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Abstract

In this paper we study frame definability in finitely valued modal logics and establish
two main results via suitable translations: (1) in finitely valued modal logics one can-
not define more classes of frames than are already definable in classical modal logic
(cf. [27, Thm. 8]), and (2) a large family of finitely valued modal logics define exactly
the same classes of frames as classical modal logic (including modal logics based on
finite Heyting and MV-algebras, or even BL-algebras). In this way one may observe,
for example, that the celebrated Goldblatt–Thomason theorem applies immediately to
these logics. In particular, we obtain the central result from [26] with a much simpler
proof and answer one of the open questions left in that paper. Moreover, the pro-
posed translations allow us to determine the computational complexity of a big class of
finitely valued modal logics.
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1. Introduction

Propositional modal logic is, at the level of frames, famously incomparable (in
terms of expressive power) with first-order logic. Indeed, there are classes of frames
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definable in first-order logic that are not modally definable and viceversa. An exam-
ple of the former phenomenon is the class of frames axiomatizable by the first-order
sentence ∀x ∃y (Rxy ∧ Ryy), and an example of the latter is the class of frames ax-
iomatized by “Löb’s formula” □(□p→ p) → □p which defines frames with transitive
relations where the converse relation is well-founded [31, pp. 33–34].

The original Goldblatt–Thomason theorem [14, Thm. 8] provides a model-theoretic
characterization of modal axiomatizability for elementary classes of frames in terms of
closure under taking generated subframes, disjoint unions, bounded morphic images,
and reflection of ultrafilter extensions. Even though the proof in [14] is algebraic in
spirit (with a detour via the usual extension of Stone duality), there are well-known
ways of obtaining the result by pure model-theoretic methods [29]. Each closure con-
dition in the theorem is necessary (see [29, p. 6]). Furthermore, the condition of el-
ementarity of the class can be relaxed to closure under ultrapowers. There are also
results, already contained in [14], using more complicated constructions which charac-
terize any modally axiomatizable class of frames.

Many-valued modal logics, i.e. expansions with modalities of non-classical propo-
sitional logics with an intended many-valued semantics, have been around at least
since Kristen Segerberg studied three-valued modal logics in [23]. The topic gained
momentum with Melvin Fitting’s work when he axiomatized in [12, 13] the rela-
tional semantics for these logics based on Kripke frames with finitely valued propo-
sitional evaluations in each world (possibly, also, finitely valued accessibility rela-
tions between worlds), and proposed a natural interpretation of modalities capital-
izing on the lattice structure of the semantics of the base logic. This proposal in-
spired, in particular, a long and nowadays quite lively stream of research in fuzzy
modal logics (see e.g. [2, 4, 5, 10, 16, 17, 18, 21, 32, 33]). As a part of this research,
Bruno Teheux [26] has established an analogue of the Goldblatt–Thomason theorem
for modal Łukasiewicz logics determined by finitely valued Kripke models over crisp
frames (i.e. with a two-valued accessibility relation).

The goal of the present paper is to investigate frame definability in the many-
valued context in a general approach that encompasses Teheux’s results. We prove
two main results: (1) each class of crisp frames definable in a finitely valued modal
logic is already definable in classical modal logic, and (2) for a large family of finitely
valued modal logics, the converse inclusion also holds, that is, their definable crisp
frames coincide with those definable in classical modal logic. We proceed via trans-
lations of the many-valued modal logic into classical modal logic and back (inspired
by the Kolmogorov–Glivenko translation) which preserve crisp frames. Furthermore,
for these finitely valued modal logics, our translations ensure that their computational
complexity coincides with that of their two-valued counterparts.

The first result generalizes a (little known) work by Steven K. Thomason [27] in
which he translated finitely valued modal logics into two-valued modal logics. His ap-
proach mostly stayed at the level of frames and did not provide an explicit recursive
definition. Moreover, his result was restricted to a class of logics in a language with
standard connectives and truth constants. We propose a translation close to Thoma-
son’s, but based on models, with an explicit recursive definition, and free from the
mentioned syntactical restrictions. The converse inclusion that we present in our sec-
ond main result has not yet been considered in the literature, as far as we know, and it
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applies to any modal logic based on a finite lattice algebra that can interpret a Boolean
algebra (thus, including modal logics based on finite Heyting and MV-algebras, and
even BL-algebras). Therefore, even though Teheux’s result had been presented as a
generalization of the original theorem from [14], it actually follows from the classi-
cal Goldblatt–Thomason theorem and our results. This also answers, as we will see,
an open problem left in [26]. Incidentally, we can also obtain the extension of the
Goldblatt–Thomason theorem for predicate finitely valued modal logic using the work
from [34] for the classical setting.

