7,597 research outputs found

    Social-sparsity brain decoders: faster spatial sparsity

    Get PDF
    Spatially-sparse predictors are good models for brain decoding: they give accurate predictions and their weight maps are interpretable as they focus on a small number of regions. However, the state of the art, based on total variation or graph-net, is computationally costly. Here we introduce sparsity in the local neighborhood of each voxel with social-sparsity, a structured shrinkage operator. We find that, on brain imaging classification problems, social-sparsity performs almost as well as total-variation models and better than graph-net, for a fraction of the computational cost. It also very clearly outlines predictive regions. We give details of the model and the algorithm.Comment: in Pattern Recognition in NeuroImaging, Jun 2016, Trento, Italy. 201

    Learning Model-Based Sparsity via Projected Gradient Descent

    Full text link
    Several convex formulation methods have been proposed previously for statistical estimation with structured sparsity as the prior. These methods often require a carefully tuned regularization parameter, often a cumbersome or heuristic exercise. Furthermore, the estimate that these methods produce might not belong to the desired sparsity model, albeit accurately approximating the true parameter. Therefore, greedy-type algorithms could often be more desirable in estimating structured-sparse parameters. So far, these greedy methods have mostly focused on linear statistical models. In this paper we study the projected gradient descent with non-convex structured-sparse parameter model as the constraint set. Should the cost function have a Stable Model-Restricted Hessian the algorithm produces an approximation for the desired minimizer. As an example we elaborate on application of the main results to estimation in Generalized Linear Model

    A Fused Elastic Net Logistic Regression Model for Multi-Task Binary Classification

    Full text link
    Multi-task learning has shown to significantly enhance the performance of multiple related learning tasks in a variety of situations. We present the fused logistic regression, a sparse multi-task learning approach for binary classification. Specifically, we introduce sparsity inducing penalties over parameter differences of related logistic regression models to encode similarity across related tasks. The resulting joint learning task is cast into a form that lends itself to be efficiently optimized with a recursive variant of the alternating direction method of multipliers. We show results on synthetic data and describe the regime of settings where our multi-task approach achieves significant improvements over the single task learning approach and discuss the implications on applying the fused logistic regression in different real world settings.Comment: 17 page

    Dual Averaging Method for Online Graph-structured Sparsity

    Full text link
    Online learning algorithms update models via one sample per iteration, thus efficient to process large-scale datasets and useful to detect malicious events for social benefits, such as disease outbreak and traffic congestion on the fly. However, existing algorithms for graph-structured models focused on the offline setting and the least square loss, incapable for online setting, while methods designed for online setting cannot be directly applied to the problem of complex (usually non-convex) graph-structured sparsity model. To address these limitations, in this paper we propose a new algorithm for graph-structured sparsity constraint problems under online setting, which we call \textsc{GraphDA}. The key part in \textsc{GraphDA} is to project both averaging gradient (in dual space) and primal variables (in primal space) onto lower dimensional subspaces, thus capturing the graph-structured sparsity effectively. Furthermore, the objective functions assumed here are generally convex so as to handle different losses for online learning settings. To the best of our knowledge, \textsc{GraphDA} is the first online learning algorithm for graph-structure constrained optimization problems. To validate our method, we conduct extensive experiments on both benchmark graph and real-world graph datasets. Our experiment results show that, compared to other baseline methods, \textsc{GraphDA} not only improves classification performance, but also successfully captures graph-structured features more effectively, hence stronger interpretability.Comment: 11 pages, 14 figure
    corecore