

LOCATION VALUE LOCATION VALUE LOr~TION V ,LUE

1 0.577350269 2 0.0 3 0.774596669
4 0.339931044 5 0.861136312 6 0.0
7 0.538469310 A 0.906179846 9 0.238619186

10 0.6612093896 11 0.93246951A 12 0.0
13 0.4058451.51 14 0.741531196 15 0.949 1.0 791.2
16 0.183434642 1.7 0.525532410 19 0.793666477
19 0.960289856 20 0.0 21 0.324253423
22 0.613371433 23 0.8350311.07 24 0.969160240
25 0.148R74339 26 0.433395394 27 0.679409568
28 0.865063367 29 0.973906529 30 0.0
31 0.269543 156 32 0.519096129 33 0.7 30 152006
34 0.887062600 35 0.978228658 36 0. 125?3I 09
37 0.367831499 38 0.587317954 39 0.769902674
40 0.904117256 41 0.981560634 42 0.0
43 0.230458316 44 0.448492751 A5 0 . r2349 39
46 0. 80157809. 47 0.917598399 48 0.984183055
49 0.109054949 50 0. 319112369 51 0.515248636
52 0.697292905 53 0.827201.315 54 0.9?8.43A84
55 0.9 86283809 56 0.0 57 0.20119409 4
58 0.394151347 59 0.570972173 60 0.7244.7731
61 0.848206583 62 0.9?7273392 63 0.9 799251
64 0.95012509P D-01 65 0.281603551 66 0.459036778
67 0.617876244 68 0.75540A408 69 0.P6563120?
70 0.94 45 75023 71 0.989400935 72 0.993 12 8599
73 0.963971927 74 0.91.2234428 75 0. 39169 72
76 0.746331906 77 0. r 3605 3681 78 0.510q6700?

121

FUNCTION BURND

Calling Sequence: T = BURND(DVMG)

Purpose: BURND computes burn duration as a function of
incremental velocity.

Common Blocks Required: CONST, INPUT, MCCOM

Subroutines Called: None

InDut/Output

SYMBOLIC PROGRAM COMMON DEFINITION
NAME DIMENSION BLOCK

I DVMG 1 Argument Midcourse correction velocity (km/sec)
List

I G 1 CONST(45) Earth's surface gravity (km/sec)

I WTO 1 INPUT(38) Initial spacecraft weight (kg)

I TWD 10 INPUT(320) Times for weight flow rate table (sec)

I WD 10 INPUT(350) Weight flow rate tabular values (kg/sec)

I ASPMC 1 INPUT(441)f Specific impulse (sec)

MCCOM
I DW 10 Weight expenditure at TWD (kg)(110)

BURND 1 Call Burn duration (sec)

199

Method:

Validity of the rocket equation is assumed. The fuel weight, FUEL, corresponding to

the velocity increment, DVMG, is
DVMG

FUEL = WTO 1 - e G * ASPMC

A piecewise-linear weight flow rate is assumed. The fuel expended as a function of

time is computed under this assumption in MCSET and stored in DW. That is,

DW(I) = fuel expended at TWD(I) .

FUEL is tested against DW until FUEL : DW(I+1). Then the burn duration is TWD(I)

plus the time since TWD(I), which would cause the fuel to increase by FUEL -DW(I).

WD(1)

Weight flow
rate, WD ,-(

Expended fuel, FUEL

... WDW(2)

S WD(2) D(2) WD(3)

DW(1)

TWD(1)=O TWD(2) t TWD(3)

Weight flow rate and expended weight versus burn duration

123

On any segment of the burn history where the weight flow rate, w, is linear, the

slope of the weight flow rate, w, is constant. We define the following:

6t = t - TWD(I)

6f = FUEL - DW(I)

w = WD(I)
0

= WD(I+1) - WD(I)
TWD(I+1) - TWD(I)

The fuel expenditure is a quadratic function of time.

6f = w_ 6t + 6t 2

The usual solution of the quadratic,

-w w2 +2,6f
6t 0 0

is ill-defined when N= 0, so we multiply numerator and denominator by

- w w 2 + 2 6f . The result is
O O

t = 2 6f

v + v2 + 2 C 6f
o o

The sign ambiguity on the radical is removed by observing that for w= 0, the

solution must reduce to

6f

w

It may be noted that

w = w + + 2 6f

is the constant weight flow rate which also would render 6f in the time interval,

6t.

124

SUBROUTINE BVE

Calling Sequence: CALL BVE(X, V, U, B, BTR, C3, STHET, CTHET, E, S,
RP, T, R, KK)

Purpose: To compute the miss-vector components of the orbit,
relative to the target body, from the Cartesian state.

Common Blocks Required: None

Subroutines Called: CROSS, ROTAIT

Input/Output

SYMBOLIC PROGRAM COMMON DEFINITION
NAME DIMENSION BLOCK

I X 3 Call List Position vector (km)

I V 3 Call List Velocity vector (km/sec)

I U 1 Call List Gravitational constant (km3/sec2)

0 B 3 Call List Miss vector (km)

0) BTR 2 Call List Miss vector (miss-plane components

I (kin)

0 C3 1 Call List Energy (V - (km2/sec2

0 STHET 1 Call List Sine of the true anomaly

0 CTHET 1 Call List Cosine of the true anomaly

0 E 1 Call List Eccentricity

0 S 3 Call List Unit asymptote vector

0 RP 1 Call List Radius of periapsis (km)

I T 3 Call List Equatorial miss-axis

J R 3 Call List Zenith miss-axis

I KK 1 Call List Asymptote indicator

125

Method:

Subroutine BVE computes the target miss vector, B, from Cartesian input vectors

X, position, and V, velocity.

For hyperbolic orbits, B is the vector from the body center to either the approach

or departure asymptote depending on a key set by the user, (see Fig. la). For el-

liptic orbits, the B vector is always the semi-latus rectum for the departing orbit,

(see Fig. Ib).

approach B

departure B

Figure 1 - B Vector /

a - Hyperbolic orbit b - Elliptic orbit

S is a unit vector along the asymptote for the hyperbolic case, and is directed toward

periapsis from the body center in the elliptic case.

T is a unit vector taken as

T kxS

IkxSj

where i, j, k are the orthogonal unit vectors of the Cartesian input position and

velocity vectors X and V.

R is the unit vector given by
--4

R = SxT

The vectors B, R, and T lie in a plane normal to the unit vector S (see Fig. 2).

126

90-4 B

Figure 2 - S Normal to Plane Containing R, B, T

-- 4

For visualization purposes, if X and V were given to the subroutine with the

i and j vectors in the moon's equatorial plane, then the T and R vectors would

be as shown in Fig. 3. The R vector doen not lie along the polar axis but, rather,

normal to S and T. For lunar approach from Earth, the R vector is roughly in

the direction of the polar axis, so if one had a trajectory such that B * R = 0, the

plane of the trajectory around the moon should lie close to the equator.

North

R
- - - Vehicle Orbital Plane

T* ,. Moon Equator

B

\ ,

Figure 3 - Miss-Plane Geometry

127

Theory:

Given X and V, the position and velocity vectors of the vehicle relative to the

central body, and U, the gravitational constant for the central body, compute

the following:

The semi-latus rectum, PP

PP = XxV)

The magnitude of the position vector, X

RMAG = I XI (2)

The energy, C3

C3 = V V - 2U/RMAG (3)

The eccentricity, E

E = [1 + (C3)PP/U] 2 (4)

The radial component of velocity

RDOT = (X-V)/RMAG (5)

The sine and cosine of the true anomaly, 6

CTHET = cos 8 = (PP-RMAG)/(E RMAG) (6)

STHET = sin = RDOT(PP/U)2 E (7)

Define a unit vector UX by

UX = X/RMAG (8)

and the unit angular momentum vector by

UW XxV (9)
xx128

128

As shown in Fig. 4, a unit vector UY normal to UX and UW lying in the orbital

plane, and in the direction of rotation is

UY = UWxUX (10)

The rotation of UX and UY through (-8) yields P and Q, where P is a

unit vector toward periapsis, and Q is a unit vector in the same direction as the

semi-latus rectum of the orbit.

UY
UX

Figure 4 - In-Plane Orbit Direction Vectors

Rotate UX and UY through (-6) to P and Q

P = UX cos e - UY sin 8
(11)

Q = UX sin 8 + UY cos 0

The S and B vectors are computed as follows:

For elliptical orbits

S=P
+4 (12)

B = Q = Q BMAG = QPP

For hyperbolic orbits, Q and P are rotated through an angle of magni--4-4-4

tude (90 -a) to obtain S and UB, a unit vector in the direction of the B

vector. The angle a is the half-angle between asymptotes and is computed by

129

CALP = cos a = 1/E = sin (90 -a)

22 (13)
SALP = sin a = (1-1/E 2) = cos (90 -a)

In the case of the approach hyperbola, Q and B must be rotated counter-

clockwise through (90 -a), while for departure, clockwise. Thus, for approach,

with STHET negative (see Fig. 5)

S = Q sina+Pcosa

(14)
UB = - Qcos a +Psin a

B

Par a

Figure 5 - Hyperbola and Approach Asymptote

For departure, with STHET positive

S = sin a Q -cos aP

(15)
UB = cos .Q + sin a P

Finally, the B vector is

B = BMAG UB (16)

130

where

BMAG = (U/C3 + RP) sin a

U/C3 = the semi-major axis

RP = PP/(1 + E) = radius of periapsis

B T and B R are computed and returned by the subroutine as BTR(1) and

BTR(2) respectively. As seen in Fig. 2, BTR(1) represents BMAG cos 4)
and BTR(2) represents BMAG cos (90 -4).

131

SUBROUTINE CALEND

C ailing Sequence: CALL CALEND(T, JYR, JDY, MO, NHR, MIN, SEC)

Purpose: This subroutine converts the current MAESTRO
time to calendar date.

Common Blocks Required: INPUT

Subroutines Required: None

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

I DJO 1 INPUT(46) Modified julian date of state epoch
C alling

O JDY 1 Operand Day
C alling

O JYR 1 Operand Years since 1900.
Calling

O MIN 1 Operand Minutes
C alling

O MO 1 Operand Month
C alling

O NHR 1 Operand Hour
C alling

O SEC 1 Operand Seconds
C alling

I T 1 Operand Seconds since state epoch

Description:

The calendar date is obtained from the modified julian date of state epoch and time since

state epoch. Output is year, day, month, hour, minute and seconds.

132

SUBROUTINE CLOSE

Calling Sequence: CALL CLOSE

Purpose: Subroutine CLOSE determines the spacecraft's
central planet and transforms the state to the
central planet if a new planet becomes central.

Common Blocks Required: CNTRL, CONST, INPUT, INTER, PLNET, STATE

Subroutines Required: DVMAG, INTEG, ORBIT, TRMN, UPDATE

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

Distances from s/c
I/O DST 12 PLNET(73) to planets

I/O DX 3 STATE(4) Velocity of s/c

O ELM 6 STATE(14) Orbital elements of s/c
Planet gravitational

I GM 12 CONST(5) constants

O INT 1 INTER(131) Interpolation counter

I/O JC 1 CNTRL(7) Central planet number

O KDIS 1 CNTRL(5) Discontinuity flag

I KP 12 INPUT(1001) Planets in the system

I METH 1 INPUT(1013) Propagator method
Distances when planets

I RSWTCH 12 INPUT(500) become central

I/O X 3 STATE(1) Position of s/c
Positions and velocities

I/O XP 6, 12 PLNET(1) of planets

133

Description:

There are two major parts to this subroutine. In the first part CLOSE determines

which planet's sphere of influence the spacecraft resides in. The sphere of influence

is denoted by RSWTCH. If the spacecraft's distance from planet J is less than

RSWTCH(J), then planet J is central. If that planet is already the central planet,

then CLOSE returns. If that planet is different than the central planet, then that

planet becomes the central planet.

The second part of the subroutine takes care of the changes in the system due to

the change in central planet. The position and velocity vectors of the planets and

the spacecraft are changed to correspond to position and velocity relative to the

new central planet. KDIS is set to one to denote a discontinuity in the system.

Depending on the propagation scheme (METH), new orbital elements are calculated

if needed, and INTEG is called to set up new values and derivatives of integration

variables. INT is set to zero and then UPDATE is called so that the interpolation

table is cleared and a new one is started.

134

SUBROUTINE CLOSE

CALL
CLOSE

Determine
central planet

same yesas

previous centra RETURN

planet

no

Calculate position and velocity of
spacecraft and planets w.r.t. new
central planet.

Set JC = new planet number

Set KDIS = 1

135

SUBROUTTTNE CONTRL

Calling Sequence: CALL CONTRL

Purpose: This subroutine initializes the compute interval
table and other constants before initiation of the
program options

Common Blocks Required: ANKOR, CONST, INPUT, STATE

Subroutines Required: DVMAG, PRINT, SETUP2

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

Initial anchor vector position and
O ANKVEC 6 ANKOR(1) velocity vectors

Unit vector along the
O ATT 3 STATE(11) spacecraft's centerline

O DECO 1 INPUT(48) Initial declination

O DELT 10 INPUT(180) Table of compute intervals
Initial trajectory propagation

I KMETH 1 INPUT(1036) indicator

I RAD 1 CONST(1) Radian-degree conversion factor

O RAO 1 INPUT(47) Initial right ascension
Array of switching times used in

O TCOMP 10 INPUT(170) compute interval table.
Initial position and velocity

I X 6 STATE(1) vectors

Description:

This subroutine initializes program constants and flags before initiation of the program

options. Subroutine SETUP2 is called at the beginning of this routine. Most of the

initialization is performed in SETUP2. The compute interval table is also established

if one is not already input. The compute interval table is established according to the

136

initial epacecraft radius, R, as shown in the following table.

R <20,000

DELT(1) = 300. TCOMP(1) = 3600.

DELT(2) = 1800. TCOMP(2) = 18000.

DELT(3) = 18000. TCOMP(3) = 1 (10)20

20000 <R <40000

DELT(1) = 1800. TCOMP(1) = 18000

DELT(2) = 18000. TCOMP(2) = 1 (10)20

40000 < R

DELT(1) = 18000. TCOMP(1) = 1(10) 2 0

If the initial spacecraft attitude is not input, the attitude is set in the same direction

as the initial velocity vector. The subroutine next calls subroutine PRINT in order to

obtain a list of the initial input array.

137

SUBROUTINE COVERT

Calling Sequence: CALL COVERT (COV, X, Q, KCOV)

Purpose: This subroutine transforms a covariance matrix
from a local tangent plane coordinate system to
the coordinate system of the input state which
defines the local system.

Common Blocks Required: None

Subroutines Required: CROSS, VNORM

Input/Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

Calling
I COV 6, 6 Operand Input covariance matrix

Transformation flag. If KCOV is not
Calling zero, the covariance matrix will be

I KCOV 1 Operand transformed
Calling

O Q 6, 6 Operand Output covariance matrix
Calling Position and velocity vectors of

I X 6 Operand the state

Description:

The local tangent plane coordinate system is defined as follows:

X-axis Positive along the position vector

Y-axis Lies in the plane formed by the position and velocity
vectors and normal to the position vector positive in
the direction of the velocity. It is represented
vectorially by

(X x V) xX

Z-axis Normal to the plane formed by the position and velocity vectors.
It is represented vectorially by

XxV138

138

This subroutine determines the rotation matrix from the local tangent plane to the

coordinate system of the state X and V. To calculate the transformation matrix, T,

it is first necessary to establish the vectors

S = XxV /(IX IVI)

u = .<x2 / 1:R1

Then the first column of the matrix is a unit vector along X. The second column is
A

composed of vector u, while the last column consists of vector S.

The covariance matrix ts transformed to the new coordinate system using the following

relationship,

[Q]= [T] [covi [T]t

If KCOV is zero, no transformation is performed and the output matrix, Q, is set

equal to the input matrix, COV.

139

SUBROUTINE CRASH

Calling Sequence: CALL CRASH

Purpose: Subroutine CRASH determines the
time of closest approach to the
target planet.

Common Blocks Required: CNTRL, INPUT, INTVAR, PLNET,
SAVE, STATE

Subroutines Required: DVMAG, INTERP, PLANET

Input/Output

SYMBOLIC PROGRAM COMMON
I/O NAME DIMENSION .- BLOCK DEFINITION

I JC 1 CNTRL(7) Central planet number

I JT 1 INPUT(1031) Target planet number

I KCA 1 CNTRL(11) Counter used in the
closest approach
iteration

I KHIGH 1 INPUT(1079) If set to 1. Subroutine
will determine the time
of apoapis.

I RSAV 1 SAVE (41) Flight path angle on
last step

I T 1 STATE(10) Current time since
state epoch

O TCA I STATE (29) Time of closest
approach

I X 6 STATE(1) Current spacecraft
position and velocity
vectors

I XP 6, 12 PLNET(1) Planet's position and
-- .-- velocity vectors.

140

Theory:

The time of closest approach is determined by an iterative process using the flight

path angle as the dependent variable and time as the independent variable. The

time is adjusted in order to drive the flight path angle to zero. A Newton-Raphson

type iteration is employed to determine the time. The sine of the flight path angle

at time, t, is determined from:

R3= X) VX V (1)

w'here X and V are the position and velocity vectors at time t determined from

subroutine INTERP.

The derivative of this sine with respect to time is numerically determined by

calculating the sine at two times as described in equation (1) and dividing their

difference by the difference in time as,

DERIV = (R2 - R3) / DELT (2)

where R2 is the sine of the flight path angle at T + DELT. The change in time to

drive the sine of the flight path angle to zero is calculated from:

DEL = R3 / DERIV (3)

The sine of the flight path angle is determined at time T = DEL. The iteration is

assumed to converge if the flight path angle is within a small tolerance around zero.

If not, the derivative is recalculated in equation (2) with T = T2 + DEL and the

process repeated. A limit of 20 iterations are allowed. A limit to the size of the

step, DEL, is also employed to help assure convergence.

Description:

The time of closest approach is determined through a double iteration using this

routine along with subroutines INTERP and TIMEC. There is an iteration inside

subroutine CRASH to determine the time of closest approach using subroutine

141

INTERP. In this iteration the spacecraft's state at time, T, is determined

using the interpolation logic in subroutine INTERP. T is adjusted until the

spacecraft's flight path angle is within a specified tolerance. A Newton -Raphson

type iteration discussed in the theory is employed to determine this time. The

second iteration loop is associated with subroutines TIMEC and CRASH.

The time of closest approach is transfered to TIMEC. The time of closest approach

is considered a discontinuity time in subroutine TIMEC. Thus, if the current

time is greater than the time of closest approach,the state is restored to the

values at the last step and the compute interval is adjusted to integrate to the

time of closest approach. The time of closest approach is recalculated in

subroutine CRASH at the discontinuity time. If the new time of closest approach

is within a tolerance of the last time of closest approach, it is assumed that

convergence has been achieved on the time of closest approach. If not, the new

time of closest approach is used as a discontinuity time in TIMEC and the iteration

repeated. The iteration between TIMEC and CRASH usually converges in one or

two iterations. This iteration would not be necessary if the interpolation logic

exactly matched the numerical integrator. KCA is a counter used to determine

the number of TIMEC-CRASHI iterations. A limit of 7 iterations are allowed.

142

SUBROUTIN- CRASH

ENTER

cJT Transfer state to

JC target planet

= JT

Calculate current flight
path angle, R3

KCA

-00

<<3 /RSA >0HIGH 50

0>0 0

<0

10

Determine time of closest approach using
ewton-Raphson scheme, equations (2)

and (3)

Solution TCA=

conver 1.D20

yes

RSAV = R3

RETURN
143

SUBROUTINE CROSS

Calling Sequence: CALL CROSS (X, Y, Z)

Purpose: This subroutine calculates the vector

cross product

Common Blocks Required: None

Subroutines Required: None

Inputs / Outputs

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

Calling

I X 3 Argument. Input vector X

C alling

I Y 3 Argument Input vector Y

Calling

O Z 3 Argument Output cross product

Description:

The vector cross product is determined by this subroutine. The cross product is

determined by

Y1 = X2Y3 - X3 Y2

Y2 = X3 Y1 - X1 Y3

Y3 = X1 Y2 - X2 Y1

144

SUBROUTINE DATE

Calling Sequence: CALL DATE (YEAR, DAY, QM, HR, DJO)

Purpose: DATE converts a calendar date to its julian

date.

Common Blocks Required: None

Subroutines Required: None

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION
CALLING

I DAY 1 OPERAND Day of the month
CALLING

O DJO 1 OPERAND Julian date
CALLING

I HR 1 OPERAND Hour of the day
CALLING

I QM 1 OPERAND Month
CALLING

I YEAR 1 OPERAND Year

Description:

Date calculates the number of days since 1900 and adds it to the modified julian date
of 1900 to get the actual modified julian date.

145

SUBROUTINE DOPLER

Calling Sequence: CALL DOPLER

Purpose: This subroutine determines the velocity away from the

visible tracking sites and determines the doppler frequency
shift.

Common Blocks Required: CNTRL, CONST, INPUT, OBSIT, STATE

Subroutines Required: DVMAG, M50EPM, ROTATE, ORBIT, INTEG, UPDATE

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

I CAR1 1 INPUT(408) Spacecraft's primary carrier frequenc
Spacecraft's secondary carrier

I CAR2 1 INPUT(409) frequency
Modified julian date of

I DJO 1 INPUT(46) state epoch

I DJ1 1 INPUT(37) Modified julian date of liftoff epoch
Velocity of the tracking stations due to

I DOBS 10,2 OBSIT(1) the Earth's rotation

I DX 3 STATE (4) Spacecraft's velocity vector

I HR 1 INPUT(53) Hour of state epoch
Doppler first pass flag. Zero on

I KWTDOP 1 CNTRL(10) first pass

I OBSLAT 10 INPUT(480) Latitudes of the tracking stations

I OBSLON 10 INPUT(410) Longitude s of the tracking stations

I SEC 1 INPUT(55) Seconds of state epoch

I T 1 STATE(10) Seconds since state epoch

I TBO 1 INPUT(383) Burnout time of engine 1.

I THRUST 1 STATE(33) Engine thrust

146

SYMBOLIC COMMON
I/O N_-AME DIMENSION BLOCEK DEFINITION

I TIG 1 INPUT(380) Ignition time of engine 1.

I X 3 STATE(1) Spacecraft's position vector

I XMIN 1 INPUT(54) Minutes of state epoch
Vectors from center of Earth to trackin

I XOBS 10,3 OBSIT(21) stations in Earth equator and GreenwicL

I UJT 1 STATE(32) Current modified julian date

I W 1 STATE(35) Current spacecraft mass

Description:

The spacecraft's velocity with respect to a rotating Earth must be determined in order

to calculate the velocity away from a tracking station. Subroutine M50EPM is used to

determine the transformation to the Earth equator and Greenwich. The vector from the

observation site to the spacecraft is established from

XOB = XE - XOBS (1)

where XE is the position vector of the spacecraft in the Earth

equator and Greenwich, and

XOBS is the vector to the tracking site obtained from

OBSIT common.

The spacecraft is visible from the tracking station if

XOB * XOB >0 (2)

On the first pass through this subroutine (KWTDOP = 0), KSTAT (I), where I

corresponds to the tracking station, is set to one if the spacecraft is visible. This

array is used to output the information only for the visible tracking stations. The

velocity relative to the tracking station is obtained from

V = DXE - DOBS (3)

147

where DXE is the velocity of the spacecraft in the Earth equator and

Greenwich, and

DOBS is the velocity of the tracking station from OBSIT common.

Note: The z-component of V is equal to z-component of DXE since

the z-component of DOBS is zero.

Finally, the velocity away from the tracking station is determined from

RDOT = (V * XOB) / IXOBI (4)

and the doppler shift is obtained from

DOP = (CAR2 2 - CAR12) RDOT /C (5)

where CAR1 and CAR2 are the spacecraft carrier frequencies, and

C is the velocity of light

The spacecraft's velocity away from each of the visible tracking stations and the

corresponding doppler shift along with the current thrust and mass are output on

unit 6. The KWTDOP flag is used to control the writing of the heading for the

writes.

148

SUBROUTINE DOPLER

ENTER

> TBO

TBO

Establish output time TM, TI and zero-
out KSTAT array

KWTDOP = 1

Output part of doppler heading

Calculate transformation matrix to
Earth equator and Greenwich using
M50EPM and rotate using ROTATE

SIncrement tracking stations

Determine position relative to station
using equation (1)

Determine if spacecraft is visible from equation(2)

visible no

yes

Determine velocity from tracking station using
equations (3) and (4) and doppler shift from (5)

yes no
more stations 20

149

METH yes
.LT.

no

Call ORBIT (6) yes METH
yes GE.

for ELM

no

Call ORBIT (3) to get

ELM (4) METH ELM
mean .EQ.
anomaly + 7
AOP

METH yes
.EQ.

yes no

US3 Mean

METH no Call
.EQ. > CINTI

yes

Set INT = 0

Call UPDATE

RETURN

150

Set up RODT1 array for output

KWTDOP 1

Write rest of doppler
heading

Write doppler output

KWTDOP = 1

RETURN

151

FUNCTION DOT

Calling Sequence: Z = DOT (X, Y)

Purpose: This function performs the
vector dot product

Common Blocks Required: None

Subroutines Required: None

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

FUNCTION
O DOT 1 NAME Vector dot product

CALLING
I X 3 OPERAND Input vector X

CALLING
I Y 3 OPERAND Input vector Y

Description:

The vector dot product is obtained from

DOT = X 1 Y1 +X2 2 + X 3 Y3

where

X., Y. i = 1, 3 are the components of the X and Y vectors, respectively
1152

152

SUBROUTINE DRAG

Calling Sequence: CALL DRAG

Purpose: This subroutine calculates the spacecraft
acceleration due to atmospheric drag.

Common Blocks Required: CNTRL, CONST, GRAVTY, INPUT,
PERT, PLNET.

Subroutines Required: ATMO, VNORM.

Inputs/Outputs

I/O SYMBOLIC DIMENSION COMMON DEFINITION
NAME. BLOCK

I DST 12 PLNET (73) The JC element is the
spacecraft distance from the
central planet.

I JC 1 CNTRL (07) Central planet number

I KATMOS 1 INPUT (1097) Drag flag

I POS 3 GRAVTY (1) Position vector from central
planet.

I/O RCART 3 PERT (1) Spacecraft perturbing
acceleration

RE 12 CONST (17) Equatorial radius of the
planet

Description:

This subroutine determines the acceleration due to atmospheric drag. The
magnitude of the acceleration is obtained from:

1 2 6a = - V C (10) 6

2 D

153

where p is the density in g/CM3

V is spacecraft velocity in kmln/sec

CD is the drag-area-mass coeficient

and the multiplier (10)6 is required to convert units. The acceleration is

applied along the velocity vector. The density is obtained from the function

ATMOS while the drag coefficient is set at .03.

154

FUNCTION DVMAG

Calling Sequence: Y = DVMAG (X)

Purpose: This function determines the magnitude of
an input vector

Common Blocks Required: None

Subroutines Required: None

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

FUNCTION
O DVMAG 1 NAME Magnitude of the input vector

CALLING
I X 3 OPERAND Input vector

Description:

The magnitude of a vector is determined from

DVMAG = X + X + X
1 2 3

where
X. i= 1, 3 are the components of the input vector X

1

155

SUBROUTINE EQNS

Calling Sequence: CALL EQNS

Purpose: This subroutine calculates the derivatives
of the variables being numerically integrated.

Common Blocks Required: CNTRL, CONST, GRAVTY, INPUT, INTVAR, INTVRX,
PERT, STATE.

Subroutines Required: ACCEL, AVEQNS, ORBIT, GRAV

Input / Output

SYMBOLIC PROGRAM COMMON

I/O NAME DIMENSION BLOCK DEFINITION

I DJO 1 INPUT(46) Julian date of state epoch

I GM 12 CONST(5) Gravitational constants

I KP 12 INPUT(1001) Planets in the system

I METH 1 INPUT(1013) Trajectory propagator indicator
Derivatives of integration

O RATES 6 INTVAR(8) variables

I RCART 3 PERT(1) Disturbing acceleration

I X 1 INTVAR(1) Current independent variable
Current dependent or

I Y 6 INTVAR(2) integration variables

I UJT 1 STATE(32) Current julian date

156

Theory:

This subroutine calculates the derivatives of the integration variables at the

current time when propagating the state using any of the following trajectory

propagation methods,

1. Cowell

2. Encke

3. NICE/True

4. NICE/Mean

5. NICE/e cos co, e sin e.

The equations which define the derivatives of each of these methods are presented

below.

C owell

Let the origin of the cartesian coordinate system be located at the central planet

of mass M. The disturbing planets are denoted by Mi , and the spacecraft by m.

Then the perturbing acceleration becomes,

R = GM - 1 + SP + a + (1)
p 33 SP T OB

i=l I' *

where
X' is the vector from the central planet to the disturbing planet,

X is the vector from the central planet to the spacecraft,

aSP is the acceleration due to solar pressure,

9T is the acceleration due to engine thrusting,

aOB is the acceleration due to an oblate planet, and

P is IX' -XI

The total acceleration acting on the spacecraft is the sum of the perturbing

acceleration and the acceleration due to the central planet; thus the total

acceleration becomes,

a = GM + R (2)
3

r

157

The above vector equation denotes the acceleration, which is numerically integrated

to obtain the velocity. The velocity is numerically integrated to obtain the position.

Encke's Method

In this method an attempt is made to utilize the knowledge that the motion is very

nearly two-body with respect to the central planet. Thus, only the motion which

deviates from the two-body motion is integrated. This motion is added to the two-

body motion to obtain the position and velocity of the spacecraft.

Let X0 be the position vector of the spacecraft obtained from two-body motion,

and (be a vector describing the deviation from the two-body orbit. The position

vector of the spacecraft is then obtained by,

X = Xo + (3)

The acceleration of the disturbing vector, Z , is obtained as follows:

If the quantity f is defined as

f = 1 -(1 + 2q)- 3/2 (4)

where

-3

q = + i i (5)

i= - x01

then the disturbing acceleration is

-* -
= 3- (fX -) + R (6)

IXol

where A is obtained from Equation (1). This vector is numerically integrated

to obtain the deviation from the two-body orbit. The reference orbit is updated

(rectified) whenever

2
i > 0.001 (7)

158

These equations are much more complicated than Cowell's equations. Also, to

obtain the position along the reference orbit, one must calculate the true anomaly

from the mean anomaly. This involves an iterative solution and is time consuming.

NICE Methods

The three NICE methods involve the numerical integration of the classical orbital

elements to obtain the orbit of the spacecraft as a function of time.

The orbital elements integrated are,

1. semilatus rectum, p

2. eccentricity, e

3. true or mean anomaly, f or M

4. argument of perigee, w

5. inclination, i

6. longitude of ascending node, fl

or, alternately

1. p

2. e cos w

3. e sin w

4. f +

5. i

6. fl

The derivatives of the above quantities are determined and numerically integrated

to determine the instantaneous orbital elements. The derivatives of the orbital

elements are derived in many texts and reports and only the results will be presented

here. The derivatives of the orbital elements are

p = 2 r C (8)

e = Rsin f + 2 cos f + e (1 +cos 2 f) C

159

sinf (1 + CR - sin u cot i

i

(e

= (r cos fR- sinf + C

f 2 eP/
r

Sp (1 + e2) cos f 2r sinf
n+)-.R - +r\ C

M e p C p(-for e

(e sinw) = - cos/ R + 1 + sin u + e C

r
+ - e cosw sin u cot i W

p

L sin+uot i0r P
+ e - sin u cot i W

U -2 p

r

where n is the mean motion

11 is the gravitational potential

U = + f

r is the radius

R, C, W are the perturbing accelerations

The perturbing accelerations are written with respect to the orbit plane. They are

in the radial direction, circumferential direction and normal to the orbit plane. These

accelerations are obtained from the perturbing acceleration derived in Equation (1) by

rotation to the orbit plane, as

160

R R

C = [A] R2 (9)

W R 3

where

r cos 1 cos u - sin 0 sin u cos i sin 1l cos u + cos 0 sin u cos i sin u sin i

[A] cos sin u - sin 0 cos u cos i - sin sin + cos cos u cos i cos u sin i (10)

sin sin i -cos sin i cosi

The difference between the NICE/Mean and NICE/True methods is that the NICE/Mean

method uses the mean anomaly equation of (8) while in the NICE/TRUE method, the true

anomaly is used. When the last of the NICE methods are used, the last 3 equations of

equation (8) are used instead of the equations for e, and .

Description:

The derivatives of the integration variables are as described in the above equations.

The set of equations used is determined by the METH flag as follows:

METH = 1. Cowell

2. Encke

3. NICE/True

4. NICE/Mean

7. NICE/ e sintW, e cosW.

The current set of integration variables and the independent variable, time, is

brought into the subroutine via INTVAR common. This common block is initiated in

subroutine INTEG. The Encke reference orbit is input via PERT common. The

disturbing acceleration is calculated in subroutine ACCEL and transferred to EQNS

via PERT common.

The logic flow consists of testing the METH flag to determine which set of equations

to calculate. The derivatives are determined in a straightforward manner using

the equations described in the theory.

161

SUBROUTINE EQNS

ENTER

determine current julian date

=1

set first three rateQ
equal to velocity

Call ACCEL to get perturbing
acceleration. (Note: RATES 4-6
determined in subroutine GRAV)

RETURN

162

2 (Encke)

Get position on
reference orbit

Get actual position with respect
to central planet

Call ACCEL to get perturbing
acceleration

Determine Encke's derivatives
from equation (6)

Set up RATES array as follows

RATES (1-3) = Y (4-6)

RATES (4-6) =

RETURN

163

C B taveraging

Set up sines and cosines
of orbital elements

S=7 Determine argument of

perigee, eccentricity
and true anomaly

Call ORBIT to determine
position of spacecraft

Call ACCEL to get
disturbing acceleration

Set up matrix of equation (10) and rotate
odisturbing acceleration to the orbit plane

Calculate the rates of P, i,

from equation (8)

164

31

Calculate rates for e and t

Calculate =3

30

Calculate the rates
of e sin U, e cos&4

f+u

Return

165

SUBROUTINE FIELD2

Calling Sequence: CALL FIELD2

Purpose: FIELD2 uses the chain rule to calculate the partial
derivatives of the gravitational potential.

Common Blocks Required: CNTRL, CONST, FIELDM, GRAVTY, INPUT,
INTVAR, PERT, STATE

Subroutines Required: M50JPM, ROTATE, SPNM

Reference: Gulick, L. J., "A Comparison of Methods for Computing
Gravitational Potential Derivative," ESSA TECHNICAL
REPORF C & GS 40, 1970.

Input/Output

SYMBOLIC COMMON
I/O DIMENSION DEFINITION

NAME BLOCK

I CC 16, 17 FIELDM(17) Tesseral coefficients

I GM 12 CONST(5) Gravitational constants

I JC 1 CNTRL(7) Central planet number

I KVAR 1 INPUT(1096) Gradient flag

I NMOD 1 FIELDM(298) Number of zonals

I POS 3 GRAVTY(1) Position of S/C

I RE 12 CONST(17) Equatorial radii

I RCART 3 PERT(1) Acceleration of S/C

I SELNEQ 3, 3 FIELDM(289) Transformation matrix

I TIME 1 INTVAR(1) Time since epoch

166

I - UJT 1 STATE(32) Modified Julian date

I WP 12 CONST(29) Planet spin rates

I XJ 16 FIELDM(1) Zonal coefficients

Theory:

The gravitational potential of the central planet in terms of spherical harmonics may

be expressed as

V 1 + (- n P m (sin) x
r n

n-1
m=o

m m
(C cos (mX) + S sin(m)

n n

where GM is the gravitational constant, R is the equatorial radius of the central

planet, C m and S m are the coefficients representing the mass distribution,

pm (sin3) is the associated Legendre polynomial of degree n and order m, and

P,, and r are the body-fixed latitude, longitude, and radius of the point where the

disturbing force is to be evaluated.

167

The force due to this potential is the partial derivative of V with respect to inertial

cartesian coordinates. One method of evaluating this force is by using the chain

rule to evaluate the derivatives with respect to the body cartesian coordinates and

then rotating to the integration (inertial) frame. This chain rule method incorporates

the following recursion relationship for P' (x)n

d P I) mxP (x) P (x)
n n n

dx = -x 2 (1-x 2) 4

See Gulick (referenced above) for the derivation of this relationship and for further notes

on the chain rule method.

Description:

The main purpose of FIELD2 is to calculate the partial derivatives of the gravitational

potential. These derivatives are used to evaluate the acceleration of the S/C at any

given position. To use FIELD2 for this purpose, KVAR should be set to zero.

FIELD2 will calculate the acceleration of the S/C due to the central planet using the

input field (CC and XJ), the position of the S/C, and the time. The resulting accelera-

tion vector will be rotated to the integration frame using the transformation matrix

SELNEQ, and then added to RCART.

In addition to this function, FIELD2 may also be used to calculate the gradient of the

force field and the partial derivatives of the force with respect to the spherical har-

monic coefficients of the field. To use this mode of FIELD2, KVAR must be set to

one, in which case the acceleration (described above) will still be output, along with

the matrices D2VDX2 and DFDCX.

168

The symmetric matrix D2 VDX2 contains the second partials of the potential with

respect to the body-centered cartesian coordinates. For a description of the use of

this Jacobian matrix in linear variational theory, see subroutine SHIMMY.

The matrix DFDCX contains the explicit partial derivatives of the force with respect

to the NB different harmonic coefficients to be estimated. The maximum value of

NB is 100. The input vector IX determines which coefficients are to be studied,
th th

and must be set up in the following way. The i element of IX indicates the i co-
th

efficient to be studied, and IX(i) must be equal to the position of the i coefficient

in FIELDM common. The order of the values in IX is crucial since the derivatives

are calculated in the same order as the coefficients are used in FIELD2. This order

is ((Cij, S.., j = 0,.i), i=1, NMOD). The element C.. occupies position 16 x j + i of

FIELDM common and S.. occupies position (i+1) x 16 + j. Thus, if C20, C22, C31'

C32 , C41' S21, S32' S33 are the coefficients to be studied, then NB = 8 and IX would

be 2, 49, 34, 19, 35, 66, 67, 20 since the calculations would be made in the order

C20, S21, C2 2 , C31 , C32 , 532 , $33 and C41. If C33 were to be studied also,then

NB would be 9 and 51 would have to be inserted between 66 and 67 in the vector IX.

The order that the derivatives are output in DFDCX is the same as the order in IX.

169

ENTER

Calculate

S/C's polar

coordinates

Start a double

loop N=1, NMAX

and M=1, N

Calculate each

element in the chain

rule and sum each

individually over

N and M

IF KVAR =.1, calculate

the element of the

gradient and of DFDCX

END LOOP

Multiply components

of chain rule and add

Rotate accelerations

and add to RCART

170

SUBROUTINE FIND

Calling Sequence: CALL FIND (IDSAT, ISET, $)

Purpose: This subroutine reads a file from the GTDS

24-hour hold file to retrieve the state from

the GTDS program.

Common Blocks Required: ELMNT

Subroutines Required: None

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

CALLING

I IDSAT 1 OPERAND Satellite identification number

CALLING Element set number of

I ISET 1 OPERAND desired data

Statement number to transfer

O $ - - to if error return.

Description:

This subroutine is used to retrieve the state and covariance matrix from the 24-hour

hold file written by the GTDS program. The data is read from unit 26 using a direct

read. The record number used in the direct read is determined from the element set

number brought in via the argument list and variables defining the 24-hour hold file

obtained from a read to unit 1.