The paper is arranged as follows: §2 succintly presents the necessary preliminar-
ies regarding the syntactical and semantical setting of the paper. §3 introduces our
translation from finitely valued to classical modal logic, shows that it has the intended
semantic behavior. §4 contains the mentioned two main results of the paper: in §4.1
we prove that many-valued modal definability implies classical modal definability and
§4.2 shows that the implication can be reversed whenever the many-valued modal logic
is based on a finite lattice algebra that interprets a Boolean algebra. §5 uses the results
in the previous sections to prove that the problems of validity and consequence from
finite sets of premises in the considered many-valued modal logics have exactly the
same computational complexity as their classical counterparts. Finally, §6 offers some
concluding remarks and lines for further research.

2. Preliminaries

Let A = ⟨A,∧A,∨A, . . .⟩ be an arbitrary finite (henced bounded) lattice possibly
expanded with further operations (which from now on we will call a lattice algebra).
When convenient, we will denote the top and the bottom element of A respectively as
1A and 0A, although they need not be part of the signature of the algebra. For the sake
of lighter notation, we will drop the superindex A in the operations when the algebra
is clear from the context. In particular, we will refer to the following instances:

• A Boolean algebra is a lattice algebra A = ⟨A,∧,∨,¬⟩ in which the lattice is
distributive and ¬ is the complement operation (that is, for each element a ∈ A,
a ∨ ¬a = 1 and a ∧ ¬a = 0).

• A pseudocomplemented lattice is a lattice algebra A = ⟨A,∧,∨,¬⟩ in which for
each a ∈ A, ¬a = max{b ∈ A | a ∧ b = 0}.

• A Stone algebra is a pseudocomplemented lattice A = ⟨A,∧,∨,¬⟩ in which the
lattice is distributive and, for each a ∈ A, ¬a ∨ ¬¬a = 1.

• A Heyting algebra is a lattice algebra A = ⟨A,∧,∨,→⟩ such that, for each
a, b ∈ A, a→ b = max{c ∈ A | a ∧ c ≤ b}.

• An MV-algebra is a lattice algebra A = ⟨A,∧,∨,&,→⟩ such that

– & is commutative, monotonic w.r.t. the lattice order, and has 1 as neutral
element,

– for each a, b ∈ A, a→ b = max{c ∈ A | a& c ≤ b},
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– for each a, b ∈ A, (a→ b) ∨ (b→ a) = 1,

– and for each a, b ∈ A, a ∨ b = (a→ b) → b.

The formulas of the modal language Fm♢□
A (τ) are built from a denumerable set of

propositional variables τ by means of the binary connectives ∧ and ∨, an n-ary connec-
tive for each additional n-ary operation of A, and the unary connectives (modalities) ♢
and □.

In particular, if 2 is the two-element Boolean algebra, we may think of the formulas
of Fm♢□

2 (τ) as the usual classical modal language.
We will work with crisp frames F = ⟨W,R⟩ as in classical modal logic, i.e. W is

a non-empty set (whose elements are called worlds) and R ⊆ W 2 is a binary relation
(called accessibility relation). A Kripke A-valued model M is defined as a pair ⟨F, V ⟩,
where F = ⟨W,R⟩ is a frame and V : τ ×W −→ A is mapping called a valuation;
we say that M is based on F. Given such a model, for each w ∈ W and each formula
φ ∈ Fm♢□

A (τ), we inductively define the truth-value ∥φ∥Mw as:

∥p∥Mw = V (p, w), if p ∈ τ

∥◦(ψ1, . . . , ψn)∥Mw = ◦A(∥ψ1∥Mw , . . . , ∥ψn∥Mw ), for each n-ary connective ◦,

∥♢ψ∥Mw = sup≤A
{∥ψ∥Mv | Rwv},

∥□ψ∥Mw = inf≤A
{∥ψ∥Mv | Rwv}.

A formula φ from Fm♢□
A (τ) is said to be A-valid in a frame F = ⟨W,R⟩ (in

symbols, F |=A φ) if for any A-valued model M based on F, ∥φ∥Mw = 1A for every
world w ∈ W (alternatively, we say that φ is globally true in M). Furthermore, a set
of formulas Φ from Fm♢□

A (τ) modally A-defines a frame class F if F contains exactly
those frames where every φ ∈ Φ is A-valid (if Φ = {φ}, we say that φ modally A-
defines F); cf. [26, Definition 2.2 and 2.3]. Similarly, we may say that a class F of
frames is modally A-definable if there is a set of formulas Φ that modally A-defines
F. Finally, given a frame class F, we define a consequence relation in the following
way: for each Γ ∪ {φ} ⊆ Fm♢□

A (τ), we write Γ ⊨Log(F,A,τ) φ iff for each F ∈ F and
each A-valued model M based on F we have that φ is globally true in M whenever all
formulas from Γ are globally true in M. Thus, Log(F,A, τ) can be called the global
modal A-valued logic given by F.

