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Abstract 

Discrete event simulation has grown up as a practical technique for estimating the 

quantitative behaviour of systems, where direct measurement is undesirable or 

impractical. It is also used to understand the detailed behaviour of such systems. Its 

theory is largely that of experimental science. Theories of simulation largely centre on 

statistical approaches to validating the measures generated by such models, rather than 

on the verification of their detailed behaviour. This dissertation presents an approach 

to understanding the correctness of the behaviour of discrete event simulation models, 

using Miler's Calculus of Communicating Systems (CCS). 

It is shown that a common framework based on the process view of models can be 

constructed for hierarchical modelling, where both performance and functional 

properties are of interest. As a formal basis for this framework, a hierarchical 

graphical modelling language (Extended Activity Diagrams) is developed. A semantics 

is developed for this language, in terms of CCS. This language is shown to map onto 

the major constructs of the DEMOS discrete event simulation language, extended to 

allow hierarchical modelling and to resolve certain ambiguities. The result is a new 

version of DEMOS known as modified DEMOS. A graphically driven tool based on 

such a framework is presented. It allows models to use a combination of simulation 

and functional techniques to answer both performance questions (what is the 

throughput under a certain load) and functional questions (will the system deadlock 

under certain assumptions). In particular this tool can support process oriented 

simulations of models, using modified DEMOS, and functional analysis, based on 

both the basic version and the timed extension of Milners Calculus of Communicating 

Systems and using the Concurrency Workbench. A number of examples of interesting 

applications of this approach to typical models are presented. 
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Chapter 1 

Introduction 

This dissertation contains the resolution of several questions that have been in my 

mind for over a decade. I had hoped that the major benefit to me in completing this 

document would be to lay to rest some of them. However, it is in the nature of 

research that for every issue dealt with, several more spring, Hydra like, to replace 

them. Perhaps the greatest benefit is really to have built a framework within which 

these questions can be more clearly addressed and answers assessed. 

1.1 The problems addressed 

In designing complex systems, simulation is often used to establish both quantitative 

(performance) and qualitative (behavioural) properties. Its use is, however, expensive 

and often yields only approximate results. For qualitative properties, Petri nets, 

process algebras and formal specification techniques are increasingly used. For 

quantitative properties analytical or numerical modelling, using queues or stochastic 

extensions to Petri nets, are often preferred. However, simulation remains the only 

way to handle large models with complex interactions, because of the restricted 

classes of models suitable for exact solutions and the state space explosion when 

generating underlying Markov chains for numerical analysis. 

Discrete event simulation tools are traditionally categorised as being based on one of a 

small number of views of a model. A number of modelling tools are based on or can 

support the process view of simulation as defined by Franta [27]. Several of these, as 

well as others based on other views, have diagram conventions for users to define 

their models and some support model construction via graphical interfaces based on 

such diagrams. Unfortunately, whereas Petri nets generated from graphical tools can 

be analysed for both functional and performance behaviour, the use of diagrams for 

simulation is usually specific to one simulation tool and offers no help in 
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understanding the behaviour of models without actually simulating them. Since 

discrete event simulation is in effect a (pseudo-)random walk through the state space 

of the model, it is not possible to guarantee to visit all states without pre-analysis by 

other means. 

The work of this dissertation addresses the problem of developing a formal 

understanding of process based discrete event simulation models. These are required 

to be expressible in terms of diagrams suitable for direct graphical input on PCs or 

workstations. At the same time they must be amenable to a priori functional analysis 

and so have a well developed semantics. The vehicle for this is the definition of 

mappings from a graphical language of models (known as Extended Activity 

Diagrams) both to a discrete event simulation language (an extended form of 

Birtwistle's DEMOS) [13] and to Milner's Calculus of Communicating Systems 

(CCS) [58]. 

A major problem with diagrams for this purpose is that large or complex models are 

difficult to express and to understand. Fortunately the structure of process based 

models is inherently hierarchical and so this can be used to provide information 

grouping and hiding in a natural and consistent manner. 

1.2 Overview 

This dissertation is structured in the following way. A survey of the main views and 

their typical diagram conventions is given in Chapter 2. This chapter also contains a 

survey of previous work in formalising simulation models and in establishing 

equivalences among them. It concludes with a short description of the Calculus of 

Communicating Systems (CCS), its temporal extension TCCS [61, 98] and the 

associated process logic, the modal pt-calculus [95]. Since the main work of the thesis 

draws on these areas, which are not commonly combined, this initial exposition is 

quite extensive. 

The use of mathematically based formal notation with rigorously defined semantics 

has many advantages when it is necessary to analyse the properties of systems. 

Process algebras such as CSP [38] and CCS have evolved for this reason. 

Unfortunately this way of defining models is often seen as difficult and opaque when 

presented to practising simulation modellers. Chapter 3 presents a definition of the 

mechanisms of process based simulation, in particular those in the DEMOS language, 
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in terms of CCS. This is tested and weaknesses in DEMOS as a vehicle for such 

definition are identified and remedied, leading to a number of necessary extensions. 

The way that processes can be decomposed and composed is explored and formalised, 

leading to a proper understanding of hierarchical, component based modelling which 

is exploited in Chapters 4 and 5. 

Chapter 4 presents Extended Activity Diagrams and their hierarchical extension, 

Configuration Diagrams, as a basis for describing process based simulation models. 

The symbols developed match the mechanisms defined in Chapter 3 and so have a 

definition in terms of both extended DEMOS and CCS. A two dimensional grammar 

for such diagrams is presented, using a slight extension to normal Backus-Naur Form. 

This allows a rigorous, but abstract, definition of the graphical language, which is 

independent of any particular physical representation. This plays a key role in 

simplifying the writing of tools based on graphical input of models. 

Chapter 5 presents a tool which supports the ideas in this dissertation. First extended 

DEMOS is described as a set of extensions and modifications to Birtwistle's language. 

Building on the graphical language defined in Chapter 4, the implementation of a 

graphical modelling tool is described. This draws mostly on a version developed for 

IBM PC compatible computers, but also to general solutions to such tool construction. 

Evidence from a second implementation under X Windows is used to support the 

possibility of largely automatic tool building based on graphical attribute grammars. 

The tool is shown to be capable of generating extended DEMOS for all models 

describable using it. Complete CCS models can be generated for many of these 

models and useful outlines for the others. 

Chapter 6 contains some model studies which demonstrate the benefits and problems 

in combining pre-analysis of functional properties with simulation of dynamic, timed 

behaviour. It addresses models simplification without changing behaviour, analysis of 

behavioural properties of models and implications of component model re-use. Not all 

questions are found to be easily addressed, even with the use of the modal p-calculus, 

but some clear benefits are claimed. 

Chapter 7 draws together the strands of the earlier chapters and assesses the outcome. 

Open issues and areas for further research and development are identified. 



Chapter 2 

Background and previous work 

2.1 Introduction 

This chapter introduces the background to the work of the thesis. Since it draws on 

some fields which have had little previous contact, it is somewhat detailed. Those 

who are familiar with the material of a particular section will perhaps find this 

unnecessary for themselves, but will hopefully agree to the need in general. 

Section 2.2 looks at discrete event simulation and various approaches used to 

express models to be solved by it. The main purpose of this section is to define 

clearly the process based view, which is the one which will mostly be addressed 

throughout this dissertation. Section 2.3 considers some of the languages which 

support the process based view and introduces the DEMOS language [13] as the 

most comprehensive of these. Section 2.4 is a survey of various ways of drawing 

discrete event simulation models as diagrams and assesses their suitability as the 

basis for a formal approach to simulation. Section 2.5 looks at how far hierarchical 

modelling has been addressed within discrete event simulation. Sections 2.4 and 2.5 

together motivate the work of Chapter 4 in defining a complete and hierarchical 

approach to graphical modelling and Chapter 5 in building a tool to demonstrate this. 

Section 2.6 considers previous work in formalising discrete event simulation and 

identifies a lack of rigorous support for behavioural verification of models. Section 

2.7 introduces process algebras as a way of expressing behaviour and reasoning 

about it. In particular the Calculus of Communicating Systems (CCS) [58] is 

described. Section 2.8 introduces process logics as a means of defining properties of 

CCS models and posing queries about them. Together sections 2.6, 2.7 and 2.8 

motivate and inform the work of Chapters 3 and 6. 
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2.2 Approaches to discrete event simulation 

Traditionally, discrete event models are divided into four main world views, event 

based, activity based, transaction based and process based. This dissertation will be 

mainly concerned with process based models, but a short description of each world 

view is presented here. For a more extended discussion see [15] and [65]. 

2.2.1 Event based 

Event scheduling is one of the oldest simulation approaches, dating from the 1950s.. 

It requires models to be viewed as sequences of events through which entities flow, 

according to various criteria. Such models are similar in many ways to queueing 

networks. This approach is used in SIMSCRIPT 11.5, which is a very popular 

commercial simulation package. The event scheduling approach is often used to 

program simple models in general purpose programming languages. It is sometimes 

argued that event scheduling is more of an implementation device than a 

conceptually distinct view of modelling, but this ignores strongly held prejudices. 

To illustrate the event based approach, consider the following representation of an 

MJMI1 queue. The model has two types of event, arrivals and departures, both with 

Poisson rates and uses a next event mechanism. It is clear and easy to code in any 

standard general purpose language, such as Fortran or Pascal. 

Z.I: Next event model 01 a simple NIJIVIJI 

Figure 1: Next event model of a simple queue 

0 = Queue length C = Clock time NET = Next even t time 

NAT = Next arrival time 	NDT = 	Next departure time 
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Unfortunately, as described below, such models rapidly become too complex for 

flowchart representation. Coding them becomes a systematic, but error prone task. 

Schruben formalised the event scheduling approach [89],  providing a graphical 

formalism known as event graphs. In his original paper he used analytical 

approaches to explore the behaviour of his models and this was extended in a later 

paper with Yücesan [109]. This formalisation is considered in more detail below. 

Various forms of event graphs have been used to generate discrete event simulation 

models [66], [86], [39],  [54] and [90]. In the last of these, Schruben presents Sigma, 

a graphical tool for modelling with event graphs. Som and Sargent [93] also present 

a formalisation of event graphs. 

2.2.2 Activity based 

Activity based simulation modelling uses a resource centred description of a system, 

where entities pass through activities. It is often built around graphical notations, 

such as activity wheel diagrams [97] or activity cycle diagrams [21] [34]. Certain 

entities are found to pass through cycles of activities, often repeatedly. These cycles 

are created by the resources of the system. 

Activity scanning models are structured along the lines of the physical arrangement 

of the systems they represent. This has made them popular in applications such as 

factory simulation. They are similar to Petri nets (see below) in their failure to 

distinguish active elements from passive, modelling both resource flow and control 

flow identically. 

The activity scanning approach is often inefficient as a means of executing models, 

since it requires all activities to be checked on each state change to see if there is any 

effect on entities at that stage. Although this can be improved, it is arguable that 

activity scanning is inherently inefficient. 

2.2.3 Transactions based 

The transactions based approach is essentially derived from GPSS [88]. It is more 

structured than the activity scanning approach and distinguishes between active and 

passive model components, introducing resources as an explicit modelling concept. 
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Although GPSS continues to be widely used, it represents a precursor to the process 

oriented approach. Much of the analysis of behaviour applied below to process 

oriented models can also be applied to transactions based models. 

2.2.4 Process based 

The process based view takes as its starting point the idea that the world consists of 

active and passive components. Although the term was in common use for several 

years before the appearance of Franta's book [27], this gives the first complete 

description of the approach, using SIMULA as the implementation language. 

Active components (processes) are described by their life histories, which often form 

cycles. They interact with the world through resources, which are passive, in 

competition or co-operation. This division into two classes is acknowledged to be 

arbitrary and Franta gives examples where the same object may be seen as active or 

passive, according to the perspective of the modeller. 

The main benefit claimed for the process based approach is that it expresses the 

model in terms of the structures observable in the real world and so makes modelling 

more intuitive and interpretation of results easier. It also can have significant 

implementation benefits, as shown below in the description of SIMULA. 

Recently the needs of parallel simulation have led to restrictions on the process view, 

to remove direct pre-emption of one process by another [22]. This modified process 

interaction world view actually seems to be an implementation driven one, rather 

than an improvement in the descriptive powers of the language proposed, but may 

become accepted if the benefits of parallelisation are seen as desirable. 

2.2.5 The relationship among these views 

As shown by [15], there is no difference in the set of models which can be expressed 

in each of these views. Authors have argued with the assertion [27, 13] that the 

process view is the most natural. Some have argued for attempting to combine their 

benefits [65]. Here the expressiveness of process based models is assumed initially 

and then shown to be additionally convenient when using process algebras to 

formalise our models. On the other hand, the weakness of the interleaving view 

taken by process based simulation is identified by Evans [26] and more explicit 

representation of concurrency suggested, using a Petri net based approach. 
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2.3 Languages for process based simulation 

Many languages and packages claim to be process oriented or to be capable of 

representing process oriented models. Rather like the term "object oriented", 

process oriented has become a victim of its own success in appealing to ease of 

understanding. There are, in fact several genuine languages for this purpose. This 

work will refer mainly to the DEMOS package, which is an extension of SIMULA. 

2.3.1 SIMULA 

SIMULA [12, 74] is a general purpose programming language, defined as a superset 

of Algol 60. It was designed to support the efficient implementation of event and 

process based discrete event simulation. Descriptions of how it may be used in this 

way are given in [12], [27] and [59] amongst others. 

In SIMULA the notion of a process is supported by a combination of inheritance and 

quasi-parallel sequencing (co-routines or light weight processes) within the class 

concept. This provides an efficient implementation of conditional waiting, since 

objects suspended as co-routines can wait in heterogeneous lists and can resume 

themselves when events in the execution of the model allow them to proceed. 

SIMULA supports layers of packages, each refining and extending earlier ones. In 

this way, a package for list handling, known as SIMSET, is provided on top of the 

basic language. Using SIMSET, a further layer, known as SIMULATION, is 

provided. This has a time ordered event list and a class PROCESS, which is the 

building block for active components in models. PROCESS adds modelling related 

abstractions to co-routine semantics of classes, in co-operation with the event list. 

Although SIMULA does not provide the concept of a general wait-until in these 

packages, Vaucher showed how this could be efficiently implemented within 

SIMULA by using the Algol name mode for procedure parameters [104, 105]. 

2.3.2 DEMOS 

DEMOS [13] is a process oriented discrete event simulation package, written in 

SIMULA. It does not use the predefined package SIMULATION, but re-implements 

the event list mechanisms in a similar way. 
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In addition to those features expected in SIMULA it has automatic statistical 

collection and reporting and optional output of event traces. In this way, it allows a 

wide range of models to be solved to establish their dynamic behaviour, both in 

terms of quantitative performance (response time, queue lengths etc.) and event 

based behaviour traces. 

It offers an efficient version of Vaucher's wait-until mechanism, using an extended 

version of PROCESS, named class ENTITY and a conditional queue class, CONDQ. 

Also, a number of more specialised building blocks for the passive elements of a 

model are provided, all of which report key statistics automatically. These include 

RES, for resources, BIN, for unbounded buffers, and WAITQ, for master/slave 

interactions. 

DEMOS is investigated extensively in the following chapters. 

2.3.3 Alternatives to DEMOS 

There are a number of packages offering some of the same features as DEMOS. 

GPSS [88] is a restricted form of process based modelling and has influenced the 

design of DEMOS [15].  In particular it introduced explicit representation of 

resources as a means of process interaction. 

SLAM II [82] is the most widely used alternative. It supports the modelling of 

processes and their interaction through resources. It lacks the inheritance and co-

routine features of SIMULA and DEMOS and so is less extensible, although it offers 

a wide range of pre-defined options. SLAM II uses network diagrams [94], which 

are described below. It does not support hierarchical modelling. 

