11 research outputs found

    Benchmark of machine learning methods for classification of a Sentinel-2 image

    Get PDF
    Thanks to mainly ESA and USGS, a large bulk of free images of the Earth is readily available nowadays. One of the main goals of remote sensing is to label images according to a set of semantic categories, i.e. image classification. This is a very challenging issue since land cover of a specific class may present a large spatial and spectral variability and objects may appear at different scales and orientations. In this study, we report the results of benchmarking 9 machine learning algorithms tested for accuracy and speed in training and classification of land-cover classes in a Sentinel-2 dataset. The following machine learning methods (MLM) have been tested: linear discriminant analysis, k-nearest neighbour, random forests, support vector machines, multi layered perceptron, multi layered perceptron ensemble, ctree, boosting, logarithmic regression. The validation is carried out using a control dataset which consists of an independent classification in 11 land-cover classes of an area about 60 km2, obtained by manual visual interpretation of high resolution images (20 cm ground sampling distance) by experts. In this study five out of the eleven classes are used since the others have too few samples (pixels) for testing and validating subsets. The classes used are the following: (i) urban (ii) sowable areas (iii) water (iv) tree plantations (v) grasslands. Validation is carried out using three different approaches: (i) using pixels from the training dataset (train), (ii) using pixels from the training dataset and applying cross-validation with the k-fold method (kfold) and (iii) using all pixels from the control dataset. Five accuracy indices are calculated for the comparison between the values predicted with each model and control values over three sets of data: the training dataset (train), the whole control dataset (full) and with k-fold cross-validation (kfold) with ten folds. Results from validation of predictions of the whole dataset (full) show the random forests method with the highest values; kappa index ranging from 0.55 to 0.42 respectively with the most and least number pixels for training. The two neural networks (multi layered perceptron and its ensemble) and the support vector machines - with default radial basis function kernel - methods follow closely with comparable performanc

    Performance evaluation of random forest with feature selection methods in prediction of diabetes

    Get PDF
    Data mining is nothing but the process of viewing data in different angle and compiling it into appropriate information. Recent improvements in the area of data mining and machine learning have empowered the research in biomedical field to improve the condition of general health care. Since the wrong classification may lead to poor prediction, there is a need to perform the better classification which further improves the prediction rate of the medical datasets. When medical data mining is applied on the medical datasets the important and difficult challenges are the classification and prediction. In this proposed work we evaluate the PIMA Indian Diabtes data set of UCI repository using machine learning algorithm like Random Forest along with feature selection methods such as forward selection and backward elimination based on entropy evaluation method using percentage split as test option. The experiment was conducted using R studio platform and we achieved classification accuracy of 84.1%. From results we can say that Random Forest predicts diabetes better than other techniques with less number of attributes so that one can avoid least important test for identifying diabetes

    AN ENSEMBLE MODEL FOR CLICK THROUGH RATE PREDICTION

    Get PDF
    Internet has become the most prominent and accessible way to spread the news about an event or to pitch, advertise and sell a product, globally. The success of any advertisement campaign lies in reaching the right class of target audience and eventually convert them as potential customers in the future. Search engines like the Google, Yahoo, Bing are a few of the most used ones by the businesses to market their product. Apart from this, certain websites like the www.alibaba.com that has more traffic also offer services for B2B customers to set their advertisement campaign. The look of the advertisement, the maximum bill per day, the age and gender of the audience, the bid price for the position and the size of the advertisement are some of the key factors that are available for the businesses to tune. The businesses are predominantly charged based the number of clicks that they received for their advertisement while some websites also bill them with a fixed charge per billing cycle. This creates a necessity for the advertising platforms to analyze and study these influential factors to achieve the maximum possible gain through the advertisements. Additionally, it is equally important for the businesses to customize these factors rightly to achieve the maximum clicks. This research presents a click through rate prediction system that analyzes several of the factors mentioned above to predict if an advertisement will receive a click or not with improvements over the existing systems in terms of the sampling the data, the features used, and the methodologies handled to improve the accuracy. We used the ensemble model with weighted scheme and achieved an accuracy of 0.91 on a unit scale and predicted the probability for an advertisement to receive a click form the user

    Urban Vegetation Mapping from Aerial Imagery Using Explainable AI (XAI)