Observe that in the case A ∼= 2 we retrieve the standard definitions from classical
modal logic. In this case, we use the standard notation ⟨M, w⟩ |= φ to signify that
∥φ∥Mw = 1A.

3. Translating finitely valued modal logics into classical modal logics

In this section, we provide a translation of formulas of a many-valued modal logic
into formulas of standard two-valued modal logic. In contrast to [27], we give an
explicit inductive definition of the translation already at the level of models.
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Given a finite lattice algebra A and a denumerable set of variables τ = {p1, p2, . . .},
we define τ∗ =

⋃
i≥1

{pai | a ∈ A}. Now, we define translations Ta from Fm♢□
A (τ) into

Fm♢□
2 (τ∗), for each element a ∈ A, by simultaneous induction as follows:

T a(pi) = pai (i ≥ 1)
T a(◦(ψ1, . . . , ψn)) =

∨
b1,...,bn∈A

◦A(b1,...,bn)=a

(T b1(ψ1) ∧ . . . ∧ T bn(ψn))

T a(♢ψ) = (
∨

k≤|A|
b1...bk∈A

b1∨A...∨Abk=a

k∧
i=1

♢T bi(ψ)) ∧□(
∨
b∈A
b≤a

T b(ψ))

T a(□ψ) = (
∨

k≤|A|
b1,...,bk∈A

b1∧A...∧Abk=a

k∧
i=1

♢T bi(ψ)) ∧□(
∨
b∈A
a≤b

T b(ψ)).

Furthermore, given any A-valued model M = ⟨F, V ⟩ based on a frame F =

⟨W,R⟩ for Fm♢□
A (τ), we define a 2-valued model M∗ for Fm♢□

2 (τ∗) based on the
same frame and with a valuation V ∗ defined as follows:

V ∗(pai , w) = 1 iff V (pi, w) = a, for each i ≥ 1, each w ∈W, and each a ∈ A.

Given this, it is not hard to see that the translation T a(φ) simply rewrites in the classical
modal language the conditions for φ to take the value a; more precisely, by induction
on the complexity of formulas, we can easily prove the following lemma:

Lemma 1 (Switch Lemma). Let A be a finite lattice algebra, τ a denumerable set
of variables, and M an A-valued model based on a frame F. For each formula φ ∈
Fm♢□

A (τ), and each world w, we have: ∥φ∥Mw = a iff ⟨M∗, w⟩ |= T a(φ).

We can easily obtain the following axiomatization result for classical models of the
form M∗:

Lemma 2. Let A be a finite lattice algebra and τ a set of variables. Consider the
following set T ∗(τ) ⊆ Fm♢□

2 (τ∗) of (modality-free) formulas:∨
a∈A

pai , ¬(pai ∧ pbi ) (a, b ∈ A, a ̸= b, pi ∈ τ).

Then:

1. If M is an A-valued model, then the formulas of T ∗(τ) are true in every world
of the 2-valued model M∗.

2. If N is a 2-valued model for the language Fm♢□
2 (τ∗) that satisfies in each world

all the formulas of T ∗(τ), we define a model M for the language Fm♢□
A (τ) as

follows:

• M is based on the same frame as N,

• VM(pi, w) = a iff ⟨N, w⟩ |= pai .
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Then, N = M∗.

Observe that if τ is finite, then T ∗(τ) in Lemma 2 is finite as well.

Remark 3. It should be clear that the translation we have presented in this section
allow us to give very quick proofs of certain properties of many-valued modal logics
on crisp frames. For example, both compactness and the finite model property are
inherited from two-valued modal logic.

4. Modal frame definability

In this section, we will establish our main results. First, we will see that in an
A-valued modal logic we cannot define more classes of crisp frames than are already
definable in classical modal logic. Second, for a wide class of algebras, the converse
also follows, namely, any class of frames which is definable in two-valued modal logic
will be modally A-definable.

4.1. Modal A-definability implies modal 2-definability

Recall that, for a modal formula φ of Fm♢□
2 (τ∗), we have the classical property

[22, Prop. 4.3] that the truth of φ in any pointed model ⟨M, w⟩ depends only on the
restriction (denoted by M|n) of ⟨M, w⟩ to worlds that can be reached from w through
R in at most n steps, where n = rank(φ), i.e., the modal rank of φ ([22, Def. 4.2]).
Observe that rank(φ) = rank(T a(φ)), since our translation does not increase the
modal rank. Then, for such a formula, the Switch Lemma can be extended to:

∥φ∥Mw = a iff ⟨M∗, w⟩ |= T a(φ) iff ⟨M∗|n,w⟩ |= T a(φ).