MODSIM claims to be the most advanced, object oriented simulation language 

available. It offers somewhat similar features to SLAM, plus some additional 

flexibility. Its environment includes graphical display features, but it is less flexible 

than SIMULA in other ways. 
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2.4 A comparison of existing graphical formalisms 

The use of diagrams to describe discrete event models is examined next. The range 

of approaches in use today is surveyed, with the same simple example given using 

several different conventions. Criteria by which we can judge the effectiveness of 

such approaches are suggested and the characteristics of a generally useful standard 

are developed. In Chapter 4, the core of such a standard is proposed. 

2.4.1 General 

The use of diagrams to design programs is almost as old as programming itself, pre-

dating high level languages as a means of abstraction, for instance in flowcharts. In 

general this approach has suffered from two practical difficulties: 

the permanence and, hence, difficulty of correction or extension of drawings 

on paper; 

the explosion of detail in large programs. 

Changing diagrams need no longer be a problem, as graphics workstations can be 

used to create and edit diagrams quickly and cleanly. This opens the way for a wide 

range of tools to allow visual or graphical programming [83]. The current popularity 

of CASE tools shows that this has happened. 

The complexity of real models has led to a tendency for diagrams to be used to 

specify only the high level structure of a program, not the low level implementation. 

More ambitious approaches have introduced the concept of hierarchical structuring, 

to allow more detail. This has been easiest where structured programniing techniques 

are already in use or, increasingly, where object oriented programming is being 

adopted. 

The use of diagrams allows a natural expression of parallel activities, actually 

showing them side by side. This is generally easier to comprehend than the 

sequential laying out of parallel components in conventional, textual programming 

languages. Formal notations for the description of concurrent systems, such as 

Hoare's Communicating Sequential Processes [38] and Milner's Calculus of 
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Communicating Systems [107, 58] are examples of attempts to describe parallel 

systems which use diagrams to aid understanding. 

Within discrete event simulation the use of diagrams for tutorial purposes and for 

program design has long been popular. Until comparatively recently, such diagrams 

have usually been translated into programs manually. A survey of some of the most 

widely used of these systems is given below. More recently, several simulation 

packages have emerged which use graphical input to aid program generation. These 

packages are typically: 

based on a set of icons for a single application, like Simfactory [103]; 

based on a low level description, such as queueing networks [52, 43] or 

Petri-nets [101, 7, 62,55, 18]; 

oriented towards a particular modelling tool, like TESS [94], PAWS/GPSM 

[44] or its successor SES Workbench and PIT [72, 6]. 

The main aim in suggesting a standard representation is to avoid divergence among 

such tools. This requires a paradigm which is not predicated on one particular solver 

or class of solvers, but which can represent models in terms of the systems they are 

intended to simulate and allow model generation into as many executable forms as 

possible. The feasibility of such an approach in textual dialogue systems was shown 

by Mathewson [56]. HIT [8,10] is another example, which now has a graphical 

interface. 

Desirable properties of these techniques are implementation independence, 

abstraction in terms of the system modelled and completeness of description. 

2.4.2 A simple system to model 

In order to give some idea of the sorts of diagram which have been used or are in 

use, it seems best to present a simple model in several of them. Although this is 

intended to provide both an historical overview and a representative survey, it should 

not be considered exhaustive. 
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The model is chosen as typical of the simple, yet realistic, examples given in most 

introductory texts and, indeed, a version of this model is included in texts for at least 

three of the tools illustrated. It is important that the example be fairly simple as more 

complex examples rapidly become too involved to be readable as a diagram. This 

problem and its solution by hierarchical decomposition is described in Chapter 4. 

Following example 3.5 in "A System for Discrete Event Modelling on SIMULA" 

[13], a harbour model is introduced. This is a simpler version of the "African tanker 

model" originally presented in GPSS terms [88] and later in Slam II terms [81]. The 

model depicts the life history of a series of ships as they enter a harbour, unload and 

depart. This is shown as three phases of activity: 

docking - which first requires acquisition of a jetty and two tugs and then a 

delay of known characteristics; the tugs are released at the end of this phase, but 

the jetty is retained; 

unloading - which is a delay of known characteristics, retaining the jetty; 

leaving - requires acquisition of a tug, then a delay of known characteristics; 

once complete, tug and jetty are released and the ship process terminates. 

A process oriented model based on this could consist of the instantiation of 

resources, to represent the tugs and jetties in the harbour, and of new ship processes, 

at intervals matching their arrival times. The numbers of tugs and jetties and the 

inter-arrival time distribution of ships would be parameters of this model. 

The rest of this section looks at some commonly used diagramming techniques used 

on this simple system. This then motivates the need for a more general way of 

describing models in a process based form. 

2.4.3 Flowcharts 

Originally most programmers, including the author, learned to use flowcharts in their 

first attempts at programming. For early discrete event simulation modelling, 

developed in the context of operations research, they were widely used to describe 

simple models. The example in figure 2.1 is a typical example of such a model 

presented in that form. 
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Figure 2.2: Flowchart of harbour model (style of Tocher) 
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Unfortunately, such models rapidly become too complex to retain their clarity, 

largely since most general purpose languages offer little support for mechanisms 

such as event list manipulation. As a result, the need to include the underlying 

scheduling support obscures the function of the model as a representation of a real 
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world system. As was pointed out by Tocher early on [97], this scheduling 

mechanism is often largely the same between models. Figure 2.2 shows the harbour 

model as a flow chart, using the general style presented by Tocher. Subsequent 

development of simulation diagramming techniques has generally tried to free 

system description from implementation. 

2.4.4 Activity cycle or wheel diagrams 

To improve the ease of specifying a model, as opposed to the corresponding 

program, Tocher [97] introduced activity cycle or wheel diagrams. These focused on 

the cycles of activity associated with components of the system to be modelled. In 

particular they were used to define all the states which those components could 

achieve and to show where these interlocked. 

Figure 2.3: Activity cycle diagram of harbour model 
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Using this approach, the harbour is shown in figure 2.3. Notice how the cycles 

represent the sequences of states for what will be termed resources in some later 

versions of this model. The ships themselves need not be shown, as they flow 

through the system in a rather passive way, although it is possible to add a ship cycle 

quite easily. In this style of modelling the ships would usually be termed entities. 
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Tocher saw this style of diagram as a stage in defining a flow chart for the program. 

It lacks much detailed information, although that could be added quite easily. 

2.4.5 Hocus activity cycle diagrams 

Figure 2.4: Hocus representation 

a: Hocus diagram of harbour model 

Arriving 

Docking 

Jetty Tug 
Unloading 

Idle Idle 

Leaving 

HOCUS queue HOCUS activity table 
"track 

b: Hocus basic symbols 

The activity style of modelling is still very popular and a number of packages to 

support it have been produced such as ECSL [21]. An interesting variation on the 

activity cycle approach was devised by Hills [34,35] and is marketed by PE 

TIME ACTIVITY 
ENDS 

ACTIVITY 2 OF 3 

ACTIVITY NAME 

DOCKING 

UMBER 

3 EST 

IF ACTVE 3 

2 
CTVIT  

ASSIVE 

SWITCH OURCE 

Q - 
ENTITY 
NAME 

DEST 

- 
ALT  
DEST p 

SWITCH 

- 
B+ ARRS SHIP 1 INLOA A- 

_IDLE TUG 1.T -IDLE 
_IDLE TUG 2 _IDLE 

_IDLE ETTY 1 UNLOA 

CONST 

3 

DATA FIELD 

5 

COEFFICIENT 

0.1 

oTIME 

RECRD 



Chapter 2: 	Background and Previous Work 
	

16 

Consultants. Known as Hocus (Hand Or Computer Simulation System), its diagram 

based models can be solved by hand or coded for solution by computer. This is a 

rare example of a completely diagram based approach to non-computer simulation. It 

is rather like a board game when approached in this way. 

Figure 2.4a shows a Hocus version of the harbour model. It is very similar to the 

wheel diagrams of Tocher, but now distinguishes two possible states for an entity. 

The circles are idle states in the model, which are to be programmed as queues. The 

rectangles are busy states, where the entity is engaged in an activity. 

In hand simulations, counters or flags are moved to different states to correspond to 

the flow of entities. As with the wheel diagrams, some entities remain in the system 

and can be regarded as resources or servers, while others flow through the system 

and can be regarded as jobs or customers. To support hand simulations an annotated 

version of the Hocus symbols is used, where the circles became ovals of cells. Each 

cell could hold one entity and the continuous "track" of cells minimised movement 

of counters when an entity left the queue. The activity symbols were tables recording 

times of events and details of entities engaging in them. These detailed symbols are 

shown in figure 2.4b. 

2.4.6 GPSS transaction block diagrams 

GPSS [88] is one of the best known and longest serving simulation packages. It has 

evolved considerably over the years, but the approach embodied in its block 

diagrams remains its core. The diagram of the harbour model shown in figure 2.5 is 

a simplified version of figure 6A. 1 in Schriber's book. In essence, each block in the 

flowchart-like diagram corresponds to one GPSS statement. 

Notice that this time the story is told from the point of view of the ships. An 

initialisation segment generates the start conditions and a generator pumps new ships 

into the model. The main activities are shown as time Advance statements, 

representing the delay involved. These are synchronised with other ships through 

actions called Seize and Release, which involve the Resources in the model. 
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Figure 2.5: GPSS block diagram of harbour model 
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GPSS is the first approach which corresponds in a limited way to the process view of 

simulation. Although GPSS block diagrams resemble flowcharts, they have a system 

based view of the model, rather than the program based view of simple flowcharts 

in Figures 2.1 and 2.2 above. Thus they are an abstraction towards the problem 

domain. Their main drawbacks are the degree of detail that is shown, or rather the 

number of steps required, to achieve simple ends, and the difficulty of showing 

interactions between different kinds of process in the same model. Although not 

significant in this simple model, which has only one kind of process, this soon 

becomes essential. In fact GPSS allows the modeller to specify several processes as 
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separate diagrams and to associate them through resource names. This is adequate, 

but lacks the clear expression of interlocking sequences possible with activity cycle 

diagrams. 

2.4.7 Simscript diagrams 

Along with GPSS and SIMULA, Simscript [50,51] is one of the earliest widely 

available languages with specific support for simulation. There seems to be a 

shortage of generally published recent documentation on this system, in particular 

the references found for version 11.5, which contains the notion of processes, seem 

not to be generally publicly available [51,84,85]. The example of a model in 

Simscript terms is based on diagrams used in a paper [25] which may not reflect 

current usage. 

In essence Simscript uses events, sets (queues) and routines. Its original view was 

based on events rather than processes or activities. The current version is said to 

contain support for both processes and resources, following the pattern set by GPSS. 

Various types of link are possible between events and other components. These are 

basically 

scheduling of one event by another, shown as a dashed line; 

insertion and removal of entities in sets, shown as a dotted line; 

calling of routines, shown as a full line. 

Figure 2.6 shows such a representation of the harbour. In a simple example, where 

only one type of process is represented, this looks little different to many process 

based diagramming techniques. Note, however, that the dashed lines between events 

represent scheduling rather than flow of control. Thus, delays are modelled as 

explicit scheduling actions. As will be shown in Chapter 3, this is not inconsistent 

with the process based approach, but weakens the modularity of systems, making 

component identification more difficult. 
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One aid to clarity in this form of diagram is the use of links to show flows in and out 

of sets. These are not just used as resources, however, and in more complex 

examples confusion amongst different uses of sets is a problem. 
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2.4.8 Simulation Nets and Simulation Graphs 

Schruben [89] introduced a graphical representation of event based models, which he 

called event graphs. This was extended and formalised in work with Yücesan [109], 

and called simulation graphs. These were used to explain certain formal rules of the 

behaviour of such models and to prove certain conditions for equivalence and for 

event reduction within such models. This formal work is contrasted with the use of 

process algebras in Chapter 6 of this dissertation. 

Each node in the directed graph represents a state change or event. The edges in the 

graph represent the triggering (or in the case of a dotted line cancelling) of the 

destination event. Each edge is labelled with an optional time, an optional condition 

(shown as a roman numeral in parentheses) and an optional edge attribute list. The 

edge attributes are associated with vertex parameters in their destination vertices and 

represent the passing of parameters on the triggering of an event. This allows, for 

instance, an instance of an event to be defined as relating to one particular entity in 

the model. In the model below we use it to identify which ship is in which state at 

any time. 

Figure Z.'/: A simulation net tor the harbour model 
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Although some states shown here have no state changes, that is because there is no 

statistical recording, which would need to be added by showing queues growing and 

shrinking and times elapsing for sequences of events being recorded. The conditions 

associated with this graph are as follow: 

C1 ,2 	 [i] 	 Tugs >= 2 
C2,3 	 [ii] 	 Jetties >= 1 
C5,6 	 [iii] 	 Tugs >= 1 

Analysis of this by Schruben and Yücesan's rules is considered in section 2.6.2. 

2.4.9 PAWS queueing networks 

The Performance Analyst's Workbench System (PAWS) [43] contains a language for 

performance modelling of information processing systems. It uses a version of 

queueing network diagrams known as Information Processing Graphs (IPG5) and, 

through its Graphical Programming of Simulation Models (GPSM) interface, allows 

direct program entry in that form on IBM PC compatible machines. SES Workbench 

is a development of PAWS and runs on SUN workstations under X Windows. The 

harbour model is shown as an IPG in figure 2.7. Like Simscript 11.5, little generally 

published material seems to be available on PAWS and this section is derived from 

the user manuals for the system, in particular the GPSM manual [44]. Some 

examples of the use of IPGs are given by Smith [92]. 

Like SLAM II, PAWS has resources as explicit features, which may be Allocated, 

Released, Created and Destroyed. In addition it has a class of memory resources, to 

model memory in computer systems. The latter allow arbitrary blocks of a resource 

to be taken from a pool. 

Activities are modelled as either delays (corresponding to infinite server queues in 

queueing networks) or servers attached to queues. 

As in GPSS, the processes in a system are called transactions and these flow through 

the network to represent the model running. At various nodes transactions may be 

generated (Source), be destroyed (Sink), change state (Phase Change) or be spawned 

by parent transactions (Fork) or by sibling transactions (Split). Probabilistic 

branching is also supported as in classic queueing networks. Forked children may 

co-alesce into their parent at Join nodes, which violates normal product queueing 
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network assumptions, but can be easily simulated. Nodes are available for 

computation, to update state variables. 

More interestingly for the purposes of this dissertation, IPGs support the notion of 

one activity interrupting another and forcing it to shift to another sequence of 

actions, specified by some parameter. This is clearly a result of PAWS orientation 

towards modelling computer systems, which typically have a hardware with 

interrupts built in. Such a mechanism is also useful for modelling breakdowns, but 

will be seen to cause considerable problems in DEMOS, when a formalisation in 

CCS is required. 
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Also interesting is the support for some notion of hierarchy in IPGs. This is quite 

natural in a queueing network based system, where the notion of flow equivalent 

sub-networks is a common technique to make large models more easily tractable. In 

PAWS it is more a question of allowing suitably sized models to be generated, both 

graphically and for solution. In effect any part of the total IPG network which has a 

single entry and exit point is a candidate for collapsing into a single node, 

representing a sub-model to be called when it is reached. This notion of 

decomposition is more restrictive than that developed in Chapter 4. It allows more 

complex models to be supported, but is not tied to any explicit structure of the 

system being modelled. 

In general PAWS fails to allow abstraction towards the problem domain, except 

when suitable sub-models are definable. Instead it provides a way of using a few 

higher level abstractions, such as resources, to ease the task of building models 

which are solution method oriented. In the case where analytic methods are to be 

applied to solve such models this may be necessary, but PAWS is intended as a 
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simulation package and such a representation tends to obscure the model for non-

experts. 

