285 research outputs found

    Logics for Petri nets with propagating failures

    Get PDF
    Petri nets play a central role in the formal modelling of a wide range of complex systems and scenarios. Their ability to handle with both concurrency and resource awareness justifies their spread in the current formal development practices. On the logic side, Dynamic Logics are widely accepted as the de facto formalisms to reason about computational systems. However, as usual, the application to new situations raises new challenges and issues. The ubiquity of failures in the execution of current systems, interpreted in these models as triggered events that are not followed by the corresponding transition, entails not only the adjustment of these structures to deal with this reality, but also the introduction of new logics adequate to this emerging phenomenon. This paper contributes to this challenge by exploring a combination of two previous works of the authors, namely the Propositional Dynamic Logic for Petri Nets [1] and a parametric construction of multi-valued dynamic logics presented in [13]. This exercise results in a new family of Dynamic Logics for Petri Nets suitable to deal with firing failures.publishe

    Verification for Everyone? An Overview of Dynamic Logic

    Get PDF
    This note, reporting the homonym keynote presented in the International Symposium on Molecular Logic and Computational Synthetic Biology 2018, traces an informal roadmap on Dynamic Logic (DL) field, focusing on its versatility and resilience to be adjusted and adopted in a wide class of application domains and computational paradigms. The exposition argues the room for developments on tagging DL to the analysis of synthetic biologic domain.publishe

    Formal Design and Verification of Long-Running Transactions with Extensible Coordination Tools

    Full text link

    List of requirements on formalisms and selection of appropriate tools

    Get PDF
    This deliverable reports on the activities for the set-up of the modelling environments for the evaluation activities of WP5. To this objective, it reports on the identified modelling peculiarities of the electric power infrastructure and the information infrastructures and of their interdependencies, recalls the tools that have been considered and concentrates on the tools that are, and will be, used in the project: DrawNET, DEEM and EPSys which have been developed before and during the project by the partners, and M\uf6bius and PRISM, developed respectively at the University of Illinois at Urbana Champaign and at the University of Birmingham (and recently at the University of Oxford)

    Formalising the description of process based simulation models

    Get PDF

    Representation of distribution networks of ships using graph-theory

    Get PDF
    CETENA S.p.A., SISSA (International School for Advanced Studies) and Lloyd\u2019s Register (Class Society) have recently been involved in a challenge aimed at developing smart algorithms capable to evaluate the effect of different failure modes \u2014 caused by a fire or a flooding\u2014on the systems of passenger ships in order to improve the design of new passenger ships [1]. Considering that a failure may cause serious accidents both to the vessel and human lives, the goal of this project is to evaluate the best reconfiguration of current ship plants after each casualty scenario so as to guarantee the minimal functioning requirements. This implies a continuous cross check activity (design against installation) that follows the whole ship construction process. The urgency of this work is motivated by the necessity to meet the International Maritime Organizations (IMO) Safety Of Life At Sea (Solas) design prescriptions defined in the Safe Return to Port (SRtP) regulations [2]. According to these criteria, a vessel should be able to safely return to port under its own propulsion after an adverse event not exceeding any of the defined casualty thresholds and criteria imposed by the regulations. Thus, the identification of all the possible failure modes and their propagation through the on-board systems has become a task of paramount importance for the proper design of the ship\u2019s systems against failure events. Currently, in accordance with IMO MSC.1/circ.1369 [3], CETENA produces the Operating Manuals that allow the crew to reconfigure the essential systems after a SRtP casualty so as to be able to bring the ship to a port with adequate comfort and safety standards. However, the ship can be operated in a different way from what is planned in the design stage. In these scenarios, the present static Operational Manuals can be a limitation. In order to be effective during emergency operation, Operational Manuals must be dynamic so as to provide interactive information and guidance to crew members about the reconfiguration of the ship and the recovery of her functions based on the systems configuration at the moment of the casualty. The focus of this work is the study of domino effects triggered by fire or flooding casualties in passenger ships in order to provide crew with a tool which speeds up and facilitates the decision-making process when choices have to be made to optimize the ship residual capability after a casualty. The framework of this study may be extended to other types of domino escalation

    Cognitive Sensor Platform

    Get PDF
    This paper describes a platform that is used to build embedded sensor systems for low energy implantable applications. One of the key characteristics of the platform is the ability to reason about the environment and dynamically modify the operational parameters of the system. Additionally the platform provides to ability to compose application specific sensor systems using a novel computational element that directly supports a synchronous-dataflow (SDF) programming paradigm. Cognition in the context of a sensor platform is defined as the “process of knowing, including aspects of awareness, perception, reasoning, and judgment”.DOI:http://dx.doi.org/10.11591/ijece.v4i4.568
    corecore