From this we may obtain the following version of [27, Theorem 8]:

Theorem 4. Let A be a finite lattice algebra, let φ be a formula from Fm♢□
A (τ) (as-

sume w.l.o.g. that τ = {p1, . . . , pn} is the finite set of variables that appear in the
formula), and let F be a class of frames. Then, φ modally A-defines F iff F is modally
2-defined in Fm♢□

2 (τ∗) by

φ∗ := (
∨

m≤rank(T 1(φ))

¬□m(
∧
T ∗(τ))) ∨ T 1(φ).

Proof. (⇒): Assume first that φ modally A-defines the frame class F. Our goal is then
to show the following two claims:

(1) the formula φ∗ is 2-valid in every frame from F, and

(2) every frame where φ∗ is 2-valid belongs to the class F.

To see (1), take any 2-valued model M for Fm♢□
2 (τ∗) based on a frame F from F.

The formula φ∗ is a material implication, so assume that at an arbitrary world w of M
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all the antecedents of φ∗ hold. Then, let k = rank(T 1(φ)) and consider the pointed
model ⟨M|k,w⟩. The theory∨

a∈A
pai ,

∧
a,b∈A
a ̸=b

¬(pai ∧ pbi ) (1 ≤ i ≤ n)

globally holds in ⟨M|k,w⟩ since that is what the hypothesis of all the antecedents of φ∗

holding means. Now take any model based on F of the form N∗ for Fm♢□
2 (τ∗) such

that ⟨M|k,w⟩ ∼= ⟨N∗|k,w⟩ corresponding to some N for Fm♢□
A (τ). There is always

one such model: e.g. interpret the predicates of τ∗ for the worlds in ⟨M|k,w⟩ as in that
model and in every other world let p1i hold and pai fail, for each 1 ≤ i ≤ n and each
a ̸= 1 . Now, by hypothesis, ∥φ∥Nw = 1, so, by the Switch Lemma, ⟨N∗, w⟩ |= T 1(φ).
Then, ⟨N∗|k,w⟩ |= T 1(φ), and so ⟨M|k,w⟩ |= T 1(φ), as desired.

In order to prove (2), suppose that φ∗ is 2-valid in a frame F. Take any model for
Fm♢□

2 (τ∗) of the form M∗ based on F for some corresponding model M for Fm♢□
A (τ)

also based on F. Since φ∗ is globally true in M∗ (and all the antecedents of φ∗ hold at
any world), we must have that T 1(φ) is globally true in M∗, and by the Switch Lemma,
φ is globally true in M. Since for any such M based on F there is a corresponding M∗,
it follows that φ is A-valid in F. Thus, F ∈ F.

(⇐): Assume now that φ∗ modally 2-defines the class F. As before, we need to
show the following two claims:

(1) the formula φ is A-valid in every frame in F, and

(2) every frame where φ is A-valid is in the class F.

To see (1), consider any A-valued model M based on a frame F ∈ F. In the corre-
sponding model M∗ for Fm♢□

2 (τ∗) the formula T 1(φ) is globally true (as φ∗ is), so
by the Switch Lemma, φ is globally true in M, as desired. To see (2), suppose now that
φ is A-valid in the frame F. Reasoning as before, by the Switch Lemma, this means
that φ∗ is 2-valid in F, so F ∈ F.

4.2. When does modal 2-definability imply modal A-definability?

The aim of this subsection is to provide sufficient conditions for recovering the
modal A-definability of a class of frames from its modal 2-definability. Whether the
conditions we provide are necessary or not is left as an open problem. In Theorem 4 we
have seen that, given a finite lattice algebra A, any class of (crisp) frames definable by
a formula of Fm♢□

A in the A-valued associated modal logic is definable by a formula
of classical modal logic. To have the reciprocal, one would expect the algebra A to
interpret classical logic in some sense.

Assume for the rest of this section that A has the following non-trivial lattice
reduct1

Red(A) = ⟨A,∧A,∨A,¬A⟩

1For the sake of lighter notation, in this section, we often drop the superindex A in the operations.
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enriched with ¬Ax = uA(x), where u(x) is a distinguished unary term. An example
is when A is a bounded residuated lattice and u(x) = x→ 0. However, in general, we
do not require A to be residuated.

In this context, we provide a sufficient algebraic condition for formulas in the lan-
guage Fm♢□

A to A-define any class of frames definable in classical modal logic. We
start by introducing a useful definition:

Definition 1. A {∨,∧, 1,¬}-algebra B is said to be interpretable in A via a unary
FmA-term t(x) if

• Eq(tA) = {⟨a, b⟩ ∈ A2 | tA(a) = tA(b)} is a congruence of Red(A),

• tA(1A) = 1A, and

• Red(A)/Eq(tA) is isomorphic to B.