2.10 Petri-nets 

Petri-nets are among the lowest level representations of a model. It has been 

suggested, by Hughes for example, that many of the other forms of representation 

described here could be transformed into equivalent Petri-nets. Some incomplete 

work on systematically transforming DEMOS style activity diagrams (see 2.4.12 

below) into Petri nets was reported in private discussion with Peter Hughes to have 

been performed by a masters student at the University of Trondheim. Unfortunately 

it has proved impossible to obtain a written report of this work. Several forms of 

Petri-net, such as stochastic nets and timed nets, have been devised to allow more 

complete description of the information needed by model solvers. The harbour 

model is considered using a simple place/transition net. 

In general Petri-nets represent models in terms of tokens which flow along the edges 

(called arcs) of a directed graph. The nodes are called places (shown as circles) and 

transitions (shown as vertical or horizontal bars). Tokens accumulate in places until 

the satisfaction of some condition associated with a transition on an output arc of 

that place causes it to fire. When a transition fires it sends the tokens from its input 

places on along its forward arcs to its output place or places. 

The transitions can be used to represent activities, like the links in SLAM II 

networks. The nodes represent synchronisations. Timed nets allow durations for 

transitions to be specified. Stochastic nets allow probabilities to be attached to 

firings. 

Figure 2.9 shows the harbour model as a simple place/transition Petri-net. Note that 

the scheduling of arrivals must be modelled as a clock loop at the start of the graph 

and that the model has no implicit timing information or probabilistic behaviour. 

Petri-nets have been widely favoured by some modelling theorists, because of their 

universality and their sound theoretical foundations. They are, however, sometimes 

quite hard to interpret as system descriptions, as can be seen by the failure to 

distinguish tokens which represent resources, tokens which represent active 
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processes and tokens which represent active processes which have acquired 

resources. 

2.9: Simple Petri net of harbour model 
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It is, however, straightforward to build interpreters to "execute" or simulate them, 

but the results may be hard to relate to the structure of the real system being 

modelled. Clearly they are important in advancing the understanding of modelling, 

but they are not appropriate, perhaps, as a user interface for non-experts. They can 

express genuine concurrency, but do not solve the problem of how to program this 

for all cases when producing an executable discrete event simulation model of the 
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system which they describe. This problem of expressing concurrency is a major one 

for all the systems described here. An attempt to unify Petri-nets and process based 

modelling is made in the engagement strategy [26]. 

Molloy [63] introduced stochastic timings into his models as delays on the firing of 

enabled transitions and Ajmone Marsan and others [2] introduced more general 

stochastic modelling mechanisms, most importantly the concept of an immediate 

transition, which took no time but could have branching probabilities associated 

with output arcs, and inhibiting arcs, which blocked their output places rather than 

enabling them. The resulting class of generalised stochastic Petri nets (GSPNs) has 

attracted much interest in the performance analysis community, especially since, 

where all delays are exponentially distributed, efficient numerical solution 

techniques are sometimes possible. In such models, the GSPN can be transformed 

into its equivalent Markov chain. 

Deterministic timed delays have also been introduced and efficient numerical 

methods for solving the resulting deterministic and stochastic Petri nets (DSPNs) 

have been developed by Lindemann [55]. More recently Chiola and others have 

proposed the use of coloured Petri nets to make modelling easier and help with the 

expressiveness of Petri nets. This work is still in its early days but should remove the 

problems in distinguishing different uses of tokens flowing through the system. 

GreatSPN [18] and Molloy and Riddle's system [62] allow graphical entry of Petri-

net models. GreatSPN uses numerical solution methods as well as simulation. It 

provides several forms of structural and behavioural analysis of models, which will 

be examined in more detail in section 2.6 below. Lindemann's DSPNExpress [55] is 

a re-working of GreatSPN for DSPNs. The graphical description of the harbour 

model remains essentially unchanged, except that timed transitions are used, shown 

as boxes. 

2.4.11 	Slam II network diagrams 

There have been several published models using SLAM II and its associated network 

diagrams [82]. These seem to combine some aspects of queueing network diagrams 

and Petri-nets with GPSS-like resources and activities expressed as delays. Pritsker 

also used these ideas to show Q-GERT models [81], which include continuous state 

changes. 
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The immediately obvious difference in figure 2.10 is that activities are shown on 

links of the diagram, not as nodes. They are rather similar to timed Petri-nets (see 

section 2.4.10 above), although in general a SLAM II description is much more 

system oriented. The model shown follows what seems to be the normal convention 

in network diagrams by showing flow through the model as horizontal, generally left 

to right. This may make them seem rather more different from some others shown 

here than is really the case. 

It can be seen that the resources are shown explicitly, although their use is indicated 

by the occurrence of their names in AWAIT nodes and FREE nodes, not by links. 

This is very similar to GPSS. 

In figure 2.10 ships are being generated at the left and passing through queues, 

where they wait for servers, represented by directed edges. Each server has a delay 

defined, like the GPSS Advance block. By the mechanism of Files associated with 

each queue, different queueing disciplines can be enforced. When resources are 

required the ships enter AWAIT nodes until sufficient are available. 

In fact the SLAM II diagrams are very similar in this simple use to the GPSS 

equivalent. Like them they involve lots of nodes. The full vocabulary of SLAM II 

network diagrams is very rich and allows expression of quite complex models. The 

explicit representation of resources helps readability, but the lack of graphical links 

from them to AWAIT and FREE nodes reduces this benefit. There is a fairly 

complete set of statistical collection symbols as well. 

In general these diagrams work quite well for modellers who are aiming at SLAM II 

as a programming language. The TESS graphical input front end [94] uses the 

completeness of the representation to allow model generation directly from them. 

The problems are the explosion of detail, the orientation towards SLAM II (although 

this may be more apparent than real) and the lack of any convenient means of 

modularisation such as hierarchical processes. 
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Figure 2.10: Slam network diagram of harbour model 
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The approach is in general process based, but overlaps at times with the activity 

style. Thus, there are synchronisations called ACCUMULATE - which blocks 

process instances until a required number have reached the same state - and MATCH 

- which blocks process instances until attribute values can be matched between them 

and other instances. These illustrate an important semantic confusion which 

surrounds the word process in such discussions. In the view of Franta [27] and 

Birtwistle [13] it seems that a process is an instance of what is called an entity in the 

activity style, with all its actions encapsulated. Thus, the process based view starts 

from the life cycle of entities and synchronises these through external queues of 

various kinds, such as resources and wait until states. SLAM II, like GPSS and most 

other supposedly process oriented modelling systems, keeps the distinction between 
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a process description and the entities flowing through it, which is closer to activity 

style descriptions. It is in contradiction to the definition of processes used here that 

ACCUMULATE and MATCH are part of the process rather than an interaction with 

a mechanism external to it. The approach in Chapters 3 and 4 depends on this 

separation of process and environment. 

2.4.12 	DEMOS activity diagrams 

The diagram in figure 2.11 is based on figure 3.5 of [13]. This includes the standard 

symbols of a rectangular box for a delay, annotated with a description of the 

associated activity, and a circle for a resource, annotated with a description of the 

resource and the initial amount available. 

Figure 2.11: DEMOS activity diagram of harbour model 
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This approach seeks to merge the simplicity of activity cycle diagram with the 

descriptive power of a GPSS-like flowchart process description. As used by 

Birtwistle it gives an incomplete definition of the model and ignores many more 

complex possibilities. It is not even capable of expressing all of the power of the 

DEMOS simulation system itself. It has, nevertheless, proved popular and 

influential. Birtwistle himself notes that experts in the properties of the system being 

modelled have found it relatively easy to understand such descriptions and it has 

proved useful in a number of modelling exercises of different types, including 

computer hardware, communications protocols and factory systems. Hughes 
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extended the range of symbols to model interrupts and conditional waits [40]. 

Chapter 4 develops activity diagrams as a standard way of representing process 

based models. 

2.5 Sub-models and hierarchies 

Most modelling tools and languages started with a flat view and offer little support 

for sub-models. Thus SLAM's network models are an inherently flat description of a 

total system. The notion of hierarchy is essential, however, to the complexity and 

scale of many models, as well as sometimes allowing more efficient solution. 

Existing approaches to hierarchical modelling for either of these purposes are 

considered below. 

2.5.1 IPG sub-models 

One exception already noted is the use of sub-model nodes in PAWS and SES 

Workbench IPGs. These are intended to support information hiding and reuse of 

previously defined model sections. There is, however, no attempt to exploit them to 

enhance model solution. They are allowed only a single entry and exit point and 

leave the underlying model flat. There is no reason that they could not form the basis 

of some sort of hierarchical modelling, along the lines of flow equivalent service 

centres, which are described next. 

2.5.2 Flow equivalent service centres and other aggregated sub-
models 

Within queueing networks, the idea of flow equivalent service centres was 

introduced to allow pre-solution of sub-networks and the substitution of tables 

representing aggregate behaviour into the resulting main model. This notion of 

decomposition and aggregation has been generalised to a basis for heterogeneous 

modelling by Beilner[9] and Buchholz [17]. Combined modelling using simulations 

in DEMOS, generated by the PIT model editor [6], and Petri nets in GreatSPN, 

generated by the PNT graphical editor, were shown to be possible, using the 

Edinburgh Experimenter within the IMSE framework [17, 36]. PIT added a flow 

equivalent server node to standard DEMOS activity diagrams to support this. 
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Figure 2.12: Flow equivalent sub-models in queueing networks 
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2.5.3 Sub-models in DEMOS 

DEMOS is based on SIMULA, which is object oriented, and so views ENTITYs and 

the synchronisation components in models, such as resources, as objects defined by 

classes. This allows processes to be built from collections of other objects, i.e. fully 

general component based modelling is possible. This is explored in Chapters 3 and 4 
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in the context of a model of X.25 in [69] using experience from [67] and [108]. 

Although DEMOS gives the best support to such sub-model structuring of any of the 

systems reviewed, it is not formalised within the DEMOS package or the notation of 

(extended) activity diagrams. The PIT tool showed the strength of the approach, by 

using it to add two new nodes to activity diagrams, the FESC described above and 

the server, which was an abstraction of a resource and a process imparting a delay to 

form something very like the service centre and associated queue of a queueing 

network. 

Hierarchies in a modified form of DEMOS and their formalisation, represent one of 

the main contributions of this dissertation. 

2.5.4 HIT 

HIT [8,10] is specifically built to support modelling of computer systems in a 

hierarchical manner, based on a layered machine view of such systems. This allows 

modularisation, corresponding to components within layers of the real system. Such 

a view gives a form of description which is very natural for the types of systems 

considered. The user interface uses either a textual language, HI-SLANG, or a 

graphical model construction interface, HITGRAPHIC. In either, modules at a 

higher level are use services from modules lower down. At the lowest level simple 

services are described. Modules, termed COMPONENTS, are described as LOADs 

applied to MACHINEs. 

Written entirely in SIMULA, HIT can generate automatically models for solution by 

discrete event simulation, exact solution as product form networks and approximate 

solution for other classes of network, numerical solution of underlying Markov 

chains and structured decomposition and aggregation of large models for efficient 

solution. HIT runs on most platforms supporting a SIMULA compiler, including 

most UNIX workstations and IBM and Siemens mainframes. HITGRAPHIC is 

written in C and runs on top of X Windows. It was developed at Universität 

Dortmund with initial support from Nixdorf Computer AG and BMFT. 

With its combination of solvers and its hierarchical approach, HIT shows the 

feasibility of a general approach to description of performance models. It lacks, 

however, any formal behavioural semantics. 
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2.13: H1'lGRAPHIC 

2.6 Formal representation of discrete event 
simulations 

There have been a number of attempts at formalising various aspects of discrete 

event simulation modelling. Some have been oriented towards the modelling 

process, others have concentrated on models themselves. 

2.6.1 Formalising the modelling process 

The process of modelling is really a branch of experimental method. There are 

probably two major attempts which have been made to structure this. 

The Conical Methodology 

In the Conical Methodology [64], the software engineering lifecyle is modified to 

describe the simulation modelling process. In particular, the spiral model of software 

engineering is used as the basis of a conical model of simulation modelling. 
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Multifaceted Modelling 

The idea that no one model can express all aspects of the system being represented is 

well known, but it was first formalised by Zeigler [110,111,112]. Here a systems 

theoretic approach is developed for simulation. Essentially Zeigler notes that the 

system corresponds to a base model. Such a model is unrealisable, as the level of 

detail required is beyond the capability of our modelling techniques. Experimental 

frames are introduced to define sets of conditions under which observations are 

possible and lumped models are models capable of solution under the conditions of 

one experimental frame. Computation is the means of extracting the results from a 

lumped model under the conditions of an experimental frame. This approach allows 

a hierarchical modelling framework to be developed, with higher level, more abstract 

models deriving some of their detailed information from lower level, detailed models 

of more restricted parts of the system. This notion of hierarchy is based on 

information flow and representation. 

Using this framework, Zeigler went on to develop the DEVS formalism, described 

below. This framework was also a major influence on the work of he SIMMER 

Alvey project [41, 42, 7 1 ] and the IMSE ESPRIT II project [75]. 

2.6.2 Formalising simulation models 

The use of simulation models poses problems in formal understanding of their 

behaviour at all steps in their use. Firstly, during model construction it may be 

desirable to use pre-existing component sub-models and to simplify the behaviour of 

sub-systems while preserving behavioural properties. Secondly, at the stage of 

verification it is important to establish that the model being used reproduces the 

expected behaviour of the system being modelled. Then at the stage of validation, it 

is important to understand the context within which the model is expected to behave 

in the required way and to quantify its behaviour. Finally at the stage of model 

solution, it is important to be able to simplify and re-use sub-models without loss of 

important aspects of behaviour. 
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DEVS 

The Discrete Event System Specification formalism is a framework for describing 

simulation models, consistent with Zeigler's multi-faceted modelling approach [96]. 

Within it a model is defined by the structure: 

M = <X, 5, Y, öj,, ext' , > 

Where: 

X 	is the set of external input event types; 

S 	is the sequential state set; 

Y 	is the set of output events controlled by M; 

dint 	is the internal transition function defining state transitions due to 

internal events; 

ext 	is the external transition function defining state transitions due to 

input events; 

is the output function; 

is the time advance function. 

DEVS recognises two types of model, atomic and coupled. An atomic model is 

complete and does not depend on any other models for its execution. A coupled 

model is connected to other models via input and output events. Models are defined 

to be closed under coupling, so that from an external viewpoint there is no difference 

between these two categories. A model is defined through its input and output 

interfaces. 

Thus DEVS supports an hierarchical modelling concept, based on information flow. 

This is rather different from the view of hierarchical modelling that is developed in 

this dissertation, since the notion of coupling used will be in terms strictly of process 

interactions, which implies the type of the source of inputs. In fact it is possible that 

the two approaches may be complementary. 

Implementations of DEVS have been made in Scheme [48] and CLOS [91]. Case 

studies include [46, 45]. It has been applied to continuous systems modelling in [28]. 
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Simulation nets 

Simulation nets are, apart from some work with Petri nets discussed below, the most 

closely related formalism to that presented in this dissertation and produces some 

comparable results in [89] and [109]. Like the present work, the approach is to try to 

identify behavioural properties of simulations from the formalism. 

In Schruben's original paper the concept of simulation nets is explained using a 

diagrammatic representation. Models consist of annotated directed graphs, where the 

vertices correspond to events and the edges correspond to the influence of an event 

on other possible events. This influence can be to schedule an event after a delay, 

subject to a condition, or to cancel an event after a delay, subject to a condition. The 

example in figure 2.7 represented the simple harbour model as a simulation net. 