The data is read into a working array and later transferred to the SET array of ELMNT

common. ELMNT common is used to transfer the data to other subroutines in MAESTRO.

The SET array is defined as follows:

Location Definition

1 Date of state in year, month and day

written as YYMMDD.

2 Time of state in hours, minutes and seconds

written as HHMMSS.SSS.

171

Location Definition

3-5 Cartesian position vector.

6-8 Cartesian velocity vector.

9-14 Keplerian orbital elements.

15-35 Upper triangle of the state covariance
matrix.

36 Start time of fitted data, (year, month, day)

37 Start time of fitted data, (hour, minute, second)

38 End time of fitted data, (year, month, day)

39 End time of fitted data, (hour, minute, second)

40 Root mean square of fit

41 Satellite identification number

42 Reference coordinate system of state

43 Central body indicator

44 Element set number

172

SUBROUTINE FIXATG

Calling Sequence: CALL FIXATG

Purpose: FIXATG controls the fixed-attitude, guidance, logic.

Common Blocks Required: CNTRL, CONST, INPUT, MCCOM, STATE

Subroutines Required: FOWARD, SENSO, POST

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

I JC 1 CNTRL(7) Central body number

I UT 1 CONST(15) GM of the-Moon (km3 / sec2)

I TFINAL 1 INPUT(4) Trajectory stop tine (sec)

I WO 1 INPUT(38) Initial weight of the spacecraft (kg)
Central value of right

I RAI 1 INPUT(47) ascension, (deg)

I DECI 1 INPUT(48) Central value of declination (deg)
Specific impulse of the midcourse

I ASPMC 1 INPUT(441) engine (sec)

I WRETRO 1 INPUT(443) Weight of retro-fuel (kg)

I WDROP 1 INPUT(473) Drop-weight of retro (kg)

I CONE 1 INPUT(474) Step-size for attitude (deg)

I DINK 1 INPUT(479) Midcourse velocity step (km/sec)

O KRASH 1 INPUT(1032) Trajectory stop-type key

I JRA 1 INPUT(1041) Number of right ascension steps

I JDEC 1 INPUT(1042) Number of declination steps

Logical unit number for scope

I KOUT9 1 INPUT(1058) output

I KTF 1 INPUT(1077) Number of velocity steps (negative)

Midcourse pre-ignition state

O XMC 6 MCCOM(6) (km, km/sec)

173

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

O DV 3 MCCOM(12) Midcourse velocity impulse (km/seo
Midcourse time (see after

I TMCS 1 MCCOM(18) anchor epoch)

I DVRET 1 MCCOM(25) Retro velocity impulse (km/sec)
Anchor-launch epoch

I DJDIF 1 MCCOM(39) difference (sec)

I WTF 1 MCCOM(47) Weight after midcourse burn (kg)
Desired end constraints, except

I PSID 10 MCCOM(80) PSID (7) is the central value of

impulse magnitude (km/sec)

I PSI 10 MCCOM(100) Constraint error vector

O IR 1 MCCOM(158) Return key for SENSO

O KDV 1 MCCOM(161) Counter for delta-V steps taken

O ICB 1 MCCOM(165) Midcourse central body number

I X 6 STATE(1) State vector (km, km/sec)

I T 1 STATE(10) Time (sec)

Unit thrust (AV) vector (equator,
I ATT 3 STATE(11) equinox of 1950.0)

174

Description:

FIXATG varies the velocity impulse magnitude to scan the end conditions achievable

with a midcourse burn of fixed thrust direction. The direction may also be systematically

varied to ascertain the effects of attitude errors. FIXATG is called by PROTO within

a loop in which midcourse execution (ignition) time is varying, but, for any particular

entry, ignition time is fixed. The anchor vector state is first propagated to midcourse '

time by a call to FOWARD. The pre-midcourse state is saved in XMC. SENSO is then

called to propagate the state through the burn and on to the target, then to compute end

conditions (TARGET) from the arrival state. The following quantities are printed out

at each step of the scan.

DVM Midcourse velocity impulse magnitude (m/sec)

RTA Right ascension of the thrust (deg)

DEC Declination of the thrust (deg)

RCA Radius at closest approach (km)

INC Inclination (deg)

TFLT Time of flight to closest approach (hours past launch)

ROPA Radius at opposite apsis (km, opposite RCA after retro)

FCP Fuel to circularize at periapsis (kg)

TCF Total correction fuel (kg)

Computation of the last three quantities assumes variable attitude for the retro

and trim maneuvers.

175

SUBROUTINE FIXATG

ENTER

Propagate state
from anchor epoch
to midcourse
execution time

Set magnitude of
velocity impulse

Set right ascension
of midcourse
direction

Set declination of
midcuurse
direction

Compute vector 6 V
Call SENSO to propagate
and compute end conditions

Compute and print results

JDEC times

JRA times

-KTF times

176

SUBROUTINE FOWARD

Calling Sequence: CALL FOWARD (KSET)

Purpose: This subroutine establishes certain constants

to propagate the state forward in time. Calls
are made to subroutines which propagate the
state

Common Blocks Required: CNTRL, CONST, INPUT, INTVAR, SAVE,
SHAD, STATE

Subroutines Required: INTEG, MULCON, ORBIT, OUTPUT, PLANET,
PRINT, TIMEC, TRMN

Input/Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

Array of back distances to the
O DSAD 3, 5 SHAD(1) shadow cone

I/O DX 3 STATE(4) Spacecraft's velocity vector
Ephemeris date corresponding to

I EJO 1 STATE(26) state epoch
Osculating orbital elements to be

O ELM 6 STATE(14) integrated

O KDIS 1 CNTRL(5) Discontinuity flag

O KFIRST 1 CNTRL(12) First pass flag

O KHALT 1 CNTRL(6) Error return flag
Trajectory propagation

I KMETH 3 INPUT(1036) indicator table

I KOUT 1 INPUT(1030) Output frequency flag
Calling If non-zero, more constants

I KSET 1 Operand are initialized
Last flight path angle used in closest

O RSAV 1 SAVE(41) approach calculation.

I T 1 STATE(10) Seconds since state epoch

O TCA 1 STATE(29) Time of closest approach

177

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

O TOUTL 1 SAVE(40) Last output time
Time of saved state used to

O TSAV 1 SAVE(7) restore in,TIMEC
Times corresponding to the shadow

O TSAD 3 SHAD(3) distances in PSAD

I/O X 3 STATE(1) Initial position vector

Description:

This subroutine sets up constants to propagate the state in time, establishes the

integration variables and calls the proper subroutine to propagate the state. The

KHALT and KWTDOP flags are initialized to zero and METH set to KMETH (1). If

the KSET flag is non-zero, the following constants are initialized:

1. TOUTL = T

2. DSAD and TSAD arrays to zero

3. KNTRL (1-6 and 8-10) to zero

4. KDIS and KFIRST to one

5. TCA to a large number

The integration array is established according to the trajectory propagation technique.

If Cowell is to be used, METH=1, the position and velocity arrays in STATE are used as

the integration variables. However, if any other method is used, the ELM array is set to

the integration variables. Subroutines ORBIT and TRMN are used to establish the

proper set of orbital elements when any of the "NICE" methods or averaging is used.

After the integration array is established, subroutine INTEG is used to determine

initial derivatives of the state. The initial state is output using subroutine OUTPUT if

the output frequency flag is greater than 0. Finally, the state is propagated in time

using subroutine TIMEC when numerical integration is desired at MULCON when the

multi-conic algorithm is used.

178

SUBROUTINE GETTAP

Calling Sequence: CALL GETTAP

Purpose: This subroutine reads the ephemeris tape and sets up
CETBL3 common for use in subroutine READE

Common Blocks Required: CETBL2, CETBL3, CETBL9, CNTRL

Subroutines Required: None

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION
Flag indicating status of common

O ICW 1 CETBL2(1) block CETBL3

O IERR1 1 CETBL9(4) Error flag
Time from beginning of ephemeric blocl

O JDIF 1 CETBL9(3) of data to current time

I JD1 1 CETBL9(1) Reference ephemeris julian date

I KREAD 1 CNTRL(8) Ephemeris tape read flag

O NUT 204 CETBL3(830) Nutation output
Planetary and Lunar ephemeris raw

O TAB3 829 CETBL3(1) data from tape
Time from reference ephemeris

I TDAY 1 CETBL.9 (2) Julian date

Description:

This subroutine reads the ephemeris tape and sets up the TAB3 and NUT arrays for use

in subroutine,. READE. If the KREAD flag is zero, these arrays are already established

and no read is performed. Most of the logic in this subroutine is involved in searching

through the ephemeris tape to find the desired record. The time of the desired ephemeris

data, JDP, is determined from the sum of TDAY and JD1. The next record of the

ephemeris tape is read to establish its current time, TAB3(1). The difference between

the current time and desired time is determined. If the difference is negative the tape

179

must be backspaced,while the tape is advanced when the difference is positive. The

number of records to advance or backspace the tape is determined by dividing the

difference by eight,since eight days of data are stored in each record. When the

proper record is determined,JDIF and ICW are set and the subroutine terminates.

Another version of GETTAP is available for use at Goddard Space Flight Center. This

version uses the ephemeris data stored in disk form and the direct read feature is

used to retrieve the data.

180

SUBROUTINE GETTAP

ENTER

JDP =

JD1 + TDAY

KREAD

0
Read tape to obtain TAB3(1) ,

the. time corresponding to the
current second on the tape and
calculate

JD1F = JDP - TAB3(1)

<0 TAB3(1)- JDP >0

JRECL = = 0 JRECG =

JD1F/8
JD 1F

/ 8 +2

JRFCL 35 11JRECG

Skip forward Back space
JRECL-1 ephemeris tape
seconds records

35
35

JD1F = JDP - TAB3(1)

RETURN

181

SUBROUTINE GRAV

Calling Sequence: CALL GRAV

Purpose: GRAV calculates the disturbing accelerations
due to external bodies.

Common Blocks Required: CNTRL, CONST, GRAVTY,
INPUT, INTVAR, PLNET, PERT

Subroutines Required: DVMAG

Input/Output

SYMBOLIC PROGRAM COMMON
I/O

NAME DIMENSION BLOCK DEFINITION
Distance from central

O DST 12 PLNET (73) planet to other planets

Planet gravitational
I GM 12 CONST(5) constants

I JC 1 CNTRL(7) Central planet number

I JMN 1 INPUT(1017) Ephemeris flag

I KP 12 INPUT(1001) Planets in system

I METH 1 INPUT(1013) Method of integration

I POS 3 GRAVTY(1) Spacecraft position

O RATE S 6 INTVAR(8) Derivatives of integra-
tion variables

[/O RCART 3 PERT(l) Accelerations of S/C
Positions and velocities

I XP XP(6, 12) PLNET(1) of planets in system

182 C

Theory:

The acceleration of a body in space due to the presence of another body in space

is given by

GM R
A = t3

where GM is the gravitational constant and R is the vector from the first body

to the second body.

The net acceleration of a S/C with respect to a central planet is given by the

difference between the spacecraft's acceleration and the planet's acceleration.

R Rs/ R.
AS/c GM. 3 -0-4 3

3 R IR. -R/cI I

where j represents the jth planet, S/C represents spacecraftand all vectors are

with respect to the central planet.

Description:

GRAV calculates the disturbing acceleration on the spacecraft due to all external

planets in the system. The planets in the system are determined by the vector KP,

i.e., if KP(i) is not equal to zero, then the net acceleration due to Planet i will be

calculated. The accelerations are added and stored in the vector RCART.

If the moon is the central planet, and osculating elements are used for the moon

(JMN = 4), then the net acceleration on the spacecraft due to the Sun is the

acceleration on the S/C due to the Sun minus the acceleration on the Earth due to

the Sun.

If Cowell's method of integration is to be used, then the acceleration due to the

central planet is added to the other acceleration and the total is loaded into

RATES (4-6) for use in the integration step.

183

SUBROUTINE GRAV

ENTER

j =1

j=j+1

No

in system

Yes

planet j
central planet

No

calculate acceleration on

spacecraft

No

j =12

es

No
systemN

Yes

Moon central planet and No
osculating elements

Yes

calculate acceleration of Sun
on Earth

owell's No
method

Yes

calculate acceleration due
to central planet and load
total acceleration into

RATES

RETURN

184

SUBROUTINE HSDTHR

This subroutine determines the thrust and weight character-

istics of the midcourse motor used on the RAE-B spacecraft. This

subroutine was supplied by Hamilton-Standard Corp., who is the

builder of the motor. Any questions concerning this subroutine

should be directed to Mr. Charles Newman of NASA Goddard Space

Flight Center.

185

SUBROUTINE INPUTF

Calling 'Sequence: CALL INPUTF

Purpose: This subroutine reads the input data cards and
stores the information in the proper common
blocks.

Common Block Required: FIELDM, INPUT, INPUTS

Subroutines Required: OBSET

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DE FINITION

Real part of the input
O A 1000 INPUT(1) array

Real part of the saved
O AS 1000 INPUTS(1) input array

Cosine coefficient of spherical
O C 16,16 FIELDM(1) harmonic potential term.

Array of flags used to indicate
O KMOD 16, 16 FIELDM(525) if a harmonic is input

Integer portion of the input
O KOPT 100 INPUT(1001) array

Integer portion of the saved input
O KOPTS 100 INPUTS(1001) array

O MMOD 1 FIELDM(514) Number of tesserals used

Flag used to determine the type
I MODLEM 1 INPUT(1035) of gravitational field.

Highest zonal for which a
O NIVIMOD 1 FIELD(515) tesseral is desired

O NMON 1 FIELDM(513) Number of zonals used
Sine coefficient of the spherical

O S 16,16 FIELD(257) harmonic potential term

186

Description:

This subroutine reads the input data cards and establishes the working input arrays.

These arrays consist of the A and the KOPT arrays of INPUT common. These arrays

are set equal to the saved input arrays of INPUTS common before the case is initiated.

The saved input arrays consist of the accumulation of all previous input including inputs

from previous cases. Thus, only the inputs which differ from case to case need be

input. The cases are separated by a blank card.

The saved input array is initialized to preset values in the BLOCKDATA subroutine.

However, some of the values of preset inputs are dependent on the program MODE

flag input via location 1044. Hence, logic is incorporated in this subroutine to preset

those inputs dependent on the program mode. The inputs preset and their respective

values are presented in Table I.

A special set of inputs are also included to set up the gravitational field. These inputs

are designated by input locations greater than 2000. The data cards with input locations

in the 2000's must be placed after the normal 1000 series inputs.

The inputs for the gravity field can either define the entire field, modify one of the

preset fields, or use the field set up in the previous case. The MODLEM flag is used

to determine the field as follows:

MODLEM = 1, 2, 3 Modify or use the L1, Earth J 2, or

JPL 15 x 8 field.

= 5 New field input. Field is comprised of only
the 2000 series inputs of the current case.

= 10 Use the field from the last case.

Subroutine OBSET is used to initialize the field when MODLEM = 1, 2 or 3.

187

SUBROUTINE INPUT F

ENTER

IFIE LD=0

= 1 Write end of S

Write
header

Read input ENDFILE KSTOP = 1

data card LOC(1)=

LOC(1) <1

Write out input

card on Unit 6

LOC(1) > 2000

<2000

Store inputs in saved

input arrays

Modify preset inputs
if necessary

188

IFIELD 0

=0

Put saved array into working

input array

Set up inputs dependent on

MODE flag

nitialize NMOD, MMOD, NMMOD

Set up C and S

LOC(1) >1 arrays and 10

IFIELD = 2
<1

. Write out

NMOD, MMOD, NMMOD

IFIELD / 2RETURN

=2

Write out C and

S arrays

RETURN

189

SUBROUTINE INTEG

Calling sequence: CALL INTEG (LOPT)

Purpose: This subroutine sets up arrays for use in
subroutine EQNS where the derivatives of
'the integration variables are calculated.
This subroutine also calls EQNS and / or
the numerical integration routines.

Common blocks required: CONST, CNTRL, INPUT

INTVAR, PERT, STATE

Subroutines required: EQNS, ORBIT,

RKSEVN, TWELVE

190

I/O SYMBOLIC PROGRAM COMMON DESCRIPTION
NAME DIMENSIONS BLOCK

I DELT 1 INPUT Initial compute interval in
I DELTO 1 INPUT (2) automatic compute interval

mode.-

Position and velocity vectors
I DOM 3 PERT (25) on reference orbit when

.... using Encke.: '

I/0 DX 3 STATE. (4) Spacecraft velocity

0 D2X 3 STATE. (7) Spacecraft accelerations

I/O ELM 6 STATE (14) Spacecraft osculating orbital
elements on Encke variables

I GM 12 CONST (5) Gravitational constants

I/O H 1 INTVAR (14) Compute interval

I JC 1 CNTRL (7) Central planet

I/O KDIS 1 CNTRL (5) Discontinuity flag

I KHALT 1 CNTRL (6) Error return flag

I KINT 1 INPUT (1014) Numerical integration scheme
indicator

I KORECT 1 INPUT (1073) Flag not to calculate deriva-
.. tives at the en d of the -step

Positive to integrate a step
I LOPT 1 allient egativ.e to calculate

gu ent d aerivatives only

I METH 1 INPUT (1013) Trajectory propagation method
indicator

I RATES 6 INTVAR (8) Derivatives of state

1/O T 1 STATE (10) Time corresponding to state
in STATE common

O TIME 1 INTVAR (1) Time corresponding to
variables to be integrated in
INTVAR common

I TRU 1 STATE (27) True anomaly of state when
using METH = 4 or 5, or true
anomaly plus argument of

S- perigee when METH = 8 .

1/O X 3 STATE (1) Spacecraft position

/O Y 6 INTVAR (2) Variables to be integrated

191

Description:

The primary function of this subroutine is to set up the integration array before

integration and restore the new state after integration is completed. If LOPT

is negative, numerical integration is not executed and this routine is only used to

determine the derivatives at a specified time. The initial state is brought into

the routine via X and DX or ELM in STATE common. When Cowell is used

(METH = 1), the position and velocity vectors are in X and DX. When the other

trajectory propagation methods are used, the various sets of orbital elements or

Encke's variables are in ELM. Whichever method is used, the state is loaded

into the integration array, Y.

If LOPT is zero or positive,the appropriate numerical integration subroutine

is called to propagate the state over the time step H.

After the state is propagated,the state array is restored to the integration

array in order to set the state to the values after integration. The position and

velocity vectors are also calculated at the end of integrations for use in other

subroutines.

192

SUBROUTINE INTEG

ENTER

Set Y = X METH = 1MET

METH f 1

t Y = ELM

9
a

KOREC = 0 Call EQNS to get derivatives
f integration variables(RATES)

Set X = Y =1 ETH =2 Set ELM = YSX=Y + DOM
=3,4,5,7, 8

Set ELM = Y

Call ORBIT (6) = 7, 8 Call ORBIT (3) to get

to get position METH position and velocity
and velocity

RETURN

193

5

3 5

Call RKSEVN to numerically Call TWELVE to numerica
integrate the state over'one integrate the state over on
step step

T = T+H0

KDIS = 0

194

SUBROUTINE INTERP

Calling Sequence: CALL INTERP (T, Z)

Purpose: To determine the position and velocity
of the spacecraft at times other than

compute times.

Common Blocks Required: CNTRL, CONST, INPUT, INTER, PERT

Subroutines Required: ORBIT, TRMN

Input / Output

SYMBOLIC PROGRAM COMMON
I/O NAME DIMENSION BLOCK - DEFINITION

I ACL 6, 10 INTER(81) Back values of the derivative
, of the interpolation quantities

I GM 12 CONST(5) Gravitational constant

I JC 1 CNTRL(7) Central planet

I INT 1 INTER(131) Number of back values stored

I METH 1 INPUT(1013) Trajectory propagation
.... .. indicator ..

S PI 2 1 CONST(3) Twice pi

I POS 6, 12 INTER(11) Back values of the inter-
.. polation quantities

I T 1 CALLING -Independent variable used
OPERAND in interpolation

I X 10 INTER(1) Back values of the
. independent variable.

O Z 6 CALLING Interpolated position and
... .OPERAND velocity vectors

195

Theory:

The interpolation formula used is of the form

n

P(X) = h0, j (X) fi +hl, (X) f'i +h 2 , j (X) f." (1
j=0

where

P(X) is the interpolated value

X is the independent variable

h0 , hl, h2,j are functions in X
0, j 1, j 2,j

f, f', f" are the back values of the quantity to be interpolated and
its first and second derivatives.

For the cases where only the first derivatives are available,the interpolating polynomial

shown in equation (1) reduces to a Hermitian polynomial and the functions h.. become,

h (X) = [1-2(X-X.) Xj (X j2 (X) (2)

hi, (X) = (X-X) 2 (X)

where X. is the Lagrange interpolating coefficient defined by

n

j(X) = X-Xi)/ (X -X

ifj

also
n

' (X-) = n
i=O 0 1

ifj

When both the first and second derivatives of the interpolation quantities are available,

the functions in the interpolating polynomial become

hk j (X) = j (X))3 (X) K=0,2 (

196

The functions k,j are defined by

0 (X) = 1+ 6 (X-X X)2 - (X -3(X-X (X

01j(x) (X-X) - 3(X-X) X(Xj) (4)

1 2
0,j(X) - 2 (X-Xj)

Where the second derivative of the Lagrange interpolating coefficient is given by

n.2 n
X' (X) = X1X X X)2 -

ii

ifj ifj

The first derivative of equation (1) defines an interpolating polynomial for the first

derivative of the interpolation quantity. Differentiating equation (1) yields

k

P' () = h',j (X) f + h1 , j (X)f' + h' (X) f' (5)

j=0

where

h'. .j(X) = Yij (X) 3 (Xj) i=0, 2

and

Yi,j (X) = 3 (X)-. i, j (
i=1 1

isj

The functions 0 are given by

'l. \1 1 ,
Or,j (X) = 12 (X-X. (X- (X)0,j 1 j /4 I

I I

01, j(X)= 1-6 (X-Xj) >j (X.) (6)

02, j (X) = (X-X)

197

Description:

This subroutine determines the position and velocity vectors at any arbitrary time

by interpolating on saved values of the state and its derivatives. The saved values of

the state and its derivatives are brought into the subroutine via INTER common. This

array is set up by subroutine UPDATE. The values in this array are the integration

parameters. Thus if METH = 1,this array contains the position and velocity vectors,

whereas it contains the orbital elements if METH=3. If METH = 1 or 2, the state and its

first and second derivatives are contained in INTER. Only the state and its first

derivative are available when METH is other than 1 or 2.

When METH equals 1 or 2,the position (or position from reference orbit) is obtained

using equations (1), (3) and (4). The velocity (or velocity from reference orbit) is

obtained using equations (5) and (6). When METH is other than 1 or 2, the state is

obtained from equations (1) and (2).

The position and velocity vectors are determined from the interpolated state. These

quantities are set in the Z array and returned through the argument list.

198

SUBROUTINE INTERP

ENTER

Initialize
constants

Determine the Lagrange interpolating
coefficient and its first and second
derivatives

MT =1 or 2

1, or 2

Calculate h.
from

Equation (2)

Interpolate for state

using equation (1)

Determine position and

velocity vectors from
interpolated state

RETURN

199

Determine 9i j and 0' using

equations (4) and (6)

Interpolate for position and velocity or Encke

variables using equations (1) and (5)

29

200

SUBROUTINE JET

Calling Sequence: CALL JET

Purpose: JET computes a first-guess translunar midcourse

velocity impulse using patched-conic assumptions.

Common Blocks Required: CONST, INPUT, INTVAR, MCCOM, PLNET, STATE

Subroutines Called: BCONIC, CROSS, DOT, DVMAG, MVTRN, M50LEQ,
ORIENT, PLANET, RETDV, ROTAIT, TRMN, VNORM

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

I RTD 1 CONST(1) Radians to degrees conversion factor

I GME 1 CONST(7) GM(km /sec2) for the Earth

I GMM 1 CONST(15) GM(km3/sec 2) for the Moon

I WTO 1 INPUT(38) Initial spacecraft weight (kg)

Julian date (days) of anchor

I DJO 1 INPUT(46) vector epoch

I JT 1 INPUT(1031) Target body number (11)

I MCOUT 1 INPUT(1050) Extra output key (prints if . GE. 3)

O TINT 1 INTVAR(1) Time for anchor epoch (sec)

O DVMC 3 MCCOM(12) Midcourse velocity impulse (km/sec)
Desired miss-vector (km)

I BVD 2 MCCOM(19) if IBTR = 1

I DVB4 1 MCCOM(24) Velocity expended previously (lun/sec)
Desired radius of closest

I PRD 1 MCCOM(80) approach (kin)

Desired selenographic approach
I OINC 1 MCCOM(81) inclination (deg)

Desired time to closest approach (sec)
I DTFLS 1 MCCOM(82) measured from anchor epoch, DJO

201

SYMBOLIC COMMON

I/O NAME DIME NSION BLOCK DEFINITION"

I VINFD 1 MCCOM(83)I Desired hyperbolic excess velocity km/see
Desired circular excess velocity

I DCEV 1 MCCOM(84) (km/sec) after retro

I/O NGROPT 1 MCCOM(163) Gradient re-computation key

I KGLAW 1 MCCOM(164) Guidance law key
End constraint type key

I IBTR 1 MCCOM(167) (1 for BVD, 2 for PRD and OINC)

O XP 6, 12 PLNET(1) Ephemeris state of body I (km, km/sec)

I X1 6 STATE(1) Pre-maneuver state (km, km/sec)

I TIME 1 STATE(10) Time(sec) of X1 referred to anchor epoch

I EJO 1 STATE(26) Ephemeris time (days) at anchor epoch

O EJT 1 STATE(28) Ephemeris time (days)

Introduction:

The method to be described has been fruitfully applied to the determination of midcourse

correction maneuvers for the RAE-B mission. It has been used as a pre-targeting device

to provide "first-guess" midcourse corrections to a precise differential-correction-type

targeting scheme. In this role, the method has eliminated the need for non-linear targeting

measures such as control limiting and gradient re-computations and greatly reduced the

number of trajectory calculations required.

A gross description of the method would be "patched-conic targeting with constrained end

conditions. " Refinements which contribute to the success of the method are primarily

found in the use of the Jacobian energy for targeting and in the use of radius of closest

approach and inclination as terminal condition parameters. \

Transfer Phase

Schematic for a Transfer Trajectory

202

The transfer phase is treated as a single conic section relative to the central body.

The first terminal of this phase is the point of the midcourse correction on the

uncorrected transfer trajectory at radius R1 , velocity V1 , at time t1 . The second

terminal is on the sphere of influence of the target at a radius R2 . The second

terminal's radius vector is computed from

R2 = Rt + P (1)

where Rt is the position of the target at t2 relative to the central body and where P

is a vector from the central body to the point of entry of the target's sphere of

influence. The time, t2, of arrival at the sphere of influence is computed from

t2 =f - (2)

where tf is the time of arrival at closest approach (specified a priori) and where 7

is the time required to travel on the approach hyperbola from the sphere of influence

to closest approach.

The arrival phase parameters, P and 7, will be described later. An iterative solution

of Lambert's Problem (i.e., "Find the conic section passing from R1 to R2 in time

t2 - t'") is employed. This solution provides V1 , the velocity on the transfer conic

at the first terminal, and V2 , the transfer conic's velocity at the second terminal.

The midcourse correction impulse, AV, is computed from

AV = - V (3)

and the target-relative velocity, V, at t2 is

v = v2 -V (4)

where Vt is the target's velocity at t2 relative to the central body.

The first transfer conic is computed with P in the target's orbital plane at 200earthward

from tangential. The target relative transfer time, 7, is fixed at 66, 000 seconds.

203

The target-relative velocity derived from this first conic is used to initiate the arrival

phase calculations. A two-or-three-step iteration (transferring V to arrival phase

calculations and P and 7 to transfer phase calculations) will

Transfer
Phase

P,1 V

Arrival

Phase

converge to a steady-state value for AV. This answer is the impulsive patched-conic,

fixed-time-of-arrival midcourse correction.

Arrival Phase

The arrival phase computations use the target-relative approach velocity and desired

arrival conditions to develop (1) the time of passage from the sphere of influence to

closest approach and (2) the point of entry into the sphere of influence. The desired

arrival conditions are specific values of radius of closest approach and inclination.

We develop characteristics which the approach hyperbola must possess in order to

satisfy the desired arrival conditions. We assume that the target-relative approach

velocity vector defines the direction of the arrival asymptote of the approach hyperbola.

Furthermore, we assume that the point of entry into the sphere of influence can be

computed for the next transfer phase using the direction of the arrival asymptote and

the target-relative energy from the current arrival phase in its calculation. The energy

of the approach orbit as used in arrival phase computation is defined by equation (5),

C V*V - (5
3 a

where V is the approach velocity. This (Jacobian) energy is adjusted for perturbation

by the target body on the transfer trajectory.

Figure (1) shows an arrival hyperbola whose no-plane character is described by a

closest approach radius, r , and half-angle, a. Given rp, we can use the energy, C3 ,

204

to solve

V

Figure 1

6 0

Figure 2
for the various parameters of the hyperbola

v = (hyperbolic excess speed) (6)
h 3

v = C3 + 2 (closest approach speed) (7)
P

-1 Vp Vh
= (half-angle between asymptotes) (8)

a = - /C3 (semi-major axis) (9)

b = (rp - a) sin c (asymptotic miss distance) (10)

p
e = + 2 (eccentricity) (11)

205

p = - a (semi-latus rectum) (12)

1 aI~ (reciprocal mean motion) (13)
n A

The true anomaly, f, at "patch" distance, r, is computed from

f = cos-1 - 1 /e (14)

and the time of passage, r-, from the sphere of influence to the point of closest

approach is

7 = - e sinh f' - f' (15
n

where f' = In 1 + tan - In 1 - tan (16)
e+1 2 e+1 2

We next calculate the point of entry into the sphere of influence in such a way that

the hyperbola has the specified inclination, id . We first define the arrival asymptot,

S, as V normalized to unity. Then, if K is a unit vector normal to the target's

equatorial plane at time of closest approach, we can define vectors T and R normal

to S as follows. (See Figure 2)

SxK
T = (17)

IS x KI

R = TxS (18)

The miss-vector, B, lies in the orbital plane and in the plane of T and R at an angle 8

measured from T towards R.

B = T cos +R sin8 (19j

206

The plane of the hyperbola is defined by a unit vector, H, in the direction of the

angular momentum.

H = B x S = R cos) - T sin 8 (20)

The condition that the orbit's inclination is id is

H*K = cos id = R.K cos ((21)

which can be solved for cos 0 if IR.KI K jcos id . If (IR K > (cos id , it means

id cannot be attained. In that case, the best that can be done is

(cos id
cos9 = 1 sign /CRSi (22)

The sign on sin 8 = 1 - cos 2 can be chosen to make the miss-vector lie

above or below the equator in the miss plane. Having now calculated B, we can

form the vector, P, from the target's center toward the point of entry into the sphere

of influence.

P = r S cos (f+a) + B sin (f + a) (23)

It has been found beneficial for convergence of the arrival-transfer iteration to

introduce a "gain" of .7 on the change of P between iteration steps.

The computations above provide the point of entry of the sphere of influence and the

time of passage from the sphere of influence to closest approach. The point of entry

is then used to establish a new second terminal position for the transfer trajectory.

Guidance Laws

The solution provided by the above process is the fixed-time-of-arrival (FTA)

guidance solution. The FTA guidance law constrains arrival (at closest approach)

time, tf, to be a specific value while satisfying the desired end conditions of radius

of closest approach and inclination. Other guidance laws of interest relative to the

RAE-B mission are:

1) minimum midcourse fuel,

207

2) fixed target energy, and

3) variable target energy.

Each of the other guidance laws constrain radius of closest approach and inclination

just as the FTA law does, but do not specifically constrain arrival time. The

minimum midcourse fuel law embraces the "critical plane" solution, the fixed target

energy law constrains hyperbolic excess speed at the target, and the variable target

energy law constrains post-retro velocity at the target subject to a prescribed

de-boost strategy. The solution for each of these laws, however, corresponds to a

particular arrival time (or, flight time), so flight time is used as the independent

variable in seeking solutions for each law.

The MFG and MTF laws are pre-targeted by means of a Newton-Raphson-type iteration

with flight time as the independent variable. The iteration seeks to null the dot

product of the difference of two successive midcourse correction impulses with the

impulse itself. That is, it seeks to find the flight time for which the magnitude of

the correction velocity doesn't change (i.e.,is minimum).

Equation 24 defines the condition for minimizing the magnitude of AV.

V - d (AV) = 0 (24)

where t signifies flight time in this case. We define tn to be the flight time for the

n-th trial and AV to be the velocity impulse for that trial. Then, approximately,n

(d V) AV n - V n - (25)

d n t -t (25)n n-1

and more approximately,

AVn+ = AVn +(tn+ - t) d dtV) (26)

208n

208

We look for t such that equation 27 holds.
n+1

/d Xa)n1 0 (27)

n+l

By making liberal use of equations 25 and 26, equation 27 may be solved to render

t -t.
n+1 n

AVn (AV,- AVn-1)t - t = -(t - t) (28)
n+1 n n n-i 2

IAVn - AVn-A

This process converges well in all cases tested. The resultant AV changes very

little with precise targeting, although the corresponding flight time shifts by an

hour or two.

The fixed time of arrival guidance law is pre-targeted to 1. 015 times the desired flight

time. This empirical factor tends to compensate for the difference between patched-

conic and integrated-perturbed lunar transfer trajectory flight times. No iteration

is required as for the other guidance laws, since flight time is both the third constraint

of the FTA law and the independent variable for pre-targeting.

The pre-targeting process for the FTE and VTE guidance laws include a regular

Newton-Raphson iteration to null the third constraint by varying flight time. For the

FTE law,the third constraint error function is

3= vm (desired) - C (29)

where C3T is defined by equation 5. For the VTE law, the function to be nulled is

'3 - C3T + + 6 vr (30)
pd pd r

where rpd is the desired distance of closest approach and 6vr is the velocity impulse

imparted by the retro motor. The VTE law usually has two solutions, i.e., two flight

209

times for which = 0. The iteration is constrained to find the solution with positive

slope, which is the solution of the longer flight time.

210

SUBROUTINE JET

Initialize:
A 0

Setp to (110, O)
in or%ital coordin-

New patch time 10 New patch time

Compute Moon's

sta at patch
ti --

R =R + P2 m

V2 = V m

Call BCONIC to obtain

AV and V

Compute new P to patch

point with gain of .7 on

change

c tTest
Too big Test

change in

small

enough

1 5 KGLAW 3,4

Test 2 Test
o- i 900 ok error in end

AVI constraint

Compute increment Compute increment

in transfer time to in transfer time

minimize to null error, '5

211

SUBROUTINE LUNA

Calling Sequence: CALL LUNA

Purpose: To determine the position of the Moon with
respect to the Earth.

Common Blocks Required: CONST, CNTRL, INPUT, INTVAR, MOON,
PLNET, STATE

Subroutines Required: MVTRN, M50MDT, OBLTY, ORBIT, ROTATE,
TRMN

Reference: 1. Supplement to the American Ephemeris and
Nautical Almanac, U.S. Naval Observatory,
U.S. Government Printing office.

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

I DJO 1 INPUT(46) Modified julian date of state epoch

I EJO 1 STATE(26) Modified ephemeris epoch

I ELMMN 12 MOON(1) Osculating elements of Moon

I FOM 1 MOON(15) Mean anomaly at epoch of Moon's
osculating elements

I GM 12 CONST(5) Gravitational constants of the
planets

I JC 1 CNTRL(7) Central planet number

I JMN 1 INPUT(1017) Ephemeris type flag

I PM 1 MOON(14) Moon's mean motion from osculating
elements

I RAD 1 CONST(1) Radian-degree conversion factor
T ',' I I ,A ,I T INTVAR(l) Time since state epoch ephemeris

desired

I TVPI 1 CONST(3) 2 r

I TMOON 1 MOON(13) Epoch of osculating lunar elements

0 XP 6,12 PLNET(1) Positions and velocities of the
planets

212

Theory:

This subroutine calculates the position and velocity of the Moon from the mean element,

mean elements plus extra terms from the lunar theory -or from input osculating elements.

The mean elements are obtained from the supplement to the nautical ephemeris. The

mean longitude of the Moon , the mean longitude of perigee and the longitude of the

ascending node are obtained from the following polynomials in time:

X = 4.3853720 + 8399.0912 C - 1.97746D-5 C 2

Y * 1.730894 + 71.017994 C - 3.6267D-5 C
2 (1)

= 1.4312588 + 33.757099 C + 3. 6263D-5 C

where

X = longitude of the Moon

y = longitude of perigee

S= longitude of the ascending node

C = number of julian centuries since 1965.

These quantities are in the mean equinox and ecliptic of date. The argument of perigee,

w, and the mean anomaly, AM, of the lunar orbit is obtained from

AM= X-y

(2)

Next,the eccenti'ic anomaly of the lunar orbit is determined from Kepler's equation

for small eccentricities, or
2 3

E = AM + e sin AM 4 e +e (3 sin 3AM - sin AM) (3)
2

where e is the eccentricity o the lunar orbit (.054900489)

The position and velocity of the Moon in its orbit plane can now be obtained from

X = a (cos E - e)

Y = aV-e sin E

= -V sin E / S(4)

S = V .-e2 cosE /S

where

S = (1-e 2) cos2E + sin7E

V \= /MN/ 2 7 -1) (t he velocity of-the Moon)

a is the semi-major axis of the lunar orbit (384750.8998)

213

The X and Y components are in the lunar orbit plane with the X axis pointing to perigee

and the Y axis in the direction of motion.

The cartesian coordinates of the Moon are next transformed to the mean equinox and

ecliptic of date using the following rotation matrix:

x cos wcos - sino cos x
-cos i sin 0 sinw - cos i sin 2 cosw

= cos w sinO - sin O sin C (5)
+ cos i cos 0 sin + cos i cosn cos w

z sin i sin O sin i cos w

where i is the inclination of the lunar orbit w. r.t. the ecliptic
(.08980414 radians)

The Moon's position and velocity vectors in the Earth's mean equinox and equator of

1950 are obtained from standard rotations.

Extra terms are used in the calculation of the inclination, longitude of the ascending

node of the lunar orbit, mean anomaly and semi-major axis of the lunar orbit when

the proper input flag is set. The terms include the effects of evection, variation,

and other periodic terms due to the Sun's force on the Moon.

The longitude of the Sun and the longitude of the perigee of the Sun's orbit is determined

from mean elements similar to the lunar terms. The polynomials used are:

X s = 4.8860536 + 6.28331958 C + 5.2796 D-6C 2 (6)

ys = 4.9082294 + .030005264C + 7.90246D-6 C2

The changes in the above mentioned quantities are:

i = i mean + .002515665 cos (2s- 2 Cmean)

C F Omean + .02805487 sin (2>s - 2 ,mean) (7)

a = a mean (1 + .0090714046 cos (2 X - 2,s)

and the true anomaly of the Moon is determined from

u = AM + .10975961 sin AM + .0037634149 sin 2AM

+ .00017926303 sin 3AM - .00054493 sin (A - Xs)
(8)

+. 022238412 sin (2X - 2Xs - AM) + . 011493967 sin(2 - 2>s)

- .00324292 sin(\s - is)

214

The osculating lunar position and velocity vectors are determined in a completely

different manner. The mean anomaly at the desired time is determined from the

mean motion and mean anomaly at epoch from

AM = PM (DELT) + FOM

where PM is the mean motion

DELT is the time since epoch (9)

FOM is the mean anomaly at epoch.

