research

Logics for complexity classes

Abstract

A new syntactic characterization of problems complete via Turing reductions is presented. General canonical forms are developed in order to define such problems. One of these forms allows us to define complete problems on ordered structures, and another form to define them on unordered non-Aristotelian structures. Using the canonical forms, logics are developed for complete problems in various complexity classes. Evidence is shown that there cannot be any complete problem on Aristotelian structures for several complexity classes. Our approach is extended beyond complete problems. Using a similar form, a logic is developed to capture the complexity class NPcoNPNP\cap coNP which very likely contains no complete problem.Comment: This article has been accepted for publication in Logic Journal of IGPL Published by Oxford University Press; 23 pages, 2 figure

    Similar works

    Full text

    thumbnail-image

    Available Versions