Using Schruben's event reduction rules, the events end docking and start 

unloading have been combined. This corresponds to the fact that a release of a 

resource can never be blocking. 

In their later paper Yucesan and Schruben investigate further the use of simulation 

nets to express behavioural properties of models. They focus on the structure of the 

nets in what they now call Simulation Graph Models. This uses graph isomorphism 

and has no idea of observation equivalence or bisimulation. 

This later work introduces the notion of parameterised vertices and edges. Each 

vertex is allowed to have a set of state variables which are bound to a set of 

corresponding expressions associated with an incoming edge. In the usual graph 

theoretic notation, simulation graphs are defined. A graph G, as a triple of (V(G), 

E(G), TG), where V(G) is the set of vertices, E(G) is the set of edges and TG  is the 

incidence function associating each edge with an ordered pair of vertices. A 

simulation graph is a quadruple of (V(G), E(G), E(G), 'PG), where the edges are 

divided into scheduling and cancelling ones. 
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The annotation of such nets consists of: 

STATES —* STATES I v 	V(G) I, 
the set of state transition functions; 

C = 	{ Ce  : STATES - {O,1} 	I e e E5(G) U Ec(G) }, 
the set of edge conditions; 

T = 	{te 	: STATES > 	 I e E E5(G) }, 
the set of edge delay times; 

F 	{Ye : STATES 	 I e E E(G) }, 
the set of event execution priorities. 

Using results from Schruben's earlier paper, which are formalised and revised, 

notions of equivalence under expansion and of equivalence through isomorphism are 

developed. 

For figure 2.7 above these have the following values: 

F = 
	

I fi  I i=O..7 } 	={ 	Jetties :=2,Tugs =3, in := 1; 
ia := ia+l; Jetties := Jetties - 1; 
Tugs := Tugs - 2; 
Tugs := Tugs + 2; 
no change; 
Tugs := Tugs - 1; 
Tugs := Tugs + 1, Jetties := Jetties + 1 

C 	 { CI,; C2,3;  C5,6 1 	= { 	Tugs>=2; Jetties>=l; Tugs>=l 	} 
1 	= 	{ ti,i; t3,4;  t4,5;  t6,7 } 	= { 	tai-rive; tdOCk; tunload  tdepart 
F 	= 	{ ) i; yi,i; 	,2; 	,3; 	,4; 	,5; ),6; 76,7 } = 1 1, 1, 1, 1, 4, 1,2,3 } 

In [89] rules 1 and 2 of event graph analysis are of no relevance to the work of this 

dissertation. However, in section 3.3, rule 3 states that: Event scheduling priorities 

are required when the intersection of the state variable sets of two vertices is non-

empty. 

Events 2, 4, 6 and 7 require relative event scheduling priorities since these events 

share the state variable Tugs. Events 3 and 7 share variable Jetties. We choose to 

give higher priorities based on quantities released to resources and to closeness of 

subsequent release after acquires. 
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The model presented in figure 2.7 is fully detailed and can be simplified by the event 

reduction rules in section 4 of [109], which formalise and correct those in [89]. 

Rule 4a: Equivalent SGNs are possible with and without an event vertex k, if vertex 

k has no conditional exiting edges and if all edges entering vertex k have zero 

delay times. If rule 4a applies vertex k may be combined with the originating 

vertices of its entering edges. State variable changes are added to those in these 

preceding vertices. k must have a higher scheduling priority than any of these 

preceding vertices. 

Rule 4b: Equivalent SGNs are possible with and without an event vertex k, if vertex 

k has no conditional exiting edges and if there are no state variable changes 

associated with it. 

Rule 4c: Equivalent SGNs are possible with and without an event vertex k, if vertex 

k has no conditional exiting edges and if all edges exiting vertex k have zero 

delay times. If rule 4c applies vertex k may be combined with the termination 

event vertices of its exiting edges. State variable changes in k are added to those 

in the succeeding vertices. k must have a lower scheduling priority than any of 

these preceding vertices. 

Rule 5: 1ff i< = øfor all interior vertices k of an unconditional event tree, then only 

the leaf vertices of the tree need be included in a simulation graph. 

Rule 4a allows us to remove vertices 3 and 6 in the harbour model, giving the 

revised model in figure 2.14 below. 

2.14: Simplified simulation graph of the harbour model 

Q tiock 	OA- tunloadf 	tdepartOO 
0) (! 

[in] 	t[]a] 	 fib] 	 [id] 	 [ie] 

Rules 4b, 4c and 5 cannot be applied in this model and so no further event reduction 

is possible. 
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If the model is modified to allow potential deadlock, by reversing the order of 

vertices 1 and 2 in the original, Schruben's rule 3 correctly identifies a possible 

problem, but does not show exactly what form it might take. In assigning the event 

scheduling priorities the modeller has to be alert to resolving deadlocks along with a 

number of other so called simultaneous event problems. 

In Chapter 6 the use of Schruben and Yucesan's notions of equivalence is discussed 

further and compared with the approach developed in this dissertation. In general 

they are less powerful, since they require a stronger notion of equivalence than the 

observation equivalence used by CCS. 

Petri nets 

As discussed above, Petri nets offer a powerful, but verbose, graphical formalism for 

the description of systems, especially those with genuine concurrent behaviour. Prior 

to their extension for performance modelling, culminating in GSPNs and DSPNs, 

they were used for structural analysis of systems, to determine possible deadlocks, 

livelocks etc. This is very close to the efforts made in this dissertation with respect to 

process algebras. Most tools built for Petri net modelling incorporate algorithms for 

detection of deadlocks, traps and invariants. 

When the use of Petri nets for describing simulation models was introduced, it was 

quickly realised that these properties could be useful. It was also realised that it 

might be possible to eliminate redundant states and to ensure coverage of the state 

space. This depends on the generation of the reachability graph, which enumerates 

all states, as combinations of numbers of tokens in places (markings), and the 

possible transitions between pairs of states. 

A major weakness of Petri nets is their lack of compositionality, so that it is very 

difficult to identify equivalent states or sub-nets. When sub-nets are combined, there 

is no guarantee that properties of the sub-nets will be preserved. The reachability 

graph depends on both the structure of the net and on the initial marking of the net. 

2.7 Process algebras 

Process algebras have been developed for similar purposes to Petri nets, i.e. as a 

means of representing the behaviour of concurrent systems with communication 

between components. The two best known examples are probably Hoare's 
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Communicating Sequential Processes (CSP) [38] and Miler's Calculus of 

Communicating Systems (CCS) [58]. 

Compared to Petri nets, process algebras are algebraic rather than graphical, allow 

preservation of properties of components when composing larger models from 

components and, often, use an interleaving semantic model rather than a fully 

concurrent one. While the first of these may seem to argue against them for the 

purposes of this dissertation, the other two make them extremely likely candidates 

for representing discrete event simulation models. The lack of a widely used 

graphical notation is not seen as important, since it proves relatively straightforward 

to generate the algebraic form from the graphical notation for process based 

simulation given in Chapter 4. 

2.7.1 CCS 

The Calculus of Communicating Systems forms the core of the formal semantics for 

process based simulation developed in Chapter 3. It was created to model the 

behaviour of systems which can be described in terms of communicating agents. 

Consider first the basic calculus [58]. This contains the following primitives for 

defining agents, which will be used in later chapters: 

sequential composition a.B after action a the agent becomes a B 

parallel composition A 1B agents A and B proceed in parallel 

choice A +B the agent behaves as either A or B, 
but not both, depending on which acts 

first 

restriction A \ M the set of labels M is hidden from 
outside agents 

relabelling A[a1 /a0 ,..] in this agent label a1  is renamed a0  

the null agent 0 this agent cannot act (deadlock) 

the divergent agent I this agent can cycle indefinitely and 
unobservably 

Here identifiers starting with lower case letters denote labels which represent 

complementary action pairs, where the use of a label with, E, and without, c, an 
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overbar distinguishes two halves (output and input) of an action, both of which must 

be possible before it can proceed. Identifiers which begin with an upper case letter 

define agents. Agents are constructed from the forms given above. 

Symbolic names for agents are defined using the infix binding symbol, 	Le f- 

In the Concurrency Workbench this operator is replaced by the prefix operator bi. 

Thus the equations 

A 	def 	b.0 

and 

bi 	A 	b.0 

are equivalent in the two forms. 

CCS uses a notion of observation equivalence, which depends on the assumption 

that two agents are equivalent if any differences in their behaviours cannot be 

distinguished by an observer. Where two agents containing the two sides of a 

complementary action are combined in parallel, the resulting agent may hide the 

action and regard it as internal. CCS calls such internal actions 'rs. Under many 

circumstances such internal actions have no effect on the observable behaviour of 

agents and so may be ignored. This is not always so, however, notably when avis the 

prefixing action of one half of a choice. 

CCS is essentially a labelled transition system, where each combination of agents 

can be thought of as one state and each communication action labels the transition 

between one state and its successor, in a similar way to markings in Petri net 

defining states. The semantics of CCS are defined using Plotkin style operational 

semantics expressed as inference rules on labelled transitions. 
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Transitions are of the forms: 

A tugAcq2 	 B 

A simple transition, where A engages in one side of the action 

tugAcq2  and evolves into agent B. Instead of a single action, a 

sequence of actions can be used to label such a transition. 

A tugAcq2 	 B = 

A transition which abstracts from silent actions. Thus, any number of 

ts can be allowed to precede and succeed tugAcq2. Where the label is 

a sequence this generalises the abstraction accordingly. 

By using the notion of bisimulation as its basis of equivalence, CCS is able to detect 

equivalence for a wider class of models than the use of isomorphism would permit. 

It is also inherently compositional, allowing bisimulation results proved for 

components to be preserved by its combinators and so reducing the effort of proving 

properties of larger models constructed in this way. This will prove vital in 

establishing the semantics of hierarchical models in Chapter 3. 

Deadlock occurs if none of the outstanding actions at a certain point is matched by 

its complement in another agent with which it is composed in parallel. In strict 

terms, this also requires the action to be restricted from outside the system, otherwise 

an undefined agent might still activate it. 

2.7.2 Temporal CCS 

Temporal CCS [98,60] is an extension to Milner's basic CCS, which allows both 

explicit delays and wait for synchronisation (asynchronous waiting), in a manner 

superficially strikingly similar to DEMOS. It adds the primitives: 

fixed time delay 	 (t) 

wait for synchronisation 	6 

non-temporal deadlock 

The deadlock now extends to cover situations where time cannot pass, since all 

parallel components must be ready to advance time for it to move on. Put another 

way, if there are components composed in parallel where some have as their current 
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action an unsatisfied complementary action, and other agents have a time delay, the 

system is in temporal deadlock. Non-temporal deadlock allows indefinite idling, i.e. 

all processes are able to wait indefinitely for actions which cannot happen and so 

they cannot evolve. 

The wait for delay is sometimes written by underlining the next action. In the 

Concurrency workbench it is written as a $ symbol preceding the next action. 

2.7.3 Synchronous CCS (SCCS) 

An earlier variant of CCS is Synchronous CCS (SCCS) [58].  This offers greater 

realism in describing synchronisation of genuinely concurrent systems, but is not 

really suited to the purposes of this work. In this dissertation the problem is to 

represent the interleaving behaviour of a simulation language, not the behaviour of 

the systems it models. As will be seen in Chapter 6, there are real problems in using 

a sequential language to model truly concurrent behaviour, but this is not addressed 

by pretending that the language is genuinely parallel. 

2.7.4 Concurrency workbench 

The Concurrency Workbench (CWB) [20,61] is a tool that automates the checking 

of assertions about CCS models in order to establish properties the systems they 

describe. It supports the basic calculus, the temporal extension to this and the 

synchronous variant. The CWB allows testing of expressions in the modal ji-

calculus, which is a process logic (see 2.8.2 below). 

The CWB is used in Chapters 3 and 6 to evaluate the possibility of automating some 

kinds of reasoning about process based models. The possibility of generating CCS 

models suitable for use with the CWB automatically from activity diagrams, along 

with their DEMOS equivalents, is described in Chapter 5. 

2.7.5 Stochastic extensions to CCS 

A number of attempts have been made to add stochastic behaviour to CCS, or to 

similar algebras, including Jou and Smolka [47], Larsen and Skou [53] and Tofts 

[99]. Some of these have been concerned with un-timed behaviour, where choices 

have branching probabilities or weights attached to them. This sort of model can be 

used to think about reliability and limited notions of timing. In some cases the notion 
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of bisimulation is made into a probabilistic concept, such that two systems are 

bisimilar if the probability of different behaviour is less than some defined threshold. 

TIPP [31] and PEPA [37,30] are examples of CCS influenced process algebras 

defined with the express purpose of representing models solvable for performance 

measures. Thus they both allow stochastic behaviour in terms of both times and 

branching probabilities. These calculi are designed for numerical solution of models, 

in the same way that GSPNs and DSPNs have been developed. They are obviously 

capable of being simulated and may be of some help in answering some of the open 

issues of this dissertation. 

2.7.6 Other work using process algebras to express simulation 
semantics 

Three other pieces of work have been reported where process algebras have been 

used to express properties of discrete event simulation models. 

Strulo [96] defined a version of CCS whose semantics described Generalised Semi-

Markov Processes. It is known that it is possible to use GSMPs to describe many 

simulation models and so the claim was made that this calculus could be used to 

formalise real simulation languages. Although Strulo relates some of his results to 

systems like DEMOS, the end result is still totally theoretical and he never solves or 

executes any models derived from his descriptions. Nor does he show that useful 

behavioural properties can be derived. 

In an unpublished technical report [100], Tofts used the Synchronous Calculus of 

Communicating Systems (SCCS) to explore some of the basic mechanisms of 

DEMOS. Although this work duplicates some of that presented here, it post-dates it 

and covers a restricted part of the problem, with assumptions about the behaviour of 

DEMOS which are not always valid. This and Strulo's work assume that the 

problem is to examine the world that simulation models purport to represent, rather 

than the capabilities of a simulation language. 

Work presented by the author in a joint paper with Tofts and Birtwistle [16] offers a 

partial representation of non-hierarchic process based simulation behaviour using 

basic CCS. This was published jointly in recognition of the independent realisation 

by the three authors of the possibilities of the approach. Again the work covers only 
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a part of what is presented here, assuming an idealised sub-set of the facilities in 

DEMOS. 

2.8 Process logics 

If process algebras represent a useful way of describing models, with a formally 

defined semantics, it is natural to use a corresponding process logic to frame 

properties and queries concerning these models. Although the Concurrency 

Workbench, for instance, allows simple properties, such as the presence of deadlock, 

to be queried directly, it needs a suitable logic to express more specific properties 

and questions. Formally such logics are known as modal logics and express 

assertions about changing state. Such logics are not confined to reasoning about 

CCS. They apply generally to labelled transition systems. 

There is an appealingly simple modal logic, known as Hennesy-Milner logic [32], 

for expressing assertions about the immediate possibilities for a model. There is also 

an extended modal logic, with fixed point operators allowing the expression of 

recursive definitions, known as the modal -calculus. Within the CWB, the modal p-

calculus [95] is used for this purpose. 

2.8.1 Hennesy-Milner logic 

The description here follows the outline of Miler's presentation in [58]. 

Consider the simple system 

S1 	 a.S2  

Lef 	a.S3  

S3 	Lef 	b.S3 

Using Hennesy-Milner logic it is possible to assert properties of a system's states, 

using the following operators: 

satisfaction 1= - the agent on the left hand side of the operator satisfies the 

formula on its right hand side. 
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possibility <> e.g. it is possible to make an a move both from S1  and from S2. 

These are expressed respectively as: 

S1 	<a> true 

and 	 S2 	<a> true 

The state true implies unconditional satisfaction. It is shorthand for the empty 

conjunction, 

AF. 
iø 

non-satisfaction It e.g. S3 cannot make an a move, i.e. 