The true anomaly is determined from subroutine TRMN,and the position and velocity

vectors obtained from the osculating elements from subroutine ORBIT.

Description:

The ephemeris epoch and time since the epoch that the ephemeris is to be

determined are brought into the routine via common blocks. The JMN flag is

used to determine the type of ephemeris as follows

JM = 1 mean elements

= 2 mean elements plus extra terms

= 3 osculating elements.

If JMN equals one or two, the mean elements of the lunar orbit are determined from

the polynomials in equation (1). If the extra terms are to be included, they are

determined from equation (6) and the eccentric anomaly from equation (7). Otherwise,

the extra terms are not included and equations (2) and (3) are used. Finally, equation

(4) is used to determine the coordinates and they are rotated to the mean equinox and

equator of date using the rotation matrix shown in equation (5). Subroutines M50MDT

and OBLTY are used to obtain the vectors in Earth mean equinox and equator of date.

The osculating position and velocity vectors are obtained from TRMN and equation (9).

The osculating elements are brought into the subroutine via Moon common and describe

the Moon's orbit with respect to the Earth in the Earth's mean equator and equinox

of. 1950.

The position and velocity vectors determined are loaded into the XP array according

to the value of the current central planet number in JC.

JC = 3 Earth central planet, thus position and velocity
of Moon w. r.t. Earth loaded into XP array in
Moon's position

215

JC = 11 Moon central planet, thus position and velocity
of Earth w. r.t. Moon loaded into XP array in
Earth's position. The negative of the values
determined for the Moon w.r.t. Earth are loaded
into XP(I, 3).

JC / 3 or 11 Some other planet central, thus the position of
the Earth w.r.t. central planet is added to Moon's
position and velocity and loaded into the Moon's

position in the XP array.

216

ENT ER

1,2

Initialize a, e, i

Get mean elements from

equations (1) and (6)

2 add terms to
i and C

calculate wequation (2)

Get eccentricity anomaly = 1 = 2 Use equations (7) and (8) to get
from (3) and determine JMN elements. Get position and

osition and velocity frbr velocity from standard conic

(4) relationships

Rotate to mean of 1950 using
equation (5), M50MDT, OBLTY
and 1VTRN

17

Load vectors into XP array
according to JC

RETUR

217

200

Get mean anomal
from equation (9)

determine true anomaly
from TRMN

Get position and velocity
vectors from ORBIT

17

218

SUBROUTINE MATMPY

Calling Sequence: CALL MATMPY (KRL, A, KCLRR, B, KCR, C)

Purpose: MATMPY multiplies the matrices A (KRL x KCLRR)
by B(KCLRR x KCR) to get C(KRL x KCR)

Common Blocks: None

Subroutines None

Input/Output

SYMBOLIC PROGRAM COMMON
I/O NAME DIMENSION BLOCK DEFINITION

I A Variable Calling Operand Matrix on the left

I B Variable Calling Operand Matrix on the right

O C Variable Calling Operand [Al x [B3
Number of columns

I KCLRR 1 Calling Operand in A and rows in B
Number of columns

I KCR 1 Calling Operand in C and B
Number of rows in

I KRL 1 Calling Operand A and C

Theory:

General matrix multiplication is defined by [C] = [A] x [B]'

where m
Cij = Aik Bkj

k=1

m is the number of columns in A and rows in B.

219

Description:

MATMPY first initializes the matrix C to zero and then forms the sum of the

products above for i = 1, KRL and j = 1, KCR. The arrays are singly-dimensioned

to avoid variable dimensioning.

220

SUBROUTINE MCBURN

Calling Sequence: CALL MCBURN

Purpose: MCBURN accepts the pre-midcourse state and time

plus a velocity impulse, computes the post-midcourse

state and time.

Common Blocks Required: CNTRL, CONST, INPUT, MCCOM, STATE

Subroutines Called: DVMAG, FOWARD, DOT, BURND

Input/Output

/0 SYMBOLIC PROGRAM COMMON
NAME DIMENSION BLOCK

0 JC 1 CNTRL(7) Post-maneuver central body number

I GM 12 CONST(5) GM gravitational array (km3/sec2)

I G 1 CONST(45) Earth's surface gravity (km/sec)

0 TFINAL 1 INPUT(4) Integration stop time (sec)

I WTO 1 INPUT(38) Initial spacecraft weight (kg)

0 TCOMP 10 INPUT(170) Time (sec) to change integration step size

0 DELT 10 INPUT(180) Integration step size (sec)

I TWD1 3 INPUT(320) Times (sec) for weight flow rate changes

I IWDOT1 3 INPUT(350) Weight flow rate changes (kg/sec)

0 ITIG 1 JINPUT(380) Ignition time (sec)

0 TB0 1 INPUT(383) Burnout time (sec)

Specific impulse of the midcourse
I ASPMC 1 INPUT(441) motor (sec)

_ motor (sec)
INPUT

0 KRASH 1 Trajectory stopping key
(1032)

INPUT
0 KMETH 1 Trajectory computation method

(1036)

INPUT
I IBURN 1 Burn computation method key

(1071)

221

i SYMBOLIC PROGRAM COMMON

NAME DIMENSION BLOCK

XMC 6 Pre-maneuver state (km, km/sec)(6)

MCCOM
DV 3 MCC(M Midcourse velocity impulse (km/sec)(12)

MCCOM
TMCS 1 Midcourse initiation time (sec)(18)

MCCOM
KBURN 1 Burn maneuver computation key(154)

MCCOM
ICB 1 MCCM Central body of XMC

(164)

X x 6 STATE(1) Post-maneuver state (km, km/sec)

T 1 STATE(10) Post-maneuver time (sec)

ATT 3 STATE(11) Thrust attitude (unit vector)

WEIGHT 1 STATE(34) Spacecraft weight (kg)

222

Method:

MCBURN's method for computing the post-midcourse state and time is determined

by the input key, KBURN.

Impulsive (KBURN. LE. 0)

In this case, the input velocity impulse, DV, is simply added to the pre-midcourse

velocity to form the post-midcourse state.

X = XMC + DV (1)

T = TMCS (2)

Finite Burn (KBURN. GT. 0)

In this case, the input velocity impulse, DV, is used to calculate the burn duration

and thrust attitude. The computation of burn duration assumes that the thrust mag-

nitude is proportional to mass flow rate, that the mass flow rate decreases linearly

in time, and that the velocity impulse is entirely attributable to thrust. - Defining

the characteristic velocity, c, of the velocity correction package as the product

of gravity, G, and specific impulse, ASPMC, we write thrust as follows:

T dm
cm dt (3)

The minus sign is necessary here if we define m to be positive.

The acceleration due to thrust is thrust/mass, so the velocity impulse, 6v, due

to thrusting for time tb is:

6v = f'L dt = -ctnLm)] . (4)
I , L m(o)

Equation (4) may be solved (given 6v = IDV) for the mass expenditure, 6m.

6m = m(o) -m(tb) = m(1 -e- v) (5)

223

Under the assumption of a linear mass flow rate, we can solve for burn duration

as follows:

r(t) = m(o) + t (m<0) (6)

mtb2
6m =f m dt = r(o) tb + -2 b(7)

0

m g m (o) + m(o) +2 i6m m (8)avg 2

8m
tb in (9)

avg

This form (9) of the solution to (7) is preferable to the more-standard quadratic-

equation solution because it does not require division by ii and reduces immedi-

ately to the linear-equation solution if il= 0. The thrust direction, T, is

computed parallel to DV.

S DV
T V (10)

8v

The method (KBURN. NE. 6) for computing the post-midcourse state for a finite

burn is to integrate the equations of motion over the burn duration.
tb

X = XMC + { X (gravity + thrust) dt (11)

T = TMCS + tb (12)

Closed-Form Approximation (KBURN. EQ. 6)

The double integration of the thrusting acceleration can be done in closed form

if a mass flow rate which varies linearly with burn time is assumed. The super-

position of this closed-form solution -with the thrust-free state-change solution

during the burn provides an excellent approximation to the numerically-integrated

solution. In MCBURN, the closed-form solution is superimposed only on the

224

multi-conic thrust-free solution. The closed-form development follows. The

position (6R) and velocity (5V) increments are presented.

6V = f dt = -cT c n[(13)
0 m(0)

tbt
b

6R = 6V dt = - cTj n m- dt [m=m(t),mo=m(o)] (14)

O O O

To evaluate the integral in (14), we note from Eqs. (6) and (7) that

dm = fil dt (15)

and
1 .2 .2

m= m -- (m -m)) (16)
o 2i 0

The integral is

m b 1 1 .2 .2
n m dt = :. tn 1- .. 1 .2 2 dm

m m o mm o
o o m o

0

m(tb) 2

2 .2
a -2im - nn

m o o

2
is positive if i is less than (-m /2m).

2 2 2 2 -1 x
n(x2+a)dx = xn(x +a) - 2 x + 2

a tan a (18)

Omitting the intermediate algebra, the resultant position change is

b c a 1 atb
6R . +2 tb+ --- tan 1V (19)

m 6v m 2m -o t

It may be shown (but not simply) that the limit of (19) as mff approaches zero is

the constant mass flow rate solution,

225

R { tb m V (20)

The only reason why the closed-form solutions, (13) and (19), do not provide exact

results (under model assumptions) when added to the thrust-free state at burnout

time is that the gravitational acceleration depends on 6R(t). A simple extension

is included in MCBURN's approximate burn to modify the velocity for gravitational

accelerations resulting from 6R(t). It is assumed for this extension that the

gravitational acceleration is (- ~R/r 3). The additional velocity, 66V, is

66V = - (I-3RR T 6R(t) dt (21)3
r o

The integral of (21) can be evaluated as follows.

6R(t) dt = c tn m(t) + 2 t+ - tanat dt Vm m mI + a2 m -In t)10 0 0 0 0

m(tb 6v +(m(t/) V m (22)

ir + m-C6m_'"

66V = - (6V-3RR 6V)m +m- c m (23)3 6v v m (23)

This velocity correction improves the closed-form solution. MCBURN is used

in midcourse targeting. When entered with DV, it provides post-burn state

where the burn time is computed from Eq. (9). The integrated state differences

give rise to end-constraint errors which, through targeting, change DV. The

changed DV does not then represent a velocity impulse, but rather an inter-

mediate variable set which gives rise to a changed burn time and thrust direction

through MCBURN's formulas. Such a procedure has programing advantages over

a procedure which would switch targeting control parameters to time and thrust

direction when passing from an impulsive burn to a finite burn. Logic of this

subroutine is straightforward and requires no flowchart or block diagram.

226

Consider the time-segment (t.: t] on which r is linear

m

m = m(ti)
o

ma = m(ti)
0

t.i t ti+ 1i+1
6t

6R.(t) = t c (n dr
t. 0

t
66V.(t) = 6f R.(T)d r

t.1

o I In
o o

t-t.

6R(t) = - c n 1- - d T (7 = t-t.= 6t)
1 m0 0

m

0

1- T- 7

m -m t-tI Io en(- I 7

m m

c m m22 ct m
m m~6 mv rn

227

SUBROUTINE MCBURN

X = XMC
T = TMCS

KBURN 0 (impulsive)

Call FOWARD to propa-
gate through the burn

6 IBURN

=6

Sclosed form thrust calculations

I 0

inear weight flow Constant weight flow
rate calculations rate calculations

Accumulate over segments
up to BURNT

SAdd perturbations to multieonict
post-burn state

RETURN) 228

SUBROUTINE MCSET

Calling Sequence: CALL MCSET

Purpose: MCSET performs initializing calculations

for midcourse and Monte Carlo analyses.

Common Blocks Required: CONST, INPUT, MCCOM

Subroutines Required: None

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION
Radian-to-degrees conversion

I RAD 1 CONST(1) factor
Gravitational constants

I GM 12 CONST(5) (km3/sec2)

I DJL 1 INPUT(37) Julian date at launch (days)

I DJO 1 INPUT(46) Julian date at anchor epoch (days)

Tracking error covariance
I COV 6, 6 INPUT(56) matrix

Times for weight flow rate
I TWD 10 INPUT(320) table (sec)

I WD 10 INPUT(350) Weight flow rate table (kg/sec)

Desired end constraint values
I PSIDIN 10 INPUT(420) (km, deg, km/sec)

Midcourse pointing error
I/O SIGATM 1 INPUT(435) (deg- rad)

Retro pointing error
I/O SIGATR 1 INPUT(437) (deg-+ rad)

Second midcourse time
I TMCZIN 1 INPUT(440) (sec past DJL)

Specific impulse - midcourse
I ASPMC 1 INPUT(441) motor (sec)

Specific impulse - retro motor
I ASPR 1 INPUT(442) (sec)

I WRETRO 1 INPUT(443) Weight of retro fuel (kg)

Desired circular orbit radius

I RO 1 INPUT(444) (km)

229

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

Desired miss vector components

I BVDIN 2 INPUT(447) (kmn)
Velocity step for partial

I DINK 1 INPUT(479) generation (km/sec)

I TOLIN 10 INPUT(490) Constraint error tolerances

I JT 1 INPUT(1031) Target body number
Mode switch

I MODE 1 INPUT(1044) (3 midcourse, 4 Monte Carlo)

I IBTRIN 1 INPUT(1062) Target constraint type key

I KGLAWI 1 INPUT(1063) Guidance law selector
Number of trials to re-compute

I NGRPTI 1 INPUT(1064) gradient
Number of targeting trials

I NTIN 1 INPUT(1065) allowed

I MCLIM 1 INPUT(1067) Factor of DINK for limiting
Probability for scaling

I IPROB 1 INPUT(1070) purposes (%)

O ALIMIT 1 MCCOM(1) Velocity step limit (km/sec)

O PRX 1 MCCOM(3) Probability scale factor
Initial-guess midcourse velocity

O DV 3 MCCOM(12) impulse (km/sec)

O BVD 2 MCCOM(19) Desired miss vector (km)

O DVB4 1 MCCOM(24) Expended midcourse velocity (km/se
Factor used in VTE law

O PFAC 1 -MCCOM(38) calculations (kg)
Julian date difference,

O DJDIF 1 MCCOM(39) DJO-DJL (sec)
Second midcourse time

O TMC2 1 MCCOM(48) (sec past DJO)

O PSID 10 MCCOM(80) Desired end constraints

O TOL 10 MCCOM(90) End constraint tolerances

O DW 10 MCCOM(110) Expended fuel table (kg) wrt TWD
Number of targeting trials

O NT 1 MCCOM(151) allowed
Number of constraints to test

O NP 1 MCCOM(160) for convergence

230

SYMBOLIC COMMON

I/O NAME DEIMENSION BLOCK DE FINITION

Number of trials to re-compute

O NGROPT 1 MCCOM(163) gradient

O KGLAW 1 MCCOM(164) Guidance law indicator

O IBTR 1 MCCOM(167) Target constraint-type key
Indicators for constraints to

O IPD 3 MCCOM(169) test for convergence

Description:

This subroutine is straightforward and requires only a little explanation. First, the

computation of the desired 5th constraint is normally circular velocity at desired

circular radius, rd = RO, which is also the desired radius of closest approach,

r = PSID(1).

p

PSID(S) = l + desired overburn velocity

The user may choose to target the VTE law to r > r d in just such a way that the

apsidal radius opposite r on the post-retro orbit is rd.

In this case,

2 rd
PSID(5) r

P pd

The second calculation worthy of mention is that of the expended fuel weight table, DW.

It is computed by integrating the piecewise-linear mass flow rate table, WD.

t. + 1

f i 1 J 2 J
t.

1

The third calculation is of PRX, used in BELL for scaling the propagated ensemble

error statistics. The input IPROB is interpreted as the desired Gaussian

probability, P(x).
x

P(x) = p (x) dx = erf x

231

The equation, erf - = IPROB, is solved iteratively with a Newton-Raphson

predictor, beginning with the first guess, x=1.

232

SUBROUTINE MCVERF

Calling Sequence: CALL MCVERF

Purpose: This subroutine controls the logic flow during

Midcourse Verification Analysis

Common Blocks Required: CNTRL, CONST, ELMNT, INPUT, MCCOM,

OBSIT, PLNET, STATE

Subroutines Required: CROSS, DVMAG, FOWARD, MVTRN, M50EPM,

M50LEQ, PUTELS, VNORM

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION
Specific impulse of the midcourse

I ASPMC 1 INPUT(441) motor.

I/O ATT 3 STATE(10) Attitude unit vector

I BURNT 1 INPUT(476) Midcourse motor burn time

I DAY 1 INPUT(51) Day of state epoch

O DELT 10 INPUT(180) Compute intervals

Initial compute interval when in auto-

O DELTO 1 INPUT(2) matic compute interval mode

Modified julian date of

I DJO 1 INPUT(46) state epoch
Modified julian date of

I DJL 1 INPUT(37) liftoff epoch

Midcourse impulsive velocity

I DV 3 MCCOM(12) increment

I DX 3 STATE(4) Spacecraft's velocity
Error control limit of automatic

O ERRC 1 INPUT(1) compute interval

I HR 1 INPUT(53) Hour of state epoch

I HRL 1 INPUT(23) Hour of launch epoch

I IDSAT 1 INPUT(1084) Satellite identification number- -

233

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

Flag used to write out state for the

I ISET 1 4INPUT(1092) orbit determination program
Initial trajectory

O KMETH 1 INPUT(1036) propagation indicator

O KOUT 1 INPUT(1030) Output frequency flag

Flag to read initial state from

I KREAD 1 INPUT(1057) midcourse tape

I MCUNIT 1 INPUT(61) Midcourse unit number

I OBSLON 10 INPUT(410) Longitudes of the tracking stations

I SEC 1 INPUT(55 Seconds of state epoch

I SECL 1 INPUT(25) Seconds of launch epoch

I T 1 STATE(1O Seconds since state epoch

Burnout time of midcourse
O TBO 1 INPUT(383) engine (engine 1)

Switching times of compute

O TCOMP 10 INPUT(170) interval table

O TF 1 INPUT(4) Final time

Ignition time of midcourse engine
0 TIG 1 _ INPUT(380 (engine 1)

I W 1 INPUT(38) Initial spacecraft mass

I WT 1 STATE(35) Current spacecraft mass

I X 3 STATE(1) Spacecraft's position vector

Spacecraft's position and velocity
vectors at midcourse motor

I XMC 6 MCCOM(61 ignition

I XMIN 1 INPUT(54) Minutes of state epoch

I XMINL 1 INPUT(24) Minutes of launch epoch

I XMON 1 INPUT(50) Month of state epoch

Position vectors of tracking
I XOBS 10,3 OBSIT(21) stations

Position and velocity vectors of
I XP 6, 12 P LNET(1) the planets

I I YEAR 1 INPUT(52) Year of state epoch

234

Description:

The midcourse verification analysis is used to numerically integrate the midcourse

motor and present output which describe conditions at motor ignition and at closest

approach to the Moon. The conditions at motor ignition, burntime and burn attitude

can be input via a tape generated in a previous midcourse analysis. The KREAD flag

is used to determine if the tape option is to be used. If the tape is not read, the initial

conditions are in X and the burntime and ignition time must be input via TBURN and

TIG, respectively. The burn attitude is brought into the subroutine via ATT.

The initial conditions are propagated to midcourse motor ignition time using subroutine

FOWARD. The compute interval is adjusted for the motor burn and the midcourse motor

is numerically integrated using subroutine FOWARD. A flag is set to obtain the doppler

output during the motor burn. This output is obtained from subroutine DOPLER. The

state is written on a file to be used by the Orbit Determination Program if ISET is one.

Subroutine PUTELS is used to write this file. Next the state is propagated to closest

approach to the target planet using FOWARD. Information about the motor burn and

conditions at the target planet are printed before the subroutine terminates. The

information printed includes midcourse fuel expended, traclking station elevation,

azimuth angles at motor ignition,and the state at the target planet.

235

SUBROUTINE MCVERF

ENTER

KREAD =0

Set initial conditions Set motor
from mideourse tape burnout time

from TBUR'N

Set midcourse motor ignition, burnout
and attitude from tape

Propagate state to motor ignition
using FOWARD

Set compute interval for
motor burn

Propagate through motor burn
using subroutine FOWARD

ISET 0 < Use subroutine PUTELS
to write ODP file

* 0

Reset compute interval and propagate to
target planet using FOWARD

Calculate tracking station visibility and
other output parameters

Output midcourse verification
displays

RETURN

236

SUBROUTINE MDCORS

Calling Sequence: CALL MDCORS

Purpose: MDCORS is the driver for the midcourse

guidance targeting procedure

Common Blocks Required: CNTRL, CONST, INPUT, MCCOM, PLNET, STATE

Subroutines Required: CROSS, DOT, DVMAG, FOWARD, JET, MVTRN, MCBURN,

RETDV, SENSO, SPER, VNORM, TARGET

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

I JC 1 CNTRL(7) Central body number

Radian to degree

I RTD 1 CONST(1) conversion factor

Integration stop time (sec) from

I TFINAL 1 INPUT(4) anchor epoch

I WTO 1 INPUT(38) Initial spacecraft weight (kg)

I JTARG 1 INPUT(1031) Target body number

O KRASH 1 INPUT(1032) Trajectory stop-type key

I KMETH 1 INPUT(1036) Trajectory computation method ke

I MCOUT 1 INPUT(1050) Midcourse extra output key

I MCKLUG 1 INPUT(1066) Pre-targeting option key

Midcourse burn computation

I IBURN 1 INPUT(1071) option key

Initial trajectory computation

I KMETHP 1 INPUT(1075) method key

Number of extra points in

I KTF 1 INPUT(1077) flight time scan

I ALIMIT 1 MCCOM(1) Control step limit (km/sec)

Pre-ignition midcourse state

O XMC 6 MCCOM(6) (km, km/sec)

237

SYMBOIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

I/O DV 3 __ _MCCOM(12) Midcourse velocity impulse(lun/sec)
Spherical DV

O DVS 3 MCCOML15) mag-km/sec, dec-deg, ra-de
Midcourse ignition time (sec)

I TMCS 1 MCCOM(18) from anchor epoch

Spacecraft-to-sun vector

O XSUN 3 MCCOM(21 at ignition (unit)
Previous midcourse velocity

I DVB4 1 MCCOM(24 used (km/sec)
Retro-velocity impulse

O DVRET 1 MCCOM(25) magnitude Q(ln/sec)

I PFAC 1 MCCOM(38) Propulsion factor(g, km/sec)
Spacecraft weight (kg) after

O WTF 1 MCCOM(47- midcourse burn
Constraint/control sensitivity

I DPT 3, 10 MCCOM(50) : matrix transposed

I PSID 10 MCCOMI0)_ Desired end condition vector

I TOL 10 MCCOM(90) Tolerances on end constraint errors

I PSI 10 MCCOM(100) 'End constraint error vector
i Number of trials allowed in

I NT 1 MCCOM(151) targeting

I Burn computation method
O KBURN 1 MCCOM(154) indicator

O IT 1 MCCOM(j 1.5 Running number of trials

O IR 1 MCCOM(158) Return key for targeting status
Number of constraints in

I NP 1 MCCOM(160) targeting process

I Number of trials to re-compute
I NGROPT 1 MCCOM163) gradients

I KGLAW 1 MCCOM(164_L Guidance law indicator

O ICB 1 MCCOM(165) Midcourse central bod number

O ISP 1 MCCOM 66) Gradient-computed indicator

I IPD 3 MCCOM(169) Constraint indicator vector

I X 6 STATE(1) Anchor vector state
j Anchor time (sec) anchor

T 1 STATE(10) 'epoch, DJO

238

Description:

MDCORS is best described with reference to its accompanying flow charts. The first

of these depicts the gross targeting logic.

The first step in MDCORS is to propagate the state, X2, forward from T to the midcourse

time, TMCS, by calling FOWARD. The resulting pre-ignition midcourse state, XMC, is

then saved. If the pre-targeting option key, MCKLUG, is positive, JET is then called

to furnish a first-guess value for DV. If MCKLUG is zero, the starting value for DV

is obtained from common where it was placed either by input or by previous targeting.

Having thusly initialized, targeting is begun.

Subroutine SENSO is called to transform XMC and DV into an end constraint error vector,

PSI. SENSO effects this transformation in the following three steps:

1. XMC and DV are converted into a post-maneuver state, X, and time, T,
by subroutine MCBURN.

2. The post-maneuver state is propagated to the point and time of target
closest approach by subroutine FOWARD.

3. The end state is used to compute end constraint function values which
are subtracted from desired values to render the constraint error vector,
PSI.

PSI is dimensioned 10, although only 8 of its components are used. These components

represent the following errors:

PSI(1) B. T, miss-vector component

PSI(2) B R, miss-vector component

PSI(3) Time of flight

PSI(4) Hyperbolic excess velocity of arrival hyperbola.

PSI(5) Circular excess velocity after retro at periapsis

PSI(6) Total correction fuel expended (value, not error)

PSI(7) Radius at periapsis of the arrival hyperbola

PSI(8) Inclination of hyperbola to target's equator

239

The tolerance array, TOL, is similarly defined, so that the criterion for convergence

is

PSI (I) < TOL(I)

for each of the end constraints associated with the particular guidance law in force.

Each of the guidance laws available in MDCORS constrains the same first two functions:

B. T and B* R if IBTR=1 or radius at periapsis and inclination if IBTR=2. (IBTR is an

input quantity used by AUTO to set the array, IPD). The remaining function constrained

by each law is:

1. Minimum (midcourse) fuel None

2. Fixed time of arrival PSI(3)

3. Fixed target energy PSI(4)

4. Variable target energy PSI(5)

5. Minimum total fuel PSI(3) * See MTF procedure
description

If one or more of the errors for the guidance law in force exceeds tolerance, a new

estimate of DV is computed. Details of this computation will be described later.

If a new gradient is to be generated (iteration trial number less than input, NGROPT),

SENSO is called with IR=2 to generate it. SENSO uses the secant method (or finite

increments of DV) in repeating the three steps described above to compute sensitivities
aPSI

of PSI to variations in DV. The result is interpreted as evaluated at DV. Its
aDV

transpose, a 3 x 10 matrix is stored in DPT. The last two columns of DPT are undefined.

When the iteration trial number equals or exceeds NGROPT, no new gradient is computed.

In this case, the last-computed DPT is used for succeeding iteration trials in computation

of DV. By not computing new gradients at each trial, three trajectories per trial may

be saved. The resulting deterioration in convergence is small if DV is "near" its final

value when gradient computation is terminated. Results show that when pre-targeting is

performed, a single evaluation of the gradient at the first guess DV is optimal in terms

of total trajectories required and run time.

Before discussing the computation of DV, let us consider the post-targeting logic. This

consists of tests for jumping back into the targeting logic. First, if a minimum midcourse

240

fuel iteration has converged on the Oth step, another step is forced. This is done

because only the first two constraint errors are tested for the MFG law. Tne

solution DV for any other law would satisfy these two constraints as well, without

necessarily being a minimum DV or "critical plane" maneuver. The second reason

for jumping back into the targeting logic is due to the minimum total fuel law

implementation. The reason will become apparent when this implementation is

described. The third jump-back is because of the approximate-intermediate-

trajectory capability. The initial estimate of DV is obtained using trajectory method

KMETHP, which should be set to 6 for multi-conic for translunar trajectories. If

it is desired that DV be estimated for a more precise trajectory computation method,

KMETH # KMETHP, the initial estimate of DV is used to re-start the KMETH

targeting procedure. It should never be necessary to re-generate gradients for this

additional targeting.

Estimation of AV

The method of calculation of AV is dependent on the guidance law in force, although

each guidance law is designed to constrain two common end conditions, i .e., B' T and

B. R or ratius at periapsis and inclination. It has been found that even when the latter

conditions are to be constrained, B- T and B- R errors should be used to calculate AV.

That is, desired values of radius at periapsis and inclination should be used, together

with hyperbolic excess velocity (vector), to compute the "desired" B* T and B. R and

their corresponding errors, r 1 and $. When these errors are nulled, the radius

of periapsis and inclination errors will be nulled also. Formulae for computing

"desired" B. T and B. R are to be found in Reference 1.

Minimum (midcourse) Fuel Guidance (MFG)

The MFG law minimizes the magnitude of AV while constraining the B- T and B- R errors,

Ipl and T2. It is desirable from a programing point of view to avoid numerical

minimization procedures if possible - which it is in this case. We could null 1i and

92 (linearly speaking) with any AV such that

41AV

241

2)T h
where R 1 and R 2 are rows of the 2 x 3 gradient matrix, 2 AV . The family of

such AV's is

t t t t t t
x R R x R R x R

2 3 3 1 1 2

(R 1 x R2) R3 3

where ,T3 is a free parameter and R 3 is any vector which is linearly independent of

R 1 and R 2 . That is, if we adjoin a third row, R 3 , to the gradient, we can invert the

results and solve for AV. Making the substitution C. for columns of the inverse,
1

we can write

V = -(C C C3) = - C

2 t

and v2 = Pt C C .

We now minimize av 2 with respect to the free parameter, %3, by setting the derivative

to zero and solving for W3 .

d 6v2 t t 0 t
d3 = 2T CC 0.= 2(1C1 +2C2 +33) tC 3=0

3 (3
if = - (k 1 C 1 + 'T2 C t C 3
3 t

CC3

This \T3 leads to the following \V,

AV - - (C1 C2 C (V2
C3 3

3 3
to the "critical plane" defined by R 1 and R2, and the minimum-magnitude AV lies in

this plane. If the adjoined row, R3, is defined as the cross-product of R 1 and R 2 ,
the implemented solution is identical to the steepest ascent solution. The minimum fuel

242

guidince solution is computed by first computing

AV = - (C 1 C2 C

and then projecting the result onto the critical plane.

C *

C t C 3
3 3)

AV = AV

Since the constraint functions are not strictly linear functions of AV, an iteration is

required to find the solution, and the gradient varies during the iteration. And since

the "critical plane" may change somewhat during an iteration, it is important to

project the whole A V solution onto the current critical plane rather than simply to

project the incremental AV due to residual constraint errors.

Fixed Time of Arrival (FTA) Guidance

The end constraints for this law are B- T; B. R and time of flight. Representing errors

in these constraints by J1' x2 and 9 3 , respectively, we need a AV such that

1 2,

- 42 =R AV
3

where R = is a row of the gradient, . The solution is
i 2 LV 2 AV

AV = -(C1 C2 C3

where
1 xR3)t R 1 t t

(C 1 C2 C 3) = -R 2 (R3 x R (R x

(R 1 x R2) R 3

243

Fixed Target Energy (FTE) Guidance

The only difference between the FTE and FTA laws is that the third constraint

for the FTE law is hyperbolic excess speed with respect to the target at arrival.

Variable Target Energy (VTE) Guidance

Application of the VTE law is peculiar to missions where the retro-burn at the target

is an attitude-controllable fixed impulse. The VTE law is set up to calculate the

midcourse maneuver AV for which the post-retro velocity is a desired value

(especially circular) while constraining B. T and B. R or closest approach distance

and inclination.

The post-retro velocity is dependent upon the weight of fuel expended at midcourse

and the arrival energy. Implementation of this law assumes that the retro-burn is

executed at periapsis of the arrival hyperbola with the thrust deflected parallel to the

periapsis velocity. The constraint error, NI3' for this law is formulated as "circular

excess" velocity.

ILI + C v+- v -6v

3 r m r rrd r

In this formulation, rd is the desired final orbit radius, C is an input desired circular

excess velocity, and 8vr is the velocity impulse magnitude imparted by the retro-burn.

Calculation of an appropriate midcourse AV for the VTE law can be formally identical

to that for the FTA and FTE laws, given a good first-guess AV to start the iteration.

An "assistance" procedure is beneficial, however, to reduce convergence difficulties

which may arise from nonlinearities of 93 (AV). This procedure consists of an iteration

loop imbedded in the Newton-Raphson iteration loop to predict changes -in 6 vr due to next-

step changes in AV. Reference 1 contains a detailed description of this procedure.

Minimum Total Fuel (MTF) Guidance

The implemented MTF guidance solution is the restricted solution which constrains

approach conditions, B- T and B- R or radius at periapsis and inclination. In this respect,

the implemented solution is neither general nor optimal. Results of tests indicate,

244

however, that for missions of the RAE-B type, the implemented solution will differ

from the optimal by only a few hundredths of a kilogram in total fuel. The total

correction fuel (when arrival conditions are constrained) is conveniently parameterized

by flight time to target periapsis. The MTF solution is therefore obtained by solving

for the FTA guidance solution within a loop which minimizes total fuel as a function

of flight time. The minimization procedure will be found in the description of

subroutine MINTF. The procedure is initiated at the MFG flight time, since the

MFG solution is never far from the MTF solution. It is unnecessary to recompute

gradients for obtaining rapid FTA convergence within the MTF procedure.

Reference 1 Bjorkman, W. S., Midcourse Guidance for Lunar and
Planetary Orbiting Missions, AMA 71-16, March, 1971.

245

SUBROUTINE MDCORS I (Gross Targeting Logic)

Advance state to mid-
course time. Save XMC, (FOWARD)
TMCS

Obtain first-guess
correction impulse, (JET)
AV

300

Compute post-maneuver state in
MCBURN. Advance state to closest
approach with FOWARD. Evaluate end (SENSO)
constraint errors with TARGET

TeSt Post-targeting
constraint errors OK
against tolerance computations -- RETURN

Not OK 1 _

Test

gradient
(SENSO)

no

500 (

Compute improved mid-
course maneuver (II

246

SUBROUTINE MDCORS II (Computation of DV)

500

DV = AV T
DPT =

PSI= 9

Initialize VTE
KGLAW Assistarice

Procedure

2,3

580

Compute Compute
DPI -1 DPI = v T-1

P2 = T(KGLAW+1)

584

Compute
-1

SAV = - v ,I,

Limit 1IAV

AV =AV +6AV

1 KGLAW 4

AV= (I-KKT) AV Adjust v T for

-1 AV changes

(3 (Nonce = Nonce + 1

IT = IT + 1

300

Re-evaluate Y- (AV) for

new trial. See (I)

247

SUBROUTINE MINTF

Calling Sequence: CALL MINTF

Purpose: MINTF controls the gross logic for targeting the
minimum total fuel guidance law.

Common Blocks Required: MCCOM

Subroutines Called: None

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

Desired constraint vector - esp.

I/O PSID 10 MCCOM(80 PSID(3 = time of flight (sec)
TOL(3)-flight time tolerance(sec)

I TOL 10 MCCOM(90) TOL(6)total fuel tolerance (kg)

PSI(3) =flight time error (sec)

I/O PSI 10 M__ MCCOM(100) P 6--total fuel (kg)

O KM 1 MCCOl(152 Output key for H.DCORS logic

I/O JUMPTF___ 1 MCCOM(153) Logic key for MDCORS & MINTF

O 13 1 MCCOM(155) Third constraint indicator

O IT 1 MCCOM(157) Trial counter for MDCORS

O NP 1 ICCOM(160) Number of constraints

.O KGLAW 1 MCCOM(164) Guidance law indicator

O IPD 3 MCCOM(169) Constraint indicator array

248

Description:

The minimum total fuel guidance law solution minimizes total correction fuel subject

to equality constraints on closest approach distance and inclination. To effect this

solution, the fixed time of arrival guidance (FTA) law is invoked with systematic

variation of flight time. MINTF contains the logic for varying flight time to find the

minimum total fuel solution.

The first time MDCORS calls MINTF, MINTF sets up indicators for the MFG

(minimum midcourse fuel) law. When MINTF is called again, the MFG solution has

been found, with its corresponding values of total fuel and time of flight. MINTF

initializes the FTA law at this time and requests a flight time increase of 1800 seconds

on return to MDCORS. On subsequent entries, MINTF seeks the minimum total fuel

flight time by the following procedure:

1. If, on return from targeting the FTA law to tMFG+ 1800 s , it is found that

the total fuel is,

a. less than it was for the MFG solution, flight time is stepped

forward until the total fuel increases.

b. greater than it was for the MFG solution, flight time is stepped
backward in 1800 s - steps until the total fuel increases.

2. The result of (1) is three values of total fuel, f(t), corresponding to three

different flight times. These obey the following inequality.

f n f n ' f f n f n = f (t M F G + n * 1800 s

The three values are used to determine the coefficients of a quadratic equation

describing total fuel as a function of flight time. This equation is then solved

for the flight time corresponding to the minimum of the quadratic equation.

(See MINV for details of fitting a quadratic equation.) This flight time is

then used for the final FTA targeting step and the resultant total fuel is

assumed to be the minimum value.

249

SUBROUTINE MINTF

602 1 JUMPTF 3 610

MFG has now converged, Initialization: Set up
set up FTA indicators set 2 MFG indicators
JUMPTF=2
I=2
SS = 1800
S= total fuel (RETURN)

604

RETURN

f= total fuel

2 4

Completed first FTA step 1 3 Minimization has been completed,
forward, set I = 3 restore KGLAW to 5 and set K

2fuelhas decreased
eas oced to 3 to signal completion to

s f a f MDCORS

RETURN
no

fuel ,increasing f. <f no

Start stepping back infuelhas increascd

time I = 1 yes Fit a quadratic to fl) f2
SS = - SS and f , save for SS cor-

fuel is still decreasing responding to minimum f

Set I = 4

backing 1 _3 advancing

Exchange: Exchange:

f3 = f2 fl = f2

f2 =f f2 = f2

700

Change desired flight time by SS
and return to take another FTA
step

RETURN

250

SUBROUTINE MINV

Calling Sequence: CALL MINV (ELM, RA, DEC, DVR, DVT, FFIRE)

Purpose: MINV finds the retro-firing true anomaly of

minimum trim velocity.

Common Blocks Required: CONST, INPUT

Subroutines Called: CROSS, DOT, DVMAG, ORBIT, ORIENT, TRIM, VNORM

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

ARGUMENT Orbital elements of the

I ELM 12 LIST hyperbola (LEQ)
ARGUMENT Right ascension of the

I RA 1 LIST spin-axis (LEQ, rad)
ARGUMENT Declination of the spin-axis

I DEC 1 LIST (LEQ, rad)

ARGUMENT

I DVR 1 LIST Retro velocity impulse (km/sec)

ARGUMENT

O DVT 1 LIST Trim velocity required (km/sec)

ARGUMENT

O FFIRE 1 LIST Firing true anomaly (rad)
Radians-to-degrees conversion

I RAD 1 CONST(1) factor (deg/rad)

Gravitational constant array

I GM 12 CONST(5) (km 3 /sec 2)
Limiting true anomaly allowed

I TRUE 1 INPUT(475) (deg)

I JT 1 INPUT(1031) Target body number

Number of true anomaly steps

I KFIRE 1 INPUT(1043) to try

251

Method

The method used by MINV in trying to establish the minimum trim velocity and

corresponding firing true anomaly is:

1. Step along the hyperbola in KFIRE regular steps from -TRUE to

+TRUE, computing and storing required trim velocity at each step.

2. Fit a quadratic (trim velocity as a function of true anomaly) about

the point of least trim velocity as found in procedure 1. Solve for

the minimum trim velocity and corresponding true anomaly as

coordinates of the quadratic's minimum.

Subroutine TRIM is used by MINV to determine the trim velocity. TRIM, when

supplied with the post-retro orbit (which must be elliptical), computes the trim

velocity as a two-impulse 'in-plane Hohmann transfer plus a nodal inclination-

trim impulse. A large part of MINV's coding is concerned with establishing true

anomaly bounds within which the post-retro orbit will be elliptical. These bounds

are determined from the condition,

C 3h + v 2

V(f) V = - P.AV sin f + Q AV (e + cos f) <
h -2

which must hold in the elliptical range. P and Q are unit vectors toward periapsis

and along periapsis velocity, respectively, C3 h is the hyperbola's C3 and f is true

anomaly. The other symbols are standard enough. The equation may be solved

for f (two solutions usually) by replacing the inequality with an equality. If the

input limits are outside the computed bounds, they are replaced by the computed

bounds as limits for the stepping procedure (see 1 above).

