47,643 research outputs found

    Logics for complexity classes

    Full text link
    A new syntactic characterization of problems complete via Turing reductions is presented. General canonical forms are developed in order to define such problems. One of these forms allows us to define complete problems on ordered structures, and another form to define them on unordered non-Aristotelian structures. Using the canonical forms, logics are developed for complete problems in various complexity classes. Evidence is shown that there cannot be any complete problem on Aristotelian structures for several complexity classes. Our approach is extended beyond complete problems. Using a similar form, a logic is developed to capture the complexity class NP∩coNPNP\cap coNP which very likely contains no complete problem.Comment: This article has been accepted for publication in Logic Journal of IGPL Published by Oxford University Press; 23 pages, 2 figure

    PSPACE Bounds for Rank-1 Modal Logics

    Get PDF
    For lack of general algorithmic methods that apply to wide classes of logics, establishing a complexity bound for a given modal logic is often a laborious task. The present work is a step towards a general theory of the complexity of modal logics. Our main result is that all rank-1 logics enjoy a shallow model property and thus are, under mild assumptions on the format of their axiomatisation, in PSPACE. This leads to a unified derivation of tight PSPACE-bounds for a number of logics including K, KD, coalition logic, graded modal logic, majority logic, and probabilistic modal logic. Our generic algorithm moreover finds tableau proofs that witness pleasant proof-theoretic properties including a weak subformula property. This generality is made possible by a coalgebraic semantics, which conveniently abstracts from the details of a given model class and thus allows covering a broad range of logics in a uniform way

    Algorithmic complexity of monadic multimodal predicate logics with equality over finite Kripke frames

    Full text link
    The paper investigates algorithmic complexity of monadic multimodal predicate logics with equality over finite Kripke frames or classes of finite Kripke frames. Precise complexity bounds for monadic logics of classes of Kripke frames with finitely many possible worlds are obtained.Comment: Semantical and Computational Aspects of Non-Classical Logics (Moscow + Online, June 13-17, 2023), Steklov International Mathematical Center, Moscow, 202

    The Descriptive Complexity of the Deterministic Exponential Time Hierarchy

    Get PDF
    AbstractIn Descriptive Complexity, we investigate the use of logics to characterize computational complexity classes. Since 1974, when Fagin proved that the class NP is captured by existential second-order logic, considered the first result in this area, other relations between logics and complexity classes have been established. Well-known results usually involve first-order logic and its extensions, and complexity classes in polynomial time or space. Some examples are that the first-order logic extended by the least fixed-point operator captures the class P and the second-order logic extended by the transitive closure operator captures the class PSPACE. In this paper, we will analyze the combined use of higher-order logics of order i, HOi, for i⩾2, extended by the least fixed-point operator, and we will prove that each level of this hierarchy captures each level of the deterministic exponential time hierarchy. As a corollary, we will prove that the hierarchy of HOi(LFP), for i⩾2, does not collapse, that is, HOi(LFP)⊂HOi+1(LFP)

    Frame definability in finitely-valued modal logics

    Get PDF
    In this paper we study frame definability in finitely valued modal logics and establish two main results via suitable translations: (1) in finitely valued modal logics one cannot define more classes of frames than are already definable in classical modal logic (cf. [27, Thm. 8]), and (2) a large family of finitely valued modal logics define exactly the same classes of frames as classical modal logic (including modal logics based on finite Heyting and MV-algebras, or even BL-algebras). In this way one may observe, for example, that the celebrated Goldblatt–Thomason theorem applies immediately to these logics. In particular, we obtain the central result from [26] with a much simpler proof and answer one of the open questions left in that paper. Moreover, the proposed translations allow us to determine the computational complexity of a big class of finitely valued modal logics

    Complexity of Prioritized Default Logics

    Full text link
    In default reasoning, usually not all possible ways of resolving conflicts between default rules are acceptable. Criteria expressing acceptable ways of resolving the conflicts may be hardwired in the inference mechanism, for example specificity in inheritance reasoning can be handled this way, or they may be given abstractly as an ordering on the default rules. In this article we investigate formalizations of the latter approach in Reiter's default logic. Our goal is to analyze and compare the computational properties of three such formalizations in terms of their computational complexity: the prioritized default logics of Baader and Hollunder, and Brewka, and a prioritized default logic that is based on lexicographic comparison. The analysis locates the propositional variants of these logics on the second and third levels of the polynomial hierarchy, and identifies the boundary between tractable and intractable inference for restricted classes of prioritized default theories
    • …
    corecore