Equivalently, tA(a) ∧B′
tA(b) := tA(a ∧A b), tA(a) ∨B′

tA(b) := tA(a ∨A b),
¬B′

tA(a) := tA(¬Aa) are well-defined operations in tA(A), and B is isomorphic to
the algebra

B′ = ⟨tA[A],∧B′
,∨B′

,¬B′
, 1A⟩.

Clearly, tA : A→ B′ is an epimorphism and B′ is a lattice with top element 1A. If
A is bounded, then so is B′ and 0B

′
= tA(0A).

Example 5. Any pseudocomplemented lattice A interprets via t(x) = ¬¬x its algebra
of regular elements Reg(A) = {a ∈ A | ¬¬a = a},2 which happens to be a Boolean
algebra. To see this, notice that Reg(A) = {¬¬a | a ∈ A} because ¬¬¬¬a = ¬¬a,
and ¬¬1 = 1. Moreover, ¬¬a = ¬¬b is a congruence since ¬¬a = ¬¬a′ and ¬¬b =
¬¬b′ imply:

¬¬(a ∧ b) = ¬¬(¬¬a ∧ ¬¬b) = ¬¬(¬¬a′ ∧ ¬¬b′) = ¬¬(a′ ∧ b′),
¬¬(a ∨ b) = ¬¬(¬¬a ∨ ¬¬b) = ¬¬(¬¬a′ ∨ ¬¬b′) = ¬¬(a′ ∨ b′).

Therefore, in B = Reg(A) we have the following induced operations:

a ∧B b := ¬¬(a ∧ b) = ¬¬a ∧ ¬¬b = a ∧ b
a ∨B b := ¬¬(a ∨ b) (no further reduction is possible)
¬Ba := ¬¬(¬a) = ¬a

and Reg(A) is a Boolean algebra because a ∧B ¬a = ¬¬0 = 0 and a ∨B ¬a =
¬¬(a ∨ ¬a) = 1 by the density of a ∨ ¬a in pseudocomplemented lattices (see [1]
for the identities utilized). In particular, any Heyting algebra A interprets a Boolean
algebra in this way.

Remark 6. In Example 5, Reg(A) is not necessarily a subalgebra of A (because of
disjunction), but it contains as a subalgebra its Boolean skeleton B(A). These algebras
coincide if and only if A is a Stone algebra (see [6]).

2The formulas in this example should be read in the light of the previous definition, though we drop some
superscripts for the sake of a lighter notation.
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Example 7. Any finite MV-algebra A interprets its Boolean skeleton B(A), via t(x) =
nx for any n ≥ |A|, because nA = B(A) and n(·) : A → A is an endomorphism
thanks to the validity of the following equations:

n(x ∧ y) ≈ nx ∧ ny
n(x ∨ y) ≈ nx ∨ ny
n(¬x) ≈ ¬nx
n1 ≈ 1.

To see this, consider a subdirect representation A ⊆ Πi∈ICi, where the Ci are finite
MV-chains. Each chain has length at most n and thus it is easily verified by cases that
na ∈ {0Ci , 1Ci} in each chain Ci; therefore nA ⊆ B(A). Moreover, if a = ⟨ai⟩i ∈
B(A), then ai ∈ B(Ci) = {0Ci , 1Ci}. Therefore, nai = ai for each i ∈ I , and thus
a = na ∈ nA.

Notice that if A is a Glivenko bounded residuated lattice in the sense of [9], then A
interprets Reg(A) via ¬¬x. Although this algebra is not necessarily Boolean, in some
cases it is an MV-algebra and, thus, it interprets a Boolean algebra.

Example 8. By [28, Thm. 2], in every BL-algebra one can define an MV-algebra, and
then, in the finite case, one can interpret a Boolean algebra as remarked before.

We are interested in term interpretations of Boolean algebras due to the following
result:

Theorem 9. Let A be a finite lattice algebra which interprets via a term t(x) a Boolean
algebra, let φ be a formula from Fm♢□

2 (τ) and let F be a class of frames. Then, φ
modally 2-defines F iff t(φ) modally A-defines F.

Then, putting this together with Theorem 4, we obtain:

Corollary 10. Let A be a finite lattice algebra which interprets via a term t(x) a
Boolean algebra. Then, the class of modally A-definable frames coincides with the
class of modally 2-definable frames.

Example 11. Thanks to the previous examples, Corollary 10 implies that the modal
logic associated to an expansion of a finite pseudocomplemented lattice or a finite BL-
algebra defines the same class of crisp frames as classical modal logic (this includes,
respectively, Heyting algebras and MV-algebras). In particular, this result includes
the modal extensions of Łukasiewicz finitely valued logics studied by Teheux in [26]
and solves the open problem left in that paper of determining whether their definable
classes of frames coincide with those definable in classical modal logic.