If the least trim velocity from the stepping procedure occurs at the first or last step,
tilii limit value is returned fUiom MiViINV. Othe , rise, the least trim velocity occurs at

the i-th point and the quadratic fit coefficients, a, b and c are determined as follows,

2
v(f) = a (f-f.) + b (f-f.) + c

1 1

v(f.) = a (f -f.) + b (f - fi) + c = v
+1 i+ 1 i+1 25+1

252

v(fi) = c = V

2
(f) a (f - f.) +b (f.-) + c = v.
i-I I-I 1 1-1

Since the true anomaly step-size is constant,

6f = f - ' = f -f
j+1 i-1 '

the solution for the coefficients is

a (v.i+ + v) - 2vi
26f 2 1+1 11 i
26f

1
b = -)

26 f (i+1

C = v.

The minimum (extremum) occurs where

dv
S= 2a(f-f.) +b=0

df 1

b
or f f.-

mm 1i 2a

The minimum trim velocity (returned by MINV) is computed by evaluating the

quadratic for v (fin)'

253

SUBROUTINE MINV

ENTER

Initialization

1. Compute retro attitude
2. Compute true anomaly bounds

for post-retro ellipse
3. Compute true anomaly step

Stepping procedure

1. Compute state at f on the hyperbola
2. Add retro velocity
3. Call ORBIT to compute elements of

post-retro state
4. Call TRIM to evaluate trim velocity

required
5. Save index of least trim velocity

no ~ KFIRE

steps yet?

Fitting procedure

1. Compute coefficients
2. Evaluate quadratic for minimum

trim and true anomaly

RE254TURN

254

SUBROUTINE MONTE

Calling Sequence: CALL MONTE

Purpose: MONTE performs a Monte Carlo analysis of success

probability for the RAE-B mission.

Common Blocks Required: ANKOR, CONST, INPUT, MCCOM, STATE

Subroutines:Called: BIGMAT, COVERT, FOWARD, MCBURN, MDCORS,
MVTRN, M50LEQ, ORBIT, RANDM1, RETRO, SENSO,
TRIM, VNORM

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

I ANKVEC 6 ANKOR(1) Anchor vector state (km, km/sec)

I RAD 1 CONST(1) Degrees per radian

I TDS 1 CONST(43) Seconds per day

I TSH 1 CONST(42) Hours per second

2

I GM 12 CONST(5) Gravitational constants km3/sec2)

I G 1 CONST(45) Earth's surface gravity (km/sec2

I TF 1 INPUT(4) Trajectory stop time (sec)

I DJL 1 INPUT(37) Julian date at launch (days)

I WO 1 INPUT(38) Initial spacecraft weight (kg)
Julian date at anchor

I DJO 1 INPUT(46) epoch (days)

I HRO 1 INPUT(53) Hours of anchor epoch

I XMINO 1 INPUT(54) Minutes of anchor epoch

I SECO 1 INPUT(55) Seconds of anchor epoch

I COV 6, 6 INPUT(56) Tracking covariance matrix

I DTFIN 1 INPUT(422) Desired time of flight (seconds)

255

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

I SIGATM 1 INPUT(435) Midcourse pointing error (rad)

I SIGDVM 1 INPUT(436) Midcourse velocity error (fraction)

I SIGATR 1 INPUT(437) Retro pointing error (rad)

I SIGDVR 1 INPUT(438) Retro velocity error (fraction)

I TMC1 1 INPUT(439) First midcourse time (sec)

I TMC2 1 INPUT(440) Second midcourse time (sec)
Specific impulse of midcourse and

I ASPMC 1 INPUT(441) trim motor (sec)

I ASPR 1 INPUT(442) Specific impulse of retro motor (sec

I WRETRO 1 INPUT(443) Weight of retro fuel (kg)

I ATFULA 1 INPUT(470) Available attitude maneuver fuel (kg

I FTOT 1 INPUT(472) Available correction fuel (kg)

I WDROP 1 INPUT(473) Post-retro drop-weight (kg)

I JT 1 INPUT(1031) Target body number (11)

O KCRASH 1 INPUT(1032) Trajectory stop-type indicator

I KMONTE 1 INPUT(1052) Monte Carlo logic key

I KMAX 1 INPUT(1053) Monte Carlo sample size

I/O KSTART 1 INPUT(1054) Random number kernel

O MCKLUG 1 INPUT(1066) Midcourse pre-targeting key

I KMTOUT 1 1 NPUT(1074) Extra output Alag

I KCOV 1 INPUT (18l) Covariance matrix conversion key
Pre-ignition midcourse state

O XMC 6 MCCOM(6) km, km/sec)

I/O DELV 3 MCCOM(12) Midcourse velocity impulse (ln/sec
Midcourse velocity

I/O DVMG 1 MCCOM(15_ magnitude (km/sec)

O TMC 1 MCCOM(18) Midcourse ignition time (sec)

256

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

O DV 1 MCCOM(24) Accumulated correction velocity
Constraint/control sensitivity

I/O DPT 30 MCCOM(50) matrix
Desired time of flight from

O DTF 1 MCCOM(82) anchor epoch (sec)

O KENTRY 1 MCCOM(156) Entry key for MDCORS
Sensitivity generation key

O IR 1 MCCOM(158) for SENSO
Gradient re-computation key

O NGROPT 1 MCCOM(163) for MDCORS
Gradient-calculated indicator

I ISP 1 MCCOM(166) from SENSO

O X 6 STATE(1) Trajectory state (km, km/sec)

O T 1 STATE(10) Time from epoch (sec)
Spin-axis attitude

I ATT 3 STATE(11) (unit vector)

Description:

MONTE simulates the events of the RAE-B mission with sampled random errors to

establish the probability of mission success. The events to be simulated for a given

case are specified by KMONTE "

KMONTE = 1 Retro plus trim only - no midcourses

KMONTE = ±2 One midcourse correction plus retro and trim

KMONTE = 3 Two midcourse corrections plus retro and trim

If KMONTE is negative, the first (or only) midcourse correction maneuver is calculated

for the estimated (anchor vector) trajectory and not re-calculated for sampled errant

anchor vectors. If KMONTE is +2 or +3, the first (or only) midcourse correction is

re-calculated for each sampled errant trajectory. The positive KMONTE case is

applicable to pre-flight studies for which the "tracking" error covariance matrix in

reality describes expected trajectory dispersions due to expected launch and injection

errors.

The event logic as implemented is fairly straightforward as seen in the principal flow

257

chart. Some of the logic associated with midcourse maneuver computation requires

some explanation, however. In order to avoid redundant computations in MDCORS,

the first-maneuver correction impulse is computed and saved for the anchor vector

trajectory. The constraint/control sensitivity matrix or gradient is also saved. If

two midcourse maneuvers are simulated, the gradient at the second correction is also

computed about the once-corrected anchor trajectory and stored. The stored gradients

are good enough to bring about convergence for the midcourse maneuver calculations

related to perturbed trajectories, so the gradient re-computation key, NGROPT, is

set zero for the Monte Carlo process. The first-maneuver correction impulse computed

for the anchor trajectory is a good first-guess for successive midcourse calculations,

so the pre-targeting key, MCKLUG, is set zero as well. The first-guess value for

the second maneuver can be taken as zero if the first maneuver execution errors are

small. The logic shown in flow charts A and B avoids redundant and time-consuming

calculations in MDCORS in the computation of midcourse correction maneuvers.

Error Models

The tracking error covariance matrix, P, is a 6 x 6 positive definite matrix of anchor

vector estimation errors.

P = E (x -) (x -) (= anchor vector, x = true state)

There is a preferred coordinate system in which components of the error vector, y,

are uncorrelated. The (similarity) transformation between y and x -c is S, an

orthogonal matrix which diagonalizes P.

x-x =S
y

The diagonal matrix, D, defined by

D = St PS,

has as its diagonal elements the variances of the uncorrelated components of y. Scaling

a white noise (uncorrelated random numbers) sampled by the standard deviations of y,

we obtain an error vector in uncorrelated coordinates with components, yi.

yi = di n(0,1)

258

(d. is the i-th diagonal element of D, n (0, 1) is a sample random number from a
1

normal (Gaussian) distribution of mean (and variance 1.) A sampled errant trajectory

state is then computed from

x = + Sy.

Execution errors for the midcourse and retro maneuvers are computed from assigned

standard deviations of pointing and velocity errors. The velocity error is treated as

a proportional error normally distributed plus a resolution error uniformly distributed.

Cv = v a n (0, 1) + (.0001anm/sec) u

(v is the velocity impulse magnitude and u is a random number from a distribution

uniform on the interval [-. 5 < u <.5 J). The retro velocity error is formulated without

a resolution error. The pointing error is formulated as two independent errors normally

distributed along mutually orthogonal axes which are both orthogonal to the maneuver

impulse direction. Let the maneuver impulse be denoted by V and its direction by V.

If K is the unit polar axis of V's coordinate reference frame, we can construct unit

vectors normal to V.

-v2 -v2
A ̂ V v 1

^ KxV 0 0

xV 2 v cos (dec)Kx V v2 +
1 2

. .. K-V(KoV)
N = Vx E cos(dec)

The "eastward" and "northward" pointing errors, 9e and 8n, are computed by scaling

random numbers with the input pointing erros, oa. They are then converted to velocity

deviations using the small angle approximation.

C =v f n (0, 1)e a

Cn Vaan 2 (0,1)

259

The misdirected velocity vector has the direction

A A A A

V' = (vV+ E+ nN) / +v2 C2 + 2
e n e n

and the magnitude v+ v' so that it may be programmed as follows,

v + Ca i N V3 1 2

V = 2 2- vcos (dec) v2 cos(dec) nl
2v (+ 2

260

SUBROUTINE MONTE

Convert and diagonalize tracking
covariance matrix

1 KMONTE

Preparatory Midcourse A
calculations

15

Apply tracking errors to
Anchor State

1 -KMONTE

Compute post-midcourse B
state with errors

Propagate state to
closest approach

Compute retro maneuver

Apply retro errors

Calculate trim fuel

Count satisfactory samples

261

MDCORS initialzation for MONTE

1
KMONTE

-2,-3, 2,3

CALL
MDCORS

nominal AV.

<0 >0
KMONTE

KMONTE = -KMONTE LTRACK =1
RT1, DEC1, DVMG1 KMONTE
LTRACK = 2

DVSAV = DELV

Get V 1 if necessary

Save DPS = DPT

2 KMONTE 3 " 7

Compute DPT at second
MC (Call FOWARD)

(Call SENSO)

NGROPT = 0
MCKLUG = 0

1262

262

14

Fly perturbed X to

TMC, but 1st man-

euver with nominal

100

KM

2

DV = DVSAV
nominal 1st
maneuver

120

Exchange

DPT* DPS

130

C all
MDCORS

4V

140

Corrupt AV
Call MCBURN
for POST -

STATE

I
KM

Second MC

KM =2
V= 0

LTRACK

300) 263 LT I

SUBROUTINE MOTORS

Calling Sequence: CALL MOTORS (KMOD)

Purpose: This subroutine determines thrusting status

and increments velocity, or acceleration and

weight accordingly.

Common Blocks Required: PERT, CNTRL, INTVAR, STATE, INPUT

Subroutines Called: TABINT

Input / Output

SYMBOLIC PROGRAM COMMON DEFINITION
NAME DIMENSION BLOCK

Calling
I KMOD 1 alling Impulsive velocity flag

Operand

I/0 RCART 3 PERT(l) Perturbing acceleration
vector
Discontinuity

I KDIS 1 CNTRL(05) Discontinuity
Flag

I/0 KTHRST 1 CNTRL(02) Thrusting Flag

I KFIRST 1 CNTRL(12) First step Flag

I T 1 INTVAR(1) Current time

I/0 THRUST 1 STATE(33) Magnitude of thrust

1/0 WT 1 STATE(34) Weight at engine ignition

I ATT 3 STATE(11) Attitude of spacecraft

0 W 1 STATE(35) Current weight

1/0 DX 3 STATE(04) Current velocity

I DV 3 INPUT(430) Impulsive velocity

I TIG 3 INPUT(380) Ignition times

I TBO 3 INPUT(383) Burnout times

264

Description: The engine characteristics can be simulated by either impulsive velocity

or input thrust and weight flow histories. If KMOD is equal to 1, impulsive

velocity is assumed. The impulsive velocity of engine I is applied along

the current attitude when the current time, T, is equal to the ignition

time, TIG.

When KMOD is not equal to one, the instantaneous thrust and weight are

determined from linear interpolation between time points on the input

tables. Next the magnitude of the acceleration is determined from:

a = .001 THRUST/WEIGHT.

The acceleration is added to the total perturbing acceleration vector of

the spacecraft (PERT) according to the current attitude (ATT).

265

CALL

MOTORS (KMOD)

no s engine firin = =KMOD1 T=TIG(I) no
T=TIG I=1, 3

yes
yes

Calculate time
since ignition Add impulsive velocity

to instantaneous velocity

interpolate for
thrust and weight Return

es irst no
step

burnout Calculate magnitude
time of the acceleration

KTHRUST = 0 increment perturbin

THRUST = 0 1c c e l e r a t i on

Calculate new Retu

spacecraft weigh

Return

266

SUBROUTINE MULCON

Calling Sequence: CALL MULCON

Purpose: To propagate the state in time using the

Multiconic technique.

Common Blocks Required: CNTRL, CONST, DUM, INPUT, INTVAR,
PLNET, STATE

Subroutines Required: AVERGE, DVMAG, OBLATE, ORBIT, PLANET,

OUTPUT, PRINT, TOBODY

Reference: D. Byrnes and H. Hooper, Multi-conic:

A Fast and Accurate Method of Computing
Space Flight Trajectories, AIAA

Paper No. 70-1062, 1970.

267

SYMBOLIC COMMON
I/C NAME DIMENSION BLOCK DEFINITION

I DELT 10 INPUT(180) Compute Intervals

Epoch of the initial

i DJO 1 INPUT(46) state

I/O DX 3 STATE(4) Spacecraft velocity

O ELM 6 STATE(14) Orbital elements

I/O JC 1 CNTRL(7) Central Planet

I JL 1 INPUT(1015) Launch planet

I KCRASH 1 INPUT(1032) Closest approach flag

I KOBLE 1 INPUT(1018) Earth oblateness flag

I KOUT 1 INPUT(1030) Output frequency flag

I KP 12 INPUT(1001) Planets in the system

I/O T 1 STATE(10) Current time since DJO
Switching times of compute

I TCOMP 10 INPUT(170) interval table

I TF 1 INPUT(4) Final time

O UJT 1 STATE(32) Current julian date

I/O X 3 STATE(1) Spacecraft position

Theory:

The Multiconic technique is an approximate technique to determine space trajectories.

This technique differs from most approximate techniques and more resembles a

numerical integration method as the independent variable, time, is stepped along and

the state determined at the end of each step.

The geocentric equation governing the motion of a spacecraft perturbed by the Sun

and Moon is as follows:

R r R r RR m 4 s s
R = e - m Um m (1) s

13 m Ir s IR 3

268

where R is the geocentric position vector of the spacecraft,

R , R are the geocentric position vectors of the Moon and Sun, respectively,
m s

rm, r are the vectors from the Moon and the Sun to the spacecraft, and

are gravitational constants of the Earth, Moon and Sun, respectively,
A e' Am' As

Each term of equations (1) describes an inverse square force and,taken separately,

would yield simple conic motion. The Multiconic technique assumes that the

trajectory can be simulated by sequentially summing these conics over several time

intervals. However, the terms due to the Sun and the second term due to the Moon

are slowly-varying functions. Therefore, without any significant loss in accuracy

and with a substantial decrease in computation time, these terms are simplified. It

is assumed that the acceleration due to these three terms can be approximated by a

constant acceleration equal to the average accelerations at the beginning and at the

end of the step applied over the entire step.

There is also the problem of separating the Keplerian orbit with respect to the Moofi

(second term of equation 1) from the other accelerations. Byrnes and Hooper solved

this problem by flying backwards in a gravity free environment, an increment of time

equal to the step, dt, and then flying forward along the selenocentric conic, a time

increment dt.

The algorithm used to propagate the state from T 1 to T 2 is as follows:

1. The positions of the Moon and Sun are stored at time T 1 .

2. The geocentric state is propagated along the Earth conic from T 1 to T 2

using the Keplerian orbit defined by the first term of equation (1).

3. The positions of the Moon and Sun are stored at time T 2 .

4. The mean acceleration due to the Moon's indirect term (third term of

equation 1) is calculated as:

- Mmm m
a +

a1 2 2 Rm 3 T1

269

5. The mean acceleration due to the Sun is calculated as:

2 s s s s R s
2 2 s,3 + -, + 3 3+

Tsl Is T 1-

6. The state at the completion of the Earth conic (Step 2) is adjusted to

account for the accelerations determined in Steps 4 and 5. The

corrections are obtained from,

AV = (a1 + I2) dt

1 dt2
r = +) dt

where AV and A are the changes in the position and velocity vectors and,

dt is the step (T 2 - T 1)

7. The corrected geocentric state is converted to selenocentric coordinates

and propagated back in time along a straight line defined by the selenocentric

velocity an amount dt.

8. The state is then propagated forward along the Keplerian selenocentric conic

described by the second term in equation (1) from T 1 to T2. This completes

the algorithm and describes the state at the end of the step.

During the trans-Earth leg of a circumlunar trajectory, the algorithm is slightly

modified. The new order is

1. Forward along the selenocentric conic.

2. Backward along a straight line.

3. Apply averaged accelerations.

4. Forward along an Earth-centered conic.

270

Description:

The Mulcon subroutine is divided into three parts. The first part initializes the

necessary flags and constants and determines the compute interval. The second

part controls the logic flow of the Multiconic algorithm as the translunar leg

of a trajectory. The third leg controls the logic flow of the Multiconic algorithm

on the transearth leg of the trajectory.

The logic flow of this subroutine can more easily be understood by examining the

accompanying flow chart. The transmoon leg starts at statement 50. If Earth

oblateness is to be used, the orbital elements are adjusted due to J2 and the

spacecraft flown to approximately 5 Earth radii. After that, the Multiconic

algorithm is applied as described earlier. The test to determine if the space-

craft passed through pericynthion or if time is greater than the final time is made

before statement 31. If these tests are not satisfied, the logic flow transfers to

statement 10 where the next Multiconic interval begins. If pericynthion is passed,

the time is adjusted to pericynthion and AVERGE called to reset the averaged

accelerations. If the KCRASH flag is set to 1, the state is translated back to a

selenocentric system and flags set to begin the transearth leg. The transearth

leg is similar to the translunar leg. Logic for this leg begins at statement 51.

271

MULCON FLOWCHART

ENTER

Initialize acceleration

of disturbing bodies

Determine compute

interval, DT

Increment time

T =T +DT

Test
Transearth leg

51- central
planet

Transmoon leg

ness flag

Yes

CALL OBLATE: Orbital elements updated due to J2 and

spacecraft flown to 5 Earth radii on updated orbit.

Set times to hit next

compute point

272

CALL TOBODY (Earth): Fly along Earth

conic an increment of time DT

CALL PLANET: Obtain positions of Sun and

Moon at time T

CALL AVERGE: Add Sun's effect and Moon's

indirect term

Transform to selenocentric frame and backdown

a straight line a time increment DT

CALL TOBODY (Moon): Fly along Moon conic

an increment of time DT

Yes State

past

ericynthio

No

273

Transfer back to a geocentric

frame.

CALL OUTPUT

Turn off oblateness flag

No >T
N10 Yes Retur

Backdown to pericynthion and de-

termine state and time of

pericynthion

CALL OUTPUT

CALL AVERGE (-1): Reset disturbing accelera-

ations of Sun and Moon's indirect term

Return

fla No Earth returni1; G

Transform to selenocentric frame and set

transearth flag

10

274

a time increment DT

tate
ropagated

past apo or No

pericynthion

Yes

Backdown to event and determine state and

time.

Determine new DT

Backdown along a straight line and transform

to a geocentric frame.

-CALL PLANET: Determine positions of planets.

CALL TQOBODY (Earth): Fly along geocentric conic

a time increment DT

61

275

CALL AVERGE (1): Add effects of disturbing

acceleration of Sun and Moon's indirect term

Pass

through

an Earth

apogee or

erigee

Yes

Backdown to hit event and

determine state mnd

time

CALL UTPUT -Yes Perigee

No

CALL AVERGE (-1):

Reset positions of planets.
Return . .

CALL OUTPUT

Transform to a selenocentric frame

10

276

SUBROUTINE MVTRN

Calling Sequence: CALL MVTRN(A, B, C, M, N)

CALL ROTATE(M, A, B, C)

Purpose: To form the matrix product C = AB or C = AT B

where A is a 3x3 matrix and B and C are

3xN matrices (3xl in R95TATE).

Common Blocks Required: None

Subroutines Called: None

Input/Output

I SYMBOLIC PROGRAM COMMON DEFINITION

NAME DIMENSION BLOCK

I A 9 Call List Matrix multiplier

I B 3,N Call List Matrix multiplier

0C 3,N Call List Product matrix

C = AB if M = 1
I M 1 Call List Indicator: C= AT otherwise

C = AT B otherwise

I N 1 Call List Number of columns of B and C

277

SUBROUTINE M50EPM

Calling Sequence: CALL M50EPM (UJT, C)

Purpose: M50EPM calculates the transformation matrix
from the mean equinox and equator 'of 1950 to
the Earths true equator and prime meridian.

Common Blocks Required: CONST

Subroutines Required: NUTAIT, M50MDT

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DE FINITION

Calling
O C 3,3 Operand Transformation matrix

I RAD 1 CONST(1) Degrees per radian
C alling

I UJT 1 Operand Modified julian date

Theory:

The transformation from mean equator and equinox of 1950 to true equator and prime

meridian can be accomplished by first transforming to the mean equator and equinox

of date (Call the matrix [M]) and then from there to the true equator and equinox of

date (Call the matrix [T]) and finally from equinox to the prime meridian ([P]).

Thus, if [C] is to be the transformation from mean of 1950 to true equator and prime

meridian, then

r[C = [P] FT] [M]

Both [T] and [M ! are calculated in other subroutines (NUTAIT and M50MDT respectively).

The [P] matrix represents the rotation through the Greenwich hour angle about the

Z-axis. In general, a rotation through an angle 8 about the positive Z-axis is accomplished

through the following matrix

278

cos 9 sin 0 01

-sin cos@ 0

0 0 1

In this case, 9 is the Greenwich hour angle, (GHA), which is given by .

GHA = 100. 075542 + 0° 98564735(d) + (2. 9015)10 - 1 3 (d)2

+ w (t) + (Nutation in right ascension)

w is the angular velocity (deg/sec) of the Earth and is given by

S= . 0041780742 / (1.+(5.21)10-13(d)

d is the number of whole days since 1950.

t is the fraction of days (i.e. modified julian date
- 33282.5 = d + t)

The nutation in right ascension is element (2, 1) of the matrix

[T] from NUTAIT.

The three matrices are multiplied to give the total transformation

matrix [C].

Description:

M50EPM calculates the transformation matrix from the mean equator and equinox

of 1950 to the Earth's true equator and prime meridian. This transformation is

composed of three separate transformations.

The first transformation is from mean of 1950 to mean of date. This matrix is

calculated in M50MDT. The second transformation is from mean of date to true

equator and equinox of date. This matrix is calculated in NUTAIT. The third

transformation is from true equator and equinox of date to true equator and prime

meridian. This matrix is set up in this subroutine and consists of a rotation about

the z-axis (North Pole) through the Greenwich hour angle. Once these transformation

matrices are found, they are multiplied together to form the total transformation.

S279

SUBROUTINE M50EPM

ENTER

Calculate days
since 1950

Call NUTAIT to

get [C]

Call M50MDT to

get [B]

[D]=[C] [B]

Calculate G.H.A.

Load in [B]
transformation
through G.H.A.

[C]. = [B] [D]

REUR

280

SUBROUTINE M50JPM

Calling Sequence: CALL M50JPM (UJT, B, J)

Purpose: M50JPM calculates the transformation matrix

from Earth mean equator and equinox of 1950

to true equator and prime meridian of date with

respect to planet J.

Common Blocks Required: CONST

Subroutines Required: M50EPM, M50LEQ, M50MDT

Input/Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

Calling

O B 3, 3 Operand Transformation matrix

Calling

1 Operand Planet number

I RAD 1 CONST(1) Degrees per radian

I TDS 1 CONST(43) Seconds per day

Calling

I UJT 1 Operand Modified Julian Date

I WP 12 CONST(29) Spin rate of planets (rad/sec)

Theory:

The transformation from Earth mean of 1950 to true equator and prime meridian of

date with respect to the desired planet is composed of two separate transformations.

The first of these, Earth mean of 1950 to Earth mean of date, is calculated and explained

in M50MDT. The second, Earth mean of date to true equator and prime meridian of

date, with respect to the desired planet, is explained here.

The tranformation, T, involves three rotations about three axes.

CP SP 0) (1 0 0 (CR SR

= -SP CP 0 0 CD SD SR CR 0

0 0 1 0 -SD CD 0 0 1

281

where

CR and SR represent the cosine and sine of RA + 900 respectively
CD and SD represent the cosine and sine of 900 - DEC respectively
CP and SP represent the cosine and sine of PHE respectively

and

RA and DEC are the right ascension and declination of the planet's spin axis

with respect to Earth mean equator and equinox of date.

PHE is the angle to the planet's prime meridian from the ascending node of

the planet's equator on the Earth's equator.

The values of RA, DEC and PHE are calculated through equations of the type

1 = a 0 +& (t-t0)

where a is the value of a at t0 and & is the rate of change of a with respect

to time.

The following constants are used for aO' & and tO 0

MARS

O t0 (modified Julian chte)

0_0 -3RA 317. 3 16846. 024 6. 751 x 10 /year

o o -3DEC. 52.1 16846.024 3. 46 x 10 /year

o -4
PHE 344. 41 18322. .70882 x 10 rad/sec

JUPITER

0 t 0 (modified Julian date)

RA 4. 6775435 rad 18673. .102917 x 10-3 rad/year

DEC 1.126778 rad 18673. .29089 x 10-5 rad/year

PHE* 344o41 18322. .175849 x 10 rad/sec

*Note: The surface features of Jupiter are relatively unknown, so that the location
of its prime meridian is a matter of speculation. For this reason, its initial position
is set equal to that of Mars.

282

Description:

M50JPM calculates the transformation matrix B from Earth mean of 1950 to

true equator and prime meridian of date with respect to planet J. The date is

given in terms of the modified Julian date UJT. At present, only the following

planets may be used: Earth, Moon, Mars, and Jupiter (i.e., J = 3, 11,4 and 5

respectively).

Subroutines M50EPM and M50LEQ calculate the matrix B for the planet Earth

and the Moon respectively, thus the calculation of B for Mars and Jupiter

represents the bulk of M50JPM. These calculations are done in three main

steps. First, the right ascension and declination of the planet's spin axis with

respect to the Earth mean equator and equinox of date are found in addition to the

angle of prime meridian. These angles represent rotations which make up the

transformation from Earth mean of date to true equator and prime meridian of

date with respect to the planet. Second, the transformation from Earth mean of

1950 to Earth mean of date is calculated in M50MDT. Third, these matrices are

multiplied to give the total desired transformation.

283

SUBROUTINE M50LEQ

Calling Sequence: CALL M50LEQ (UJT, SELNEQ)

Purpose: M50LEQ calculates the transformation matrix
from the Earth mean equator and equinox of 1950
to the true lunar equator and prime meridian of
date.

Common Blocks Required: None

Subroutines Required: NUTATE

Input / Output

SYMBOLIC C OMMON
I/0 ! NAME DIMENSTION BLOCK DEFINITION

C alling
O SELNEQ 3,3 Operand Transformation matrix

C alling
I UJT 1 Operand Modified Julian Date

Theory:

The transformation from Earth mean of 1950. O0 to true lunar equator and prime meridian

can be broken up into three transformations: (1) Earth mean equator and equinox of

date to true lunar equator and ascending node, (2) Earth mean equator and equinox

of 1950 to Earth mean equator and equinox of date, (3) True lunar equator and

ascending node to true lunar equator and prime meridian.

The matrix for the first transformation is calculated in subroutine NUTATE, and the

theory is described there.

The second matrix describes the precession of the Earth's mean equator since 1950.0.

This precession is defined by the three small Euler angles

= 2304." 997 (T) + 0." 302(T) 2 + 0."019(T) 3

= 2304:' 997(T) + 1"093(T)2 + 0. 0192(T) 3

= 2004." 298(T) - 0.'426(T) 2 + 0."0416(T) 3

284

The transformation A is defined by the three rotations

cos 8 -sinq 0 cos y 0 -siny cos a -sina 0

A I sin R cos 0 0 1 0 sin a cos a 0
0 0 1 sin y 0 cos V_ 0 0 1

The elements of [A] may be expanded in powers of T to yield:

2 -6 3
a1 1 = 1-. 00029697 (T) - (0.13) 10 (T)

a12 = -a 2 1 .02234988(T) - (0. 676) 10 - 5 (T) + (0.221)10 - 5 (T) 3

a1 3 = -a 3 1 = - .00971711(T) + (0.207)10 - 5 (T) + (0.96)10 6(T) 3

2 -6 3
a 2 2 = 1-.00024976(T) - (0.15)10 (T)

2 -7 3
a2 3 = a = -. 00010859 (T) -(0.3) 10 (T)

23 32
2 -7 3

a3 3 = 1-.00004721(T) +(0.2)10 (T)3

The third transformation involves the simple rotation about the Z-axis (perpendicular

to the true equator of date and positive up) from the ascending node to the prime

meridian, The angle between the ascending node and prime meridian is calculated

in INUTATE, and its derivation is described there. If the angle is 6, the rotation

matrix is

cos 6 sin 0
B = -sin 6 cos 0

0 0 1

Once these three matrices have been calculated, the total transformation matrix is

LT] = [B] q] [A

where [N] is the matrix from NUTATE (for the transformation from Earth mean

of date to true lunar equator and ascending node).

285

Description:

M50LEQ first calls NUTATE to get BUMROT, the transformation matrix from Earth

mean equator and equinox of date to Moon true equator with the ascending node on

the ecliptic. Also output from NUTATE is RAPM which is the angle from the lunar

equator ascending node on the ecliptic to the prime meridian.

The next step in the transformation is obtaining the transformation matrix A from

Earth mean of 1950.0 to Earth mean of date. Then A is multiplied by BUMROT to

get DUMROT, which is the transformation matrix from Earth mean of 1950.0 to

Moon true equator and ascending node.

The final transformation needed is from ascending node to prime meridian in the

Moon's true equator of date. This involves a simple rotation about the Z-axis

(perpendicular to the true equator and positive up) through the angle RAPM. This

matrix is stored in BUMROT.

The final step is the multiplication of DUMROT by BUMROT which is stored in

SELNEQ and is output as the total transformation matrix.

286

SUBROUTINE M50LEQ

ENTER

Call NUTATE for

BUMROT and KAPM

Calculate transformation from mean
of 1950 to mean of date and store
in A

DUMROT = (BUMROT) (A)

Get transformation from ascending
node to prime meridian and store
in BUMROT

SELNEQ =(BUMROT) (DUMROT)

RETURN

287

SUBROUTINE M50MDT

Calling Sequence: CALL M50MDT (T, A)

Purpose: M50MDT calculates the transformation matrix from Earth
mean equator and equinox of 1950.0 to Earth mean equator
and equinox of date.

Common Blocks Required: None

Subroutines Required: None

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

CALLING

O A 3,3 OPERAND Transformation Matrix
CALLING

I T 1 OPERAND Modified Julian Date

Description:

M50MDT calculates the time in Julian centuries and then calculates the elements of

the matrix as polynomials in time.

Theory:

The transformation from Earth mean equator and equinox of 1950.0 to Earth mean equator

and equinox of date is accomplished by three rotations through three Euler angles that

represent the precession of the Earth since 1950.0.

The three angles are as follows:

= 2304." 997(T1) + 0." 302 (TI)2 + 0."019(T1)3

= 2304. "997(T1) + 1. "093(T1) 2 + 0. "0192(T1) 3

= 2004. "298(T1) - 0. "426(T1)2 + 0. "0416(T1) 3

288

where Ti is the time in Julian centuries since the beginning of the Besselian

year 1950.

The transformation matrix [A] is defined by

cos 8 -sin R 0 cosy 0 -sin y cos C -sin a. 0

A sin R cos R 0 0 1 0 I Isin a coscy O 0

0 0 1 sin v 0 cosy 0 0 1

The elements of A may be expanded into the following polynomials of T1:

2 -6 3
a11 = 1-.00029697(T1) - (0.13) 10 - 6 (T1)

a12 = -a 2 1 = -. 02234988(T1) - (0.676)10 (T1) + (0.221) 105 (T1)

a 13 = -a 3 1 = -. 00971711(T1) + (.207)105 (TI) +(.96) 10 6 (T)

a2 2 = 1- .00024976(T) 2 - (0.15) 10 - 6 (T1) 3

2 -7

a2 3 = a3 2 -. 00010859(T1) - (0.3) 10 - 7 (T1) 3

*2 -7 3
a33 = 1-. 00004721(T1) + (0.2) 10 (T1)

289

SUBROUTINE NUTAIT

Calling Sequence: CALL NUTAIT (TIME, EN)

Purpose: NUTAIT calculates the matrix for the transformation
from Earth mean equator and equinox of date to Earth
true equator and equinox of date

Common Blocks Required: None

Subroutines Required: None

Input / Output

SYMBOLIC COMMON
I/O NAME ' DIMENSION I BLOCK DEFINITION

Calling
O EN 3,3 Operand Transformation Matrix

C alling
I TIME 1 Operand Days since 1950.0

Description:

NUTAIT calculates the mean longitude of the Sun and Moon (VL & CR) and the mean longitude
of perigee of the Sun and Moon (G & GP) as functions of time. Then the nutations of the
obliquity of the ecliptic and longitude of the Sun (DE & DT) are calculated as functions of
VL, CR, G and GP. The mean obliquity of the ecliptic is calculated as a function of time,
and then the elements of the matrix are calculated and stored in EN for output.

Theory:

The transformation from mean equator to true equator can be approximated by

1 -6L cos (-6L sin (q)

EN = L cos q 1 -6

6L sin C 6C 1

290

where the nutations 8L and 6c are given by

6fx 10 4 2505844 cos + 0? 2456 cos 2L

-0.2511 cos 26 + 0?0508 cos (2L -)
0 0 -

+1. 5336 cos 2L + 0. 0369 cos (3L -)

+0.00666 cos (3L -F) - 0. 0139 cos (/ +F)

-000258 cos (L + f) - o . 006 cos (L - +)
0 - 0 -

-0,0183 cos (2L -) + 0. 0083 cos (L -)
0 o -i- -

-0.0067 cos (2fK) + o0 0061 cos (3L + -2L)

+ 0 . 0064 cos (3L - --)

-4 - - 0 0 s

5iL x 10 - 4 - (47.08927 + 0.0482 T) sinC - 0.5658 sin (2L)

+ 0. 5800 sin (2&) - 0. 0950 sin (2L/- f)
O 0 -, -/

- 3. 5361 sin (2L) - 0. 0725 sin (3L-)
o 0 E -/

- 0.1378 sin (3L - f) + 0,0317 sin (L/+ F)

+ 0.0594 sin (L + + 0.0161sin (-)

+ 000344 sin (2L - 2.) + 0.0158sin (Lf- l-)

+ 000125 sin (2L - n) - 0.0144 sin (3L'+ r 2L)

+ 0?3500 sin (L - F) - 0 0122 sin (3L/- r-)

+ 0.0125 sin (2L - 2) + 0.1875 sin (L - F)

+ 0. 0078 sin (2L- 2r'/)

+ 0.0414 sin (L + - 2L)

+ 0.0167 sin (2L - 2 L)

- 0.0089 sin (4 L- 2L)

-/ 0
and L = 64.37545167 + 13.1763965268 d

- .0001131575T - .00113015 T + 0019 x 10 T

L = 280.08121009 + 0. 9856473354 d

+ .000303T + 0000303T 2

-- /

F = 208.8439877 + 0. 1114040803 d
o 0 2 o -4 3

- .01334T - .010343T - .12 x 10 T

5 = 12.1127902 - 0?0529539222 d

0 0 2 o -4 3+ .0020795T + .002081T + .02 x 10 T

291

= 2 82 ° 08053028 + 0.470684 x 10- d
o o 2 o -4 3

+ .00045525T + .0004575 T + .03 x 10 T

0 0 0 -4 2 o -4 3
23.4457587 - 0.01309404T - .0088 x 10 T + .0050 x 10 T

where the above symbols represent the following quantities,

Symbol Quantity

L Longitude of Sun, from the equinox of date

TI Longitude of perigee of the Sun

L Longitude of the Moon, measured in the
ecliptic from the mean equinox of date to
the ascending node of the lunar orbit, and
then along the orbit.

r?/ Longitude of the perigee of the Moon,
measured as L/

Obliquity of the ecliptic

SLongitude of the ascending node of the Moon's
orbit on the ecliptic

d Time in days since 1950.0

T Time in Julian centuries since 1950.0

Note: Barred quantities are mean values and 6L represents the nutation in longitude of

the Sun and Ft represents the nutation in obliquity.

292

SUBROUTINE NUTATE

Calling Sequence: CALL NUTATE (K, TW, TF, TN, TM, RA, MG)

Purpose: To compute the transformations from Earth's mean

equator, equinox to Earth's and Moon's true equator,
equinox and equator, node.

Common Blocks Required: None

Subroutines Required: None

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

ARGUMENT

I K 1 LIST Output option key.
ARGUMENT Whole and fractional days since

I TW, TF 1 LIST 1950.0, days
ARGUMENT

O TN 3,3 LIST Earth's transformation matrix
ARGUMENT

O TM 3,3 LIST Moon's transformation matrix
ARGUMENT Right ascension of Moon's prime

O RA 1 LIST meridian, rad.
ARGUMENT

O OMG 1 LIST Moon's rotation rate, rad/sec

Output Options

If K = 1, only TN is computed, and the lunar orientation variables TM, RA, OMG are

ignored.

If K = 2, TM, RA, OMG are computed, and the Earth orientation matrix, TN, is ignored.

If K = 3, all list items are computed.

Equinox Coordinate Systems

Reference: Holdridge, D. B., "Space Trajectories Program for the IBM 7090 Computer."

JPL Technical Report No. 32-223, Pasadena, California, March 2, 1962.

293

The cartesian coordinate systems defined using the vernal equinox and ecliptic or

equatorial planes, and the transformations relating those systems are described

below. Numerical expressions for the angles defining relative orientations are

taken from the cited reference, though different computational forms are used.

For completeness, the orientations of body-fixed systems are also treated here.

1. Notation

The symbols used for the angles follow the general rules:

a. Quantities not otherwise noted are true values of date.

b. Quantities superscribed by a bar are mean values.

c. Quantities subscripted "50" are 1950.0 values.

d. The prefix "6 " denotes a nutation or libration in the
quantity prefixed.

In general, quantities defining Earth-Moon relationships use the symbol primed of

the equivalent quantity from the Earth-Sun relationships. Unless otherwise stated,

longitude is measured in the Earth's ecliptic, from the vernal equinox, and right

ascension is measured in the equator, from the vernal equinox.