S3 	OF 	<a> true 

which means 	S3 	1= 	—,<a> true 

It is possible to distinguish between S1  and S2 if from S1  if it is possible to make one 

a move followed by another, but not to do this from S2. This is expressed as: 

Si 	1= <a> <a> true 

and 	S2 	1k <a> <a> true 

necessity [a] - the dual operator to <a>. If: 

Si 	1= 	[a] 17  

then by performing the move a, Si must always reach a state where F holds. 

<a> requires at least one of its currently possible a moves to reach the following 

state; [a] requires all of its currently possible a moves to reach the following state. 

Some useful extra notation: 

- 	 stands for all actions; 

—k,l,m 	stands for all actions except k,l,m; 

<a,b,c>S 	is short for 	<a> S v<b> S v<c> S; 

and 	[a,b,c]S 	is short for 	[a] S A [b] S A [c] S. 

There are also weak forms of the possibility and necessity operators, which disregard 

any 'rs: 
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weak possibility <<a>> 

Weak possibility can be defined as follows: 

E 	 iff 	3FE{E'IEE'}.FI= 

I.e. E can silently evolve into a process satisfying 1. Hence: 

E <<a>4 

weak necessity I[aJJ 

Weak necessity can be defined as follows: 

E 	1JcI 	iff 	VFE{E'IEE'}.FI= 

I.e. E cannot silently evolve into a process failing t. Hence: 

E 1= E[a]? 	 [a]I[P1 

Here are some common uses of Hennesy-Milner logic: 

E [a] F E cannot make an a move 

E <a> T E can make an a move 

E 	1= [-] F E is deadlocked 

E 	1= <-> T E can make a move of some sort 

E <-> T A [-a] F B can only make an a move 

2.8.2 The modal p-calculus 

Hennesy-Milner logic is good for asking questions one or two moves ahead, but 

cannot cope with recursive definitions. By adding just one construct - fixed point 

operators - to Hennesy-Milner logic, the result is the modal p-calculus. This is in 

effect a powerful temporal logic, allowing one to express notions of eventuality and 

invariance of states and actions. Although the modal -calculus is much more 

general than even a process logic, the discussion here is restricted to its use with 

ccS. 

More complete, fairly readable accounts of the modal i-calculus can be found in 

Stirling [95] and Aldwinckle, Nagarajan and Birtwistle [3].  A useful introduction to 

the representation of temporal logics in the modal ji-calculus is given in Dam [24]. 

A fixed point equation might have the form: 

Y 	 <a><b> Y 
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meaning that each state in Y has the property of being able to perform an a action 

followed by a b action and then reaching a state in the original set, Y. Once we have 

allowed such recursive definitions we can examine the properties of fixed point 

equations and find sets of states which satisfy them, within agents. Not all such 

equations have solutions, nor are their solutions guaranteed to be unique. However, a 

restriction that there must be an even number of negations prefixing a recursively 

defined variable in an equation guarantees that there must be at least one solution. 

Formally, this property defines that the equation is monotonic. 

It is worth noting that a property with respect to a model defines the set of states 

where that property holds, i.e. the property and the set of states are different ways of 

expressing the same thing. 

There are two very important fixed point operators, defining the maximum and 

minimum fixed points of a recursive equation. The maximum fixed point is related to 

the fact that the union of any two solutions to a fixed point equation is a subset of a 

further solution. This superset is the closure under deduction of the union of the two 

initial sets. The maximum fixed point of an equation is the closure under deduction 

of the union of all fixed points of that equation, i.e. it contains every state which can 

form part of a solution. The minimum fixed point is related to the fact that the 

intersection of any pair of solutions contains a solution. Thus the minimum fixed 

point of an equation is the smallest solution to that equation and is a subset of the 

intersection of all fixed points. It contains only those states guaranteed to be in every 

solution. It is often the empty set. 

Whilst it is not always obvious how to interpret fixed point modal formulae, the 

general idea is that a maximum fixed point expresses some property which always 

holds (an invariant), while a minimum fixed point expresses a property which will 

eventually hold. When verifying systems maximum fixed points are useful for 

expressing safety properties and minimum fixed points for expressing liveness 

properties. 
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Some examples yield to intuition. For example, following [3]: 

Y 	 (<x>Tv[-]Y) 

has a minimum fixed point which can be read as saying that it is possible to perform 

an x action or all actions lead to a situation where it is eventually possible to do so. 

The maximum fixed point of the same equation denotes the set of all states. 

As another example, the equation: 

Y 	Lef 	(<x>T v 

has a minimum fixed point meaning that it is possible to perform an x or there is a 

derivative leading to such a possibility. Its maximum fixed point denotes all states 

capable of an x action or of performing some infinite sequence of actions. 

Notation for fixed points 

The least fixed point is conventionally written in the form: 

LLZ.<a>Z 

meaning the least fixed point solution of 

z 	 <a>Z 

Similarly 

VZ<a>Z 

is the maximum fixed point solution of the same equation. 

Within the concurrency workbench, these are expressed as 

min(Z.<a>Z) and max(Z.<a>Z), respectively. 
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The workbench also uses & for the logical connective and, A, and I for the logical 

connective or, v. 

Some useful intuitive interpretations 

The modal si-calculus can be used to express many more conventional temporal logic 

operations. Since these tend to be more intuitive, Birtwistle has defined some within 

the Concurrency Workbench, using macro definition capabilities which support such 

definitions. Some examples follow. 

Box, Weak Until and Strong Until are taken from the Concurrency Workbench 

technical note [61], others are based on examples in [3] and in [95]. 

Box: S Box cP or 	S 

is true if 1 holds in each state reachable from S. 

E.g. the test for whether S can deadlock is simply S I= BOX <-> true 

(we ask of each state reachable from S "can you make a move?"). 

max(X.P & [-]X) 

is the branching time temporal logic operator which says that P holds of an agent 

and continues to hold recursively for all derivations. 

WeakUntil: 	S 1= WeakUntil 1 0 

is true if ct holds for all derivations until a state is reached where 0 holds. This is 

weak, since 0 need never hold for the property to be true. 

It can be written in the concurrency workbench as: 

max(X.Q I (P & [-]X)) 
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StrongUntil: 	S 1= StrongUntil ct e 
is true if cP holds for all derivations until a state is reached where e holds. This is 

strong, since e must eventually hold for the property to be true. 

It can be written in the concurrency workbench as: 

min(XQ I (P & [-]X I <->T)) 

Poss: 	S 1= Poss cP 

is true if S or (at least) one state reachable from S satisfies 5. 

It can be written in the concurrency workbench as: 

min(Y.P I 

Event: 	S Event 0 

is true if i holds for (at least) one state on each and every 

path from S. 

It can be written in the concurrency workbench as: 

min(Y.P I (<->T & [-]Y)) 

Can: S I= Can P 

is true if ct holds along at least one path from S. 

It can be written in the concurrency workbench as: 

min(Y.P I 

Loop: 	SzLoop 

is true if there is an unending path of 1 states from S. 

E.g. POSS(LOOP <'r>true) is a test for livelock. 

It can be written in the concurrency workbench as: 

max(Y.P & (<->Y)) 



Chapter 2: 	Background and Previous Work 
	

51 

Must: 	S F= Must  

is true if the only move that S can make is a p move. 

It can be written in the concurrency workbench as: 

[-p]F 

Nec: Sl= NEC pq 

is true if, however the system evolves, we cannot do a q until 

after a  

It can be written in the concurrency workbench as: 

max(X.(<p>T I [-]X) & [q]F) 

This is based on the weak until operator above, substituting the inability to 

perform a q for Q and the necessity of performing of a p for P. This could also be 

expressed in the corresponding strong form if required. 

Cycle,,: 	S 1= Cycle P1 ... Pn 

is only true if, however the system evolves from 5, P1 -< P2 

- 	p n -< P1 ... 	 where -< reads must come before. This is a 

useful test to check that agents 	maintain their integrity and 

perform actions in the expected sequence no 	matter what the 

rest of the system does. 
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Following [3] and using these operators on a system SYS2  

Ui n1 .gT.sc1 .ec1 .pT.U1  

U2 	def n2.gT.sc2.ec2.pT.U2 

Sem gT .pT.Sern 

SYS2 def  (U 1 IU2 ISem)\{gT,pT} 

the Workbench can check such assertions as: 

SYS2 	BOX [sc1 ] (NEC ec1  SC  ANEC ec1  sc2) 

i.e. after U1  enters its critical section BOX[sc1 ] (i.e. from every state in which an Scj 

action is possible, do it and then) it must exit its critical section cc 1  before re-

entering its critical section via Sc1  or before U2  is permitted access to its own critical 

section via sc2. 



Chapter 3 

Defining simulation behaviour formally 

3.1 Introduction 

This chapter begins by defining carefully the concept of process interaction based 

simulation in English. It then defines it in terms of Miler's Calculus of 

Communicating Systems (CCS) [58] and shows that this is helpful in understanding 

the true behaviour of simulation packages, of models written using them and of the 

components in such models. 

It then develops some requirements for modifications to the DEMOS package for 

completeness and to make it easier to understand the behaviour of models written 

using it. This analysis is used in defining the vocabulary of the graphical notation in 

Chapter 4. These are developed further in Chapter 5, where the modified package is 

implemented in terms of the graphical formalisms of Chapter 4. 

3.2 Process interaction 

Although the process view of simulation has a long history, its precise meaning has 

remained loosely defined. Even the most complete statement [27] is informal and 

based on a particular implementation. This chapter aims at providing a rigorous 

definition of such a view. Process interaction models systems at two levels. The 

basic level describes autonomous objects in terms of their behaviour. This can be 

represented as a finite state machine, a life history, an algorithm etc. Such objects are 

sequential processes in CSP [38] or agents in CCS. The higher level defines the 

behaviour of a system in terms of instances of such autonomous objects and of their 

interactions. The types of interaction allowed vary, but all are of two basic sorts, 

scheduling and waiting. Interaction mechanisms will be seen to be pairs of such 

interactions, linked by an object such as a resource or a queue. 
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In this dissertation a set of interaction mechanisms is used which relates closely to 

those supported in DEMOS [13], but other possibilities exist, such as SLAM 

[82,94], which are consistent with it. In this section these are defined from the 

perspective of a simulation language. 

3.2.1 Interaction of processes 

This section discusses the construction of processes and systems from components 

and sub-systems. It assumes that basic processes are defined in the general sense 

used above. For the purposes of hierarchical modelling all that we need to know is 

that in a sequential process the behaviour of an autonomous part of the system has 

been defined and that all points at which it interacts with other processes are visible. 

An interaction may actually become internal when an instance of a process is 

generated, if no other process shares in it, e.g.. a resource may be unshared in a 

particular model and can be disregarded. 

A process type is the definition from which process instances are generated. It 

defines the behaviour, variables and interactions (through defined synchronisation 

mechanisms) of any instance. It does not define the current state of a particular 

instance of this type. Nor does it specify with which other process types or instances 

any particular instance of this type interacts. The state variables in a process type 

implicitly include a local sequence counter, which records the point in its execution 

that an instance generated from a type has reached. 

Any process instance is derived from a process type by giving values for its current 

state and the synchronisation objects through which it shares interactions. The state 

of a process is the point it has currently reached in its behaviour (as defined by its 

local sequence counter) and the values of any explicit internal variables it possesses. 

Each interaction within a particular process type is associated, in any instance of that 

type: 

with one or more potential states which enable that interaction, 

with a synchronisation object through which it is shared, 

with zero or more processes with which it is shared. 

In addition each interaction is of one of the classes defined below. Any particular 

interaction may involve one or more formal parameters, whose actual levels can be 
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constant, functions of local or of global state variables, functions of parameters of 

the enclosing process or functions of parameters of the environment. In practice it is 

sensible to restrict them to being constant or locally defined. 

To create an intuitively well defined way of modelling, it seems sensible to make it 

match the construction of real systems. In a real world system, each visible 

interaction of a particular component is shared with at least one other component 

capable of joining in that type of interaction. When combining components to form 

complete systems or larger components, all such interactions are matched and, as 

appropriate, used to connect components. If a combination forms a new, compound 

component (subsystem) there may still be some unmatched or partially matched 

interactions. If all required connections have been made, there is a complete system. 

This includes its working environment, which can be viewed as a component 

matching any internally unsatisfied interactions. The complete system can now begin 

operation. 

In process based modelling, the composition of sub-models and models from 

component instances takes place in the same way. Instances of modelled processes 

are combined by matching interactions until no unsatisfied interactions remain, 

giving a potentially executable model. At any level, state variables may be 

introduced into the model. These include, explicitly or implicitly, references to other 

component process instances at that level. Such variables are regarded as enclosed 

by the textual scope of the sub-model or model in which they are introduced. Access 

to them from outside that scope, other than for monitoring and statistical collection, 

is restricted to instantiation via formal parameters of the component where they are 

introduced or to internal actions of that component. Every variable must have a 

defined initial value which is a constant or a function of the parameters of that 

component. Once appropriate arguments and initial values for internal variables are 

supplied, both the model and its environment are complete and ready for execution. 

If some values are left free, there is a complete, but parameterised, model, suitable 

for use in multiple executions within an experiment. 

In fact it is not always the case that all process instances are defined in a "complete" 

model. Often the number of identical processes entering into an interaction is left 

"free" as a parameter of the final model. This may also be the case where chains and 

rings of linked components are defined within the structure of the model. Such 
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models are incomplete in the sense used here and the parameterisation of these 

models is on two levels; one completes its structural definition and the other defines 

the environment for its execution. 

3.2.3 Hierarchies of Processes 

Leaving aside the definition of internal behaviours for the moment, assume that a 

process is a black box with the required properties and only its interactions visible. 

The definition of a model introduced above says that all interactions must be 

correctly satisfied for it to be complete. What then of a collection of process 

instances with some interactions matched and some still unconnected? Such a group 

is made into a composite object, hiding the individual processes and any interactions 

among them which are completely satisfied, so long as those which are unsatisfied 

remain visible. The result can itself be regarded as a process. In Chapter 4 this will 

form the basis of the hierarchical extension to activity diagrams, called configuration 

diagrams. 

The term compound process is introduced for such a composite and the term atomic 

process for underlying simple processes. Note that, while compound processes can 

be formed from any collection of processes in a model, in practice it is most useful 

to reflect some structure of the system being modelled, since it is unhelpful that 

disjoint sets of processes be included in one compound process or that closely 

coupled sets be split. This views a model as a tree of process instances, with a 

complete model as the root and atomic models as the leaves. Since the starting point 

in this composition of processes is any collection of processes and the outcome is a 

process, it is recursive and, by induction, it works for any number of levels. 

Figure 3.1 shows the structure of the X.25 model reported in [69]. This model is 

used again as an example of graphical modelling in Chapter 4. The Node process 

represents a complete wide area network node, which connects users to the physical 

network and maintains virtual circuits. The two components of a Node are a DCE 

and a DTE, which are responsible for the interface to the network and to the users. 

Each of these contains in turn a PINP (Packet Input Process), a POUTP (Packet 

Output Process) and a PAD (Packet As sembler/Dis assembler). Nodes, DCEs and 

DTEs are compound processes. PINPs, POUTPs and PADs are atomic processes. 
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3.1: Process hierarchy in an X.25 model 

Node 

	

DCE 	 DTE 

I 
PINP / PAD PINP / PAD 

	

POUTP 	 POUTP 

3.3 Sequential process behaviour 

The question remaining is how to define the basic sequential behaviours of atomic 

processes. In previous work on DEMOS hierarchies [72,73,78,79] it was assumed 

that the lowest level processes were those defined by the flow of control aspects in 

activity diagrams (described loosely in Chapter 2). This gives a rule, in terms of that 

graphical formalism, that an atomic process is a start/end pair and all nodes 

connected to them by flow of control links. As a corollary, a flow of control link 

may not leave a process. Here, this definition is preserved, but the decomposition 

rules are extended, by noting that any decision to make a process atomic is arbitrary 

and involves an abstraction of the real system and an aggregation of underlying real 

world processes behaviour. This point is especially important when trying to 

simplify models for more efficient solution. 