The rest of this subsection is devoted to proving Theorem 9. We start by showing
that the two-valued global consequence of modal formulas is preserved when allowing
models to take values on an arbitrary finite Boolean algebra.

Proposition 12. Let F be a frame and B be a finite Boolean algebra. Then, for each
set of formulas Γ ∪ {φ} ⊆ Fm♢□

2 (τ), we have:

Γ ⊨Log({F},B,τ) φ if and only if Γ ⊨Log({F},2,τ) φ.

In particular, when Γ = ∅, we obtain that φ modally 2-defines and B-defines the same
class of frames.
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Proof. Without loss of generality, we may identify B with a power 2n of the two-
element algebra, and thus any valuation V : τ × W → B has the form V (p, w) =
⟨Vi(p, w)⟩ni=1 where Vi : τ ×W → 2. Take a model M = ⟨F, V ⟩. An easy induction
shows that for any formula ψ and any w ∈W,

∥ψ∥Mw = ⟨∥ψ∥⟨F,Vi⟩
w ⟩ni=1.

Assume that Γ ⊨Log({F},2,τ) φ and Γ is globally true in a B-valued model M =

⟨F, V ⟩. That is, for each ψ ∈ Γ and each w ∈ W , ∥ψ∥Mw = 1B = ⟨1⟩ni=1, and hence
∥ψ∥⟨F,Vi⟩

w = 1. Therefore, ∥φ∥⟨F,Vi⟩
w = 1 for each i ∈ {1, . . . , n} and each w ∈ W ,

i.e. φ is globally true in M as desired. Reciprocally, assume that Γ ⊨Log({F},B,τ) φ
and Γ is globally true in a classical model M = ⟨F, V ⟩. Then, the diagonal valuation
V ′(p, w) = ⟨V (p, w)⟩ni=1 only gives values in {⟨1⟩ni=1, ⟨0⟩ni=1} ⊆ B and is such
that ∥ψ∥⟨F,V

′⟩
w = ⟨1⟩ni=1 = 1B for each ψ ∈ Γ and each w ∈ W . By hypothesis,

∥φ∥⟨F,V
′⟩

w = ⟨∥φ∥⟨F,V ⟩
w ⟩ni=1 = ⟨1⟩ni=1 for each w ∈ W , and thus ∥φ∥Mw = 1 for each

w ∈W .

The next step consists in obtaining a similar preservation result when changing the
algebra via the notion of interpretability defined above.

Proposition 13. Let F be a frame and assume that a finite lattice algebra A interprets a
{∨,∧, 1,¬}-algebra B via a unary term t(x). Then, for each set of formulas Γ∪{φ} ⊆
Fm♢□

2 (τ), we have:

Γ ⊨Log({F},B,τ) φ iff t[Γ] ⊨Log({F},A,τ) t(φ).

In particular, when Γ = ∅, we obtain that the class of frames modally B-defined by φ
coincides with the class of frames modally A-defined by t(φ).

Proof. For any valuation V : τ ×W → A (forming an A-valued model M based on
F), let V ∗ = tA ◦V : τ ×W → B (forming a B-valued model M′ based on F). Then,
one can show by induction on the complexity of formulas ψ ∈ Fm♢□

2 (τ) that for any
w ∈W :

∥ψ∥M
′

w = tA(∥ψ∥Mw ) = ∥t(ψ)∥Mw ∈ B.

Assume that Γ ⊨Log({F},B,τ) φ and t[Γ] is globally true in an A-valued model M =
⟨F, V ⟩. Then, by the previous observation and the fact that tA(1A) = 1A, Γ is globally
true in the B-valued model M′ and, hence, so is φ. Therefore, t(φ) is globally true in
M.

Reciprocally, assume that t[Γ] ⊨Log({F},A,τ) t(φ). Suppose now that Γ is globally
true in a B-valued model N = ⟨F, VB⟩. Choose an A-valued M with a valuation
V : τ ×W → A such that VB = tA ◦ V and hence N = M′. Then, t[Γ] is globally
true in M and, hence, so is t(φ). Therefore, φ is globally true in N as desired.

Clearly, Theorem 9 follows from Propositions 12 and 13. Furthermore, since the
preservation of consequence in these propositions holds at the level of a fixed frame, it
also holds for the consequence given by a class of frames.

10



Corollary 14. Let F be a class of frames and assume that a finite lattice algebra A
interprets a Boolean algebra via a unary term t(x). Then, for each set of formulas
Γ ∪ {φ} ⊆ Fm♢□

2 (τ), we have:

Γ ⊨Log(F,2,τ) φ iff t[Γ] ⊨Log(F,A,τ) t(φ).

We end this subsection with two remarks regarding the algebraic character of the
notion of interpretability that has been instrumental in our translation.