For each of the coordinate systems, the z-axis is taken normal to the reference

plane, positive in the northern hemisphere, and the x-axis is taken along the

reference direction in the reference plane.

The reference direction is the vernal equinox for the Earth-equinox systems, and the

descending node of the Moon's equator on the ecliptic for the Moon-equinox systems.

For the body-fixed systems, the reference direction is the prime meridian of the body.

A list of symbols is given in Table 1. The symbols used by the reference are also

shown for ease of reference.

2. Equations

The computational equations are based on the equations given by the cited reference.

Numerical values are taken from that report, but the form of many of the equations

has been changed.

294

2.1 Earth's Mean Equator, Equinox of Date

The precession of the Earth's equator is defined by the small angles

Co = 23041'997T + 0.' 302T 2 + 0'.'0179T 3

z = 23041'997T + 1"1093T 2 + 0'.'0192T 3 (1)

8 = 2004"'298T - 1'426T 2 - 01'0416T 3

Ecliptic of date

Ecliptic of 1950

900+ C Mean equator of date
Mean equator of 1950

50 900+ z

Figure 1

The transformation

A = ia

cos z -sin z 0 cos 9 0 -sin cos o -sir0 0

= sin z cos z 0 0 1 0 sin o cos o 0 (2

0 1 sin 0 cos 9- L 0 0 1

may be expanded in powers of T. with the result

2 3
a = - -0.00029697T - 0.00000013T3

a 1 2 = -a21 = - 0.02234988T - 0.00000676T2 + 0.00000221T 3

a 1 3 = -a31 = - 0.00971711T + 0.00000207T 2 + 0.00000096T 3

295

a2 2 = 1 - 0.00024976T 2 - 0.00000015T 3

a2 3 = a = - 0.00010859T 2 - 0.00000003T 3

a = 1 - 0.00004721T 2 + 0.00000002T 3

33

given by the reference.

2.2 Earth's True Equator, Equinox of Date

The transformation from mean equator to true equator is approximated by

N= 1 -6'L cos c -6L sin e

6L cos c 1 -6 (

6'L sin W 6c 1

where the nutations 6 L, 6 e are given by

6q x 10= 25 5844 cos 0 + 0?2456 cos 2L

-02511 cos 20 + 0?0508 cos (2L'- 5)

+1.5336 cos 2L + 0?0369 cos (3L/ - F)

+0.0666 cos(3L-) - 0.0139 cos (L + r)-- /

-0o?o0258 cos (L+T) -o? 0086 cos (L - r +o)

-0.0183 cos (2L-O.) + 0?0083 cos (L - F- 5)o 2--) -- ~

-0?0067 cos (2 -o) + 000061 cos (3L + - 2L)

+ 0. 0064 cos (3L - F - 5)

4 (5)

6L x 10 = -(47?8927 + 0.0482T) sin 0 - 0.5658 sin 2L

+0. 5800 sin 2?i - 00 0950 sin (2L -)

-3.5361 sin 2L - 0 0725 sin (3f' -

-0. 1378 sin (3L - F) + o. 0317 sin (L+ rF)

+0.0594 sin (L +) + 0.0 161 sin (L - r +

+0°0344 sin (2L -) + o0158s sin (i - - -
296

0 0
+0o 0125 sin (2r - 0) - 0. 0144 sin (3L + r - 2L)

+0° 3500 sin (L - F) - 0o 0122 sin (3L - f - 6)

+0.0125 sin (2L - 2f) + 0.1875 sin (L -)

+ 0, 0078 sin (2L - 2fr)

+ 0. 0414 sin (L +I- 2L)

+ o0 0167 sin (2Lf- 2fL)

- ooo0089 sin (4Lf- 2L)

ZD

Ecliptic

Mean Equator

YD
True Equator

XD
XD XB FIGURE 2

L = 64o37545167 + 13.1763965268d

- .001131575T - 0o00113015T + 0. 019x10 - 4 T 3

O O
L = 280. 08121009 + 0. 9856473354d

+o.000303T + o'000303T
2

r = 209.8439877 + 0° 1114040803d (6)

- .010334T - .010343T - . 12x10 T-4T3

0 = 12. 1127902 -0? 0529539222d

+o 0020795T + o. 002081T 2 + . 02x10-4T 3

3 = 282o08053028+ 0°470684x10-4d

+0 00045525T + 00004575T2 + 0.03x10- 4 T3

297

o -4 2 0 -4 3
S= 2P.4457587-0 01309404T - .0088x10-4 T + 0050x10 T

Equations (5) are computationally inefficient, requiring the evaluation of 39 sines

and cosines. The subroutine NUTATE computes the transformation by computing

the sines and cosines of the angles , r T-o, L - P, P - C), L - 0, with the

remaining sines and cosines computed by trigonometric identities.

2.3 Earth-Fixed

The transformation from true equator, equinox of date to Earth-fixed coordinates is

T cos sin 0-

-sin cos 0 (7)

0 0 1

where

= 100007554260 + 0°9856473460rd]

+ (2 9015)10 - 13 [d] 2 + Wt

w = 0.00417807417/(1 + (5.21)10 - 13 [d]) deg/sec (81

65 =6L cose

The nutation in right ascension, 6 is the element n2 1 of the nutation matrix,

equation (4).

2.4 Moon's Equator, Node of Date

The transformation from Earth's equator, equinox to Moon's equator, node may

be written as shown on the next page:

298

Moon's true equator

Ecliptic

+ 6L + 1800 Earth's true equator

Figure 3

M = -cos A sin 01 1 0 0 Cos sin 0

-sin A cos A 0 0 cos i sin i -sin 02 cos (0 (9)

0 0 1 -sin i cos i 0 0 1

as in the reference, or

M = 1 0 0 -Cos (0 +6L) - sin (02+6L) 0

0 cos ' sin sin (,0+6L) - cos (+68L) 0

0 -sin a cos q 0 0 1

(10)

1 0 0

0 cos C sin C

0 -sinc cos C

where

0 = O + a9

299

Retaining linear terms in 6e, 6L,

M = NTN

MI 1 0 0 -cos 0 -sino 0 1 0 0

0 cos e' sin ' sin 9 -coso 0 0 cos " sin

0 -sin e' cos ' 0 0 1 0 -sin cos"?

where N is the nutation matrix (4). Clearly, 5iis the transformation from Earth's

mean equator, equinox to Moon's true equator, node.

The Earth's mean obliquity, C, is given by (6). The mean inclination of the Moon's

equator with the ecliptic, , is

= 1.535

and the librations in inclination and longitude are

6~'=-0.0297222 cos (L - F) +0.0102777 cos (L+ - 26)

-0.00305555 cos (2 - 20)

60 csc e {0.0302777 sin (L - I) + 0.0102777 sin (L +r- 20

-0.0030555 sin (2~I - 26)}

The transformation I is computed by subroutine NUTATE.

2. 5 Moon-Fixed

The transformation from Moon's equator, node of date to equator, prime-meridian is

L = cos T sin T' 0

-sin T' cosT 0

0 0 1J

300

where

T' = L/- L

0 , 0

6L = -0.003333 sin (L - r) + 0.0163888 sin (L -r)

+ 0 005 sin (2r- 20)

The angular velocity of the Moon is the vector sum of the angular velocities

1. L - O about the Moon's polar axis, and

2. 6 about the normal to the ecliptic.

Since the inclination of the two axes is c' the angular velocity is

- ,Q sin c"

(L - + K cos J
in equator, node components.

Subroutine NUTATE computes the polar component

+= (L'- + 5 cos) (15)

from

o'= L'- 5 (1-cos -+ 6 sin (C)

1-cos = .000358852

sinc = .026787599

1 -5 -13 (16]
L = 0.266170762x10-5 -0.12499171x10 T (rad/sec)

-- 7 -13S =-0.106969844x10- 7 + 0.23015329x10 T

6L = -0.1535272946x10 -9 cos (L- r) +0. 569494067x10 cos (- F)

-11
+0.579473484x10 1 cos (2f - 2)

301

10 = -0.520642191x10 - 7 cos (L'- P) +0. 181177445x10 - 7 cos (L + P -2 0)

-0.106405786x10 -7 cos (2 -2)

Retaining nine significant figures,

' = 0.266171146x10 - .13499x10 - 9 cos (L'-

+. 5695x10 cos (L -) -. 645x5 cos (L + f -2 0)

-11 - - -11 - -
+.380x10 cos (2L - 2) + .579x10 cos (2r - 2f

+ q' .139.10-8 cos (T'- fP) -. 485x10 - 9 cos (L,+ 2)

-9+.285x10 cos (2L - 20)]

302

LIST OF SYMBOLS

Symbol Reference Quantity

L L Longitude of the Sun, from the equinox of date.

F r Longitude of perigee of the Sun.

g g' True anomaly of the Sun

L Longitude of the Moon, measured in the ecliptic
from the mean equinox of date to the ascending
node of the lunar orbit, and then along the orbit.

r r Longitude of perigee of the Moon,
measured as L.

g g True anomaly of the Moon.

Sc Obliquity of the ecliptic.

C I Inclination of the Moon's equator with
the ecliptic.

W Angular velocity of the central body about
its north polar axis.

Right ascension of the prime meridian
(hour angle of the vernal equinox).

) CLongitude of the ascending node of the Moon's
orbit on the ecliptic.

S Argument of perigee of the Moon.

i i Inclination of the Moon's equator with the
Earth's equator.

)' - ' Right ascension of the ascending node of the
Moon's equator on the Earth's equator.

A Arc in the Moon's equator from the Earth's equator
to the ecliptic.

303

Symbol Reference Quantity

E' A - A Right ascension of the Moon's prime meridian,
from the ascending node of the Moon's equator
on the ecliptic.

SL 61' Nutation in longitude of the Sun

6 6 (Nutation in right ascension of the prime
meridian.

6 a Libration in longitude of the ascending node.

6 L t Libration in longitude of the Moon.

6 ' I Libration in inclination.

6 6C Nutation in obliquity.

900 + z .900 + z Right ascension of the mean equator of 1950,
from the mean equinox of date.

90 - o 900 - o Right ascension of the mean equator of date,
from the mean equinox of 1950.

6 6 Inclination of the mean equator of date with the
mean equator of 1950.

304

SUBROUTINE OBLATE

Calling Sequence: CALL OBLATE

Purpose: This subroutine calculates the approximate

effect of the Earth's J 2 gravitational term
on a trajectory. This subroutine is

used with the Multiconic propagator.

Common Blocks Required: CONST, DUM, INPUT, STATE.

Subroutines Required: ORBIT, TRMN.

References: Paul Penzo, Computing Earth Oblateness
Effects on Lunar and Interplanetary
Trajectories, AIAA paper No. 70-97,
January, 1970.

Inputs / Outputs

SYMBOLIC PROGRAM COMMON
I/O NAME DIMENSION BLOCK DEFINITION

O AM 1 DUM (9) Mean anomaly at end of step
Orbital elements and sines and

O ELM 12 STATE(14) cosines of elements of state

I GME 1 CONST(7) Earth's gravitational constant
Reciprocal of spacecraft's

O PM 1 DUM(7) mean motion

I T 1 STATE(10) Time since state epoch

I TF 1 INPUT(4) Final time
Spacecraft's position and

/O X 6 STATE(1) velocity vectors.

305

Theory:

The approximate effect of J2 on the orbital elements is determined in this subroutine.

The time derivatives of the angular elements can be expressed by:

di _r cos O A
dt h

df_ r sinO A
dt h sin i

d) = -cos i d - 1 P cos fA - (P+r) sin f A

dt dt eh

where, r = radial distance
f = true anomaly

W = argument of perigee
i = inclination

0 = longitude of the ascending node
O= W+f
h = angular momentum
e = eccentricity
P = semi-latus rectum

and where A r, At, An are the components of the disturbing acceleration caused by

Earth oblateness, see Figure 1. Z

h
a

an t a

r ar

+ f

X figure 1

306

It is more convenient to exchange the true anomaly for time as the independent

variable. To do this, the expression for angular momentum may be used, as

2 df
h=r -

dt

then,

di di df h di
dt = df dt r- (2df

Similar equations are used for the other elements. Thus equation (1) becomes,.

3
di r cos A A
df h2 n

d_ r 3 sine A
d 2 n (3)

h sin i

dw - cos i d r Pcosf A - (P + r) sinf A
rtdf dAf eh

The acceleration due to the second harmonic term is given by,

A 2 -sin3 sin si

A 2 req sin 2 sin 2 i (4)
4 si)2

A 2 r sin 8 sin i

where p is the Earth's gravitational- constant

r is the Earth's equatorial radius
eq

J2 =.0010823

The substitution of equation (4) into equation (3) provides the final form of the

derivatives of the orbital elements. The only variable remaining besides f and

O is r. However, r can be eliminated by the use of

P (5)
1 + e cos f

307

Now, equations (3), (4) and (5) can be combined and analytically integrated to

provide the effects of J2 on the orientation elements. Since the changes in the

elements are small through the integration interval, the orbital elements can

be held constant during the integration for a first approximation to their variations.

Thus, the variation in the elements becomes,

i *2 e 3 e 3 I
i = K sin i cosi sin 8 - - cos cos + sin sin

=Kcos i - (- sin 8 cos) + (cos sin 3 +sin cos 6

+ e sin sin3 9

0

A = - cos ib r + A W rj

where 2

-3y J rK = 2 req

h4

e-K 3 2
A r [e(1 - - sin i)f f

3K 2 e 2

+2 sin i sin w cosw 4 cosf + 3 e cos f

-((7-e 2) cos 3 f - 6e cos4 f -2e 2 cos5f
3 f 0

K sin i A sin f + B sin f cos f + C cosf sin f
2e

2 24 2

+e i Asinffsinf

+ 3 D cos3 f sinf + eD cos f sin f f

308

where

A 1 (7 + 2e2) cos2o + t- (1 + 2e2) sin2 C
3 2

3
B='e 2 2

C = (e2 -7) cos 2 +1 (7 + 2e 2) sin2
3 3

D = -e (cos2co - sin2)

The in-plane elements, e and p, are determined if the energy, c, and the angular

momentum, h, are known. The variation in the energy is determined since the

force field of an oblate Earth is derivable from a potential function. Considering

only the second harmonic term, the energy per unit mass is,

2 2
C J= - 02 req (1- 3 cos 2) (7)

2 r 2r 2

where bis the colatitude. The Keplerian portion of the energy remains constant.

Thus, the variation in energy is only the third term of equation (7), or

[2 1r
AC= - J 2 r (1- cos 2 p) (8)

2 r3
r0

The angular momentum does vary and.its derivative is given by,

dh
dt rx r

However, since the potential has no. longitude dependence, the z - component of

the derivative in equation (9). is zero. As seen from Figure 1, the z - component

of the angular momentum is given by,

309

h = h cos i
z

then
dh dh di

S = cos i -hsini = (10)
dt dt dt

Thus, the variation in the magnitude of the angular momentum over the same

interval as A i is,

h = htaniAi

The elements at the end of a step can now be obtained from,

i = i +Ai

2

1 -

e 1 = 1+ 2P1 C 1

where

the subscript 1 denotes the values at the end of a step, and

C1 = Ck+ AC

Ck is the Keplerian energy

h i = h +Ah

Description:

The variations in the orbital elements are determined in a straightforward manner

from the above equations. The initial state is brought into the routine as position

and velocity vectors in x of STATE common.

310

The orbital elements are determined using subroutine ORBIT. Next, the true

anomaly f, and o + f are determined at the beginning and at the end of the step

and stored in the arrays F and THET, respectively. The variation in o, i and

r is determined in the DO 2 loop, where the index refers to the limits of integration.

The variation in the energy and angular momentum is calculated from equations

(8) and (11). Finally, the orbital elements at the end of a step are determined from

equation (12).

If the time at the end of the step is greater than the final time, logic flow transfers

to statement 5 where an iteration scheme is employed to determine the radius cor-

responding to the final time.

The position and velocity vectors, mean, anomaly. and reciprocal of the mean

motion are determined at the end of the step before the subroutine terminates.

311

SUBROUTINE OBLATE

ENTER

Determine orbital elements at begin-
ning of step from ORBIT

Set up initial constants on F(1), F(2),
THET(1), THET(2)

Calculate constants used
in Equation (6)

Calculate variation in
w0, i, Oin DO 2 loop
(equation 6)

Determine variation in energy and
angular momentum (equations 8 and
11)

Determine time at end
of step, TD

S>.TF iteration for
D final time

<TF

Determine final orbital elements
from equation (12)

Calculate position and velocity vectore
at end of step from ORBIT and other
out-ut quantities

RETURN

312

SUBROUTINE OBLE

Calling Sequence: CALL OBLE

Purpose: This subroutine calculates the oblateness accelerations

of the Earth.

Common Block Required: CONST, CNTRL, GRAVTY, STATE, PERT

Subroutines Required: M50MDT, NUTATE, ROTATE

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

I GM 12 CONST Gravitational potential

I JC 1 CNTRL Central Planet

I POS 3 GRAVTY Position vector

I UJT .1 STATE(32) Current julian date

I/O XDUM 3 PERT Acceleration Vector

Usage: JC must = 3
Position Vector must be in GRAVTY (Mean Equator of
1950).
Acceleration Vector must be in PERT (Mean Equator of
1950).

313

Description:

This subroutine first transforms the position vector of the S/C to mean equator of

date. It then calculates the acceleration acting on the S/C due to the aspherical

Earthwith harmonics A2, A3 and A4 . The equations are as follows:

3x 2 5xz 2
x 2r5 A2 GM(3) (1-5Uz) + 2r 7 A3 GM(3) (7Uz 2-3)

5x 2 4
+ 5x7 A4 GM(3) (3-42Uz2 + 6 3Uz)

y x x

- 3 - 2 3 2 35 4
z 2r A2 GM(3) (3-5U) + A3 GM(3) (110OUz + 3 Uz4

5z- 2+ Z A4 GM(3) (15-70U 2 + 63UZ4

where U =
z r

These accelerations are then transformed back into Earth mean equinox and equator of

1950, and then added to the total acceleration vector XDUM.

314

SUBROUTINE OBLTY

Calling Sequence: CALL OBLTY (EP, B)

Purpose: OBLTY calculates the transformation matrix
that rotates from the Earth's ecliptic to the
Earth's equator.

Common Blocks Required: CONST, INPUT

Subroutines Required: None

Input/Output

0 SYMBOLIC PROGRAM COMMON
NAME DIMENSION BLOCK DEFINITION

O B 3,3 - Calling Operand Transformation
Matrix

I EP 1 Calling Operand Julian centuries
since 1900

I RAD 1 CONST (1) Degrees per radian

Theory:

The transformation from the Earth's ecliptic to the Earth's equator involves a simple

rotation about the vernal equinox through. the angle 0

where

0 = 1.03 x10-8 t 3 -1.23 x 10 - 7 t2 -3.562 x 10-3 t + 23.452294'degrees

The time variable,t,represents the number of Julian centuries since 1900 (days since

1900.0 times 10-4.

315

The matrix is given by:

1 0 0

B = 0 cos -sino

0 sin 0 cosO

Description:

OBLTY calculates the transformation matrix for the rotation from the Earth's

ecliptic to the Earth's equator. This matrix is loaded into B. The input EP

represents the number of days since 1900.0 times 10 - 4 .

316

SUBROUTINE OBSET

Calling Sequence: CALL OBSET (MODEL)

Purpose: OBSET initializes the spherical harmonics co-

efficients for a given field model.

Common Blocks Required: FIELDM

Subroutines Required: None

Input/Output

SYMBOLIC PROGRAM COMMON
I/O

NAME DIMENSION BLOCK DEFINITION

O MMOD 1 FIELDM(309) Highest tesseral order

I MODEL 1 Calling Operand Model number

O NMOD 1 FIELDM(308) Highest zonal order

O TSRL 16, 17 FIELDM (17) Tesseral array

O ZONL 16 FIELDM (1) Zonal vector

Theory:

The relationships between zonals and tesserals and the sine and cosine coefficients

of a spherical harmonic potential field are as follows:

ZONL(i) = -C. i = 1 2,

TSRL(i,j) =C.. o j i, i = 1, 2,

TSRL(j, i +1) = S.. o j i = 1, 2,
13

317

Description:

OBSET initializes the spherical harmonic coefficients according to the field model

selected. The values NMOD and MMOD are also set to indicate the size of the

selected model. NMOD indicates the highest-ordered zonal and MMOD indicates

the highest tesseral order. The following chart indicates the possible values of

MODEL and the corresponding fields:

MODEL FIELD DESCRIPTION NMOD MMOD

1 Houqton L1 model of 3 3
lunar field

3 JPL 15-8 model of the 15 8
lunar field

4 Mars field--post 4 3
Mariner 1971

5 Clears coefficient arrays 0 0
for loading of input field

See Figure 1 for the values of the C and S terms for the first three models

above.

318

HOUSTON LI MODEL OF LUNAR FIELD, NTODP = 3, M:OD = 3

C(2, J)= -0.2071D-03 0.0 0.2072D-04
C(3, J)= 0.2100P-04 0.3400D-04 0.0 f).2583D-05
S(2, J)= 0.0 0.0 0.0
S(3, J)= 0.0 0.0 0.0 0.0

JPL 15-8 1MODEL OF LUNAR FIELD, NMOD = 15, M 1OD = 8

C(2, J)= -0.1996D-03 0.8171D-05 0.2359D-04
C(3, J)= -0.58783D-05 0.3001D-94 0.4 69RD-05 O.A.847D-05
C(4, J)= 0.1195P-04 -0.2226D-05 -0.2418D-05 0.2305D-06 -0.A547D-06
C(5, J)= -0.4544D-05 -0.2 4 55D-05 0.888TD-06 -0.7774D-06 0.n2?7D-06

-0. 3044D-0Q
C(6, J)= 0.!.083-0 5 -0.6373 -0.-373- 0.691 7 D-06 -0.204!D-06 0.A'20D-07

-0. 7 564D-0? -0.7277D-08
C(7, J)= 0.17 79D-04 0.1324D-05 -0.1293D-06 -0.1!05D-06 -0.3523D-08

0.6061D-08 -0.2137D-09 0.2454--10
C(8, J)= -0.5967D-05 -0.3040D-05 0.2650D-06 -0. 771D-07 0.!92?5D-07

0.4844D-09 0.1252D-08 -0.4523D-10 -0.317D-11
C(9, J)= -0.3206 D-05 0.0 0.0 0.9 0.0.

0.0 0.0 0.0 0.0
C(I0, J)= 0.1367D-0 5 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0
C(11, J)= -0.7311D-05 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0
C(12, J)= 0. 125!D-04 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0
C(13, J)= -0.3315D-04 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0
C(14, J)= 0.1044D-04 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0
C(15, J)= -0.2977D-04 0.0 0.0 0.0 0.0

0.0 0.0 0.0 0.0
S(2, J)= 0.0 -0.7213D-05 0.4538D-05
S(3, J)= 0.0 0.1421D-05 0.57489-06 -0.2919D-05
S(4, J)= 0.0 0.32999-05 -0.2389D-05 -0.5222-06 0.4248D-06
S(5, J)= 0.0 -0.6925D-05 -0.3178D-06 0.1159D-0 5 0.6296D-07

-0.3012D-07
S(6, J)= 0.0 0.5342D-05 -0.1157D-05 -0.3484D-06 -0.9870D-07

-0. 1654D-0 7 0.2373'-08
S(7, J)= 0.0 -0.1579D-05 0.1152D-06 0.2440D-06 0.1295D-07

0.5582D-08 0.1227D-08 -0.031D-10
S(8, J)= 0.0 0.62098D-05 -0.1767!-06 -0.1437D-06 -0.1757D-07

0.2391D-08 -0.2390D-09 -0.5813D-10 0.7798D-11

319

0 0 0.0 IPo-Uc9~o vo0 =(W c)s
P OCQ0l 0 0 6Z jo*00 = Cc z~)s

0-00 ~Ol 000 '0-ci~vTo 0-(=~ (f
0.10 0* (SO-GOLLZ 0 0 vO-GlOE , 0- =U C) j

v0-U00'VSO0- 000 Z 0-(l09 6T *- =(QC 'Z)D

t: = QO0C"d ' V = U Ob 4 1 ' LL61T U21,1IUVN'I S 0d -G.I a S-dVW

'uoz T) azi 5 'a

SUBROUTINE OBSET

ENTER

set ZONL and TSRL
elements to zero

GO TO MODEL

set ZONL and set ZONL and set ZONL and

TSRL elements TSRL elements TSRL elements
for L model for JPL model for Mars model

set NMOD and set NMOD and set NMOD and
MOD MMOD MMOD

RETURN

321

SUBROUTINE ORBIT

Calling Sequence: CALL ORBIT (K, J, X, XD, GM, ELM)

Purpose: ORBIT calculates orbital elements from position
and velocity,or position and velocity from orbital
elements.

Common Blocks:Required: CONST

Subroutines Required: None

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

Calling
I/O ELM 6 or 12 Operand Orbital elements (see description)

C alling
I GM 1 Operand Gravitational constant of planet

Calling
I J 1 Operand Direction flag (see description)

Calling
I K 1 Operand Condition flag (see description)

I PI2 1 CONST(3) 2*
C alling

I/O X 3 Operand Position vector
C alling

I/O XD 3 Operand Velocity vector

Theory:

Consider first the calculation of the orbital elements P, e, f, W, i, 0 from the position

and velocity vectors X and V. The angular momentum vector is given by

I = XxV = (hsin (i) sin (, -h sin(i) cos (0), hcos (i)

so that Hil =I x Vi =h

and P = h2 /GM

322

The equation of motion of a body rotating about a central body is given by

R = P / (1Ie cos f) where R is the distance to the body.

Thus R =1 X1 and e cos(f) = (P-R) /R,

which implies - e sin (f) f = - (P/R 2) R

P XjV1+X2 V2 +X3 V 2
or e sin(f) = - since h = R

From e cos (f) and e sin (f), both e and f can be calculated, as long as e is not

equal to zero, which is explained later on.

The calculation of i and 0 is straightforward given the components of i, as

long as the inclination is not 00 or 1800, in which case C2is set to zero.

In order to find w, let u - f + w. Then the geometry of the orbit can be used to

yield the following equations:

R cos (u) = X1 cos (0) + X2 sin (0)

R sin (u) =-X 1 sin (0) + X2 cos (0)) cos (i) + X3 sin (i)

Now the calculation of u is straightforward, and

w= u-f , unless e equals zero,

In whioh case w is set to zero and f = u.

The second part of the subroutine is the reverse case, i.e., given orbit elements

find X and V. The first step in this process is to calculate the sines and cosines of

w, i, and C2 (if K = 5 this is input, also if K = 6 e, W, and f must be calculated as well

as the above sines and cosines). After this, a transformation is set up which represents

rotations through w, i, and 0 to transform orbit coordinates to whatever coordinate

system you may be in. The rotations and the resulting matrix are as .shown on the

following page.

323

x cos -sin 0 0 1 0 0 cos -sin w (X'

= sin cos 0 0 cos i -sin 1 sin w cos W 0 Y'

S0 0 1) (0 sin i cos i 0 0 1 0

cos (w) cos () - cos (i) sin () sin (w) -sin(w) cos(Q) - cos (i) sin(D) cos(w) /X 1
cos(w) sin(O) + cos(i) cos() sin (w) -sin(W) sin(O) + cos(i) cos(0) cos(w)

sin(i) sin(w) sin (i) cos(w) /

Here x' and y' refer to a coordinate system in the orbit plane with the x-axis pointing

toward pericenter. Thus finding position and velocity vectors is reduced to finding

the vectors in the orbit plane and then transforming them.

For position, R can be found by

P
R =

1+ e cos (f)

and then

x' = R cos (f)

y' =R sin (f)

For the velocity, the magnitude can be found by the energy relationship

A v2 V
E =-7

2a 2 R

2 (1-e 2)
or V = -

R P

thus V =-V sin(f-v) andV 2 =Vcos(f-y)

where v is the flight path angle and is given by

y = arctan (e sin (f) / 1 + e cos (f)

Once V1 and V2 are calculated, the velocity vector may be found by transforming

the primed system as was done before.

324

Description:

ORBIT provides the interchange between position and velocity coordinates and

orbital elements. If the direction flag, J, is greater than or equal to zero,

orbital elements will be calculated from position and velocity. Note that both

position and velocity vectors are required for this transformation. Three

different sets of orbital elements may be calculated, depending on the condition

flag, K. If K is equal to three, only the standard orbital elements will be output,

i.e., the semi-latus rectum (P), eccentricity (e), true anomaly(f), angle of

pericenter (w), inclination (i), and angle of ascending node (P) will be output in

ELM(1) - ELM(6). If K equals five, the following values will be output in

ELM(7) -- ELM(12) in addition to the previous values: cos (W), sin (w), cos (i),

sin (i), cos (0), and sin (0). If K equals six, the following values will be output

in ELM(1) - ELM(6): P, e cos (w), e sin (w),w + f, i, ?. No other values will

be output.

If J is negative on input, then position and/or velocity will be output as follows:

J equal to minus one implies that only the position vector is desired. Other

negative values indicate that both the position vector and the velocity vector are

desired.

The value of K in this case indicates the type of orbital elements that were input.

K equal to one implies that only the standard orbital elements were input. K equal

to five implies that the sines and cosines of w , i) and 0 were input in addition to the

standard elements. K equal to six implies that e cos (w), e sin (w), and 0+ f were

input in place of e, f, and 0 .

325

SUBROUTINE ORBIT

ENTER

es es Finde,f,

no

Calculate orbital Calculate
elements K = 3 es sines and

cosines of
no w, i, I

Calculate transfor-

i = 0 mation coefficient
or

no
Calculate position

vector

no
SetJ= -1 yes RETUR

alculate e s no

cos w, K=6

Cetc. alculate
no. velocity

vector

no

Calculate cosines RETURN

and sines of

RETURN

326

SUBROUTINE ORIENT

Calling Sequence: CALL ORIENT (A, U, S, CD, SC, K)

Purpose: To find the angle through which one vector must be rotated

about a second vector in order that the first vector should

form a given angle with a third vector.

Common Blocks Required: None

Subroutines Required: CROSS

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION
ARGUMENT

I A 3 LIST Rotated vector.

ARGUMENT

I U 3 LIST Rotation vector.
ARGUMENT

I S 3 LIST Fixed reference vector.

ARGUMENT

I CD 1 LIST Cosine of desired angle.

ARGUMENT

O SC 4 LIST Sines and cosines of the solutions
ARGUMENT

O K 1 LIST Indicator for solution type

Description:

A principal use of this subroutine is to locate the times of day (right ascension of the

Earth-fixed orbital plane's ascending node) when the touch-down point for Earth returns

lies in the return orbit plane. This is accomplished by asking the subroutine for sines

and cosines of the incremental right ascension required for the dot product of the normal

to the return orbit plane and the touch-down radius vector to be zero. This subroutine

can also solve the slightly more general problem of achieving a desired non-right-angle

between two vectors by rotating one of them about a given axis.

327

Let Tu (p) be the 3x3 orthogonal matrix which, when applied to any non-zero vector

not parallel to u, rotates that vector about u through an angle, 0, measured in the

plane normal to u. Thus, a = Tu () a is a vector which sweeps out a cone about u

as @ increases from 0 degrees to 360 degrees. The problem solved by this subroutine

is then: Find Q (or sin A and cos F) such that

a * s = a cos ~.

-T T
Now - s = as = a T (-) s

U

T

=a cos9I +(1-cose) - sin

T T T
T a u s a uxs

=cos a s + (1-cos) T sin .
uu lu

The equation to be solved then becomes

la! Isj cos p = acos9+B sine +y,

T

uu

1 (sxu) a

1 ul

and
Y a sT-y

or

ecos + a sine +, = 0,

where - cos 0,

lal IsI

lal Isl

lal ISI

328

The solutions of this equation for sin 0 amd cos 9 are given by

sin e

cos a + 8 1 -+ + -Y

It can be seen that two solutions exist - one for each sign on 22 2 2

2 -2 -2
When a + p = y , however, only one solution exists. This case will occur

when, for the use mentioned, the latitude of touch-down is exactly equal to the

inclination of the return orbit. If the latitude is greater than the inclination

2 -2 -2
at + < and a real solution is impossible. The subroutine then sets the

indicator, K, to a positive value and provides the solutions for e when the angle

between a and s is a maximum or minimum.

329

SUBROUTINE OUTPUT

Calling Sequence: CALL OUTPUT (T, X)

Purpose: This routine outputs the spacecraft's state with

respect to the launch and/or target planets in

the desired coordinate system.

Common blocks required: CNTRL, CONST, INPUT, INTVAR, PLNET,
STATE

Subroutines required: M5OLEQ, M50MDT, M50MDT, OBLTY, ORBIT,

ROTATE, SHORB2, TRMN.

Input / Output

SYMBOLIC PROGRAM COMMON DESCRIPTION
NAME -DIMENSION BLOCK

I DJO 1 INPUT (46) Modified julian date of state epoch

I GM 12 CONST (5) Gravitational constants

I JC 1 CNTRL (7) Central planet number

I JL 1 TIJ Launch planet number

I JT 1 T Target planet number

I KOUTPT 2 INPUT Launch and target planet output
(1039) coordinate systems

I KOUT9 1 INPUT Auxiliary output flag
(1058)

I KP 12 JIT Planets in system

I KTERM 1 INPUT Type of auxiliary output
(1059)

I METH 1 INPUT Trajectory propagation method
(1013)

I PCON 1 INPUT (05) Position units conversion factor

I RAD 1 CONST (1) Radians to degrees conversion facto

I T 1 calling Time since DJO
argun ent ...

I VCON 1 INPUT (6) Velocity units conversion factor

I X 6 Calling Position and velocity vectors of
I argument state to be output

330

Description:

This subroutine outputs the state position and velocity vectors and orbital elements

with respect to the launch and target planets in a desired coordinate system. The

state and time are input via the argument list. The state is translated to the launch

and target planets and rotated to the desired coordinate system before output.

The output coordinate system is determined by the KOUTPT flag as follows:

KOUTPT 1 Mean equinox and ecliptic of date

= 2 True equator and prime meridian

= 3 Mean equator and equinox of 1950

= 4 True equator and equinox of date

= 5 no output

The subroutine also has provisions for an auxiliary abbreviated output written on the

unit number designated by KOUT9. If this flag is non-zero, output is presented

on unit KOUT9 in a form specified by KTERM as follows:

KTERM = 1 orbital elements

= 2 position and velocity vectors

= 3 1 and 2

The coordinate system of the output is also specified by KOUTPT. This subroutine

also has a provision to determine the time in the shadow cone during one orbit assuming

constant elements. The output is presented in the auxiliary abbreviated output. Thus,

the KOUT9 flag must be non-zero. Also, the KSHORB flag must be 1 before subroutine

SHORB2 is called to perform the shadow calculations.

331

SUBROUTINE OUTPUT

ENTER

Write header for

OUT9 T auxiliary output

---; 0

convert time to
hours

TNo ranslate state to J

Yes

Rotate state to desired output

coordinate system

Calculate position, velocity,
elements

call SHORB2
KOUT9 KSHORB

to get shadow

times on orbi

Write auxiliary
output on unit

KOUT9

Write unit 6 output

Yes Return
J=JT J=JT Return

332

SUBROUTINE OUT1

Calling Sequence: CALL OUT1

Purpose: OUT1 determines the print interval and
controls the interpolation logic for printing.

Common Blocks Required: INPUT, INTVAR, SAVE, STATE

Subroutines Required: INTERP, OUTPUT

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

Modified Julian date of
I DJO 1 INPUT(46) launch epoch

I DTOUT 10 INPUT(460) Printing intervals

I T 1 STATE(10) Seconds since state epoch
Switching times of

I TOUT 10 INPUT(450) printing intervals

I TOUTL 1 SAVE(40) Time of last print

I X 6 STATE(1) Current state

I UJT 1 STATE(32) Current modified Julian date

Description:

This subroutine finds the print times and uses subroutine INTERP and OUTPUT to output

the state at the print times. OUT1 is called from TIMEC at the beginning of each

numerical integration step. The only print times determined on each call to OUT1 are

print times which lie in the last numerical integration step.

The print interval is determined from the print table consisting of TOUT and DTOUT.

The print time, TDUM, is determined from TDUM = TOUTL + DTOUT (IDUM) (1)

where TOUTL is the last print time and DTOUT(IDUM) is the current print interval

determined from the print table.

333

If this time is greater than the current time, no printing is done. If not, the state

is determined at the print time using the interpolation logic from subroutine INTERP

and the state is then output in subroutine OUTPUT. If the print time is within 10

seconds of the current time, the state is not interpolated for and OUTPUT is called

directly.

The next print time is then determined from equation (1) and the whole process is

repeated until the print time is greater than the current time. The subroutine terminates

when this criterion is satisfied.

334

SUBROUTINE PLANET

Calling Sequence: CALL PLANET

Purpose: Subroutine PLANET supervises the
calculation of the planet's position and
velocity vectors.

Common Blocks Required: CETBL2, CETBL3, CNTRL, INPUT,
INTVAR, STATE

Subroutines Required: LUNA, SOL, READE

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

I EJO 1 STATE(26) Ephemeris date of launch epoch

I EJT 1 STATE(28) Current ephemeris date

I JC 1 CNTRL(7) Central planet number

I JMN 1 INPUT(1017) Ephemeris type flag

I KP 12 INPUT(1001) Planets in system
Flag to determine if tape (or dish

I KREAD 1 CNTRL(8) read necessary
Time of last tape (or disk)

I TAB3 1 CETBL3(1) read

335

Description:

This subroutine controls the calculation of the planet's position and velocity vectors.

The JMN flag determines the type of ephemeris used as follows:

JMN = 1. Mean elements

2. Mean elements for Sun and mean elements plus first-
order corrections for Moon

3. Ephemeris tape read

4. Mean elements for Sun, osculating elements
for Moon

5. Ephemeris disk using Goddard's direct read feature

If JMN is not equal to 3 or 5, subroutines SOL and LUNA are called to determine

the planets'positions if the respective planets are in the system. If JMN is equal

to 3 or 5, subroutine READE is used to obtain the position and velocity of the planets.

Before this routine is called, the IREQ array is set to the KP array and CENT set

to the central planet number. These are arrays used in READE. The KREAD flag

is also set. Each read of the ephemeris disk on tape brings eight days of data

into arrays in READE. The KREAD flag is set to zero (no read) if the time of the

ephemeris call is within the eight day range of data already started in READE,

otherwise, the KREAD flag is set to one for a tape or disk read.

336

SUBROUTINE POST

Calling Sequence: CALL POST

Purpose: POST computes certain parameters for output
during midcourse guidance analysis.

Common Blocks Required: CONST, INPUT, INTVAR, MCCOM, PLNET,
STATE

Subroutines Required: BELL, BURND, DOT, MVTRN, ORBIT, PLANET,
RETRO, SUNMIN, TRMN, VISIB, VNORM

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

I WO 1 INPUT(38) Initial spacecraft weight (kg)
Julian date of anchor vector

I DJO 1 INPUT(46) epoch (days)
Specific impulse of the midcourse

I ASPMC 1 INPUT(441) motor (sec)

I WRETRO 1 INPUT(443) Weight of retro fuel (kg)

I AFUEL 1 INPUT(471) Attitude fuel/angle factor (kg/rad)

I WDROP 1 INPUT(473) Retro drop-weight (kg)

I JT 1 INPUT(1031) Target body number

I MCOUT 1 INPUT(1050) Extra output key

I KOUT9 1 INPUT(1058) Logical unit for scope output.
Logical unit for writing out

I MCUNIT 1 INPUT(1061) information.