3.3.1 Decomposition and Composition of Processes 

A rule is introduced that atomic processes can be further decomposed in two ways: 

one of which merely results in finer division of their behaviour, the other in more 

detailed modelling. The second is dependent on the first and allows aggregation to 

be seen in its correct place in process based simulation. Both are independent of the 

particular formalism used to describe models, but here the conventions of activity 

diagrams are used for their convenience. 

3.3.2 Breaking Down Sequential Behaviour 

The introduction of this concept removes the distinction between sequential 

behaviour (flow of control) and synchronisation (interaction). Flow of control within 

a process can be represented as scheduling between two new processes. To see this 

consider two cases. 
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Case one. 

The first example in Figure 3.2 is a simple acyclic process, shown as an extended 

activity diagram consisting of a start node, a hold and an end node. This can be 

decomposed in general terms into two processes of the following pattern: 

Process one: this has a start node, followed by a hold, followed by a 

schedule synchronisation sent to Process two, followed by an end node. 

Process two: this has a start node, which receives the scheduling 

synchronisation from Process one, followed by a hold, followed by an end node. 

Note that the original delay in the process being decomposed is split amongst the 

delay in Process ones hold, the scheduling delay between Process one and Process 

two and the delay in the hold in Process two. In theory any of these might be zero 

and zero delays can be eliminated. If the times were described by stochastic delay 

variables, their division into component delays would require an understanding of 

the behaviour of the new components and of probability theory. This problem is not 

considered here. 

Figure 3.2: Simple sequential decomposition 

Process 2 

Process 0 	 Process 1 

Schedule 

Case two. 

The second example extends the principle to model loops in the original process. 

Now there is a process with a start node, followed by a begin-loop node, followed 

by a hold, followed by an end-loop node, followed by an end node. This represents 

a simple while loop. Its decomposition into two processes involves the substitution 
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of a second process for the implied return from the end-loop node. This leads to the 

following pair of processes: 

Process one: this has a start node, followed by an incoming scheduling 

synchronisation, followed by a decision node, whose outgoing links are in one 

case to an end-branch node and in the other to a hold, followed by a schedule 

going to Process two. 

Process two: this has a start node, followed by an incoming schedule from 

Process one, followed by a hold, followed by an outgoing schedule going to 

Process one. 

Note that here the original delay is spread across the hold in Process one, the hold in 
Process two and the two scheduling delays. Again this split is dependent on the way 

the system being described would break up the delay and any resulting zero delays 

can be eliminated 

Figure 3.3: Simple loop decomposition 

Process 0 	 Process 1 	 Process 2 

Schedule 

Schedule 

? _ I 	I 	I 	I 	Schedule 
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3.3.3 Delays and Aggregation 

The discussion so far has concentrated on purely structural and functional 

decomposition of process behaviour. What would be interesting now would be to 

bring in the notion of aggregation of performance measures. This could lead to 
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integration with hierarchical experimentation and hybrid model use in experiments 

and to possible hybrid modelling within a single tool, in a similar manner to HIT 

[8,10]. These ideas are not developed further in this dissertation, but it is important 

to note the link for future work. 

Essentially any model involves aggregation or simplification of time related 

behaviour. Wherever we use a simple delay, stochastic variable or formula, we 

choose not to model an underlying process dynamically. Thus a hold in DEMOS 

replaces a more detailed sub-model. Conversely, in a model one can replace a hold 

by a more detailed sub-component, using the sequential composition rules above. 

Reversing this process one can also replace a detailed part of a model with an 

estimate for its performance by identifying the sub-model as a process which 

synchronises in the appropriate way and replacing it with a hold. This is a necessary 

condition for aggregation. 

For aggregation to be sensible and meaningful, it must also respect the condition of 

separability, in the sense that the processes being aggregated into a hold must 

interact as little as possible with the rest of the model. Ideally there should be no 

synchronisations between the aggregated processes and the rest of the model, apart 

from the scheduling ones identified as allowing reduction to a hold, i.e. there should 

only be a pair of schedule synchronisations, one in each direction which correspond 

to the start and end of the hold. 

Formally this takes the work into the problems of stochastic modelling and 

specifically of lumpability, which are outside the scope of the present work. In 

practice it may be sufficient to believe that any other synchronisations are 

sufficiently infrequent or require so little of resources etc. that they can safely be 

ignored. Hillston's recent work with PEPA [37] shows that rules for aggregation can 

be related to equivalences in the algebraic definition of a model, which offers 

considerable promise for the approach developed in the rest of this dissertation. 

3.4 Formal semantics for process based simulation 

Having examined the concepts of process based simulation, the task is to define such 

ideas in a formal manner. The main concerns are to understand the behaviour of 

models and to reason about their properties, assuming component based modelling 

based on hierarchical composition. This requires the interaction among components 
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to be restricted to parameter passing and those mechanisms enabling synchronisation 

among interacting processes. Thus the first task is to find a suitable basis and the 

Calculus of Communicating Systems (CCS) [58] is here chosen. 

The view of systems as processes is widespread in computer science. Process 

algebras form a major technique of concurrency theory and CCS is one of the most 

significant process algebras to have emerged. Previous work, for instance by Hughes 

and students at the University of Trondheim [Hughes, personal communication], 

suggested that Petri nets provided a low level formalism for flat process interaction 

models. Unfortunately Petri nets are not easily used in hierarchical, compositional 

modelling and so they are rejected here. In the end CCS was found to offer 

straightforward mappings for some of the mechanisms and, since better local 

expertise was available for it, it was chosen for further work. This was reinforced by 

the extension of CCS in Temporal CCS (TCCS) [98,60], which opened the 

possibility of including time explicitly, at least in a restricted way. 

3.4.1 Modelling process interaction simulation primitives in CCS 

The benefits of defining a mapping between a simulation model and a process 

algebra are twofold. First, it allows proper semantics to be given for the language 

used in simulation models and so is a step in answering the question, "How far is the 

simulation model actually equivalent to the system it models?" This would be 

especially useful if the both simulation and process algebra models could be defined 

using the same formalism. 

Second, it is then possible to use the same notation for quantitative (performance or 

reliability) properties and functional (liveness, fairness etc.) properties. The 

desirability of this has been noted by several authors [26]. There may be limitations 

to the functional results that might be obtained through a given formalism, but the 

use of a higher level means of expressing them should encourage at least an effort in 

that direction. If such analysis can be mechanised, it becomes extremely attractive. 

Thus, the rest of this chapter adopts a process algebra approach to the problem of 

defining a proper semantics for process based discrete event simulation. A common 

framework based on the process view of models is constructed to represent 

hierarchical modelling as described above. This is developed into a graphical 

language in Chapter 4. A tool based on such a framework allows models to be built 
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as a single graphical description, which can then use various combinations of 

simulation and functional techniques to answer both performance questions (What is 

the throughput under a certain load?) and functional questions (Will the system 

deadlock under certain assumptions?). In chapter 5 such a tool is described, building 

on the work in the rest of this chapter and in Chapter 4. It is used for a number of 

case studies in Chapter 6. In particular this tool supports discrete event simulation of 

such models using a language based on DEMOS [13] and functional analysis based 

on CCS and its timed extension (TCCS) [98], exploiting where possible the 

automatic reasoning support of the Concurrency Workbench [20,61]. 

The existing DEMOS primitives are explored initially using CCS. It is, of course, 

not possible to prove any formal equivalence between DEMOS models and CCS 

ones generated from the same activity diagrams, as DEMOS has no formal 

semantics. In fact such a semantics is being defined in expressing these 

equivalences. It can be argued that this is reasonable with an appeal to intuition, but 

it is also possible to show whether execution of DEMOS models reproduces 

behaviour predicted by CCS equivalent models, such as deadlocking.' 

3.4.2 Active processes 

Representations of processes map directly onto Entity declarations in DEMOS and 

agent definitions in CCS. By using parallel composition of agents in CCS, it is 

possible to instantiate co-operating and competing processes within a model in the 

same way as use of new statements in DEMOS. Interactions must be modelled in 

CCS by complementary actions, shared with the active or passive object involved in 

the interaction. In DEMOS they are calls to procedures (methods) which are 

attributes of those objects. In CCS internal actions are either disregarded (in un-

timed models) or represented by delays matching DEMOS hold statements(in timed 

versions). Simple DEMOS sequences of actions are matched by the normal CCS 

prefixing of an agent with an action or a time delay. Termination, shown in DEMOS 

by the end of an Entity, is indicated in CCS by the non-temporal deadlock agent, 0, 

which performs no further actions but does not stop time passing. Figure 3.4 shows a 

simple example. 

1 Unfortunately, DEMOS itself is not entirely suited to our purposes, as we shall see, and we redefine it 
slightly to produce a new simulation package based more explicitly on processes for all interacting 
objects. The end result is a language known as modified DEMOS, which is described in more detail in 
Chapter 5. 
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Figure 3.4: A DEMOS sequential Entity and a corresponding TCCS agent 

Entity class Seq; 
begin 

Hammer.Acquire(l); 
Hold (3 
Harmner.Release(l); 

end; 

Seq 	harnmerAcq1  (3) hammerRel1  .Q 

Loops are represented by recursive agent definitions. Figure 3.5 shows a simple 

example of this. 

3.: 	A DEMOS repeatin2 Entity and a corresuondin 1CCS 

Entity class Seq; 
begin 

while True do 
begin 

Hammer.Acquire (1); 
Hold (3 
Harnmer.Release(1); 

end; 
end; 

I 	Seq 	hammerAcq 1  (3) hammerRel1  .Seq 	 I 

There is a slight difficulty in defining variables. These must be modelled as agents 

which evolve to states where they can provide a complementary action 

corresponding to their current value. It is clumsy, for instance, to provide a 

completely general agent which performs all the actions of an integer, but it is quite 

straightforward to define an assignment and a value return action, which can support 

those functions needed in a particular case. Figure 3.6 shows a local variable in an 

Entity which is updated by assignment, by addition and by multiplication. Note that 

the definition of Seq, the complete entity, forbids access to the assignment action, 

valAssk, to within Seq, by using the restriction operator (\). This enforces the scoping 

rules required for entities. Clearly the number of values, and so the number of states 

for Val, corresponds to the range of integer values and would require a huge and 

cumbersome expression unless the value passing version of CCS was used. For real 

numbers this would be worse. Thus only cases where the number of values which a 
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variable could take is fairly small could be handled by the Concurrency Workbench 

or a similar tool which generates the full state space for a model. 

Figure 3.6: DEMOS Entity using a local variable and corresponding TCCS 
agent 

Entity class Seq; 
begin 

integer Val; 
Val := 4; 
while True do 
begin 

Val 	Val + 2; 
Hold (3 
Val 	Val * 2; 

end; 
end; 

Seq1 	valAss4  .Seq2  

Seq2 	valGet. valAss 2  .Seq3  

Seq3 Lef 	(3)valGet. valAss2xm  .Seq2  

Vali 	Lef 	8. valGet1  .Va11 	+ 	valAss.Val 

Seq 	(Seq1  I ValO)\{valAssk, valGetk  : Minlnt <= k <= Maxlnt} 

With a way of modelling variables, it is now easy to model conditional execution, 

using choices guarded by value reading actions. There are other situations in which a 

condition may be testable, but the principle is always the same - find out some 

current state value and make a choice based on it. Figure 3.7 shows a simple case 

involving an integer variable. 
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i.I: A DEMOS Entity using a local variable in a conditional choice 

Entity class Seq; 
begin integer Val; 

Val := 4; 
while True do begin 

Val := Val + 2; 
Hold(3) 
if Val<lO then Val 	Val * 2 else Val 	4; 

end; 
end; 

Seq1 	vaiAss4  .Seq2  

Seq2 	valGet. valAss 2  

9 	 Maxlnt 

Seq3 	(3)valGetm.1 	
valAss 	+ 	valAss ' Seq2  

lm=MinInt 	 m=10 ) 

Va11 	aef 	8. valGet1  .Va11 	+ 	valAss.Vai 

Seq 	(Seq1  I Val0) \{ valAssk, valGetk  : Minlnt <= k <= Maxlnt} 

Conditional looping 

J.5: A DEMOS 	 a local variable in a conditional 

Entity class Seq; 
begin integer Val; 

Val 	4; 
while Val<lO do begin 

Val 	Val + 2; 
Hold(3) 

end; 
end; 

Seq1 	va/Ass4  .Seq2  

/ Maxlnt 
Seq2 	valGetm. 	

9 

 valAss2+m  (3)Seq2  + 10 
m=1O m=MinInt 

Va11 def . valGet1  .Va11 	+ 	valAss.Val 

Seq 	(Seq1  I Va!0) \{ valAssk, valGetk  : Minlnt <= k <= Maxlnt} 

Conditional loops are formed as a combination of conditionals and loops, as one 

would expect. Figure 3.8 shows this. 



Chapter 3: 	Defining Simulation Behaviour Formally 

Scheduling 

Initial scheduling of another process is parallel composition within the scheduling 

agent of the remainder of its activity with an agent representing the scheduled 

process, prefixed in TCCS by a fixed delay. Figure 3.9 shows this. 

and schedulin2 a new 3.9: A DEMOS 

Entity class Station; 
begin 

while True do 
begin 

new Packet Schedule (3 . 0) 
Hold(2.0) 

end; 
end; 

Entity class Packet; 
begin 
end; 

Station 	 ((3)Packet I (2)Station) 

Packet 

Scheduling of a passivated process is in general modelled as a complementary 

action, whose receipt unblocks the passivated process. In some contexts this will 

form part of a larger mechanism, particularly in the context of a Wait Queue. Figure 

3.10 shows the straightforward case of one process re-awakening another. Note that 

the scheduling is shown as a parallel composition of a_terminating process consisting 
of the delay as a prefix and an outgoing action (pSched here) with the remaining 

actions of the scheduling process. This allows the delays to be interpreted correctly. 

Note also that receipt of a scheduling message is prefixed by 8, but sending is not, as 

a passivated process may wait indefinitely long before being scheduled, but a 

scheduling process may only act on a currently passivated process. 
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Figure 3.10: A DEMOS Entity scheduling a passivated Entity 

Entity class Station; 
begin 

while True do 
begin 

P1. Schedule(3 .0); 
Hold (2 . 0) 

end; 
end; 

Entity class Packet; 
begin 

Pass ivate; 
end; 

ref (Packet) P1; 
P1:- new Packet("Pl"); 

Station 	 ((3) pSched . I (2)Station) 

Packet 	 .pSched . Q 

3.4.2 Passive objects 

Resources and other passive objects, which seem to correspond directly to those in 

DEMOS, are also modelled as agents, since CCS views all objects as active. (In 

Chapter 5 passive objects from DEMOS are shown re-implemented as subclasses of 

Entity to establish that this works.) By modelling resources as agents, blocking can 

be implemented for them. We now examine in turn the representation of the 

repertoire of process interaction synchronisation mechanisms. 