    Full text link
    Urban vegetation mapping is critical in many applications, i.e., preserving biodiversity, maintaining ecological balance, and minimizing the urban heat island effect. It is still challenging to extract accurate vegetation covers from aerial imagery using traditional classification approaches, because urban vegetation categories have complex spatial structures and similar spectral properties. Deep neural networks (DNNs) have shown a significant improvement in remote sensing image classification outcomes during the last few years. These methods are promising in this domain, yet unreliable for various reasons, such as the use of irrelevant descriptor features in the building of the models and lack of quality in the labeled image. Explainable AI (XAI) can help us gain insight into these limits and, as a result, adjust the training dataset and model as needed. Thus, in this work, we explain how an explanation model called Shapley additive explanations (SHAP) can be utilized for interpreting the output of the DNN model that is designed for classifying vegetation covers. We want to not only produce high-quality vegetation maps, but also rank the input parameters and select appropriate features for classification. Therefore, we test our method on vegetation mapping from aerial imagery based on spectral and textural features. Texture features can help overcome the limitations of poor spectral resolution in aerial imagery for vegetation mapping. The model was capable of obtaining an overall accuracy (OA) of 94.44% for vegetation cover mapping. The conclusions derived from SHAP plots demonstrate the high contribution of features, such as Hue, Brightness, GLCM_Dissimilarity, GLCM_Homogeneity, and GLCM_Mean to the output of the proposed model for vegetation mapping. Therefore, the study indicates that existing vegetation mapping strategies based only on spectral characteristics are insufficient to appropriately classify vegetation covers

    An Extended Feature Representation Technique for Predicting Sequenced-based Host-pathogen Protein-protein Interaction

    Get PDF
    Background: The use of machine learning models in sequence-based Protein-Protein Interaction prediction typically requires the conversion of amino acid sequences into feature vectors. From the literature, two approaches have been used to achieve this transformation. These are referred to as the Independent Protein Feature (IPF) and Merged Protein Feature (MPF) extraction methods. As observed, studies have predominantly adopted the IPF approach, while others preferred the MPF method, in which host and pathogen sequences are concatenated before feature encoding. Objective: This presents the challenge of determining which approach should be adopted for improved HPPPI prediction. Therefore, this work introduces the Extended Protein Feature (EPF) method. Methods: The proposed method combines the predictive capabilities of IPF and MPF, extracting essential features, handling multicollinearity, and removing features with zero importance. EPF, IPF, and MPF were tested using bacteria, parasite, virus, and plant HPPPI datasets and were deployed to machine learning models, including Random Forest (RF), Support Vector Machine (SVM), Multilayer Perceptron (MLP), Naïve Bayes (NB), Logistic Regression (LR), and Deep Forest (DF). Results: The results indicated that MPF exhibited the lowest performance overall, whereas IPF performed better with decision tree-based models, such as RF and DF. In contrast, EPF demonstrated improved performance with SVM, LR, NB, and MLP and also yielded competitive results with DF and RF. Conclusion: In conclusion, the EPF approach developed in this study exhibits substantial improvements in four out of the six models evaluated. This suggests that EPF offers competitiveness with IPF and is particularly well-suited for traditional machine learning models

    Advances in Hyperspectral Image Classification Methods for Vegetation and Agricultural Cropland Studies