I IPROB 1 INPUT(1070) Output probability scale (pct)

I NORMIN 1 INPUT(1080) Retro optimization key

Pre-ignition midcourse state
I XMC 6 MCCOM(6) (km, km/sec)

I DV 3 MCCOM(12) Midcourse velocity impulse (km/sec

I DVMG 1 MCCOM(15) Midcourse impulse magnitude(kr/sec

337

SYMBOLIC COMMON

I/O NAME DhMENSION BLOCK DEFINITION

I DEC 1 MCCOM(16)_ Declination of DV (deg)

I RA 1 MCCOM(217 Right ascension of DV (deg)
Midcourse ignition time

I TMCS 1 MCCOM(18) (sec past anchor epoch)
Spacecraft -to-Sun unit vector

I XSUN 3 MCCOM(21) Mean of 1950

I VRET 1 MCCOM(25) Retro delta-v (lun/sec)
Expected second-midcourse

I EXFUEL 1 . MCCOM(26) fuel (kg)

I BT 3 MCCOM(27) Spin-axis unit vector at retro

I DVT 1 MCCOM(30) Trim velocity (lun/sec)

I FUELT 1 MCCOM(31)L Trim fuel (kg)
Pericynthion state

I XR 6 MCCOM(32) (km, lun/sec, Lunar Euator
Anchor epoch-launch epoch

I DJDIF 1 MCCOM(39) difference (days)
Expected end constraint errors

I SIGOUT 6 MCCOM(40) from BELL
Firing true anomaly for retro

I FFIRE 1 MCCOM(46) (rad)

Spacecraft weight after midcourse
I WTF 1 MCCOM(47) (kg)

Expected second midcourse
I EXVZ 1 MCCOM(49) velocity (m/sec)

Midcourse iteration counter from
I IT ,L MCCOM(157) MDCORS

Midcourse execution counter
I KMC 1 MCCOM(159) trom PROTO

I KT 1 MCCOM(161) Flight time counter from PROTO

I ICB 1 MCCOM(165) Midcourse central body number
Elevation indicator array for

O KEL 10 MCCOM(172) midcourse.

O KELR 10 MCCOM(182) Elevation indicator array for retro
State at target closest approach

I X 6 STATE(1) (km, km/sec)
Time at target closest approach

I T 1. STATE(10) (sec past anchor epoch)
Spin-axis attitude before

I ATT 3 STATE(11) mideourse (unit vector)

338

Description:

POST is a subroutine in which auxiliary output calculations are performed for midcourse

guidance subroutines PROTO and FIXATG. These calculations (in order of appearance)

are:

1. Midcourse fuel (kg) *

2. Spin-axis-Sun angle at midcourse (deg)

3. Retro velocity impulse (km/sec)

4. Attitude fuel to midcourse attitude (kg)

5. Minimum spin-axis-Sun angle to midcourse (deg)

6. Array of midcourse visibility for trackers (KEL= EL/ 10 +1)

7. Burn time (sec)

8. Trim fuel (kg) *

9. Time of retro ignition (hours past launch) *

10. Right ascension of the spin axis at retro (deg) *

11. Declination of the spin axis at retro (deg) *

12. Total correction fuel (kg)*

13. Spin-axis-Sun angle at retro (deg)*

14. Trim velocity (m/sec)*

15. Minimum spin-axis-Sun angle to retro attitude (deg)*
EL

16. Array of retro visibility for trackers KELR = /10 + 1 EL> 0

= 0 EL<0

(* computation depends on NORMIN- if : 0, retro attitude, trim fuel and firing time
are as determined in TARGET, otherwise retro attitude and firing time are optimized
in RETRO to minimize trim fuel)

The computed quantities are written on logical unit MCUNIT for later retrieval by

PROTO or MCVERF. The logic of this subroutine is straightforward and merits

no flowchart.

339

SUBROUTINE PRINT

Calling Sequence: CALL PRINT

Purpose: The purpose of this routine is to print the
contents of various common blocks.

Common Blocks Required: CNTRL, CONST, INPUT, PERT, PLNET,
STATE, SAVE

Subroutines Required: ORBIT

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

Spacecraft's osculating
O ELM 6 STATE(14) orbital elements

I GM 12 CONST(5) Gravitational constants

I JC 1 CNTRL(7) Central planet number
Trajectory propagation

I METH 1 INPUT(1013) indicator.
Spacecraft's position and

I X 6 STATE(1) velocity vectors

340

Description:

This subroutine prints the contents of various common blocks on output unit 6.

A series of flags are used to determine which common blocks are to be printed.

If the input location in the table below is set to one, the designated common block

will be printed.

INPUT COMMON
LOCATION BLOCK

1020 STATE

1021 CNTRL

1022 PLNET

1023 INPUT

1024 NOT USED

1025 PERT

1026 SAVE

The orbital elements of the spacecraft are determined from subroutine ORBIT if

STATE common is to be output and the trajectory propagation method used is

Cowell's.

341

SUBROUTINE PROTO

Calling Sequence: CALL PROTO

Purpose: PROTO controls the gross midcourse

analysis logic and printout

Common Blocks Required: ANKOR, CNTRL, CONST, INPUT, MCCOM,
STATE

Subroutines Required: FIXATG, MDCORS, POST

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

I DJL 1 INPUT(37) Julian date of launch (days)

I DJO 1 INPUT(46) Julian date of anchor epoch (days)

I RAI 1 INPUT(47) Right ascension initially (deg)

I DECI 1 INPUT(48) Declination initially (deg)

I HRO 1 INPUT(53) Hours

I XMINO 1 INPUT(54) Minutes GMT of anchor epoch

I SECO 1 INPUT(55) Seconds

I DTFIN 1 INPUT(422) Desired time of flight (seconds)

Midcourse execution

I DELTMC 1 INPUT(434) time step (sec)
Expected midcourse pointing

I SIGAT I INPUT(435) error (rad)
Midcourse velocity proportional

I SIGDV 1 INPUT(43 6) error (frac)

Time of possible second
I TMC2IN 1 INPUT(440) midcourse (sec)

Initial midcourse execution
I TMC 1 INPUT(478) time (sec)

I JL 1 INPUT(1015) Body center of anchor vector

342

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

I MCOUT I INPUT(1050) Extra midcourse output key
Numoer of midcourse

I JMC 1 INPUT(1051) executions desired

Logical unit for

I MCUNIT I INPUT(1061) midcourse output

I IPROB 1 INPUT(1070) Output-scaling probabiliy (%)

I IBURN 1 INPUT(1071) Midcourse burn model key
Scan selector

I KTF 1 INPUT(1077) (-fixed attitude, + flight time)

Pre-ignition midcourse state

O XMC 6 MCCOM(6) (km, km/sec)

O DV 3 MCCOM(12) Midcourse velocity impulse(km/se)

Midcourse impulse

O DVMG 1 MCCOM(15) magnitude (m/sec)

O DEC 1 MCCOM(16) Declination of DV (deg)

O RA 1 MCCOM(17) Right ascension of DV (deg)
Midcourse execution time

O TMCS 1 MCCOM(18) (sec past a.e.)
Expended midcourse velocity

O DVB4 1 MCCOM(24) (km/sec)
Expected second-midcourse

O EXFUEL 1 MCCOM(26) fuel (kg)

O DVT 1 MCCOM(30) Trim velocity (km/sec)

O FUELT 1 MCCOM(31) Trim fuel (kg)
Anchor-launch epoch

O DJDIF 1 MCCOM(39) difference (sec)

O SIGOUT 6 MCCOM(40) Expected end constraint errors

Expected second-midcourse

O EXV2 1 MCCOM(49) velocity (m/sec)

O PSID 10 MCCOM(80) Desired constraint vector

I/O PSI 10 MCCOM(100) Constraint error vector

O KBURN 1 MCCOM(154) Midcourse burn-type key

MDCORS re-entry key to

O KENTRY 1 MCCOM(156) avoid initialization

O IT 1 MCCOM(157) MDCORS trial counter-

343

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

O KMC 1 MCCOM(159) Midcourse execution time counter

O KT 1 MCCOM(161) Flight time counter

O KGLAWI 1 MCCOM(164 Guidance law indicator
Tracldng visibility indicators

O KEL 10 MCCOM(172) for midcourse
Tracking visibility indicators

O KELR 10 MCCOM(182) for retro

Description:

PROTO operates in one of 3 modes, depending upon the setting of KTF.

KTF = 0 (one-dimensional scan of midcourse execution times)

In this mode, sample midcourse correction maneuvers are calculated at JMC execution

times wnich begin at TMC and proceed at steps of DELTMC. Each maneuver, found

by MDCORS and elaborated by POST, corresponds to a particular guidance law and the

same set of desired end conditions. Cnaracteristics of the maneuvers and arrival

conditions are written on MCUNIT In POST, then read again for printout in PROTO at the

conclusion of the scanning process.

KTF > 0 (Two-dimensional scan of midcourse times and flight times)

Tnis mode injects a scan of flight times (using the FTA guidance law) into the execution -

time scan. It enables generation of all those midcourse solutions which arrive at a

specific closest approach distance and inclination, thereby encompassing all the available

guidance law uptions. At each midcourse execution time, flight times are scanned in

KTF one-hour steps beginning at DTFIN. Ac each point of the scan, MDCORS and POST

compute the maneuver and arrival characteristics and write them on MCUNIT for later

printout by PROTO. By scanning flight times within the execution-time loop, gradients

for targeting may be salvaged for use at several flight times and some trajectory com-

putation may be avoided. Gradients are re-generated every fourth hour of the flight time

scan.

KTF <0 (Two-dimensional scan of midcourse times and delta v)

This is the fixed-attitude-guidance mode. At each midcourse execution time, FIXATG

344

is called. In FIXATG, it is assumed that the spin-axis direction or thrust direction

is fixed at RAI and DECI. The impulsive velocity magnitude is varied systematically

in FIXATG from zero in -KTF steps of size DINK (location INPUT(479) in kmin/sec).

Tne post-ignition trajectory is propagated to target closest approach wnere arrival

characteristics are computed and printed out. MDCORS is not called in this mode,

neither is POST and no summary printout is performed in PROTO.

345

SUBROUTINE PROTO

KMC =0

1
T=0
X = ANKVE C
TMC = TMC + SS

KMC = MC 90

<0
FIXATG KTF KTF <0 RETURN

KT = <K rTF

Write midcourse

information

Call MDCORS

Call POST

KT = KT -1 Write error prop.
information

DTF= DTF + HR KT

Write orbit insertion
information

RETURN

346

SUBROUTINE PUTELS

Calling Sequence: CALL PUTELS (ICOM, MSGERR, $)

Purpose: This subroutine writes a file describing the
state for retrieval by the GTDS program.

Common Blocks Required: ELMNT

Subroutines Required: None

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION I BLOCK DEFINITION

Calling Initialization flag
I ICOM 1 Operand 1 Initialize output data file

0 add new element to set

C alling
I MSGERR 1 Operand Error message return number

Statement number for
O - - error return

Description:

This subroutine is used to output the state for retrieval by the GTDS program. The

ICOM flag is used to initialize the output file. When this flag is set to 1, the output

file is initialized. No writes are made with this flag setting. When the ICOM flag is

zero, writes are made on unit 27.

The data to be written on unit 27 is transferred into the subroutine via the SET array

of ELMNT common. The set array is defined as follows:

Location Definition

1 Date of state in year, month and day written as YYMMDD.

2 Time of state in hours, minutes and seconds written as
HHMMSS. SSS.

3-5 Cartesian position vector.

6-8 Cartesian velocity vector

9-14 Keplerian orbital elements. The order is
(SMA, ECC, INCLIN, LAN, PA, MA)

15-35 Upper triangle of the state covariance matrix

347

Location Definition

36 Start time of fitted data (year, month, day)

37 Start time of fitted data (hour, minute, second)

38 End of fitted data (year, month, day)

39 End of fitted data (hour, minute, second)

40 Root mean square of fit.

41 Satellite identification number

42 Reference coordinate system of state

1 for mean of 1950

43 Central body indicator

1 Earth 2 Moon 3 Sun

44 Element set number

348

SUBROUTINE QUARTC

Calling Sequence: CALL QUARTC (C, X, N)

Purpose: To find the real roots of a quartic * equation,

N
P = cI + ci+1 x = 0

i=l

Common Blocks Used: None

Subroutines Required: None

Input / Output

SYMBOLIC
I/O NAME DIMENSION DEFINITION

I C 5 Coefficients of the polynomial
Solution vector if real solutions exist

O X 4 (Upper-loaded if less than four exist)

Input: Order of the polynomial (3 or 4)

I/O N 1 Output: Real solutions found (0, 1, 2, 3,4)

* QUARTC may also be used to find the real roots of a cubic equation. The mathematical

description which follows applies only to quartic equations.

Description:

The Descartes technique is used to solve the equation,

AX 4 + BX3 + CX 2 + DX + E = 0. First divide through by A (A # 0) to obtain

X4 + B'X 3 + C'X 2 + D'X +E' =0 (1)

B'
Substituting X = y + hwhere h = into (1) obtain

y4 +y 2 + Qy + R = 0 (2)

349

where

P = 6h 2 + 3B'h + C' (3)

Q = 4h3 + 3B'h 2 + 2C'h + D' (4)

R = h4 + B'h 3 + C'h 2 + D'h + E'. (5)

Now (2) may be factored to produce equation (6)

(y2 / y + 2 _ + R) = 0 (6)

which, in turn, yields four quadratic solutions if R', and e are defined.

1 Q
= (P + R' - (')

1 Q
= -L(P +R'+ (8)

R' is the maximum of the real roots of

Z3 + aZ + b = 0 (9)

2
minus - P. The coefficients, a and b, in (9) are given by

3

a = [3 (p 2 -4R) - 4P 2] (10)

and

b = 1 [16 P3 - 18P (P 2 _4R) - 27Q 2] (11)

To find the roots of (9), first compute the quantity

3 2
a b
27 4 (12)

350

If A> 0, the only real root is

1 b 3 (13)

If 6= 0, the real roots are

Z, jF2 (14)
Z = 2 , Z2 3 and Z3 (14)

If < 0 the roots are

Z = 2 - cos (0/3)
1 3.

Z2 = 2 - cos (0/3 +120), (15)

and
Z = 2 - cos (0/3 + 240 0)

3 3

where b
cos 0 = -

27 (16)

After computing R', equations (6), (7), and (8) yield yi, i =1,4. Then Xi = yi + h

are solutions to the quartic. Only real solutions are considered by this subroutine.

351

SUBROUTINE QUIKIE

Calling Sequence: CALL QUIKIE (A, SI, CI, (00, SUN(, TF1, TF2)

Purpose: This subroutine calculates approximate shadov times
for circular lunar orbits with constant inclinations. The
times calculated are shadow-free time and time until
next shadow (or time until no shadow, if orbit is presently
in shadow)

Common Blocks Required: CONST

Subroutines Required: None

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

CALLING
I A 1 OPERAND Semi-major axis

CALLING
I SI 1 OPERAND Sine (inclination)

CALLING
I CI 1 OPERAND Cosine (inclination)

CALLING
I 00 1 OPERAND Initial longitude of node

CALLING
I SUNG(1 OPERAND Initial longitude of Sun

I GM 12 CONST Planet gravitational constants

I Pl,. PI2 1,1 CONST r , 2 n
CALLING Time until next shadow or

O TF1 1 OPERAND neg. time until no shadow
CALLING

O TF2 1 OPERAND Shadow-free time

352

Description:

This subroutine calculates the times when a given orbit around the Moon will cross

the Moon's shadow. The orbit is assumed to have zero eccentricity and constant

inclination. Input quantities should be expressed in an ecliptic coordinate system;

however,the Moont equator is probably acceptable for most work.

The output quantity TF2 represents the time between shadows, (i.e., the maximum

shadow free time.

Note: For low inclination orbits, part of the orbit is always in
shadow. For this case, both TF1 and TF2 are output as

999.9.

Theory:

In an ecliptic coordinate system, let vbe the longitude of the Sun, Obe the longitude

of the orbits ascending node, and y the angle between them.

Then y = - ?, and ' = - ~ , where j is the angular velocity of the Sun about

the Earth (.998 deg/day), and h is the precession rate of the orbit around the planet.

:-1.5 nc2 cos (i) RM 2 /A2 + .75 n'2 /n cos(i))

n = mean motion of spacecraft A = orbit radius

c2 = lunar oblateness coefficient n' = mean motion of Moon

i = inclination U = gray. ratio

RM = Radius of the Moon

Since the orbit is circular, the radius A is constant. Thus, the angle from the shadow

cone centerline to the edge of the cone at a distance A from the planet is

-1
8 = sin 1 (RM/A) - a , where a is the half shadow cone angle.
c

Orbit Plane YC

353

= sin (sin) (Note: I sm cl1 j smil)
C sin i

This implies that the orbit is a shadow whenever

-Y or -y "y+y
c C c

Thus the problem is reduced to finding out what quadrant y is in and what the angle

is until the orbit status changes. For instance, if y is in the third quadrant and
2 v -vc

the orbit is not in shadow, then TF1 =

Similarly, if y is in the second quadrant and the orbit is in shadow, then

TF1 = - (+y -7 y) / . TF2 is independent on y and is equal to - 2c)

354

SUBROUTINE QUIKIE

CALL

QUIKIE

Calculate

TF1 = 999.9

sin(]c~sin(i) n TF2 = 999.9 ETUR

yes

Calculate

, 7, TF 2

QUAD1 =ye
QUAD2 = -yc
QUAD3 = r +Yc
QUAD4 = 2 ir -Yc

'.LT.Q4 no TF= - - RETURN

yes

y.GE. Q1 no TF1 =L)RETURN

y.GE. Q2 no TF= 2 -y RETURN

yes

y.GE Q3 no TF1= -(Q3-) RETUR

yes

TF1 = Q4 - y

RETURN

355

SUBROUTINE RANDMI

Calling Sequence: CALL RANDM1 (IY, YFL)

Purpose: This subroutine determines a random number
uniformly distributed between 0 and 1.

Common Blocks Required: None

Subroutines Required: None

Input / Output

SYiBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

CALLING

I IY 1 ARGUMENT Random number generator
CALLING

O YFL 1 ARGUME NT Random number

Description:

The random number is determined from

YFL = IY (1027) (.465661 D-9).

The random number generator is updated on each call as,

IY = IY (1027)

This random number generator is designed for the word length of an IBM 360

series computer.

356

SUBROUTINE READE

Calling Sequence: CALL READE (JED, TSEC, TERR)

Purpose: This routine takes the data from the ephemeris tape

and interpolates for the planet's position and/or

velocity at the desired time. It also transfers to

the central planet.

Common Blocks Required: CETBL2, CETBL3, CETBL9,
PLNET

Subroutines Required: GETTAP

Input / Output

SYMBOLIC COMMON

I/O I NAME DIMENSION BLOCK DEFINITION

I ICENT 1 CETBL2(2) Central Planet number
CALLING

I IERR 1 OPERAND Error flag

I i Planets ephemeris

I i IREQ 13 CETBL2(3) flag
CALLING Reference julian

I JED 1 OPERAND ephemeris

O NUT 4 PLNET(85) Nutation output
Nutation input data from

I i NUTAT 204 CETBL3(830) ephemeris tape
Position and velocity

O TABOUT 6,12 PLNET(1) vectors of planets with

respect to the central planet

Input planet position and vel-

I TAB3 829 CETBL3(1) ocity vectors from

I ephemeris tape

CALLING Seconds of ephemeris time
I TSEC 1 OPERAND past JED

357

Description:

This subroutine determines the positions and velocities of the planets with respect

to the central planet from the JPL ephemeris tape. The times of the positions

and velocities to be obtained are brought through the argument list as JED

and TSEC. The output positions and velocities are put in TABOUT of PLNET

common.

The positions and velocities of the planets are set up in the TAB3 array through

a call to GETTAP. This routine searches for the proper block of data from the

tape (or disk) and reads into TAB3 the eight-day block of data that encompasses

the desired time. READE next interpolates for the positions and velocities at

the desired time from the eight-day block of data in TAB3. After the interpolation

is complete, READE translates the positions and velocities to the desired central

planet.

358

FUNCTION RETDV

Calling Sequence: DV = RETDV(DVMCM, WTO, WTF, WTAR)

Purpose: RETDV computes the retro velocity as a function of

midcourse velocity.

Common Blocks Required: CONST, INPUT

Subroutines Called: .None

Input/Output

SYMBOLIC PROGRAM COMMON DEFINITION
NAME DIMENSION BLOCK

Argument
I DVMCM 1 Agument Midcourse velocity magnitude (kml/sec)

_ _ _ __ List _

I T 1 Argument Spacecraft weight before midcourse ikg)
_ _ List

S WTF 1 Argument Spacecraft weight after midcourse (kg)
List

WTAR Argument I
S WTAR 1 Argument Spacecraft weight after retro (kg)

List ,

0 RETDV 1 Function Retro velocity (km/sec)

CONST 2
I G 1 (45) Earth's surface gravity (km/sec2)

(45) 1
ASPMC INPUT

I ASPMC NPU441 Specific impulse of midcourse motor (sec)

INPUT
I IASPR 1 (442) Specific impulse of retro motor (sec)

INPUT
I WRETRO 1 (443) Weight of retro fuel (kg)

359

Method:

The rocket equation is applied to simulate both the midcourse and retro motor

burns. Attitude fuel expenditure is ignored.

WTF = WT- DVMCM/(G" ASPMC)]
WTF = WT - e

WTAR = WTF - WRETRO

RETDV = -(G ASPR) n (TF

360

SUBROUTINE RETRO

Calling Sequence: CALL RETRO (ELM, DVR, DVT, FFIRE, RAO,

DECO, X)

Purpose: RETRO finds the retro attitude which results in

the minimum trim velocity.

Common Blocks Required: INPUT

Subroutines Required: MINV

Input/Output

SYMBOLIC COMMON

I/O NAME I)IMENSION BLOCK DE FINITION

ARGUMENT Orbital elements of the approach

I ELM 12 LIST hyperbola
ARGUMENT

I DVR 1 LIST Retro velocity impulse (km/sec)

ARGUMENT

O DVT 1 LIST Trim velocity required (km/sec)

ARGUMENT Firing true anomaly on the approac

O FFIRE 1 LIST hyperbola (rad)

ARGUMENT Initial estimate of retro right
I RAO 1 LIST ascension (rad)

ARGUMENT Initial estimate of retro

I DECO 1 LIST declination (rad)
ARGUMENT Right ascension(rad) & declination

O X 2 LIST of the solution retro orientation.

Extra output key

I KROUT 1 INPUT(1072) (print if KROUT = 1)

Method:

A steepest descent hunting procedure is used to find the retro orientation resulting in

the minimum trim velocity. The control vector, X, is defined by

S ight ascension of the spin-axis]
X eclination of the spin-axis

(The velocity impulse imparted by the retro burn is anti-parallel to spin-axis). The trim

velocity, vt, is defined (through formulae in MINV and TRIM) as a function of X and the

firing true anomaly, 9, on the approach hyperbola.

vt = f(X,O)

361

RETRO obtains v* = f (X, 8) by calling MINV. 8 is the value of 9 which minimizes
t

vt for a given X and is, generally, also an implicit function of X. vt is the

@-minimized trim velocity. The objective of the logic in RETRO is to find X ,

the control (specifying spin-axis in orientation) for which vt is minimized.

min vt = f (X, 8)

We will now denote vt by the typographically-simpler v(X). Approximations to the

partial derivatives,

avP(X) =
aX

are obtained by the secant method evaluated at X. The first order change, 6v, in

v(X) due to a change, 6X, in X is

6v = P6X

which we cannot solve directly for 6X given 6v. We choose, instead, to minimize a

function , S2 , of 6X subject to the constraint P 6X = 6v. Let S2 = 6XtG 6X, where

G is a positive- definite weighting matrix. We adjoin the constraint to S2 and

differentiate with respect to 5X to solve for 6X as a function of the undetermined

multiplier, .

SX GX - 2 X(PSX- 6v) =26XtG - 2XP =0

sX = G Pt

P aX = PG- t t

P6X=PG PX=6v

-t t

6X G Pv

PG-t pt

362

This is the steepest descent formulation for X. RETRO's weighting matrix

is defined by

G-t 1 2

The hunting procedure used in RETRO to find X is to ask for an improvement,

v, (negative) at the k-th iteration, where X is X r. This predicts a control change

6X which leads to Xr+1'

=X + 5X
X r

r+l

If Av = v(Xr+1) - v (Xr)

is positive, 8v is halved and 6X, Xr+1 and v(Xr+1) are re-calculated (without re-

calculating P) until Av is negative. If the magnitude of av is less than the specified

tolerance, X min (X , Xr 1) and the iteration is complete.
r r+1

If Av < 6 v on the first trial at any Xr , bv is set to 1. 56v for the next step from Xr+l.

If Av is negative on the first trial but Av >6 v, another step is computed using 6v

but starting at Xr+ If Av2 = V(Xr+2) - V(Xr) is less than 6v, the iteration proceeds

from Xr+2. If v < Av2 < 0, then 6v is set to Av 2 - tolerance. This process is

considered convergent when the magnitude of Fv is less than the pre-set tolerance.

363

SUBROUTINE RETRO

GAIN = -. 01
K=0J=0

RAO0
XSAV =RAO

DECO

Call MINV SA DVTS, DVTD=DVTS+GAIN

DVTS = DVT
XSAV = X

Compute partials, P
Com p ute scaled step DX

J=J+1

X=XSAV+DX * GAIN

CALL MINV(X)
DVT

>20 es 99 write

0 message

make sure DVT,
GAIN <.000 90 FFIRES and X

are smallest
climbing available

GAIN = GAIN/2
J = 3 yes DVT DVTS

DVTD=DVTS+GAIN RETU

descending no

CON = DVT - DVTD

J=1 J =2

J-3
es ON>.000 GAIN= DVT-DVTS-. 0005 yCON>.0001 es

IGAIN=1. 5 * GAIN 26

K=K+1

DVTD = DVT+GAIN

J=0

364

SUBROUTINE RKSEVN

Calling Sequence: CALL RKSEVN (N, HO, XO)

Purpose: This subroutine integrates a set of

simultaneous differential equations

using a seventh-order ten-cycle

Runge-Kutta scheme.

Common Blocks Required: CNTRL, INPUT, INTVAR

Subrountines Called:. EQNS

Input / Output

SYMBOLIC PROGRAM COMMON

I/0 NAME DEIENSION BLOCK DEFINITION

I ERRC 1 INPUT(1) Error control

Initial compute interval and

I/0 H 1 INTVAR(14) next compute interval

Calling

0 HO 1 Operand Actual compute interval used

0 KHALT 1 CNTRL(6) Error stop flag
Calling Number of differential

I N 1 Operand equations
First derivative of

I/0 RATES 6 INTVAR(8) dependent variables.

0 X 1 INTVAR(1) Independent variable

C alling

I XO 1 Operand Initial independent variable

I/0 Y 6 INTVAR(2) Dependent variables

365

Theory:

The integration scheme shown below was developed by D. Sarafyan, Reference 1.

In his scheme,a set of simultaneous differential equations are numerically

integrated using a seventh-order ten-cycle Runge-Kutta method. In the following

equations f (x, y) refers to the value of the derivatives of the function at the

independent variable X and dependent variable Y. This value is brought into

the subroutine via RATES in INTVAR common. It is calculated in Subroutine

EQNS.

The value of the independent variables, Y, at the end of the step is obtained from:

Y(X + h) = Y + (41 (K0 +K 9) + 216(K 4 +K 8) +27(K 5 +K 7)+272 K6 (1)

where

KO = hf (XO' Y0)

1 1
K1 = hf (X0 + -L h, YO + K0)

K2 = hf X0 + h, Y + [K0 + 3K

K3 = hf (0 + h, YO + [K0 - 3K 1 + 4K

K4 = hf (X + h, Y 0
+ - [83KO + 32K 2 - 7K 3

K5 = hf 0 + - h, YO + - [3KO - 4K2
+ K3

+ 24K4]) (2)

K 6 = hf (X + h, YO + --5088 [290KO -524K2 + 145K 3

+1908K 4 + 1305K 5]

K = hf +- h, Y +143 [292K 0 + 108K2 + 13K 3 - 318K4

+ 753K 5 + 106K 6])

366

K 8 = hf X 0 + h, YO 1 [14042K0 + 11012K 2 - 4477K 3-6 h, Y0 68688

+ 5724K4 - 6903K 5 + 6360K 6 + 31482K 7])

K =hf + h, Y [- 2049K - 1836K + 839K9 0 0 4346 0 3

+ 5724K 4 - 4692K 5 + 12084K6 - 9540K7 + 3816K 83)

Description:

The value of f in the above equations is determined by repeated calls to EQNS with

the indicated independent variable set in X of INTVAR common and the dependent

variables set in Y of INTVAR common. EQNS calculates the derivatives of the

dependent variables and puts the answer in RATES of INTVAR common. The values

of f are used to calculate K0 through K9 . These K's are used to determine

variables at the end of the computing step from the first equation. If a fixed

computing interval is used (ERRC=0),the subroutine terminates.

When the automatic compute interval option is used (ERRC # 0) the subroutine

calculates the fourth-order solution at the end of the step from

1
Y4 (Xo th) = Y +I (Ko + 4 K2 + K3) (3)

where

K0, K2, K3 are the same as defined above.

Next the fourth-order solution is compared to the seventh-order solution. The largest

relative difference between the two is used to determine the compute interval from

H = H (ERRC/ERRELS)1/5 (4)

where ERRELS is the largest relative difference. H is the compute interval to be

used in the next step; however, if the relative error is more than 4 ERRC, then

the error in the current solution is considered too large. In this case, the whole

process is repeated again with the compute interval just determined. A limit of

10 repeats is allowed. If the limit is reached, the error halt flag is set and the

367

subroutine terminates. The independent variable is not incremented inside this

routine. It should be done after the call to RKSEVN as shown below.

T = T + HO (5)

where T is the independent variable.

Reference

1. Sarofyan, D.; "Seventh-Order Ten-Stage Runge-Kutta Formulas," Technical

Report No. 38, Louisiana State University, Department of Mathematics,

January 1970.

368

CALL
RKSEVN

SAVE INITIAL INDEPENDENT
AND DEPENDENT VARIABLES

EQNS CALCULATE K0 - K9 ,

EQ. 2

GET SEVENTH-ORDER
SOLUTION, EQ. 1

RETURN ERRC = 0

no

GET FOURTH-ORDER
SOLUTION, EQ. 3

DETERMINE LARGEST RELATIVE
DIFFERENCE, ERRELS

CALCULATE NEW COMPUTE
INTERVAL, EQ. 4

<4 ERRC
RETURN ERRELS

4 ERRC
INCREMENT RECYCLE COUNTER,

KCYCLE

RETURN SET ERROR 10 KCYCLE 10 RESET STATE TO
HALT FLAG SAVED VALUES

369

SUBROUTINE ROTAIT

Calling Sequence: CALL ROTAIT (X, Y, S , C, U, V)

Purpose: To rotate two orthonormal vectors in their plane. The
subroutine computes U=CX+SY, V=-SX+CY. If C=cosA,
and S=sinA, U and V are obtained by rotating X and Y
through the angle A in the sense X into Y.

Common Blocks used: None

Subroutines Required: None

Input / Output

SYMBOLIC
I/O NAME DIMENSION DEFINITION

I X 3 Orthonormal input vectors

Y 3 Orthonormal input vectors

I S 1 Sine of rotation angle

I C 1 Cosine of rotation angle

O U 3 Rotated vectors output

O V 3 Rotated vectors output

ROTAIT is coded in such a way that U and V may share the same storage as X and Y.

370

SUBROUTINE ROTATE

Calling Sequence: CALL ROTATE (M, A, B, C)
CALL MVTRN (A, B, C, M, N)

Purpose: To form the matrix product C = AB or C = AT B
where A is a 3x3 matrix and B and C are
3xl matrices (3xN inMVTRN).

Common Blocks Required: None

Subroutines Called: None

Input/Output

SYMBOLIC PROGRAM COMMON
/B DEFINITION

NAME DIMENSION BLOCK

I A 9 Call List Matrix multiplier

I B 3, N Call List Matrix multiplier

C 3, N Call List Product matrix

C = AB if M = 1
I M 1 Call List Indicator: C= AT otherwiseC = AT B otherwise

I N 1 Call List Number of columns of B and C

371

SUBROUTINE SADOUT

Calling Sequence: CALL SADOUT

Purpose: SADOUT outputs the times of umbral, penumbral,
and occultation times.

Common Blocks Required: INPUT, SHAD, STATE

Subroutines Required: CALEND

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

I DJO 1 INPUT(46) Modified julian date of state epoch

I DJ1 1 INPUT(37) Modified julian date of liftoff

I JL 1 INPUT(1015, Launch planet number

I JT 1 INPUT(1031) Target planet number

I KPLOT 1 INPUT(1093) Plotting flag

I T 1 STATE(10) Current time
Table of umbral, penumbral,and occultation

I TSX 10 SHAD(19) entrance and exit times

Description:

The shadow times to be output are stored in the TSX array. A test is made on the smallest

time in the TSX array. If this time is greater than the current time, no output is presented.

The TSX array is next ordered so that it is monotonically increasing. The KK array is

included to keep track of the times in the ordered TSX array. Subroutine CALEND is used

to determine the calendar date corresponding to the times in the TSX array. The dates

are output on unit 6 if the time is less than T. If the KPLOT flag is set to 20, information

is written on unit 20 for later use in a plotting program.

372

SUBROUTINE SENSO

Calling Sequence: CALL SENSO

Purpose: SENSO computes the gradient of end constraints with

respect to midcourse velocity. It can also be used to

provide end state and constraint errors as a function

of midcourse velocity.

Common Blocks Required: INPUT, MCCOM

Subroutines Called: MCBURN, FOWARD, TARGET

Input/Output

SYMBOLIC PROGRAM COMMON

NAME DIMENSION BLOCK

DINK 1 INPUT Midcourse velocity impulse for partials
I 1 (479) (km/sec)

0) KRASH 1 INPUT Trajectory stop key for F OWARD
1032)

MCCOM
I DV 3 (12) Midcourse correction impulse (km/sec)

MCCOM
I DPT 3, 10 Gradient (b /b AV)

(50)
MCC)M

I/) PSI 10 End constraint error vector (see TARGET)(100)

MCCOM
I/0 IR 1 MCCM Gradient-or-not logic key (22 for gradient)

(158)

0 ISP 1 MCCOM Gradient-was-generated key (set 1)
3166

373

Method:

The secant method of computing approximate partial derivatives is used in genera-

ting the gradient of constraint errors with respect to control variations. The con-

trol vector, DV, is the impulsive midcourse correction velocity vector. This

vector is fed to MCBURN, which outputs the post-burn state. This state is fed to

FOWARD, which outputs the state at target closest approach. TARGET takes this

end state and generates the constraint error vector, PSI. The transpose of the

gradient is stored in DPT.

DPT = \PSI

374

SENSO

ENTER

0,1

2 '

MT = 0
PSO = PSI

430

MT = MT+1

SAVDV = DV(MT)

DV(MT) = SAVDV +DINK

432

CALL MCBURN

CALL FOWARD $ (A
CALL TARGET

0, 1
2

DV(MT) = SAVDV
DPT = (PSI - PSO)/DINK

1,2-
3

PSI = PSO
IR = 1

ISP = 1

9RETURN j 999

375

SUBROUTINE SETUP2

Calling Sequence: CALL SETUP2

Purpose: This subroutine initializes flags and constants

before any of the program options are initiated.

Common Blocks Required: ANKOR, CETBL2, CETBL3, CNTRL, CONST,
ELMNT, INPUT, INTVAR, MCCOM, MOON, OBSIT,

PERT, PLNET, SAVE, STATE

Subroutines Required: CLOSE, DATE, DVMAG, FIND, M50EPM, M50LEQ,
M50MDT, MVTRN, NUTAIT, NUTATE, OBLTY, OBSET,
ORBIT, PLANET, TRMN

376

SYMBOLIC COMMON

I/, NAME DIMENSION BLOCK DEFINITION
I Attitude unit vector in mean

ATT 3 STATE(11) of 1950.

I AU 1 CONST(4) Astronomical unit

State estimation covariance

O COV 3,3 INPUT(56) matrix.

I DAYL 1 INPUT(21) Launch day

I DAYO 1 INPUT(51) State epoch day
Initial declination of

I DEC 1 INPUT(48) attitude
Modified julian

O DJL 1 INPUT(37) launch date

Modified julian date of

O DJO 1 INPUT(46) state epoch.

O DX 3 STATE (4) Velocity
Ephemeris date of

O EJO 1 STATE(26) state epoch
Orbital elements of

O ELM 6 STATE(14) initial state

I/O ETC 1 INPUT (39) Ephemeris time correction

Gravitational constants of

I GM 12 CONST(5) the planets

I HRL 1 INPUT(23) Hour of launch epoch

I HRO 1 INPUT(53) Hour of state epoch

Element set number of attitude

I IDATT 1 INPUT(1087) desired from element set.

I IDSAT 1 INPUT(1089) Satellite identification number

Element set number of state

I IFIND 1 INPUT(1076) desired from GTDS file

O JC 1 CNTRL(07) Central planet number

I JL 1 INPUT(1015) Launch planet number

I JMN 1 INPUT(1017) Planetary ephemeris flag

I JT 1 INPUT(1031) Target planet number

377

SYMBOLIC COMMON

I/O NAME DIMENSION BLOC DEFINITION
I Input state coordinate

I KIN-PT 1 1 INPUT(1O19) I system flag

I KOBL 1 INPUT(1029) Lunar oblateness flag
Planets in system to be

I KP 12 INPUT(1001) integrated
Lunar field model

I MODLEN 1 INPUT(1035) number
I/O unit number of

I NATUNT 1 INPUT(1088) attitude file

I OBSLAT 10 INPUT(480) Observation sites latitudes

I OBSLON 10 INPUT(410) Observation sites longitudes
Position unit

I PCON 1 INPUT(5) conversion factor

I P12 1 CONST(3) Twice pi.
Initial right ascension

I RA 1 INPUT(47) of attitude
Radian to degrees conversion

I RAD 1 CONST(1) factor.
Mean radius of the

I RE 12 CONST(17) planets
Desired orbit radius at

I RINIT 1 INPUT(444) target planet

I SECL 1 INPUT(25) Seconds of launch epoch

I SECO 1 INPUT(55) Seconds of state epoch

O SOL 1 STATE(36) Solar pressure constant

I SOLARA 1 INPUT(433) Spacecraft area

I SPRESS 1 INPUT(197) Solar pressure at 1 au
Initial time since

I/O T 1 STATE(10) state epoch.

O TCA 1 STATE(29) Time of closest approach

Ignition and burnout times
I/O TIG 6 INPUT(380) of the engines.

I TMM 1 INPUT(196) Epoch of lunar elements
Current modified

O UJT 1 STATE(32) julian date

1 VCON 1 INPUT(6) Velocity conversion factor

378

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

Circular velocity of desired

O VINIT 1 INPUT(445) target planet's final orbit

I WO 1 INPUT(38). Initial weight

I WP 12 CONST(29) Rotation rates of the planets

O WT 1 STATE (34) Current weight

O WTI 1 STATE(35) Weight after engine burn

O X 3 STATE(1) Position

I XMINL 1 INPUT(24) Minutes of launch epoch

I XMINO 1 INPUT(54) Minutes of state epoch

I XMONL 1 INPUT(20) Month of launch epoch

I XMONO 1 INPUT(50) Month of state epoch

I XMOON 6 INPUT(190) Initial position of moon

I YRL 1 INPUT(22) Year of launch epoch

I YRO 1 INPUT(52) Month of launch epoch

379

Description:

The function of this subroutine is to initialize constants and flags and perform

coordinate rotations when necessary. This subroutine does not have a complicated

logic flow or theory. Thus, this description will consist of a chronological description

of the functions performed.