Remark 15. The property of interpreting a Boolean algebra in A via a term t(x) is
quasiequational in A. Hence, if A interprets a Boolean algebra via t(x), then any
member of Q(A) interprets some Boolean algebra via t(x) (not necessarily the same
one). If t(x) is idempotent (which is the case in the examples we have), this property
has a simple equational characterization because the identities in A:

t(x ∨ y) ≈ t(t(x) ∨ t(y))
t(x ∧ y) ≈ t(t(x) ∧ t(y))
t(¬x) ≈ t(¬t(x))
t(1) ≈ 1

imply the congruence character of Eq(t). They are actually equivalent to idempotency
plus congruence. Therefore, if A interprets B via an idempotent term t, then any
member of V(A) interprets a member of V(B) via t.

Remark 16. The conditions for nx in Example 7 are equational, except the inclusion
B(A) ⊆ nA which is given by a quasiequation. Hence, any algebra in the variety
V(A) generated by A interprets via t(x) = nx a subalgebra of its Boolean skeleton,
and any algebra in the quasivariety Q(A) interprets the full Boolean skeleton.

According to [8], all algebras of a variety V of MV-algebras interpret via a term
their full skeleton if and only if V satisfies the equation 2x2 ≈ (2x)2, in which case
t(x) = 2x2 does the job. This is the case of the variety generated by the Chang
algebra. However, this example is orthogonal to ours because the only non-trivial
finite MV-algebra satisfying this equation is 2.

4.3. Goldblatt–Thomason Theorem and related results
With the main theorems in hand, we are already in a position to state a Goldblatt–

Thomason theorem for a large class of many-valued modal logics as a consequence of
the classical theorem itself [14, Thm. 8] and Corollary 10.

Corollary 17 (Finitely valued Goldblatt–Thomason Theorem). Let A be a finite lattice
algebra which interprets via some term a Boolean algebra. Furthermore, let F be
an elementary class of frames. Then, F is modally A-definable by a set of formulas
in Fm♢□

A (τ) iff F is closed under taking generated subframes, disjoint unions, and
bounded morphic images, and reflects ultrafilter extensions.

It is known that the characterizing conditions of Corollary 17 could be weakened to
closure under ultrapowers or under ultrafilter extensions (see [15]). Moreover, from the
two theorems obtained by Van Benthem in [30, Section 4.2], we obtain the following
additional characterizations of finite (transitive) definable frames:

11



Corollary 18. Let A be a finite lattice algebra which interprets via some term a
Boolean algebra. Then, a class F of finite frames is modally A-definable in Fm♢□

A (τ)
iff it is closed under taking generated subframes, finite disjoint unions, and local p-
morphic images.

Corollary 19. Let A be a finite lattice algebra which interprets via some term a
Boolean algebra. Then, a class F of finite transitive frames is modally A-definable
in Fm♢□

A (τ) iff it is closed under taking generated subframes, finite disjoint unions,
and p-morphic images.

Observe now that the translation in §3 may be extended to the first-order modal
setting rather easily (after all, the semantics of ♢ and □ is similar to that of ∃ and ∀):

T a(Pni ) = Pnai (i ≥ 1)

T a(∃xψ) = (
∨

k≤|A|
b1...bk∈A

b1∨A...∨Abk=a

k∧
i=1

∃xT bi(ψ)) ∧ ∀x (
∨
b∈A
b≤a

T b(ψ))

T a(∀xψ) = (
∨

k≤|A|
b1,...,bk∈A

b1∧A...∧Abk=a

k∧
i=1

∃xT bi(ψ)) ∧ ∀x (
∨
b∈A
a≤b

T b(ψ)).

Consequently, using [34, Thm. 3.6] (a Goldblatt–Thomason Theorem for first-order
modal logic) and our method we could obtain:

Corollary 20. Let A be a finite lattice algebra which interprets via some term a
Boolean algebra. Let F be a class of frames closed under elementary equivalence.
Then, F is modally A-definable by a set of formulas in Fm♢□∃∀

A (τ) iff it is closed
under bounded morphic images, taking generated subframes, and disjoint unions.

5. Computational complexity of many-valued consequence

Following an idea used in [11, Section 3.3], we may rewrite our translation from
§3, using additional propositional letters, in such a way that the length of the translated
formula becomes polynomial on the length of the original one. This technique will
allow us to easily check that the complexity of the consequence and validity problems
of many-valued modal logics coincides with that of their two-valued counterparts.

Let τ∗ = {qaφ | a ∈ A,φ ∈ Fm♢□
A (τ)} and redefine T ∗(τ) as∨

a∈A
qapi , ¬(q

a
pi ∧ q

b
pi) (a, b ∈ A, a ̸= b, pi ∈ τ).