Shared resource pool 	- 	Res 

One obvious correspondence that holds in all the following mechanisms is that 

synchronisations which can block are formed by a communication, preceded by the 

indefinite wait () in TCCS. Figure 3.11 shows this in terms of elements of the 

example 3.5 of Birtwistle, which was used in Chapter 2 to compare graphical 

formalisms. 
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W. 

i.1I: 2 Demos Res obiects used by 1 
	

and 
	

TCCS 

entity class Ship_C; 
begin 

new Ship.Schedule(4); 
grab 2 tugs; 

Tugs.Acquire(2); 
and a jetty; 

Jetties .Acquire (1) 
Hold (3 

let the tugs go; 
Tugs.Release(2); 
Hold(l0) 
ready to leave; 

Tugs.Acquire(l); 
Hold (3 

clear of jetty; 
Jetties .Release (1) 
gone away; 

Tugs . Release (1) 
end-of-Ship; 

ref(Res) Jetties, Tugs; 

Ship :- new Ship_c(Shiph1);  
Tugs :- new Res("Tugs", 3); 
Jetties :- new Res("Jetties", 2); 

Boat 

. jAcqi .. tugAcq2  (Tdk). tugRel2  (Tud). tugAcq1  (Tdt). tugReli .& jReli . 

I (TAni valssamp le)Boat 

Tugs3 Lef 	6.((tugAcqi.Tugs2) + (tugAcq2.Tugs1 ) + (tugAcq3.Tugs0)) 

Tugs2  ö.((tugAcqi.Tugsi) + (tugAcq2.Tugso) + (tugReliTugs3)) 

Tugs1 Lef 	8.((tugAcq I .TugsO) + (tugReli .Tugs2) + (tugRel2.Tugs3)) 

Tugso ö. ( (tugReli 	) + (tugRel2. Tugs2) + (tugRel3  Tugs3)) 

Jetties2  ö.((jAcqi .Jetties 1 ) + (jAcq2.Jettieso)) 

Jetties  .((jAcqi.Jettieso) + (jReli.Jetties2)) 

Jetties0 def 	&((iReli.Jettiesi) + (jRel2.Jetties2)) 

Note that in the temporal calculus it is necessary to decide whether an action is 

allowed to block indefinitely or to have the effect of killing the process if it cannot 
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be satisfied immediately. All acquire actions by processes can lead to a process 

being blocked, awaiting freeing of a resource and so such actions are prefixed with 

the indefinite waiting action 5. On the other hand, releases should only be permitted 

in cases where there has already been a matching acquire, leaving the matching 

resource always ready to accept it. Therefore releases are not prefixed with 8. 

Resources must be able to wait indefinitely in all states and so all their actions are 

prefixed with 5. Thus Figure 3.12 defines a general model of a resource in TCCS. In 

the basic calculus, where all actions are instantaneous, no 6s are needed. 

3.12: General definition of a DEMOS Res in TCCS 

Limit 

Res0 	 6.resRelease1.Res 
i=1 

Limit-n 	 n 

Resn 	 resRelease .Res +  + 	resAcquire .Resni  
i=I 	 i=1 

Limit 

ResL jmit 	 6. resA cquire i 
i=1 
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Unbounded producer/consumer - 	Bin 

All texts on DEMOS use the Bin primitive to model producer/consumer 

relationships. The Bin relaxes the enforcement of a maximum amount that can be 

held in a shared pool and also removes the need for releases and acquires to match. 

An integer parameter now designates the initial amount of Widgets or whatever in 

the Bin when the model starts execution. This value determines the initial Bin agent 

to be composed in parallel with Model in the CCS version, i.e. a parameter value of 

n would mean using Widgets. Figure 3.13 uses an example from Birtwistle, p.  66. 

Figure 3.13: Demos Bin object used by two Entitys and their corresponding 
TCCS appnts 

Entity class Producer; 
begin 

while True do 
begin 

Hold (Make Time) 
Wid.Give(l); 

end; 
end; 

Entity class Consumer; 
begin 

while True do 
begin 

Wid.Take(l); 
Hold (Finish_Time) 

end; 
end; 
ref(Bin) 	Wid; 
Wid 	:- new Bin("Widgets" , 0) 

Producer (T ç ) widGive1  .Producer 

Consumer de f widTake 1  (TFIflISh) Consumer 

Wid0 def 
	ö.widGiveMIfl .WidMJfl 	+ 	 +... + 

.widGive 1  .Wid1  

Wid, ö.widGiveMIfll .WidMJfl 	+ 	... 	+ 

8.widTake 1  .Wid0  

WidMX/nl   5.widTakeMIfl .WidO 	+ 	... 	+ 

6.widTake 1  . Wjdmaxirti 
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3.14: (ienerat form ota IMn represented in 1CCS 

Maxint 
Widgetso 	Lef 	16.widGivei.Widgetsi  

i= 1 
Maxint-n 	 n 

Widgets 	def 
n 	 5. widGive. Widgets +1  + 	.widTake. Widgets = 

1=1 	 i=1 
Maxint 

WidgetsMaxint =def 	 .widTake1. Widgets x jj 

As a bin is unbounded, there is a different problem to that for representing a 

resource. The general form of the Widget bin would have to be given as a set of 

agents, one for each value from 1 to the practical upper limit to the capacity of a Bin, 

here written as Maxlnt. In theory it should be infinity. Whatever the effective upper 

limit of a Bin, there is an extremely large state space to represent. What is more, in 

every current level of occupation n, i is free to range over 1..n. It is, therefore, 

necessary to use the value passing calculus and great difficulties arise if it is 

desirable to resort to the Concurrency Workbench. 

In most cases it will actually be possible to limit the capacity of the Bin, making it 

into a bounded buffer, as described below. In nearly all cases, it will be possible to 

limit the set of possible values for i, at least removing transitions and, often, states. 

These possibilities are discussed in Chapter 6. It is probably unwise to use the 

DEMOS Bin, except when unavoidable. 

Bounded buffer 	- 	Store 

As mentioned above, the unbounded Bin is problematical as a modelling device in 

simulation. It is generally better to use a bounded buffer. In practice this is usually 

more accurate, anyway, as all physical systems have limited buffer space and it is 

often the purpose of simulation modelling to optimise the use of such buffering. 

Birtwistle's DEMOS does not have finite capacity buffers, but they are added to 

modified DEMOS, which is fully described in Chapter 5, where they are known as 

class Store. Using this construct, the producer/consumer interaction can be re-

modelled as shown in Figure 3.15. 
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Figure 3.15: Demos Store object used by two Entitys and their corresponding 
TCCS agents 

Entity class Producer; 
begin 

Hold (Make_Time); 
Widgets.Add(l); 
repeat; 

end; 

Entity class Consumer; 
begin 

Widgets . Remove (1); 
Hold(Finish_Time); 
repeat; 

end; 

ref (Store) 	Widgets; 

Widgets 	new Store(uTWidgetst,4, 0) 

Prod (TMake) widAdd1  .Producer 

Cons L 	widReml(TFIflSh)Consumer 

Wid4 def 8.widReM4-WidO 	+ 	.widRem3.Wid1 	+ 6.widRem2.Wid2 	+ 

.widRem1  . Wid3  

Wid3 def 	6.widAdd1 .Wid4 	+ 8.widReM 3.Wido 	+ 6.widRem2.Wid1 	+ 

8.widRem 1  .Wid2  

Wid2  . widA dd2. Wid4 	+ 	. widA dd . Wid3 	+ . widRem2. Wid0 	+ 

.widRem 1  .Wid1  

Wid1  8.widAdd3.Wid4 	+ 8.widAdd2.Wid3 	+ 6.widAdd1 .Wid2 	+ 

8.widRem 1  .Wid0  

Wid0  def8.widAdd4.Wid4 	+ 8.widAdd3.Wid3 	+ .widAdd2.Wid2 	+ 

8widAdd1  .Wid1  

As a Store is bounded, it is a similar problem to representing a resource. The general 

form of a Widget Store is a finite summation of choices, shown in Figure 3.16. This 

can be simplified in many models, including our example, as shown in Chapter 6. 

Limit is the physical upper limit to the capacity of a Store. It is the value of the 

second parameter of the Store instantiation. The third parameter is the initial number 

of items in the Store. 
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i.Th: tieneral form of a Store obiect represented in ICUS 

Limit 
Widgetso 	 .widAdd.Widgets 

i=1 
Limit-n 	 n 

Widgetsn 	def
= 	 ö. widA dd . Widgets + 15. widR em . Widgetsn .j 

i=1 	 i=1 
Limit 

WidgetsLimit L—'- 
e=f 	 .widRemi.Widgetsimij 

i=1 

First In First Out (FIFO) Queue 

A number of explicit queueing mechanisms are defined for a DEMOS Entity. In 

modified DEMOS another queue, for passive objects holding values, known as 

Messages, is added. In DEMOS all Entitys are removed from queues in the order of 

highest priority. In the time ordered event list, the next event time acts as the 

reciprocal of the priority. Those with the same priority are removed in the same 

order that they were added. This is in effect an implementation of multiple FIFO 

queues, with higher priority queues polled first. In modified DEMOS, Messages are 

also removed in FIFO order. The importance of such an implementation of waiting is 

that reproducibility is guaranteed. In the class hierarchy of DEMOS it is possible to 

define a parent class for all queues which implements a FIFO discipline.' Thus CCS 

must be able to represent a FIFO queue mechanism. 

Milner [Milner 1990] gives the following specification for a FIFO queue (Chapter 6, 

p135): 

Queue(E) 	 in(x).Queue(x) + empty.Queue(E) 

Queue(s:v) 	 in(x). Queue (x:s:v) + out (v).Queue(s) 

Defining Milner's linking operator, n, by: 

pflQ = (P[i'/i,e'/e,o'/o] IQ[i'/  out,  e'/ empty, o'/in])\{i'e'o'} 

a FIFO queue can be implemented as: 

'This is actually a fiction. For various implementation reasons, DEMOS implements some queues 
independently of the inheritance structure. 
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FIF0<v1,...,v> 

where v1  is the last item to enter the queue and v is the first and 

B 	LeL in(x).(C(x)B) + empty.B 

C(x) LeL in(y). o (y).C(x) + out (x).D 

D 	I e.B+i(x).C(x) 

This uses the value passing calculus and so allows x and y to have an infinite range 

of values. In a simulation model, the potential values of x and y would be 

constrained to the set of identifying tags, one of which would be associated uniquely 

with each process in a model. This might in many cases be provably finite a priori, 

but could not be guaranteed to be so for all models. 

Master/slave - 	WaitO/Coopt 

The most general mechanisms in DEMOS are the WaitUntil and the master/slave 

coopt/schedule mechanisms. Here the master/slave mechanism is considered. This 

requires a double queue in DEMOS, one for slave processes, which become passive 

and wait in a queue until coopted and re-scheduled by a master process, and one for 

master processes, which wait implicitly until they can coopt a slave and may then re-

schedule it whenever they are finished with it. 

The example shown in Figure 3.17 is a simple ferry model, where cars are the slaves 

and ferries the masters. Cars are independent until they reach the harbour, when they 

wait in a ferry queue until a ferry coopts them and eventually re-schedules them to 

continue after their voyage. Ferries are always independent, loading (coopting) cars 

and transporting them to their destination, and unloading (scheduling) them. 
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Figure 3.17: Master and slave Entitys with a WaitQ and their CCS 
representation 

Entity class Car; 
begin 

new Car("Car') .Schedule(ArrivalTime); 
Hold(TripTimel); 
FerryQueue . Wait; 

end; 

Entity class Ferry; 
begin 

ref(Car) Cargo; 
while True do 
begin 

Cargo 	FerryQueue.Coopt; 
Hold (VoyageTimel); 
Cargo. Schedule (0); 
Hold (VoyageTime2); 

end; 
end; 

ref (WaitQ) FerryQueue; 

FerryQueue:- new WaitQ("Ferries") 

Maxlnt 

Ferry 	 cooptFQn(Ti) schedn  (T 2)Ferry 

Car p 	 (T1) waitFQn  .schedn.O I (TArr)carGetk.Cark 

CarNo 	 carGet1  .CarNo11  

FQ<> 	 def 	waitFQn.FQn> 

FQ<n,L> 	 waitFQk.FQn,L,k> + 	cooptFQ .FQ<L> L is any 

list of integers 

The WaitQ is the first explicit use of a queue in any of the mechanisms modelled. It 

is shown using a convenient shorthand form of CCS, where agents are subscripted 

with ordered lists of integers. This allows queueing disciplines, such as the First 

Come First Served (FCFS) (more often known as First In First Out (FIFO)) one 

assumed for the ferry, to be represented concisely. The underlying implementation of 

a FIFO queue was presented above. 
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The model shown also defines a unique numbering for each car and shows it being 

generated explicitly. This corresponds to the ability within DEMOS to locate each 

instance of an Entity class through a reference variable, which holds its location 

within the SIMULA heap. For convenience, this numbering will sometimes be 

assumed without being generated explicitly. 

Figure 3.18 general CCS representation of a WaitQ 

Wq<> 	 wait.Wqzn> 	+ 	empty. Wq<> 

Wq<n,L> 	wait.Wqn,L,k> 	+ 	coopt .Wq<L> 	L is any 

list of integers 

	

Signalling changes in conditions - 	CondQ/Signal 

DEMOS implements the concept of a conditional wait, which can be thought of as a 

generalisation of waiting for a resource. An Entity can perform a WaitUntil, which is 

a procedure requiring a particular condition to be true. This will block the Entity in a 

nominated CondQ until that condition holds. Some simulation packages, such as 

SIMON [33],  use the general notion of WaitUntil for all blocking and 

synchronisation. This general mechanism requires that all conditions be re-tested by 

a central monitor process every time a state change occurs. This is extremely 

inefficient, as only those conditions affected by the change need be re-tested. 

DEMOS instead requires that an Entity which causes a state change relevant to a 

blocked Entity in a CondQ, performs a Signal on that queue. This makes it the 

responsibility of the modeller to ensure that all state changes are understood in 

relation to any conditional waiting and to insert appropriate Signal calls. 

The wait for a condition can be easily implemented as half of a complementary 

action, which will be matched by some agent when the condition is satisfied. This is 

similar to the implementation of an if condition in section 3.3.2, but does not involve 

a choice. Figure 3.19 shows a simple example of such waiting. 
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Figure 3.19: An Entity waiting on a condition and an Entity signalling a 
chan2e through a CondO 

Entity class Waiter; 
begin 

CQ.WaitUntil (Val=3); 
end; 

Entity class Signaller; 
begin 

while True do 
begin 

Val := Val + 1; 
CQ. Signal; 

end; 
end; 

integer Val; 

ref (CondQ) CQ; 
CQ :- new CondQ(T'CQ"); 

Waiter 	def 

2 	 Maxlnt 
8.waitCQ.(valGet3.0 + Y,valGet1  .Waiter + 	valGet .Waiter) 

i=Minlnt 	 i=4 

Val1 	 valGet1  .Va11 	+ 	valAss.Val 

Signaller 	Lef 	valGet. valAss 1  . waitCQ .Signaller 

Model 	def 

(Waiter I Signaller I Val0  ) \{valGetMfl1fl , ..,valGetMIfl,valAssMflIflb .. ,valAssMaxlnt  } 

This naïve implementation has certain limitations. In particular it only allows one 

Entity to proceed when a state change occurs. The DEMOS CondQ has two modes 

of operation, controlled by a Boolean called All. If All is set to False (the default), 

triggering of Entitys continues after a Signal until the first one in the CondQ fails its 

condition. If All is set to True, triggering always continues to the end of the list. All 

those which pass the test are scheduled immediately after the signalling Entity. 