1. Initialize Encke rectification factor.

2. Set up initial state, epoch, and covariance matrix from a call to FIND, if

IFIND is non-zero.

3. Determine the modified julian date of the state epoch and the ephemeris time

correction. If the ephemeris time correction is not input, it is calculated

from ETC = DJO + (38.66 + .0025921 (DJO -40000)) ,

where ETC is the ephemeris time correction in seconds, and

DJO is the modified julian date of the state epoch.

4. If the liftoff epoch is not input, set it equal to the state epoch.

5. Set up the solar.pressure constant as follows:

SOL = 10 - 8 (SOLARA) (SPRESS) AU 2

where SOL is the solar pressure constant,
2

SOLARA is the spacecraft area in cm

SPRESS is the solara pressure at IAU in dynes/cm2 , and

AU is the astronomical unit.

6. Set the central planet equal to the launch planet.

7. If the state is initialized through subroutine FIND (IFIND = 0) skip to 10,

otherwise calculate the position and velocity vectors if orbital elements

are input.

8. Convert input units to program units (KM and KM/SEC).

9. Rotate from input coordinate system to Earth mean equator and equinox of 1950.

10. Initialize weights in STATE common for use in engine burns.

11. Set up ANKOR common and determine the circular velocity of the desired

final orbit.

12. If IDATT is non-zero, determine the initial right ascension and declination of the

attitude vector from a read from unit number NATUNT.

380

13. Initialize ATT, a unit vector in the direction of the attitude, from the initial

right ascension and declination.

14. If the Moon is to be simulated by osculating elements, determine those

elements from XMOON using subroutine ORBIT and set up MOON common.

15. If the tape or disk ephemeris is to be used, perform initial reads.

16. Set up the DST array for use in subroutine CLOSE to determine the

central planet.

17. Set up the observation site common. The observation site common consists

of the following information:

a. Vector from the center of the Earth to the site in Earth-fixed

coordinates (XOBS).

b. The velocity of the site (DOBS).

c. Rotation matrix from the Earth equator and Greenwich to a site local

coordinate system (OBSROT).

381

SUBROUTINE SHADOW

Calling Sequence: CALL SHADOW

Purpose: This routine calculates the times of umbral and
penumbral passage with respect to the launch and

target planets. It also calculates the times that the

spacecraft is occulted by the target planet.

Common Blocks Required: CNTRL, CONST, INPUT, INTVAR, PLNET, SHAD,
STATE

Subroutines Required: DVMAG, INTERP, PLANET

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

Array of back distances to the
I/O DSAD 3, 5 SHAD(1) shadow cones

Spacecraft's osculating
I ELM 6 STATE(14) orbital elements

I JC 1 CNTRL(7) Central planet number

I- JL 1 INPUT(1015) Launch planet number

I KFIRST 1 CNTRL(12) First pass flag

I METH 1 INPUT(1013) Trajectory propagation indicator

I T 1 STATE(10) Current time

I TSAD 1 SHAD (16) Times of back shadow distances

O TSX 1 SHAD(19) Array of shadow passage times
Current position and velocity

I X 6 STATE(1) vectors

382

Theory:

The distance to the shadow cone, D, can be determined from trigometric relationships

by examining Figure 1.

Spacecraft ___

2 e - Planet Sun

Figure 1

D = [RSC sin + (RSC cose -RE sin~ tan - RE] /cos. (1)

where a is the half cone angle obtained from

sin a = (RE - RE) / AXS
sun

P is the angle between the vector from the planet to the spacecraft

and the Sun to the planet.

RE is the radius of the planet

The same type of cone is employed for occultation except that the Sun is replaced by

the launch planet and the planet is the target planet.

The distance to the penumbral cone is obtained in a similar manner, (see Figure 2)

2 Sun

Figure 2

D = [RSC sine - (RSC cos 9 - RE tan a) -RE] /cos a (2)

where in this case, the half cone angle, a, is obtained from

= (RE +RE) /AXS.

sun

383

Description:

The times of umbral and prenumbral passage are determined in this subroutine. There

are a total of ten times which may be determined in this routine. These times consist

of entrance and exit of the following cones:

KJ = 1. Launch planet umbra

2. Launch planet penumbra

3. Target planet umbra

4. Target planet penumbra

5. Occultation by target planet

There is a loop around the 'logic that determines the times. The internal flag, KJ, is

the index of this loop and determines which shadow time is being calculated. (See

above Table).

After the internal constants and flags are set up for loops and other purposes, the

subroutine determines the distance from the shadow cone using equations (1) or (2).

There are two criteria used to determine whether a shadow cone could have been

passed on the last compute step.

1. Present position inside shadow cone while last position
outside cone, or vice versa.

2. Spacecraft passed a minimum to the cone.

If neither of these criteria are satisfied, the spacecraft could not have flown through

the shadow cone on the last step. At this point, flow is transferred to the location where

the flags are set to loop on the next shadow time. If one of the criteria is satisfied, the

spacecraft could have flown through the cone and the logic flow is transferred to the

location where the time of shadow crossing is determined. The time of crossing is

determined through a Newton-Raphson type iteration with subroutine INTERP. INTERP

is used to determine the spacecraft state at the same time (T). This state is used in

equations (1) or (2) to determine the distance to the shadow cone. T is adjusted by the

Newton-Raphson scheme to drive the distance from the shadow cone to zero. The N-R

384

iteration scheme, as implemented, determines the time of shadow crossing from

T = T + DELT

dt (3)
DELT = D

dD

where D is the distance to the shadow cone and

dt
dt is the inverse of the derivative of the distance from

dD
the shadow cone with respect to time.

The derivative of the distance to the shadow cone with respect to time is determined

analytically from the spacecraft's velocity vector and position with respect to the

shadow cone. The derivative is equal to the component of the spacecraft's velocity

along the direction normal to the shadow cone. This is represented vectorially by

dD (4)
dt

where V is the spacecraft's velocity and

Z is the unit vector normal to the shadow cone (see Figure below)

Xse N (out of page)

Figure 3

Define the X', Y', Z' coordinate system with X' along the XS vector, Z' along the 1N

vector, and Y' defining a right-handed system, Figure 3. N is obtained from

N = (XSC x XS)/ X-CI IXS . (5)

Then, the vector normal to the shadow cone, Z, in the primed system is expressed

385

as =(os6)

0 (6)

Z in the original coordinate system is = [B] - (7)

where [B] is the rotation matrix from the primed system
to the original system.

The first column of the B matrix is a unit vector along XS. The third column

is the vector N while the middle column is a vector obtained by the cross-product

of N and a unit vector along XS. Equations (4) to (6) define the derivative of the

distance shadow cone with respect to time.

There is a limit to the time step allowed on each iteration. There are usually no

convergence problems when one point is inside the shadow cone and the other outside.

However, there is some convergence problem when a minimum to the shadow cone

is passed. The problem is illustrated in Figure 4. Spacecraft
flight path

2

Shadow!/ /I one

Figure 4

In this example, the spacecraft flight path just dips into the shadow cone. The problem

arises when the derivative is calculated at point 1. The N-R technique would calculate

point 2 as the entrance time. Since the minimum was skipped over,the iteration would

converge on the shadow exit time instead of the entrance time it was expecting to

determine. This problem was solved by testing on the sign of the derivative. Logic

is included to reset the iteration to the last step and halve the calculated change in

time, if the derivative changes sign. If the derivative changes sign more than five

times,it is assumed that the spacecraft does not fly through the shadow cone. The

shadow times determined are stored in the TSX array of SHAD common. The times

are output from the array in subroutine SADOUT.

The DSAD array is updated on each of the passes in the KJ loop. On completion of this

loop, the TSAD array is updated and the subroutine terminates.

386

SUBROUTIN E SHADOW

ENTER

Set up constants

2

and flags

KJ = KJ + 1

Determine distance to shadow cone

using equation (1) or (2)

LTST TRUE

FIRST = 1

shadow cone no 300
crossed orpasc

minim

yes

TST =.TRUE.

Determine if entrance or exit time

to be calculated

387

130

Set up constants for

N-R iteration

Determine slope using equations (4) to (7)

st determine both change initial
es maximumD,slope constants ofiteratio maximum

step, DTIAX ether i t e r a t i on
neither

no <0

Slope ye , halve last
change sign ttime step

,no

Determine change in time, DELT,
from equation (3)

DELT > DTMAX limit step

to DTMAX

s DTMAX

TX = TX + DELT

Calculate distance to
shadow cone

2 388

212

< 10 solution 240
D converged

> 10

KOUNT=KOUNT + 1

solution

non-convergent< 50
190

240

s/c
passed no
inimum

yes

Set flags to find exit

Set large times
or shadow times

50

389

50

end of KJ
loop

=5

Update array of distances
to shadow cone, DSAD,
and time array, TSAD

RETURN

390

SUBROUTINE SHORB2

Calling Sequence: CALL SHORB2 (ELM, SUN, RC, RSUN, JUMB,
JPEN, UMBIN, UMBOUT, PENIN, PENOUT)

Purpose: This subroutine calculates the true anomaly of a

given orbit that intersects the umbra and/or
penumbra of a planet with respect to the Sun or
another planet.

Common Blocks Required: None

Subroutine Required: ROTATE, QUARTC

Input / Output

SYMBOLIC PROGRAM COMMON

I/0 NAME ,DIMENSION BLOCK DEFINITION
Calling

I ELM 6 Operand Orbital Elements
Calling

I SUN 3 Operand Position coordinates of Sun
Calling

I RC 1 Operand Radius of Planet
Calling

SI RSUN 1 Operand Radius of Sun
Calling

I/O JUMB/JPEN 1 Operand Umbra and Penumbra Flag
Calling True anomaly when spacecraft

O UMBIN 1 Operand enters umbra.
Calling True anomaly when spacecraft

O UMBOUT 1 Operand leaves umbra.
Calling True anomaly when spacecraft

O PENIN 1 Operand enters penumbra.
Calling True anomaly when spacecraft

O PENOUT 1 Operand leaves penumbra.

Note: ELM and SUN must be.expressed in the same coordinate system. All input/
output angles are in radians.

391

Description: The true anomaly at which a spacecraft enters or leaves the UMBRA/PENUMBRA

may be found by solving a quartic in the cosine of the true anomaly. For near -

circular orbits (E .LT. .0015), a direct calculation is made for a close approx-

imation of the intersections.

On input, the flags JUMB/JPEN must be set not equal to zero to calculate the

UMBRAL/PENUMBRAL intersections respectively.

On output, the flags will have values 1 - 5 as follows:

(1) Impact or escape central planet (no shadows calculated)

(2) No shadow possible

(3) No real solutions on night side of terminator

(4) Solutions found

(5) No real solutions found

If JUMB/JPEN .NE. 4 on return, the output quantities UMBIN, UMBOUT/PENIN,

PENOUT will be zero.

Note: The output quantities UMBIN, UMBOUT/PENIN, PENOUT will have values

-27Tr< 0 27r with UMBOUT > UMBIN and PENOUT > PENIN.

392

Theory: The distance of the spacecraft from the central planet is given by

P
r 1+e cos (9+Y)

where P is the semi-latus rectum, e the eccentricity, Y the angle.between

pericenter and the projection of the shadow cone on the orbit plane, and 0 is

the in-orbit plane angle from the shadow cone centerline projection to the space-

craft.

The distance to the shadow is given by P = R/sin (0+.f) where R is the planet

radius, C is half the shadow cone angle, and fis the angle between the line from

the planet's center to the point on the shadow cone and the shadow cone centerline.

(See Figure SHORB2.1)

THETA and BETA can be related through spherical trigonometry by

cos = cos 6 cos 0, where 6 is the angle between the shadow cone

centerline and the orbit plane.

Since , Y, P and e are known constants, r .and P can be equated, yielding the

following equation

P R

1+e cos (0+') (sin acos 6 cos 0 + cos 1-cos cos 2)

which can be .squared twice to yield the following quartic in cos (0).

COEF (5)*x 4 + COEF(4)*x 3 +COEF (3)*x 2 +COEF(2)*x+ COEF (1)=

where

x = cos (0)

COEF (1) = C2 -D 2

COEF (2). = -2 BC

COEF (3) = B2 +2AC + D2 (1+cos2)

COEF (4) = -2 AB

COEF (5) = A - D2 cos 2

and

A = (P sinecos - R e cos 7) 2 + (Re sin y)2 + (P cos 0cos) 2

393

Theory (cont'd)

B = 2 R (P sinacos - Re cos Y)

2 2 2 2 2
C = R (1- e sin Y) - P cos a

D = 2 PR e sin cosC1

This quartic is solved in subroutine QUARTC,which also outputs the number of

roots found. If real roots exist,then the correct sign of 0 must be found by

returning to the original equation (since cosine is an even function). [Cf. check

quadrants of solutions] . Once the sign is known, cos 0 is replaced by 0. Since

the angle 7 is the true anomaly of the shadow cone centerline projection in the

orbit plane, the smallest absolute values of 0 will be the desired intersections

with the cone. Therefore the roots are ordered smallest first.

It is still possible that the intersections lie on the wrong side of the planet, so a

check is made to make sure that 0 is less than the angle from the centerline

projection to the edge of the planet. [cf. check that solutions are on right side

of umbral terminator] .

The actual true anomalies of intersection are given by 0 + Y and the output

quantities are ordered so that the spacecraft enters the UMBRA/PENUMBRA

before exiting (i.e. UMBOUT is greater than UMBIN).

If the orbit is circular, then r is constant and r = R where
sin (a + Pc)

3c = are sin (R/r) - C which implies that e = arc cos (cos 8c/cos 6).

Here the quadrant checks are unnecessary since there are no extraneous roots.

The theory is exactly the same for PENUMBRAL cone intersections except for

the angles a and V, describing the cone. The half cone angle a is

arc sin ((radius of Sun + radius of planet)/ distance to Sun.) The angle

PENUMBRA uals UMBRA minus 7r , since the cone is on the opposite

side of the planet for PENUMBRA. The quadrant checks are slightly different

in that the maximum values of 0 are desired and 0 must be greater than the angle

from the Sun to the edge of the planet. The remainder of the calculations remain

the same.

394

It is important to note that the assumption has been made that d, Y, P and e

are relatively constant throughout one period of revolution of the spacecraft.

Note: Items in square brackets refer to comment cards in subroutine.

395

S- -

CSI rd zerseb o m at o rb
/ PlaWe d Shadeaot

A

- -

GEOMETRICAL RELATIONSHIPS OF ORBIT AND SHIIAl)V

SUBROUTINE SOL

Calling Sequence: CALL SOL

Purpose: This subroutine determines the position

of the Sun with respect to the Earth.

Common Blocks Required: CNTRL, CONST, INPUT, INTVAR, PLNET, STATE'

Subroutines Required: M50MDT, OBLTY, ROTATE

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

I EJO 1 STATE(26) Ephemeris time of state epoch

I EJ1900 1 STATE(27) Ephemeris time since 1900

I JC 1 CNTRL(7) Central planet number

I T 1 INTVAR(1) Current time
Positions and velocities of the

O XP 6, 12 PLNET(1) planets

Theory:

The position of the Sun with respect to the Earth is determined from the mean motion of

the Sun as described in the Supplement to the Nautical Ephemeris. The mean anomaly of the

Sun is obtained from

G = 358.475840 + .985600267 d - .1.12(10) - 5 D2 - 7(10) - 8 D 3 (1)

where

d is the number of days since 1900, and

D is the number of Julian centuries since 1900.

The argument of perifocus is obtained from

GAM = 281.22083 +4.70684(10) d + 3.39(10) D + 7(10) D3 (2)

397

The eccentric anomaly can be determined from the power series expansion of Kepler's

equation since the eccentricity, e, is small. This equation is

2 3
E = G+e sinG + - sin 2G+ (sin G - sin G) (3)

2 8

The X and Y components of the Sun are obtained from the ellipse as

X' = a (cos E-e)

Y' = a - sin E (4)

Z =0

where
a is the semi-major axis of Earth's orbit about the Sun.

This X and Y position is rotated about the Z axis to account for the argument of

perifocus. Thus

X = cos (GAM) X' - sin (GAM) Y'

Y = sin (GAM) X' + cos (GAM) Y'

Z = 0

This vector represents the position of the Sun with respect to the Earth in the mean

equinox and ecliptic of date. This vector is rotated to the mean equator and equinox

of 1950 using subroutines M50MDT, OBLTY to establish the rotation matrices and

ROTATE to perform the matrix multiplication.

398

SUBROUTINE SOLP

Calling Sequence: CALL SOLP

Purpose: This subroutine calculates the acceleration due
to solar pressure.

Common Blocks Required: CONST, GRAVTY, INPUT, PLNET, PERT,
STATE

Subroutines Required; CROSS, DVMAG, VNORM

Input / Output

SYMBOLIC COMMON
I/O NAME DIIMENSION BLOCK DEFINITION

I ATT 3 STATE(11) Unit vector along spacecraft attitude

I KP 12 INPUT(1001) Planets in the system

I KSOLP 1 INPUT(1084) Solar pressure flag

I/O RCART 3 PERT(1) Perturbing acceleration

I REFLEK 1 INPUT(198) Spacecraft reflectivity constant

I SOL 1 STATE(36) Solar pressure constant

I W 1 STATE(3 5) "urrent spacecraft mass
-urrent spacecraft position vector with

I X 3 GRAVTY(1) Lespect to central planet

Theory:

The acceleration due to solar pressure can be calculated using two different models. In

the first model, the solar pressure force acts along the radial direction from the Sun.

This model assumes the spacecraft is a sphere or a flat plate perpendicular to the Sun's

rays. Thus the acceleration can be obtained from,

- SOL ^
a W (1 - REFLEK) X (1)

sun

399

where

W is the spacecraft mass

R is the distance from the Sun
sun

REFLEK is the reflectivity coefficient

X is the unit vector from the Sun to the spacecraft, and
sun

SOL is a constant defined by

SOL= Au 2 (SOLARA) (SPRESS) (10) -8

where SOLARA is the spacecraft area

SPRESS is the solar pressure at 1 Au

In the second model, the spacecraft is assumed to be an object spinning about its

centerline. This kind of a model will contribute two components to the solar pressure

force. The first component is due to the absorbed light and is along the radial direction

while the second component is due to reflected light and is normal to the centerline,

see Figure 1. reflected light

SunSpacecraft

-- 0 A 0

Figure 1

For this model, the radial component is determined from

SOL
as) -W cos 8 (I-REFLK) X (2)

rad sun sun

where e is defined in Figure 1.

The reflective contribution to the solar pressure is obtained from

(a) SOL
sp = 2 REFLEK cos 9 F (3)nor WR n

sun

400

where F is a unit vector normal to the plane containing the centerline
n

and the Sun.

The total acceleration is the sum of the radial and normal components.

Description:

The subroutine determines if the spacecraft is in the umbral cone of any planet before

the solar pressure acceleration is determined. The distance from the umbral cone is

calculated from equation (1) of the SHADOW subroutine description. If the spacecraft

is in an umbral cone,the solar pressure is assumed to be zero and the subroutine returns.

If the spacecraft is not in shadows, the solar pressure is calculated from equation (1)

or equations (2) and (3) according to the setting of the KSOLP flag. The solar pressure

acceleration is added to the perturbing acceleration in RCART before the subroutine

returns.

401

SUBROUTINE SPER

Calling Sequence: CALL SPER (X, Y)

Purpose: To convert the Cartesian coordinates X(1), X(2), and X(3)

to spherical coordinates.

Y(1) = (1) 2 + X(2) 2 + X(3)2

Y(2) = tan1 (X(3) / X(1) + X(2)), -90o<Y(2) <900

Y(3) = tan-1(X (2) / X(1)) , -180 < Y(3) <1800

Units of Y(2) and Y(3) are degrees.

Common Blocks used: None

Subroutines Required: None

Input / Output

SYMBOLIC

I/O NAME DIMENSION DE FINITION

I X 3 Input Cartesian Vector

O Y 3 Output Spherical Coordinates

402

SUBROUTINE SPNM

Calling Sequence: CALL SPNM (NMAX, S, C, P)

Purpose: SPNM calculates the Legendre polynomials

from o NMAX+1
P (S) to P NIA- S)

Common Blocks Required: None

Subroutines Required: None

Reference: GULICK, L. J., (1970), "A comparison of Methods

for Computing Gravitational Potential Derivatives",

ESSA Technical Report, C & GS 40.

Input/Output

SYMBOLIC' COMMON

I/O NAME DIMENSION BLOCK DEFINITION

Calling 1/2
I C 1 Operand (1 - S)

Calling

I NMAX 1 Operand Highest degree desired + 1

Calling

O P 17, 19 Operand Array of polynomials

Calling

I S 1 Operand Argument of polynomials

Theory:

The associated Legendre polynomials are calculated from the following recursion

relationship:

o o 1 /2
(x) = 1 P1 (x) =x P1 (x) = (1-x2)

1/2
1 2 1 2 2 2

1/2m (2 m-i m
n (x) = (2m-1) (1-x) P (x) + (x)n n-1 n-2

For a derivation of this relationship see the above reference.

403

Description:

SPNM calculates the Legendre polynomials of S for all degrees from zero to

NMAX-1 and for all orders up to NMAX +1, and stores them in the array P.

C must be equal to +(1-S2) 1/2. NMAX must be less than or equal to 17. The

indices are both one greater than the corresponding index used in the literature.

Thus P(3, 1) = P2 in the usual notation for the associated Legendre polynomials.

404

SUBROUTINE SP INM

ENTER

<4 >

no

N=3

N=N+1

Calculate

P (N, i), P(N, N-1)

P (N, N)

M=1

SM=M+1

C alculate

P (M, N)

es
ves M< N-2

no

yes
N < NMA

RETURN

405

FUNCTION SUNMIN

Calling Sequence: FUNCTION SUNMIN (X, Y, Z)

Purpose: This function determines the minimum angle
between vector Z and a plane formed by vectors

X and Y. The angle must lie between X and Y.

Common Blocks Required: CONST

Subroutines Required: CROSS, ROTATE, VNORM

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DE FINITION

I PI2 1 CONST(3) Twice pi

I RAD 1 CONST(1) Radian to degree conversion factor

CALLING

I X 3 OPERAND Vector X as described in Purpose

CALLING

I Y 3 OPERAND Vector Y as described in Purpose

CALLING

I Z 3 OPERAND Vector Z as described in Purpose

Theory:

A rotation matrix is determined which transforms to a coordinate system with the X-axis

along the X vector, the Y-axis normal to the plane formed by the vectors X and Y, and the

Z-axis forming a right-handed system. This matrix is established by first calculating the

unit vectors R and S defined by,

R = XxY / 1Xi IY,

S = RxX/ (2)

Then the first column of the matrix is the unit vector along vector X. The second column

is composed of S while the last column is R. The longitude of vectors Y and Z are

406

determined in the new coordinate system. Note, the longitude of vector X is zero.

If the longitude of Z is between zero and the longitude of Y,the minimum angle is

equal to

-1 A

SUNMIN = sin (R * Z)/ IZ

If the longitude of Z is not between X and Y, the minimum angle is equal to the minimum

of

-1 A A

SUNMIN = cos (Z" X)

-1 ^ ^
SUNMIN2 = cos (Z Y)

407

SUBROUTINE SUNMIN

ENTER

Determine rotation
matrix

Calculate longitude of Y
and longitude of Z

< Y longitude
B longitude

> 1800 <Y long. + 1800

-1 SUNMIN=
S1 = cos (X Z) U

-1
-1 sin 1 R Z)-1

S 2UNIN =MIN (Si S2)

RETURN

408

SUBROUTINE TABINT

Calling Sequence: CALL TABINT (X, K, J, N, R)

Purpose: This subroutine determines the spacecraft thrust

and mass at the current time from input thrust
and mass flow tables.

Common Block Required: INPUT

Subroutines Required: None

Input/Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

CALLING Location of the beginning of the dependent

I J 1 OPERAND variable table in the input array
CALLING Location of the beginning of the indepen-

I K 1 OPERAND dent variable table in the input array
CALLING

I N 1 OPERAND Number of points in the table
CALLING

O R 1 OPERAND Output current thrust or mass
CALLING Time from ignition of the

I X 1 OPERAND desired engine.

Description:

The tables that are used to determine thrust or mass values are in two parts. The first

part is the independent variable beginning in location K of the input array. This array

consists of the times from engine ignition and must be monotonically increasing. The

second part of the table is an array beginning in location J of the input array. This array

contains values of the thrust or mass flow rate at the corresponding times of the first array.

For example, the thrust in location J+2 occurs at the time since ignition input in location

K+2. The value of J is used to determine if thrust or mass values are to be determined.

If J is greater than 350 and less than 379,then the mass is to be determined. Otherwise,

a thrust table is being used.

409

If the thrust is to be determined, the thrust is obtained from

R = A(L) + (A(L) -A (L-1)) (X-A(M)) / A()-A(M-1) (1)

where the time X lies between

A (M) and A(M-1)

and A(L) is the thrust at time A(M)

The mass is determined by a trapezoidal integration of the mass flow table up to

the current time, X, from

M = 1 . (J ((Ji -A J+i-1)i A(K+i) + A (K+i-1) (2)
i=1

where

N is the location of the last time in the independent variable
array less than X.

The final mass is given by

R = M+ X-A(J+N))A (K+N) + R (3)

where
R is determined similar to equation (1) except the mass
flow rate table is used.

410

SUBROUTINE TARGET

Calling Sequence: CALL TARGET

Purpose: TARGET computes the end constraint error vector
for midcourse guidance calculations.

Common Blocks Required: CONST, CNTRL, INPUT, MCCOM, PLNET,

STATE

Subroutines Called: M50LEQ, MVTRN, BVE, ORIENT, DVMAG, RETDV,
ORBIT, RETRO, CROSS, VNORM, ROTAIT

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

I JC 1 CNTRL(7) Central body number of end state

I RTD 1 CONST(1) Radians-to-degrees conversion factor

I UM 12 CONST(5) Gravitational constant array (km3/sec2

I GKS 1 CONST(45) Earth's surface gravity (km/sec2

I WTO 1 INPUT(38) Initial spacecraft weight (kg)

I DJO 1 INPUT(46) Julian date of anchor epoch (days)

I ASPMC 1 INPUT(441) Specific impulse of the trim motor (sec)

I RCIRC 1 INPUT(444) Final desired orbit radius (kin)

I WDROP 1 INPUT(473) Post-retro drop weight (kg)

I JTARG 1 INPUT(1031) Target body number

I IVTI 1 INPUT(1078) Overburn strategy key

I NORMIN 1 INPUT(1080) Retro optimization key

I DV 3 MCCOM(12) Midcourse correction impulse (km/sec)

O DVS 3 MCCOM(15) Spherical components of DV

411

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

I F BVD 2 MCCOM(19) Desired miss-vector if IBTR=1 (kmn)
Previously expended midcourse

I DVB4 1 MCCOM(24) velocity (km/sec)

O DVRET 1 MCCOM(25) Retro velocity magnitude (km/sec)
Anti-retro unit vector

O TV 3 MCCOM(27) (lunar equator ref)

O DVT 1 MCCOM(30) Trim velocity (km/sec)

O FUELT 1 MCCOM(31) Trim fuel (kg)
Cartesian end state

O XS 6 MCCOM(32) (km, km/sec, lunar equator)

O WTF 1 MCCOM(47) Post-midcourse spacecraft weight(kg)

I PSID 10 MCCOM(80) Desired end constraint vector

O PSI 10 MCCOM(100) End constraint error vector

Miss vector type key
I IBTR 1 MCCOM(167) (!=BT, BR, 2= RCA, INC)

Celestial body states at T
I XP 6, 12 PLNET(1) (km, lunm/sec)

I X 6 STATE(1) End state (km, km/sec)

I. T 1 STATE(10) End time corresponding to X (sec)

412

Description:

TARGET is a very important subroutine in the computation of midcourse guidance

corrections. It computes the end constraint error vector, p, as a function of the

desired end conditions and the end state. In the normal mode of operation, each

guidance law is formulated to constrain radius of closest approach and inclination.

Desired values of these quantities are combined with actual arrival energy and the

direction of the approach asymptote to arrive at equivalent "desired" miss-vector

components, B* Td and B. Rd. This computation is described in Appendix A of

Reference 1. The first two constraint error vector components are then formulated:

PSI(1) = B. Td - B. Tactual

PSI(2) = B.Rd - B Ractual

where the actual miss-vector is computed in subroutine BVE. The third and fourth

constraint error components are for time of flight and hyperbolic excess speed, respectively.

PSI(3) = TFS - T

PSI(4) = VINFD - VINF

TFS is the desired time at closest approach measured from anchor epoch and VINFD

is the square root of the desired arrival energy (C3). The fifth constraint error component

is post-retro circular excess velocity, assuming the retro to burn at periapsis anti-

parallel to the velocity there.

PSI(5) = VDAR - VAR

VDAR, velocity desired after retro, is supplied by subroutine MCSET, having been computed

to be circular velocity at the desired arrival radius plus an optional input increment.

VAR, velocity after retro, is computed as the scalar difference between the arrival

periapsis speed and the retro velocity magnitude, DVRET. DVRET is, in turn, computed

from the rocket equation and the midcourse correction velocity in function RETDV. The

sixth component of PSI is not an error, but rather is the total correction fuel.

PSI(6) = WTO - WTF + FUELT

413

WTO-WTF is the midcourse correction fuel and FUELT is the trim correction fuel.

FUELT is computed by the rocket equation from the trim velocity, DVT, about which

more will be said later. The seventh and eighth components of PSI are the errors in

achieving the desired periapsis radius, PRD, and the desired inclination, OINC.

PSI(7) = PRD - PR

PSI(8) = OINC - SINC

PR is the actual closest approach radius as computed from the end state in BVE.

SINC is the post-retro inclination, which differs from the approach orbit's inclination

only when the variable target inclination procedure is used.

Retro and Trim Calculations

The retro-strategy implemented in TARGET depends on:

1. arrival energy, C3

2. radius of closest approach, r

3. inclination, i

4. retro-velocity impulse, 6v

5. input option keys, NORMIN, IVTI and IBTR.

TARGET computes the "desired" B. T and B. R values as functions of these parameters

as well as predicting:

a. firing true anomaly, 0, on the approach hyperbola.

b. direction, TV, of the spin-axis at retro-fire.

c. trim velocity and fuel for in-plane trim.

(Case 1: NORMIN = 2)

In this case, subroutine RETRO is used to optimize 9 and TV and to provide the trim velocity.

Overburn strategies are ignored. Desired miss vector computation depends on IBTR and

input miss parameters.

(Case 2: NORMIN<2, IBTR = 1)

Overburn strategies are ignored and retro is anti-velocity at periapsis.

414

(Case 3: NORMIN -, IBTR = 2, IVTI = 0)

Same as case 2 except for computation of desired miss vector.

(Case 4: NORMIN <2, IBTR = 2; IVTI = ± i)

Same as case 3 for underburns*, otherwise variable target inclination computations

are invoked.

(Case 5: NORMIN <2, IBTR = 2, IVTI = ±2)

Same as case 3 for underburns*, otherwise variable approach distance computations are

performed for the desired miss vector, retro direction,and trim velocity.

* An underburn is defined as the condition when the retro impulse would be sufficient for-

circularizing at the desired radius if the closest approach radius were indeed the desired

circular orbit radius.

Variable Target Inclination

The VTI procedure is derived in Appendix B of Reference 1. It amounts to defining

desired miss vector components, B. T and B.R, in such a way that an out-of-plane

retro-burn at periapsis of the approach hyperbola can render a circular orbit of the

desired radius and inclination. This procedure is applicable only for overburns. The

sketch shows the retro velocity impulse, AV, in the plane of the approach periapsis

velocity, Vp, and the approach angular momentum vector, H.
H

AV c

p
Geometry of the VTI Procedure

The direction of AV is given by

AV = V cos a + H sin

and the new angular momentum vector's direction is

A A A

H = H cos -V sing

415

The angles, a and t3, are defined in the derivation of the VTI procedure as functions

of C3 , ,v, and the desired final orbit radius. The desired miss parameters are

computed in such a way that the approach orbit's track differs by B from the desired

orbit's tract at r . If the closest approach and inclination constraint errors are
p

exactly zero, the post-retro orbit will require no time.

Variable Approach Distance-

The VAD procedure, like the VTI, is applicable only to overburns. The basic idea is

to define the desired miss vector magnitude in such a way that if the retro is fired

appropriately in-plane at the desired circular orbit radius, rc, the post-retro orbit

will be circular. It is assumed, first of all, that closest approach radius, rp, of the

arrival hyperbola can be varied without significantly changing the arrival energy, C3 ,
or the retro velocity impulse, 6v. Assuming further that r is less than the desired

p
circular orbit radius, r , we can write

A A

V(r c) = v R + v 0c r c e

where vr is the radial component of velocity and ve is the tangential component. The

circular, post-retro velocity is:

V (r) = v 9

where v = . The required retro impulse, &V, is
c I rc

AV = V -V=v R+(v -Vde

and v 2 +(- 2 v - 2 v v + v2
r c 9 c c

= c+ L -2 _ h + _
3 r r r r

C C C C

r
C + 2p -2 - c +

3 r r r 3 r
c c c p

416

The only unknown in the above equation is r . We can solve for r as follows,
p p

r 2
2 2 r 2

r +2prp = v -c bvc
3 p r L 3] 2 vccc

2 2
u + cc3 b L

P = c3 C3

The periapsis constraint error is re-defined for this case as:

PSI (7) = RP - PR.

The desired miss-vector magnitude is easily formulated from r .

BMAG = (+ r) sin (tan- 1 p p

c3

v = %c3 + vo
p 3 r

The true anomaly at which the retro motor is fired is found from

cos 8 =. (1)/e
r

c

where the sign of 9 is determined by input: if IVTI is positive, 8 is negative and vice

versa. Defining unit vectors P and Q along periapsis position and velocity vectors,

respectively,

A A A

R = P cos 9 +Q sin

A A A

e = P sine + Q cos

417

We define AV in terms of an out-of-plane angle, a, and a flight path angle, y.

AV = 6v 9 cos a + Hsin a) cos y+R sin y

If the periapsis constraint error is zero, a = , and the maneuver will be in-plane.

If 6v is too large to circularize at r for the actual r and c , the maneuver will be
c p 3

out-of-plane. The direction out-of-plane is chosen to minimize the resultant

inclination error. If 8v is too small, y will be chosen so that the radial component

of post-retro velocity will be nulled, with the tangential component falling wherever

it may as a result.

V

sin , = 5v

v -v
c -

cos = , or a =I if cosaI >1

6v cos y

Trim Velocity

The trim maneuvers in TARGET do not attempt to remove inclination errors. They are

treated simply as two-impulse Hohmann transfers from the post-retro orbit to the desired

circular orbit. We require only the specification of periapsis radius and apo-apsis radius

of the post-retro orbit to compute the required trim velocity. (See TRIM) These may be

computed,givei the post-retro energy, C3e, and angular momentum, he. The general form

of the post-retro velocity is

V = V +AV
a

= (v R + v 0) + 6 [cos r+ H sin0) cosy+Rsin y

so that the energy (C3e) is

2 2 2
C = v - = (vr + 6v siny) + (v + 6v cos acos y)

3e a r r e
2

+ (6v sin ccos y) -

418

where r is the radius of retro-fire. The tangential post-retro velocity is the

magnitude of R x V .
a

RxVa = (+ 6 v cos cosy) H - (6v sin a cos y)

h r + 6v cos cos y) + (6v sin ~cosy)2

Reference 1 Bjorkman, W.S., Midcourse Guidance for Lunar
and Planetary Orbiting Missions, AMA 71-16,
March, 1971.

419

SUBROUTINE TARGET

Translate end state to seleno-
centric, if necessary

Transform state to lunar
equator

Compute energy and miss-vector
(CALL BVE)

1 IBTR PSI(1) = e B

P 2 MPSI(2) = c

C ompute
BMAG

45

Determine miss-plane rotation
corresponding to desired inclination

(CALL ORIENT)

54

PSI(1) = -BMAG*cos (- B. T

PSI(2) = BMAG * sin - B. R

42

420

PSI(4) = VINFD - VINF

PSI(5) = VDAR - VAR

> 2 C all ORBIT
NOMI Call RETRO

<2

IBTR

IVTI 0

VCIRC - VAR !g

>0
E=3 2

In-plane overburn IVTI

Compute BMAG

VTI - Compute
Snew inclination

NTIME = 2

150

Compute trim velocity, DVT, a
pericynthion maneuver

200

Compute trim fuel, FUELT
PSI(6) = total fuel
PSI(7) = PRD -_PR

Compute retro direction, TV
PSI(8) = OINC - SINC

421

SUBROUTINE TIMEC

Calling Sequence: CALL TIMEC

Purpose: This subroutine controls the time logic during
numerical integration. Its primary functions

are to determine the compute interval, dis-
continuity times, and stopping criteria.

Common Blocks Required: CONST, CNTRL, INPUT, INTER, INTVAR,
PERT, SAVE, STATE

Subroutines Required: CLOSE, CRASH, DOPLER, INTEG, MOTORS, OUT1,
ORBIT, OUTPUT, SADOUT, SHADOW, TRMN,
UPDATE.

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

I DELT 10 INPUT(180) Compute intervals

Error control limit for automati
I ERRC 1 INPUT(1) compute interval determination

I DELTMN 1 INPUT(3) Minimum compute interval

I DELTO 1 INPUT(2) Initial compute interval

I DX 3 STATE(4) Spacecraft velocity

I/O ELM 6 STATE(14) Spacecraft orbital elements

I GM 12 CONST(5) Gravi tational constants

I JC 1 CNTRL(7) Central planet number

I JT 1 INPUT(1031) Target planet number
Counter used in closest

I/O KCA 1 CNTRL(11) approach iteration

422

SYM BOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

I KCRASH 1 INPUT(1032) Closest approach flag

I/O KFIRST 1 CNTRL(12) First pass flag

I KFMOD 1 INPUT(1047) Thrusting mode

O KDIS 1 CNTRL(5) Discontinuity flag

I KDOP 1 INPUT(1045) Doppler flag

I KHALT 1 CNTRL(6) Error return flag

Input trajectory propagator

I KMETH 3 INPUT(36) method

I KOUT 1 INPUT(1030) Output frequency flag

I KTHRST 1 CNTRL(2) Thrusting flag

I KSADOW : 1 INPUT(1049) Shadow flag

Trajectory propagator to be used

O METH 1 INPUT(1013) on this step.

I T 1 STATE(10) Current time

I TCA 1 STATE(29) Time of closest approach

Time to begin closest

I TCATST 1 INPUT(513) approach testing

Switching times of compute

I TCOMP 10 INPUT(170) interval table

I TF 1 INPUT(4) Run stop time

Engine ignition and

I TIG 6 INPUT(380) burnout times.

Switching times of trajectory

I TMETH 3 INPUT(10) propagator method table

I X 3 STATE(1) Spacecraft position

423

Description:

This subroutine controls the flow of logic during trajectory propagation by

numerical integration. When the subroutine is initiated, the initial spacecraft

state is in STATE common. The state at the final time resides in STATE

common when the subroutine terminates.

The primary function of this subroutine is to determine the compute interval,

discontinuity times, and stopping criteria. The discontinuity times consist of

engine ignition and burnout times, final time, and time of closest approach. The

compute interval is adjusted so that the integrator stops at those times exactly.