    Get PDF
    Hyperspectral data are becoming more widely available via sensors on airborne and unmanned aerial vehicle (UAV) platforms, as well as proximal platforms. While space-based hyperspectral data continue to be limited in availability, multiple spaceborne Earth-observing missions on traditional platforms are scheduled for launch, and companies are experimenting with small satellites for constellations to observe the Earth, as well as for planetary missions. Land cover mapping via classification is one of the most important applications of hyperspectral remote sensing and will increase in significance as time series of imagery are more readily available. However, while the narrow bands of hyperspectral data provide new opportunities for chemistry-based modeling and mapping, challenges remain. Hyperspectral data are high dimensional, and many bands are highly correlated or irrelevant for a given classification problem. For supervised classification methods, the quantity of training data is typically limited relative to the dimension of the input space. The resulting Hughes phenomenon, often referred to as the curse of dimensionality, increases potential for unstable parameter estimates, overfitting, and poor generalization of classifiers. This is particularly problematic for parametric approaches such as Gaussian maximum likelihoodbased classifiers that have been the backbone of pixel-based multispectral classification methods. This issue has motivated investigation of alternatives, including regularization of the class covariance matrices, ensembles of weak classifiers, development of feature selection and extraction methods, adoption of nonparametric classifiers, and exploration of methods to exploit unlabeled samples via semi-supervised and active learning. Data sets are also quite large, motivating computationally efficient algorithms and implementations. This chapter provides an overview of the recent advances in classification methods for mapping vegetation using hyperspectral data. Three data sets that are used in the hyperspectral classification literature (e.g., Botswana Hyperion satellite data and AVIRIS airborne data over both Kennedy Space Center and Indian Pines) are described in Section 3.2 and used to illustrate methods described in the chapter. An additional high-resolution hyperspectral data set acquired by a SpecTIR sensor on an airborne platform over the Indian Pines area is included to exemplify the use of new deep learning approaches, and a multiplatform example of airborne hyperspectral data is provided to demonstrate transfer learning in hyperspectral image classification. Classical approaches for supervised and unsupervised feature selection and extraction are reviewed in Section 3.3. In particular, nonlinearities exhibited in hyperspectral imagery have motivated development of nonlinear feature extraction methods in manifold learning, which are outlined in Section 3.3.1.4. Spatial context is also important in classification of both natural vegetation with complex textural patterns and large agricultural fields with significant local variability within fields. Approaches to exploit spatial features at both the pixel level (e.g., co-occurrencebased texture and extended morphological attribute profiles [EMAPs]) and integration of segmentation approaches (e.g., HSeg) are discussed in this context in Section 3.3.2. Recently, classification methods that leverage nonparametric methods originating in the machine learning community have grown in popularity. An overview of both widely used and newly emerging approaches, including support vector machines (SVMs), Gaussian mixture models, and deep learning based on convolutional neural networks is provided in Section 3.4. Strategies to exploit unlabeled samples, including active learning and metric learning, which combine feature extraction and augmentation of the pool of training samples in an active learning framework, are outlined in Section 3.5. Integration of image segmentation with classification to accommodate spatial coherence typically observed in vegetation is also explored, including as an integrated active learning system. Exploitation of multisensor strategies for augmenting the pool of training samples is investigated via a transfer learning framework in Section 3.5.1.2. Finally, we look to the future, considering opportunities soon to be provided by new paradigms, as hyperspectral sensing is becoming common at multiple scales from ground-based and airborne autonomous vehicles to manned aircraft and space-based platforms

    Ensemble classifiers for land cover mapping

    Get PDF
    This study presents experimental investigations on supervised ensemble classification for land cover classification. Despite the arrays of classifiers available in machine learning to create an ensemble, knowing and understanding the correct classifier to use for a particular dataset remains a major challenge. The ensemble method increases classification accuracy by consulting experts taking final decision in the classification process. This study generated various land cover maps, using image classification. This is to authenticate the number of classifiers that should be used for creating an ensemble. The study exploits feature selection techniques to create diversity in ensemble classification. Landsat imagery of Kampala (the capital of Uganda, East Africa), AVIRIS hyperspectral dataset of Indian pine of Indiana and Support Vector Machines were used to carry out the investigation. The research reveals that the superiority of different classification approaches employed depends on the datasets used. In addition, the pre-processing stage and the strategy used during the designing phase of each classifier is very essential. The results obtained from the experiments conducted showed that, there is no significant benefit in using many base classifiers for decision making in ensemble classification. The research outcome also reveals how to design better ensemble using feature selection approach for land cover mapping. The study also reports the experimental comparison of generalized support vector machines, random forests, C4.5, neural network and bagging classifiers for land cover classification of hyperspectral images. These classifiers are among the state-of-the-art supervised machine learning methods for solving complex pattern recognition problems. The pixel purity index was used to obtain the endmembers from the Indiana pine and Washington DC mall hyperspectral image datasets. Generalized reduced gradient optimization algorithm was used to estimate fractional abundance in the image dataset thereafter obtained numeric values for land cover classification. The fractional abundance of each pixel was obtained using the spectral signature values of the endmembers and pixel values of class labels. As the results of the experiments, the classifiers show promising results. Using Indiana pine and Washington DC mall hyperspectral datasets, experimental comparison of all the classifiers’ performances reveals that random forests outperforms the other classifiers and it is computational effective. The study makes a positive contribution to the problem of classifying land cover hyperspectral images by exploring the use of generalized reduced gradient method and five supervised classifiers. The accuracy comparison of these classifiers is valuable for decision makers to consider tradeoffs in method accuracy versus complexity. The results from the research has attracted nine publications which include, six international and one local conference papers, one published in Computing Research Repository (CoRR), one Journal paper submitted and one Springer book chapter, Abe et al., 2012 obtained a merit award based on the reviewer reports and the score reports of the conference committee members during the conference period
    corecore