Then consider the theory T ∗(τ) ∪ {E(φ) | φ ∈ Fm♢□
A (τ)}:

12



E(◦(ψ1, . . . , ψn) := qa◦(ψ1,...,ψn)
↔

∨
b1,...,bn∈A

◦A(b1,...,bn)=a

(qb1ψ1
∧ . . . ∧ qbnψn

)

E(♢ψ) := qa♢ψ ↔ (
∨

k≤|A|
b1,...,bk∈A

b1∨A...∨Abk=a

k∧
i=1

♢qbiψ ) ∧□(
∨
b∈A
b≤a

qbψ)

E(□ψ) := qa□ψ ↔ (
∨

k≤|A|
b1,...,bk∈A

b1∧A...∧Abk=a

k∧
i=1

♢qbiψ ) ∧□(
∨
b∈A
a≤b

qbψ).

Observe that the length of these formulas is always bounded by c2|A||A| where c is a
constant number.

Using this theory, we can obtain a translation from many-valued to classical conse-
quence:

Theorem 21. Let A be a finite lattice algebra, τ a denumerable set of variables, and
F a class of frames. Then, for each Γ ∪ {φ} ⊆ Fm♢□

A (τ), we have:

Γ ⊨Log(F,A,τ) φ iff
{q1θ | θ ∈ Γ} ∪ T ∗(τ) ∪ {E(ψ) | ψ ∈ Fm♢□

A (τ)} ⊨Log(F,2,τ∗) q
1
φ.

Furthermore, if Γ ∪ {φ} is finite, the theory T ∗(τ) ∪ {E(ψ) | ψ ∈ Fm♢□
A (τ)} can be

taken to be finite as well, involving only the relevant axioms for ψ being a subformula
of some formula of Γ ∪ {φ}. Then, as in Theorem 4, we have that

⊨Log(F,A,τ) φ iff
⊨Log(F,2,τ∗) (

∧
m≤rank(φ) □

m(
∧
(T ∗(τ) ∪ {E(ψ) | ψ subformula of φ})) → q1φ.

Note that the combined length of the set of translated formulas in the first state-
ment is polynomial w.r.t. the combined length of formulas in Γ ∪ {φ}. Similarly, the
length of the translated formula in the last statement is polynomial w.r.t. the length of
φ (thanks, among others, to the bounded size observed above for the formulas E(ψ)),
and thus A-valued consequence and validity are polynomially reducible to their classi-
cal counterparts. Therefore, from Theorem 21 and the results from [7] for consequence
in two-valued modal logic, the problem of consequence from a finite set of premises
in many-valued modal logics over all crisp frames is decidable. Moreover, is in EXP-
TIME for the A-valued analogues of the logics K, T, and B, in PSPACE for analogues
of the logic S4, and in co-NP for the analogues of the logics KD45 and S5. Similarly,
using the classical results from [20], we obtain that the problem of validity in many-
valued modal logics over all crisp frames is in PSPACE for the A-valued analogues of
the logics K, T, B, and S4, and in co-NP for the analogues of KD45 and S5. Finally,
thanks to the reverse translation for the many-valued modal logics in Corollary 14, we
can conclude that all these computational problems are also complete in their corre-
sponding complexity class. In particular, we have covered the complexity results in [3]
for finitely valued Łukasiewicz modal logics through a completely different proof.
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6. Conclusion

In this paper we have only scratched the surface of the potential of the translation
introduced in §3. We believe that the application in obtaining Corollary 17 is quite a
nice illustration of the power of this translation. We did not only provide an alternative
to the rather complex proof from [26], but we also generalized the result to any finite
residuated lattice that interprets a Boolean algebra by a term (the case of finite MV-
algebras being just one example). Moreover, we also managed to prove some new
Goldblatt–Thomason style results that were not considered in [26]. Observe that, due
to the duality of the modalities ♢ and □ classically, the translation can be defined in
the context of unimodal systems as well where we only have one of ♢ or □.

A similar translation to that in §3 can be offered for many-valued modal logics
on frames with a many-valued relation by considering a suitable polymodal classical
counterpart (we leave the details to the reader; the idea is to introduce classical modali-
ties for each value of the accessibility relation). However, due to the added complexity
introduced by the many-valued accessibility relation, we are not able to obtain an ana-
logue of our main result with the help of such translation.

The more important open problem around Theorem 9, though, is whether all the
conditions we have found are actually necessary. There are more general definitions
of interpretability (see [19]) because the homomorphism condition is needed only to
handle the modal operators. It would be interesting to explore these more general
versions.

In future work, we intend to use the techniques in this paper to study other topics
in finitely valued first-order and modal logic, such as 0-1 laws. Finally, we notice that
the results obtained here might be relevant for the philosophical debate [24] around the
so called “Suszko’s thesis” [25], namely, that many-valued logics can be reduced to
two-valued logic.
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