The state and its derivatives are saved at the beginning of each step. If a dis-

continuity time is passed during the step, the state is restored to the saved value

and the compute interval adjusted to integrate to the discontinuity time.

The compute interval is obtained from the input compute interval table, from the

discontinuity logic to hit a discontinuity time, or if the automatic compute interval

option is used, the compute interval is determined by subroutine RKSEVN and

passed through INTVAR common.

The time of closest approach to the target planet is determined by an iteration using

subroutines CRASH and TIMEC. If the time of closest approach, determined by

subroutine CRASH, is less than the current time, the state is restored to the last

step and the state propagated to the time of closest approach. At this point, the

time of closest approach is recalculated-by subroutine CLOSE. If the last time

of closest approach is within a specified tolerance of the new closest approach time,

the iteration is converged and the time of closest approach determined. If the

difference of the times is larger than a specified tolerance, the iteration has not

converged and the process is repeated. A total of seven iterations are allowed

with a conversion tolerance of ten seconds.

Besides its primary functionsTIMEC also performs many other functions. These

consist of:

1. Calls to subroutine SHADOW to determine umbral, penumbral occultation

times.

424

2. Determining the trajectory propagation method. If the method changes,

logic is included to change the integration variables to the new set of

integration variables.

3. Calls to UPDATE to set up arrays for interpolation.

4. Calls to OUT1 for trajectory output.

5. Logic to rectify the reference orbit when propagating the state

using Encke.

6. Calls to subroutine CLOSE to determine the central planet.

7. Calls to subroutine DOPLER to get doppler output.

8. Calls to subroutine MOTORS to simulate an engine burn by impulsive

velocity.

425

SUBROUTINE TI~EC

ENTER

Initialize compute interval closest
approach iteration flag, discontinuity
flag and interpolation flag

Determine compute
Res interval from input

table

no
Determine new trajectory

S> TMETH(1) es propagation method and
determine new integration
variables

no

discontinuity time discontinuity time passed

discontinut

no discontinuity time

426

Call UPDATE'to set arrays
for interpolation

Call OUTPUT
KOUT > 0 to get trajectory

> -output

<0

=1 Call SHADOW
Call SADOUT

Set up new Encke
rectifi k e ves reference orbit and

necessar store in PERT
common

Set state and deri-
vatives to arrays
in SAVE common

/all INTEG to propagate
the state one step of

length H

Call CRASH
KCRASH > TCATST < to determine time

of closest

0 >T approach

Unset first pass flag

Call DOPLER
KDOP = KTHRST _ to get doppler

output

KHALT = 1 RETURN

427

10

final time e engineioninui ty

H-TF-TSAV H=TIG(KI

H=TCA-TSAV

Increment closest approach iteration
flag, KCA

KCA > 4

Set state and derivatives to saved

values in SAVE common

428

final time type en
f discontinuitv

closest Set discontinuity and
KOUT 41 approach interpolation flag

>0

OUTPUT KFMOD

state p0

OUTPUT =2

final state
Call

RETURN MOTORS

-2KCRASH 2 RETURN

2 ERRC =0

KCA = 0

H = DELTO

40

Call INTEG to get derivatives
on the plus side of the
discontinuity

429

SUBROUTINE TOBODY

Calling Sequence: CALL TOBODY (JC)

Purpose: This subroutine flies along a Keplerian conic
an increment of time,and determines the
cartesian state at the end of the step.

Common Blocks Required: CONST, DUM, STATE

Subroutines Required: ORBIT, TRMN

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

I DT 1 DUM(10) Input time step along conic
Osculating orbital elements along with

O ELM 12 STATE(14) sines and cosines of i, ,, O

I GM 12 CONST(5) Gravi tational constants
CALLING

I JC 1 OPERAND Central planet number
Position and velocity vectors of the state

I/O X 6 STATE(1) at the beginning of the step and,on output,
these vectors at the end of the step

Description:

First, the orbital elements are determined from the initial position and velocity vectors

using subroutine ORBIT. Next the mean motion is determined from

PV = GM(JC) / SEM 3

where
GM(JC) is the. gravitational constant of the central

planet, and

SEM is the semi-major axis

The initial mean anomaly, AMO, is determined from the initial true anomaly using

430

subroutine TRMN. Next, the mean anomaly at the end of the time step, DT, is

determined from

AM = AMO + PV (DT)

The true anomaly at the end of the time step is determined from the mean anomaly

using subroutine TRMN. Finally, the position and velocity at the end of the time step

is determined using subroutine ORBIT using the final true anomaly in the orbital elements.

431

SUBROUTINE TRIM

Calling Sequence: CALL TRIM (ELM, DELV)

Purpose: TRIM calculates the trim velocity to circularize at
a desired radius and correct inclination

Common Blocks Required: CONST, INPUT

Subroutines Required: None

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

Pre-trim orbital elements (use-ELM(1)=I
I ELM 6 Call List ELM(2)-e, ELM(4)m=, ELM(5) = i

O DELV 1 Call List Trim velocity km/sec)

I RAD 1 CONST(1) Radians-to-degrees conversion factor

I GM 12 C ONST(5_ Gravitational constant arra3l(kn/sec2

I RD 1 INPUT(444) Desired orbit radius (kln)

I VD 1 INPUT(445) Circular velocity at RD (km/sec)

I CID 1 INPUT(446) Desired inclination (deg)

I TRINC 1 INPUT(449) Inclination tolerance (deg)

I JT 1 INPUT(1031) Central body number

Method:

Once the retro motor has fired, the spacecraft is in lunar orbit. Assuming this orbit

to be elliptical with energy, c3e and angular momentum he, we will proceed to define

the trim sequence and the trim fuel. cost. The in-plane trim is accomplished with a

two-impulse Hohmann transfer to circular orbit at the desired radius, rd.

432

rO
a---

\ r

r

r rd

Case 1: r > rd Case 2: r <rd

The periapsis radius, r p, and apoapsis radius, ra, can be defined from c3e and he

2
h

P semi-latus rectum

c P
e 1 + eccentricity

r = periapsis radius
P l+e

r aP apoapsis radius
a 1-e

r r
a p + a = _ semi-major axis

2
C3e

Case 1: ra >r The semi-major axis, a., and energy, c3i of the intermediate

orbit must be
r rd-

a+ d
a. =

1 2

and c3 = 2,
3i a. r + r

1 a d

433

The velocity at r before the first impulse is
a

-r
V = C + 2 = 2 u P
a 3e r

and after the impulse,

+ 2U rdv c3i + -a ra a (ra + rd)

so that the first maneuver requires an impulsive velocity

2 rd rp.
1 r+ r d r +r

a a a p

The velocity on the intermediate orbit at r d is

- ~ + 2 ra
d 3i rd rd (ra + rd)

while the desired circular velocity is

vd =
d rd

so that the second impulse is

Sv=I 7 2ra - 1
2 i +r rr

d a d

and the total in-plane trim velocity is

6v = 6v1+v 2

434

Case 2: r <r . In this case, it is slightly cheaper to transfer first from r
a C1 " " P

to r. By a derivation similar to that for Case 1, we obtain

2r dr rrd ra

5V +r r +
p p a p

2 =- rd r + rd

It should be noted that the two cases can be computed with the same equations by

interchanging roles between r and r
a p

Inclination Change

The inclination is changed by a third impulse executed at the node of the orbit on the

equator. The impulse is applied on the intermediate orbit of the in-plane adjustment

at the nodal crossing of larger radius. Although this strategy is not usually optimal,

it is convenient: it leaves the node invariant, it always permits a solution, and it

separates the in-plane and out-of-plane trim costs. Let the larger nodal radius

vector (of either the pre-trim or intermediate orbit, actually) be R and its corresponding

velocity be V . If the inclination is to be changed by 6i, the rotated post-impulse

velocity, V + will be

+ A AA

V. = cos 6i V + (1-cosi) R . V R + sin6iRxV

+ -

and 6 V3 = V - V

(cos6i- 1) V +(1-cos6i) R V R +sin6i R xV

6v3 = (1-cos) + sin 6 i V - (V)

A 2
2 (1 - cos Si) RxV

= 4 sin 2(- Rx Vr

673 = 2 sin () RxV = 2 sin () v2 RV 2 Vtangential

435

To roughly estimate the cost of correcting inclination, assume RxV =

and sin .
2 2

6v 8 6 i = 22.94 / deg) io

Determination of the larger-radius node is somewhat tricky and deserves some

explanation. line of apsides

_ larger radius node

The argument of pericenter, W, is either a 1 or t 2 as shown in the sketch, depending

on which nodal sense is the ascending one. The true anomaly of the larger-radius node

is computed according to the following scheme.

- f/2 W ! r/2 f=7-W

< << f = 2f - W

In either case, cos f = - i cos g).

r =
1 + e cos f

and the tangential velocity (needed in the plane-change formula) is

Vtangential r r

If r is smaller than RD, the plane-change is executed at a node of the circularized orbit.

An inclination tolerance, TRINC, offers a band within which no inclination correction is

made. The correction is made only over to the tolerance band.

436

SUBROUTINE TRIM2

Calling Argument: CALL TRIM2 (ELMI, F, DV, LOPT)

Purpose: This subroutine determines the optimum two

impulse 1800 transfer between two orbits

Common blocks required: CNTRL, CONST, INPUT, PIT

Subroutines required: MVTRN, ORBIT

Inputs/Outputs

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

I CINF 1 INPUT(446) Desired inclination of final orbit

Calling Magnitude of the first and second

O DV 1 Operand trim maneuvers

First and second trim maneuvers in

0 DX 3, 2 PIT(3) same system as ELMI
Calling

I ELM I 12 Operand Orbital elements of initial orbit

I JC 1 CNTRL(7) Central planet number

Calling Flag used to calculate trim velocity

I LOPT 1 Operand components. Non-zero to calculate

components

Calling True anomaly of the first maneuver

I F 1 ODerand on the initial orbit

I RFINAL 1 INPUT(444) Desired final orbit radius

I VFINAL 1 INPUT(445) Desired final orbit velocity

State before first trim in same

O XS 6 PIT(12) . coordinate system as ELMI

Reference:

F. T. Sun, "Analytic Solution for Optimal Two-Impulse 1800 Transfer Between

Noncoplanar Orbits and the Optimal Orientation of the Transfer Plane, AIAA

Journal, Vol 7, No. 10, 1969.

437

Theory:

This subroutine determines the optimal two-impulse 1800 transfer between noncoplanar

orbits using the method described in the reference. Since a 1800 transfer is specified,

the first impulse must be applied at the intersection of the initial and final orbit planes.

Thus, the angle between the initial and final orbit planes and the position on the initial

orbit where the maneuver is made can be obtained from the spherical trigonometric

relationships, see Figure 1.

-Final orbit

-Initial orbit

id

Figure 1

The angle from the reference plane to the common line of nodes in the initial orbit, , ,

can be determined from the input initial true anomaly, f, and the argument of the

ascending node of the initial orbit as,

A= f + -o (1)

438

Then, the angle between the two orbit planes, a , can be determined from,

sin = sin ii sin id / sin (2)

tang =sin)
2 2

xP +id -iisin (2 tan I)

where i is the inclination

/3 is the angle from the reference plane to the common line of
nodes in the final orbit plane.

and the subscripts i and d refer to the initial and desired orbits,
respectively.

The radius and velocity components can be determined from standard orbital

relationships at the initial true anomaly, f.

The orientation of the transfer plane with respect to the initial and final orbit

planes is described in Figure 2.

initial

transfer

1
final

Figure 2

The angles q and o describe the orientation of the transfer plane with respect to
the initial and final orbit planes, respectively.

If the inclination of the transfer plane with respect to the initial plane is specified,
then the optimal velocity can now be determined using Sun's equation 10.

1/2AV= 1n V 2 + 2 VOS 2n
Srl -2 n+ VT1 cos l n+1

1/2 2 1/2
+ (1 - 2 n

439

where , is the gravitationai constant, r is the radius at f = - -, V and V are the
d M T1

radial and transversal velocity components on the initial orbit relative to local circular

velocitv (VA p/r), and n is rd/ri.

The equation above is somewhat simplified from Sun's equation since the final orbit

is circular. Thus,
R2 = 0

(4)
VT2 =1.

T2

If the velocity of each trim maneuver is desired, then

1/2

AV 1 12 co s 2 + n+

a1 C 1/2 (5)AdT - 2 2 cos +-

T1 n'+1 VT1 l n+l

-2 Cos + -
V n+1 sLL n+1

where & V1 and A T' 2 denote the magnitudes of the first and second trim

maneuvers.

The direction these impulses are applied can be determined by noting the following

relationships,

AVR1 = VRT 1 - VR1

AIN1 = -VT1 sin (6)

AVT1 = VTT1 - VT1 cos U

The second trim is determined in a similar manner as

QVR2 = VR2 - VRT2

AVN2 = -VT2 sinW2 (7)

eT T2 = VT2 cos a -VTT2

440

In the above equations the components of velocity are defined as follows,

V radial component of velocity of the
initial or final orbit.

V 2 Transversal component of velocity of the initial or
final orbit.

V TTTransversal component of velocity of the initial or
final orbit written in the transfer plane.

VT Radial component of velocity of the transfer orbit at
initial and final orbit crossings.

All components of velocity, except the radial components of the transfer orbit in

equations 6 and 7, are fixed by specifying the initial and final orbits. The radial

component of velocity is determined from the condition that the total trim velocity

is to be minimized. The total trim velocity is

S2 2 2
v= d, cv+ = AV + V V (V V) (8)

+ T2 N2 R2 RT2)

Also,

VRT1 -VRT2

(9)

VR2. =

since a 1800 transfer is specified and the final orbit is to be circular. Now, the

partial derivative of the trim velocity with respect to V can be written as,
RT1

3 AV = RT1 VR1 + VRT1 =0
SVRT1 AV 1 4V 2

or
V A V9 V (10)

RT1
AV 1

441

The components of the trim velocity obtained from equations 6, 7, and 10 describe

the trim velocity with respect to the transfer plane. The trim velocity vector in

the same coordinate system of the initial orbit is obtained through a three Euler

angle rotation pictured in the figure below.

w+ f

X Figure 3

In the figure above, x corresponds to the radial direction, y to the transversal

direction, and z to the normal direction.

The angular elements of the reference orbit define tIhe Euler angles. Thus the

transformation from the x, y, z system to the X, Y, Z system is

Scos) cos 0 -sin b cos 0 sin i sin
-cos i sin Osin 0 -cos i sin Ocos 2b

= cos $ sin C -sin d sin . -sin i cos 0
+cos i cos Osin $ +cos i cos .cos y1

z L sin i cos 6 sin i sin cos i z

where = f +

The above equation is used to transform the trim velocity components from an orbit

plane coordinate system to the system of the reference orbit.

Optimum Inclination of the Transfer Plane

The condition for the optimal orientation of the transfer plane is expressed by

2 n (12)
sin W2 _ n l2* Cos2 +p22 412)
sim 11 -2 p1 cos p 2

442

1/2

where 1= 1 rd/r\ 1
r d+r J V

1/2

=
2 ,rl/rd

)
2 r d + rl

Equation 12 along with the condition

W2 = + 1
(13)

yields a set of equations which can be solved for q1 or t 2 to yield the optimum

orientation of the transfer plane. The solutions to equation 12 resulted in a sixth

order polynomial in sin w. The equation was solved numerically in order to avoid

the cumbersome task of solving a sixth order equation. A Newton-Raphson procedure

was employed to determine the solution to equation 13. Sun, in the reference, states

that the solution is unique. Thus, the task of finding multiple solutions with the

Newton-Raphson method is not required.

Description:

The initial orbital elements and argument of the ascending node of the final orbit is

brought into the subroutine via the argument list. The angular components of the

initial and final orbits are used in equations 1 and 2 to determine the position on the

initial orbit where the trim maneuver will take place. Next, the transversal and radial

components of velocity and other quantities required for Sun's equations are determined.

The Newton-Raphson technique described by equations 12 and 13 are used to determine

the inclination of the transfer orbit with respect to the initial orbit.

The magnitude of the velocity is determined from Sun's equation 10. If only the

magnitude of the velocity is required, the subroutine returns.. This option is executed

through the LOPT flag brought in through the argument list. If the flag is equal to zero,

only the velocity magnitude is calculated. Otherwise, the components of the trim velocity

in the same coordinate system as the initial orbital elements are determined.

Equations 6, 7. and 10 are used to determine the components of the trim velocity in the

transfer plane. The first trim velocity is rotated from the transfer plane to the initial

443

orbit plane by a rotation through an angle 1 about the radial velocity component.

This rotation is expressed by,

DX - 1 0 0 AV

DY = 0 cos J sin o1 AVT (14)

DZ 0 -sin t cos f- AVN

Next, the rotation defined by equation 11 is employed to obtain the first trim velocity

in the desired system. The angular quantities in this rotation are obtained from the

initial orbit.

The trim velocity from equation 14 is added to the initial state to determine the transfer

orbit initial conditions. These conditions are used in ORBIT to determine the elements

of the transfer orbit. The normal, radial, and transversal components from equation 7

are used directly in equation 11 to determine the second trim velocity in the desired

system. The elements used in equation 11 are from the transfer orbit for the second

trim. The logic to rotate the trim components are accomplished in a loop. The IK

flag is used to determine the current maneuver.

444

SUBROUTINE TRI12

ENTER

Determine initial trim position from
equations 1 and 2.

Determine transversal components
and quantities for velocity determin-
ation.

Newton-Raphson iteration to deter-
mine orientation of transfer orbit
using equations 12 and 13.

Calculate magnitude from equation 3

LOPT A. I

Get magnitudes of each maneuver

from equation 5.

Determine velocity components of first

trim in transfer plane from equations
6 and 10.

Rotate to initial orbit plane using Y.

445

IK = 1

Determine initial position and velocit

Determine rotation matrix of equa-
tion 11 from ELMI elements

Rotate trim velocity using MVTRN

IK RETURN

=1

Add rotated first trim to initial
velocity

Determine transfer orbit from ORBIT
and put in ELMI

E ELMI(3) =ELM(3) + i

Determine second trim from
equation 7

IK =2

446

FUNCTION TRMN

Calling .Sequence: Y = TRMN (J, Q, E)

Purpose: This function calculates the mean anomaly
from the true anomaly and vice-versa.

Common Blocks Required: CONST

Subroutines Required: None

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DEFINITION

Calling
I E 1 Operand Eccentricity

Calling Flag to determine the computation
I J 1 Operand =1 Calculate mean from true anomaly

=-1 Calculate true from mean anomaly

I PI 1 CONST(2) pi,

I PI2 1 CONST(3). twice pi
Calling

I Q 1 Operand Input mean or true anomaly

Theory:

I. Calculation of the mean anomaly from the true anomaly. The equations to determine

the mean anomaly are dependent on the eccentricity, e. If e is less than 1, the mean

anomaly is obtained as follows,

E = cos-1 (cos f + e) / (1+e cos (1)

where E is the eccentric anomaly and

f is the input true aiomaly.

Then the mean anomaly, M, is obtained from Kepler's equation, as

M = E -e sinE (2)

447

When hyperbolic motion is encountered e > 1, the mean anomaly is obtained by

first calculating the auxiliary variable, F, from

tanh (= e1 tan (3)

Then the mean anomaly is determined from

M = e sinh F-F (4)

II. Calculating the true anomaly given the mean anomaly. Kepler's equation, equation (2),

is solved for the eccentric anomaly given the mean anomaly. This is a transcendental

equation and an iterative procedure is required to solve for E.

If a first-order Taylor series is used to represent Kepler's equation, it becomes

M = (E 0) + 0 (E0) AE 0 (5)

where) (EO) = E 0 - e sin E0

0 (E) = 1 - e cos E0

If we assume that

0 (EO) = Mo'

then
M-M = AM = 0 (E 0) AEO

or 1M1 - M

0 1+ e cos E 0 (6)

A corrective term is added to the derivative of 0 in order to help convergence.

Thus the change in eccentric anomaly is given by

M - MO (7)
1 + e cos E 0 + .Ole cos 3 E0

448.

The iterative process uses equations (2) and (7) as follows:

1. The initial mean anomaly is input, M0'

2. A guess is made for the corresponding eccentric anomaly, E 0 .

3. Equation (2) is used to determine the mean anomaly corresponding to E 0 .

4. The change in eccentric anomaly, A E0 , is determined from equation (7).

5. A new eccentric anomaly is determined from E = E + AE.

6. Equation (2) is used to obtain a new mean anomaly M.

7. If (M - MO) is sufficiently smallthe solution has converged. If not,

steps 4 through 7 are repeated until it is small.

The true anomaly is calculated from the eccentric anomaly using

sin f = - -e sin E
r

(8)
and

cos f = - cos E - e
r

The solution of Kepler's equation for hyperbolic orbits is essentially the same except

that equation (2) is replaced by equation (4) and equation (7) is replaced by

M - M0 (9)
1 + e cosh F 0

The true anomaly is calculated from the auxiliary variable, F, using the inverse

tangent

i sinh F
tan f sinh F (10)

cos F - e

449

FUNCTION TRMN

ENTER

J <0

>0

1< <1

Determine mean anomaly
.Determine mean anomaly

from equations (3) and(4) from equations (1) and(2)

999 999

7 e=e+. 0001

E=M

AM =M - E + e sin E0
change in mean anomaly using

equation (2)

Calculate AE using equation (7)

SE+ AE
0

>2(10) - 1 2 AM

< 2(10)-12

Calculate true anomaly from
equation (8)

450

F = M

AM =M 0 +F-e sinhF

change in the mean anomaly using
equation (4)

Calculate AF using equation (9)

F=F+ A F

-12
> 2 (10) -12

<2 (10)12

Calculate true anomaly

from equation (10)

999

RETURN

451

SUBROUTINE TUBE1

Available from NASA Goddard Space Flight Center.

452

SUBROUTINE TWELVE

Calling Sequence: CALL TWELVE (T)

Purpose: This subroutine integrates a set of simultaneous

differential equations using a twelfth-order

predictor-corrector type method.

Common Blocks Required: CONST, CNTRL, INPUT, INTVAR, PERT

Subroutines Required: DVMAG, EQNS, RKSEVN

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

I H 1 INTVAR(14) Compute interval

I JC 1 CNTRL(7) Central planet number

I KDIS 1 CNTRL(5) Discontinuity flag

Trajectory propagation

I METH 1 INPUT(13) indicator

Derivatives of the

I RATES 6 INTVAR(8) dependent variables

CALLING Initial time on input and time

I/O T 1 OPERAND on end of step or return

Corrector convergence

I TOL 1 INPUT(8) tolerance

I X 1 INTVAR(1) Independent variable

I/O Y 6 INTVAR(2) Dependent variables

453

Theory:

A set of simultaneous differential equations are numerically integrated over the

time step, H. The scheme employed is a predictor-corrector scheme of summed

ordinate form. Two sets of predictor and corrector equations are contained in

this routine. When second derivatives of the quantities to be integrated are

available, a St6rmer predictor and a Cowell corrector are used. An Adams-

Bashforth predictor and an Adams-Moulton corrector are employed when only

the first derivatives are available. A predictor-corrector numerical integration

scheme determines the state at the end of the step as follows:

1. The predictor equation is used to extrapolate for the state at

the end of the step (T + H) using the back derivatives (or second

derivatives) at times T, T-H, T-2H, etc.

2. The derivatives are determined at time T+H using the state

determined in 1.

3. The corrector equation is used to determine the state at T + H

using the back values of the derivatives at T, T-H, T-2H, etc.

and the derivative at T + H from 2.

4. The state obtained from the corrector equation is compared to

the predictor state. If the difference is less than TOL, the

solution is converged.

5. If the solution has not converged, the derivative is determined

using the corrector state at T+H and flow is transferred to

Step 3. A total of 3 iterations are allowed.

The predictor equations are

10
P 2 II (1)
K+1 i 11-i St

4i=5

454

YP = h Sk +-i Adams-Bashforth (1)
K+1 Sl+j

i=1

where a,. anda. are constants described in Table I.
1 1

and S and SIk are the first and second sums defined by

Sk+1 I + Y'k+1

k+l= Sk Sk+1

or if first derivatives only are available

Sk+1 Ik + k.+1

The Cowell and Adams-Moulton corrector equations used are,

2 10 1
yC = h + Cowell

K+1 h lIa j 11-i
i=l

S- (2)

10

YC = h + Yl Adams-Moulton
K+1 k +i Y11-i

where .i and 3i are constants described in Table I

The table of back derivatives is established using a seventh-order, ten-cycle

Runge-Kutta integration scheme when the discontinuity flag is set to 1. This

flag is set on the first step, or at engine ignition or burnout times. The initial

first and second sums are obtained from the corrector equation as follows,

II Y 10
101

9 2 i 11-i (3)
h i=1

455

I 10 * .10 10
9 h 1'i Y11-i

i=l

I I (3)

S + S + S
10 9 10

10 S9 + 9S

If the first derivative is usedthe sum is obtained from

I 10 *
9 + - i 11-i

i=l

I I
10 S9 10

Only the first sum is needed.

Description:

Logic to numerically integrate either first or second derivative equations is

contained in the routine. The METH flag is tested to determine which set of

equations to use. A series of flags are internally set according to the value of

METH. These flags are used to determine the size of DO LOOPS and values of

subscripts. The purpose of the flags are

1st 2nd
FLAG Deriv Deriv. DESCRIPTION

NK 6 3 Number of quantities integrated

NO 0 3 Used to pick out the first derivatives
when integrating second derivative
equations.

IN 2 1 Subscript to identify the integration
coefficients.

IS 1 2 Subscript to identify the first or second
sum.

456

KDIS is tested to determine if it is necessary to proceed into the start-up logic.

This logic is used to set up the back values of the derivatives in the XDD array.

The values are obtained by integrating the set of equations with the seventh-order

Runge-Kutta scheme. The compute interval is halved and the integration

accomplished with RKSEVN. The derivatives at the end of every second step are

loaded into the XDD array. After the start-up integration, the first and second

sums are initialized using equations (3).

Next, the predicted value is obtained from equation (1). Subroutine EQNS is used

to get the derivatives of the function using the predicted state.

The corrector equation is employed to obtain the corrected value and the test for

convergence is made. The integration is complete if convergence is obtained.

If not, the derivation is obtained with the corrected state and the corrector equation

employed again. Three iterations are allowed.

The derivative array, XDD, and the sums, S, are updated after convergence is

achieved.

Note: This subroutine must be used with a constant, fixed step compute interval

as there are no provisions for modifying the back value table.

457

SUBROUTINE TWELVE

ENTER

NK = 6 >2 <2 NK = 3

NO = 0 METH NO = 3

IN = 2 IN = 1

IS = 1 IS = 2

Start-up procedure. Use
=1 RKSEVN to set up XDD array

KDIS Set initial sumns using
equation (3).

k1

Get predicted value, YP using
K+1'

equation (1)

all EQNS to obtain
derivative at T+H

Get corrected value, Y+, using

equation (2)

S YK+c >TOL No. of <3 set

K+1 K1 iterations = Ye
K+1 K+1

TOL >3

Update XDD and

S arrays

T = T+H

RETURN

458

TABLE I

INTERPOLATION COEFFICIENTS

Adams-Bashforth Adams-Moulton

Stormer Predictor Predictor Cowell Corrector Corrector

.709333000140291806 3.4519884004562823 .0592405641233766233 .280189596443936721

-2.94977592767957351 -13.8168372652617444 .116927358906525573 .650092436016915182

7.56536563552188551 35.4336533489658489 -.283950542127625460 -1.20830542528459194

-12.9585332742103575 -60.8353967251883918 .456997940716690716 1.81090177569344235

15.3441157607824274 72.1837392401194484 -.518014808301266634 -1.99558147196168029

-12.6715074479918229 -59.7076813146344396 .415493601691513357 1.57596093624739458

7.19372036335578001 33.9395391414141414 -.230988982082732082 -.867866061407728073

-2.68438193943402276 -12.6774970438512105 .0848526685505852171 ,316787568141734808

.594237726972101971 2. 80868181442400192 -. 0185565538820747153 -.0689652038740580406

-.0592405641233766233 -.280189596443936721 .00183208573833573833 .00678584998463470685

459

SUBROUTINE TWOPIT

Calling Sequence: CALL TWOPIT(ELM, DUT)

Purpose: This subroutine is used in conjunction with
TRIM 2 to determine the minimum two-
impulse, plane-change post-injection trim
maneuver.

Common Blocks Required: CONST

Subroutines Required: TRIM2

Input/Output

SYMBOLIC PROGRAM COMMON
I/O NAIE DIMENSION BLOCK DEFINITION

O DVT 1 Calling Argument Total velocity requirement

I ELM 6 Calling Argument Pre-trim orbit

I PI 1 CONST(2)

Description:

This subroutine is used in conjunction with TRIM2 to determine the optimum place

on the initial orbit to initiate the two-impulse plane-change maneuver. Subroutine

TRIM2 determines the optimum maneuver between two orbits. However, the

position on the initial orbit must be specified. This subroutine uses a half-interval

search to find the position on the initial orbit which results in the minimum trim

requirements.

The search is accomplished by stepping the true anomaly around the initial orbit.

On each step, subroutine TRIM 2 is called to determine the velocity requirement.

460

As TWOPIT steps along the true anomaly, the true anomalies on the two previous

steps and their corresponding velocity requirements are saved in the OS and DVS

arrays. The DVS array and the current velocity, DVT, is used to determine if

a minimum velocity requirement has been passed. If a minimuln is not passed

the logic continues to step true anomaly. The subroutine goes into its half-

interval search phase when the minimum criterion is satisfied. The LPASS

flag is non-zero when in the half-interval phase.

It is known that the minimum occurs between the current true anomaly and the

true anomaly stored in OS(1) whenthe half-interval search phase is begun, see

Figure 1.

I'vs (.D ----

TRUE ANOMALY

The true anomaly interval is halved and added onto the value in OS(1). Then-

the velocity requirement at this point is determined ((in the figure). If the

velocity at (is less than OS(2), the minimum must occur between OS(1) and

OS(2). If this condition is true, the interval is halved again and the process

repeated between the points OS(1) and 3 . If the velocity at (is greater

than OS(2), the minimum lies between and 50. The velocity requirement

is then determined at 0 . If the velocity at 0 is less than DVS(2), the

minimum must occur between OS(2) and q. Then,

OS(1) = OS(2)

05(2) =

DVS(1) = DVS(2)

DV S (2) = DV ()

461

and flow transfers back to the beginning of the half-interval search. If the

velocity at 2 is greater than DVS(2), the minimum occurs between (and () .

For this case

OS (1) =®

OS (2) = OS (2)

DVS(1) = DV (()

OS(2) = DVS(2)

The flow returns to the beginning of the search.

The search is terminated when the interval in true anomaly has been halved

enough times to cause it to become less than a stopping value. Logic is in-

cluded to search the entire orbit for minimums. This is required because there

are many local minimums. The subroutine terminates when the final true

anomaly is more than 2 y greater than the initial value. Prior to termination,

TRIVI2 is called with the value of true anomaly corresponding to the absolute

minimum and the input flag set to obtain components of the trim along with

its magnitude.

462

SUBROUTINE TWOPIT

ENTER

Set constants

LPASS = 0

ISTEP = 0

Get velocity requirement
TRIM 2

ISTEP = ISTEP + 1

>50
STEP RETURN

=2 =1

") DVS(2)
DVT

Initiaize ISTEP

Minimum between
>r 2 OS(1) and OS(2)

OS(2) = O
N DVS(2) = DVT

Update OS, DVS Passed Test for
EOELOMinim

Passed

DELO = 1/2 DELO Set up true anomal
for O of figure

<O STOP OSS = 0
DELOP 400 DVSS = DVT

S= OS(2) + DELO

>o STOP

Set true anomaly
for @ of figure
O = OS(1) + DELC

463

<DVS(2)

Minimum after OS(2) Minimum between (and ()
OS(1) = OS(2) OS(1) = OSS

DVS(1) = DVS(2) DVS(1) = DVSS

OS(2) = O
DVS(2) = DVT

310 310

400
<DELVTS DELVTS = DVT

DV 1 OSAV =O

> InitialO + 2 r

LPASS = 0
ISTEP 0 Get components of trim

DELO = DELOI at absolute minimum (OSAV)SDELO = DELO TRIM2
O = O 464DELO

RETURN

464

SUBROUTINE UPDATE

Calling Sequence: CALL UPDATE

Purpose: This subroutine sets up the array of back
derivatives used for interpolation in subroutine

INTERP.

Common Blocks Used: INPUT, INTER, INTVAR, STATE

Subroutines Used: None

Input / Output

SYMBOLIC COMMON
I/O NAME DIMENSION I BLOCK DE FINITION

Array of back derivatives of the
O ACL 6, 10 INTER(71) integration variables

Counter used to indicate the
I INT 1 INTER(131 current value in arrays

Array of back values of the
O POS 6, 10 INTER(11) integration variables

Current derivatives of the
I RATES 6 INTVAR(8) integration variables

I T 1 STATE(10) Current time

O X 10 INTER(1) Times of the back values

I Y 6 INTVAR(2) Current integration variables

Description:

This subroutine sets up arrays which contain the back values of the integration variables,

derivatives of the integration variables and times at which the back values are stored in

the arrays. The INT flag is used as an indicator to determine which back value is current.

The back value arrays can hold up to ten back values. Only five of these back values are

used. The longer table decreases the number of times components in the table must be

moved. If INT is larger than 10, the last five back values of the table are set in the first

five slots and INT reset to 5. If INT is zero, the back values arrays are restored to zero.

465

SUBROUTINE VIEW

Calling Sequence: CALL VIEW (X,.Y, J, A)

Purpose: To calculate the lighting characteristics
of a planet as seen by the spacecraft.

Common Blocks Required: CONST

Subroutines Required: None

Inputs / Outputs

SYMBOLIC COMMON
I/O NAME DIMENSION BLOCK DESCRIPTION

O A 1 CALLING Percent of planet lighted
ARGUMENT

I J 1 CALLING Planet number
ARGUMENT

I RE 12 CONST(17) Equatorial radius of the planets

I X 3 CALLING Vector from spacecraft to. the
ARGUMENT

planet.

I Y 3 CALLING
Vector from Sun to planet.

ARGUMENT

Theory:

Let 0 be the s/c-planet-sun-angle

x, y, z system centered at the planet with

x toward the s/c, z normal to the s/c-planet-sun plane, and y in the plane

x', y, z' system same as x, y, z, except rotated about z an angle0such that
x' is toward the Sun.

Then the equation for the terminator circle formed on the planet by the Sun is described

as

466

y,2 + z,2= r 2

x = -x

where

r = r cos a
s e

x = r sin a
s e

and r is the planet's radius

a is the half cone angle

X x
The rotation from the x, y, z system to x', y', z' is obtained from

x1 cosO sinO 0 x

y, -sinO cosO 0 y

z' 0 0 1 z

Equation (1) written in the s/c system becomes

xcosO +ysinO = -x
s

2 2 2 (2)
(-xsin8 +ycosO) + z = r

The s/c also sees a circle on the planet described by
2 2 2

y +z =r

x = x (3)

where

467

. '8~ x = r sin

r = r cos 3
c e

sin-1 r
1 = sin e

r

The terminator ellipse will intersect the viewing circle where the plane x = x

intersects the ellipse, or

x cos 0 +y sin = -x
c s

and (4)
2 2 2

(-x sin + y cos 0) +z =r
c S

thus the intersection points are

Y = -x - x cos
1 s

sin 0 (5)

2
1,2 s c

where

y' -x sin 0 + -x - x cos 0 cos

2 2
-x sin 8 - x coso -x cos 0 -x - x cos

c s c C S

sine sin 6

The sun ellipse can be rewritten as

S= -x + y sinO

cos 0x+ 2sin2 2 2
-xs +y sin) sinO + y cos 2 + z = r

cos 8 s
S2 (6)

-x sin O + y sin2 + y cos 2 r2

cos 0

468

-xsinO +Y 2 2

cos 0 s

The shaded area of the disk in the figure below is obtained from

Z

I)ZL

A = (dz

1

cos / z + x sin 8 -y1 dz

(7)
- d r 2- z + r sin -r + z(x- sin 8 -y

z s s r s
s

1

The area of the rest of the circle (the crossed-hatched area) is determined from

2 I' 2 2 -1 y

z c 1 c r
c

469

Description:

The areas determined in equations (7) and (8) are determined in a straightforward

manner. The initial vectors are input via the argument list while the planet's ra-

dius is in CONST common. The area determined by the sum of equations (7) and

(8) is divided by the total area to determine the percent lighted. If the spacecraft-

planet-Sun angle is greater than 90 degrees, the percent calculated is the darkened

area. Thus, the percent is subtracted from 100 to determine the lighted area.

470

SUBROUTINE VISIB

Calling Sequence: CALL VISIB (TIME, XIN, JC, KEL)

Purpose: VISIB computes tracking station visibility.

Common Blocks Required: CONST, INPUT, OBSIT, PLNET

Subroutines Required: DOT, DVMAG, MVTRN, M50EPM

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK DEFINITION

I TIME 1 Call List Time from anchor epoch (sec)

I XIN 6 Call List Spacecraft's position vector(EE50, km)

I JC I 1 Call List Central body of XIN

1deg
0 KEL . 10 Call List Visibility or elevation array -IT

Radians-to-degrees

I RTD 1 1 CONST(1) conversion factor

I I RAD 12 CONST(17) Planetary or lunar radii (kmn)

I DJO 1 INPUT(46) i Julian date of anchor epoch (days)

I OBSL 10 INPUT(410)1 Tracker longitude array(deg)

I XOBS 10, 3 OBSIT(21) I Tracker radius vectors (EPM, kmin)
Celestial body states at TIME relative

I XP 6,12 PLNET(1) to JC (km, km/sec)

Method:

VISIB is called both for visibility at midcourse time and for visibility at retro ignition. In

either case, the spacecraft's position, X, is transformed into Earth's equator and prime

meridian coordinates where the trackers' positions, Rt, reside. The slant range vector,

S = X-R t , is used to compute the elevation angle, El.

O
-1

El = 900 - cos (S
s r t

471

The KEL element corresponding to El is the integer part of

El +1,
10

if El is positive and zero otherwise. Thus, if the elevation is negative at the I-th

tracker, KEL (I) = 0. If elevation is between 00 and 100, KEL (I) = 1, if it is

between 100 and 200, KEL (I) = 2, etc.

If the central body is not the Earth, the spacecraft's position is first translated to be

Earth-centered before computing the slant range vector. In addition, occultation by

the central body is checked. If the central body indeed occults the spacecraft from

the I-th tracker, KEL (I) = 0,even if the elevation is positive. The criterion for

occultation is as follows. Let R be the spacecraft's position relative to JC and rm
be the physical radius of JC. Then if

2 2
R'S s r -r

m

the spacecraft is occulted. Otherwise it is not. If the spacecraft is occulted while

the state is Earth-centered (way out past the Moon), it would not be detected because

the test would not be made.

472

FUNCTION VNORM

Calling Sequence: CALL VNORM (X, Y)

Purpose: This function determines the magnitude of a

vector and a unit vector in the same direction

as the input vector.

Common Blocks Required: None
Subroutines Required: None

Input / Output

SYMBOLIC COMMON

I/O NAME DIMENSION BLOCK ' DEFINITION
CALLING

I X 3 OPERAND Input vector
CALLING

O Y 3 OPERAND Unit vector along X
FUNCTION

O VNORM 1 NAME Absolute value of X

Description:

The absolute value of the input vector, X, is determined from

2 2 2
R X +X +X

1 2 3

where X~, i=1, 3, are the components of X. The components of the unit vector Y are

determined from

Y. = X. /R i=1,3
1 1

473