Those which fail return to the same place in the CondQ. 
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3.20: The version of the simple model with All set to False 

Waiter def  

valGet3  .0 + 

2 	 Maxlnt 

IwaitCQ . Waiting+ 	waitCQ . Waiting 
i=Minlnt 1=4 

Waiting def  

2 	 Maxlnt 
try 	valGet3. goGo 	.0+ 	Y,valGet j.Faiiedn  + 	ivalGeti.Failedn  

1=Minlnt 	 14 

Failedn  noGo .Waiting 

Va11 	Lef valGet1  .Va11 	+ 	valAss.Val 

Signaller 	Lef valGet. valAss 1  . signalCQ .done.Signaller 

CQ< E > 	Le empty .CQ< c> + signalCQ.CQ< E> + waitCQ.CQ< n> 

CQ< s:V> signalCQ.Try< s:V, c> + waitCQ.CQ< s:V:n> 

Try< s:V, W> try .(noGo. done .CQ< W: s :V> + goGo.Try< V, W>) 

Try <E, W> done .CQ<W> 

Angle brackets denote lists of lists in which lower case letters are singletons, upper 
case letters are lists, ":" is concatenation and E is the empty list. 
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Fjure 3.21: The version of the simDle model with All set to true 

Waiter valGet3.0 + 

2 	 Maxlnt 

waitCQ .Waiting+ 	waitCQ .Waiting 
i=Minlnt 	 i=4 

Waiting 

2 	 Maxlnt 
try.[ valGet3 . goGo 	.0+ 	Y,valGet.Failed + 	valGet j.Failedn  

lMinInt 	 14 

Failed noGo 1  .Waiting11  

Va!1  valGet .Va11 	+ 	valAss.Val 

Signaller valGet. valAssn+i . signalCQ .done.Signaller 

CQ< E> 	Lef empty .CQ< 	> + signalCQ.CQ< 	> + waitCQn.CQ< fl2 

CQ< s:V> 	Le signalCQ.Try< s:V, E> 	+ 	waitCQn.CQ< s:V:n> 

Try< s:V, W> try, .(noGo.Try< V, W:s> + goGo.Try <V, W>) 

Try <E, W> 	Le done .CQ<W> 

Angle brackets denote lists of lists in which lower case letters are singletons, upper 
case letters are lists, ":" is concatenation and c is the empty list. 

This looks quite complicated and its implementation in the basic calculus would be 

long winded, but it can be built relatively simply from a pair of FIFO queues, 

corresponding to the two lists which parameterise Try. 

Interrupt 

DEMOS allows one Entity to break into a hold in another. Once interrupted by a call 

of Interrupt with an integer parameter, the interrupted Entity can choose how to 

proceed based on this value. This mechanism is not straightforward to represent in 

CCS, as it relies on one Entity remaining in an interruptable state for an interval of 

time and, having reached the end of this, proceeding. Figure 3.22 shows a simple 

example in DEMOS and CCS, using a small grain of time (eps) between each check 

for the interrupt. This could be argued to be what a simulation effectively does, since 

reals are held as discrete values in a digital computer, but is essentially a costly and 

coarse approximation. 
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Figure 3.22: One Entity interrupting another 

Entity class Interrupted; 
begin 

Hold(TDo); 
if Interrupt=3 then new 

Interrupted("Ited") .Schedule(0); 
end; 

Entity class Interrupter; 
begin 

Ited. Interrupt (3) 
end; 

Ited :- new Interrupted("Ited"); 
Iter : - new Interrupter( "Iter"); 

Ited 	 Checker3 -eps 

( 	 ( 2 	Maxlnt 
Checker 	 (eps) iGet3.Ited + 

	
iGet1  + 	iGet Checker.1  

t>0 
	 1Min1nt 	1=4 	) 

Checker0 	0 

Iter 	 (eps) iGet0  (eps). . .(eps) iGet3  .0 

Message queues 

For modelling convenience and efficiency of model execution, modified DEMOS 

includes a FIFO queue of passive objects which carry information. This presents no 

problems for CCS, as the FIFO and the local attribute have both been dealt with 

above. To save space, the message queue is not shown in any detail here. 

3.4.4 Building complete models 

There remains the question of how to represent models and sub-models within this 

formal framework. This turns out to be very straightforward. 

Overall model definition 

In general a model in CCS can be defined as the parallel composition of the model 

environment (ENV) with the agents making up the model (MODEL). ENV will 

behave differently depending on the type of execution chosen, e.g. replications or 

single run. Here it is treated as a simple passage of time. 
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The complete CCS model must also restrict the visibility of those actions which are 

fully defined by the processes and resources present. This means all actions for a 

complete model. Such restriction corresponds to the notion of satisfaction of visible 

links when matching synchronisations in section 3.2. Figure 3.23 shows a model 

built of the Boat, Jetties and Tugs agents from the harbour model. The convention is 

adopted, used throughout this dissertation, that restriction of all remaining visible 

labels be denoted by \L(MODEL) 

Figure 3.23: Defining a complete model in CCS 

DEMOS 	Le f 	(Tsim) . 0 

MODEL 	qef 	TUGS3  I JETTIES2  I BOAT 

PROG 	sLe f (DEMOS I MODEL) \L(MODEL) 

Building hierarchies 

The use of hierarchically defined sub-models in DEMOS corresponds to parallel 

composition and label restriction in CCS. The principal difference between their use 

now to define sub-model processes and above to define a complete model is that 

only those labels which correspond to actions contained within the component 

process are now restricted. These hidden actions become either 'rs or, as described in 

Chapter 6, can be eliminated by applying the expansion law. This is the equivalent of 

the graphical convention of drawing a box round the hidden parts of the compound 

process in the graphical conventions of Extended Activity Diagrams. 

The question of satisfied but accessible actions, where the compound process 

provides matches for synchronisations which are still open to outside processes, is 

simply resolved. Their labels are not hidden. Note, however, that CCS does not 

allow us to define the maximum or minimum arity of such communication groups. It 

only deals in the possibility or prohibition of engaging in actions on a one to one 

basis. 

In a corresponding DEMOS source program, visible CCS labels correspond to 

DEMOS parameters propagating out to higher textual levels. When binding 

particular instances of agents together, re-labelling is used, creating matching private 

names for those actions which provide the linking. To show these features, consider 
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the Dining Philosophers model as a simple example. This model consists of identical 

Philosopher processes linked in a ring by shared Fork resources. This means in 

DEMOS that two resources are parameters (type ref(Res)) of each Entity, which bind 

the Entity to instantiated resource objects in the complete model. 

i.Z4: I lie fllerarclucal model or the 

EXTERNAL class DEMOS; 
DEMOS class E_DEMOS; 
begin 

Entity class Philosopher(Right Fork, Left_Fork,T_Feed, T_Think); 
ref(Res) Right_Fork, Left_Fork; REAL T_Feed, T_Think; 

begin 
while True do 
begin 

Right_Fork. acquire (1); 
Hold (0 . 2) 
Left_Fork.acquire(l); 
Hold(T_Feed); 
Right_Fork. release ( 1) 
Left_Fork.release(l); 
Hold(T_Think); 

end; 
end of Philosopher; 

end of E_DEMOS; 

begin 
EXTERNAL class E_DEMOS; 
E_DEMOS 
begin 

ref(Res) Forkl, Fork2, Fork3; 
real I_T_Feed, I_T_Think; 

I_T_Feed := InReal; I_T_Think 	InReal; 

Forkl :- new Res(Fork,l); 
Fork2 :- new Res(Fork,l); 
Fork3 	new Res(Fork',l); 
new Philosopher(p ,Forkl, Fork2, I_T_Feed, I_T_Think) .Schedule(0.0); 
new Philosopher(P',Fork2, Fork3, I_T_Feed,I_T_Think) .Schedule(0.0); 
new Philosopher(P" ,Fork3, Forkl, I_T_Feed, I_T_Think) .Schedule(0 .0); 
Hold(100.0) 

end; 
end 

The CCS model restricts for the Philosopher agents anything except the 

communication actions with the Fork resources, which is the same as making the 

Fork a parameter. It then uses re-labelling to bind the Philosopher agents to the 

correct Fork agents. Finally all these labels are restricted in the complete model. 

Since the forks are shared by philosophers their actions are not restricted, merely 

used in renaming. Restriction would make the forks private to a philosopher. 
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Figure 3.25: CCS hierarchical model of the dining nhilosonhtrc 

Philosopher dof  

ifAcqi (2) lfAcqi (Tfeed)  rfReli 	ifRei1  (Tth )Philosopher 

In fact there are no synchronisations to be hidden at this level. 

Fork Lef fAcqi .NoFork 

NoFork def 	fRel1.Fork 

P1  Philosopher [a]/rfAcq1 , a2/lfAcq 1 , r]/rfRel1, r2/lfReli] 

Philosopher [a2/ifAcq 1 , a3/lfAcq 1 , r2/rfRel1 , r3/lfReli] 

P3  Philosopher[a3/ifAcq 1 , alIlfAcq1 , r3IrfRel1 , rJ/lfReliJ 

Fork1  Fork[a]/fAcq1 ,rl/fRel1 ] 

Fork2  Fork[a2IfAcq1 ,r2/fRel1 ] 

Fork3  Fork[a3/fAcq1 , r3/JReli ] 

Model def 	(Fork 1  I Fork2  I Fork3  I P1  I P2  I P) 	\{a]a2a3rJr2r3} 

3.5 Validating the CCS definition of DEMOS 
primitives 

The definitions in section 3.4 have presented a CCS description of all the 

mechanisms present in DEMOS and added some new ones which seem useful and 

which will be implemented in the graphical formalism and packages described in 

Chapters 4 and 5. The formalisation of the semantics of process based models, 

including hierarchical models, is thus apparently complete. There remains the 

important question of whether the actual behaviour of DEMOS matches that 

predicted by the CCS definitions. If it does, the semantics given can be applied to 

reasoning about existing DEMOS models. If not, the extent of its applicability must 

be defined and the possibility of re-implementing some parts of DEMOS, in addition 

to the extensions already made, must be considered. 

The approach taken to validate the definitions given in section 3.4 was to consider a 

number of representative models expressed in both ways and to compare their 

behaviour. The CCS model was used to predict the required behaviour of the 
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DEMOS version. In most cases the definitions given proved accurate. Evidence from 

these is given in Appendices B (DEMOS models) and C (CCS models). Only the 

principal anomaly is discussed here, but it exemplifies the general approach. 

3.5.1 Validating resource contention for DEMOS 

To investigate mapping of anonymous resource contention, as defined in section 

3.4.2, into both DEMOS and CCS, the harbour model given in [13] is used. For this 

example the DEMOS source code and the Concurrency Workbench compatible CCS 

were generated by the graphical modelling tool described in Chapter 5. For this the 

whole of PROG, as in section 3.4.4, is developed. It reverses the initial acquires of 

jetties and tugs by the boat compared to the version in Birtwistle. This is claimed to 

deadlock, while the original does not. This should be shown by the TCCS version. 

Concurrency Workbench Model 

To evaluate the initial representation in the two languages, the encoded TCCS 

model, with the supposed deadlock potential, was fed into the Edinburgh 

Concurrency Workbench and a trace of the simulation of that model produced. The 

source and trace are given below. The sequence of actions in the CWB was not the 

same as in DEMOS . Importantly, the DEMOS model did deadlock after ship 3 had 

seized two tugs at 8.00, while the CCS model still allowed ships to dock and depart. 

Iigure i.2t: Demos source code for the 'deadlocking" harbour model 
begin external class demos; DEMOS begin 

entity class Ship—C; 
begin new Ship.Schedule(4); 

grab 2 tugs; Tugs.Acquire(2); 
and a jetty; Jetties.Acquire(l); 

Hold (3 
let the tugs go; Tugs.Release(2); 

Hold(l0) 
ready to leave; Tugs.Acquire(l); 

Hold (3 
clear of jetty; Jetties.Release(l); 
gone away; Tugs.Release(l); 

end-of-Ship; 
ref (Ship_C) Ship; ref(Res) Jetties; ref(Res) Tugs; 
Ship :- new Ship_c("Ship"); 
Tugs :- new Res('Tugs", 3); 
Jetties :- new Res(hlJettiesT,  2); 
Ship.Schedule(O.0) ; Hold(l00) 

end 
end 
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3.27: 'IJeadlockin2" harbour modelled in 'lCCS. 

BOAT 	def 

6. jAcqi .6. tugAcq2  (3) tugRel2  (10)6. tugAcq1  (3) tugReli . jReli 

1(4)BOAT 

TUGS3 	 6.tugAcqi.TUGS2) + (tugAcq2.TUGS1) + (tugAcq3 .TUGS0)) 

TUGS2 	def 	6.((tugAcqi .TUGS1) + (tugAcq2.TUGS0) + (tugReli .TUGS3)) 

TUGS, 	Le L 	6.((tugAcq1  .TUGS0) + (tugReli .TUGS2) + (tugRel2.TUGS3)) 

TUGS0 	 6.((tugRel1  .TUGS1) + (tugRel2.TUGS2) + (tugRel3.TUGS3 )) 

JE7-TIES2  ö.((jAcq1  .JETTIES1) + (jAcq2.JETTIES0)) 

JE7-TIES1  ö.((jAcqi .JE1TIES0) + (jReli .JETJ'IES2)) 

JETTIES0 	1L 6.((jReli .JETI'IES1) + (jRel2.JETTIES2)) 

Note that the agent $0 (non-temporal deadlock) is introduced to prevent premature 

deadlock by allowing terminated processes to idle, in CCS terms. Note also that the 

Obs agent and the action n are introduced to allow us to observe ships being created 

in the CCS trace. 

3.28: (oncurrency workbench model 01 harbour 

bi Boat $ tugacq2 .$ jacqi. (WorkiNewBoat) 
bi Work 3. 'tugrel2.1O .$ tugacql.3. tugrell. jrell. $0 
bi NewBoat 4. n.Boat 

bi Tugs3 ($tugacql.Tugs2)+($tugacq2 .Tugsl)+($tugacq3 .Tugso) 
bi Tugs2 ($tugacql.Tugsl)+($tugacq2.TugsO)+($tugrell.Tugs3) 
bi Tugsl ($tugacql.Tugs0)+($tugrell.Tugs2)+($tugrel2.Tugs3) 
bi TugsO ($tugrell  .Tugsl)  +($tugrel2  .Tugs2)+($tugrel3 .Tugs3) 

bi Jetty2 ($jacql.Jettyl) + ($jacq2.Jettyo) 
bi Jettyl ($jacql.Jettyo) + ($jrell.Jetty2) 
bi Jetty0 ($jrell.Jettyl) + ($jrel2.Jetty2) 

bi ohs $n.Obs 
bi DEMOS Obsj100.0 
bi Model (Tugs3 I Jetty2 I Boat) 
\ftugacql, tugacq2, tugacq3 , tugrell, tugrel2, tugrel3, \ 
jacql, jacq2, jrell, jrel2} 
bi Prog (DEMOS I Model)\(n} 
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Figure 3.29: Traces from CWB and DEMOS for harbour model 

Output from Concurrency Workbench 

The Edinburgh Concurrency Workbench 
(Version 6.12, April 15, 1993) 

Sim> 	--- t<tugacq2> ---> 
1 ---> 
t<jacql> ---> 
1 ---> 
1 ----> 
1 ---> 
t<tugrel2> ---> 
1 ---> 
t<n> ---> 
t<tugacq2> ---> 
t<jacql> ---> 
1 ---> 
1 ---> 
1 ---> 
t<tugrel2> ---> 
1 
t<n> ---> 
t<tugacq2> ---> 
1 ---> 
1 ---> 
1 ---> 
1 ---> 
1 ---> 
t<tuqacal> ---> 

Trace using DEMOS 

IME/ CURRENT AND ITS ACTION(S) 

.00 DEMOS HOLDS FOR 100.00, UNTIL 10 0 
Ship 1 	SCHEDULES Ship 2 AT 4.000 

SEIZES 2 OF Tugs 
SEIZES 1 OF Jetties 
HOLDS FOR 3.000, UNTIL 3.000 

.000 	RELEASES 2 TO Tugs 
HOLDS FOR 10.000, UNTIL 13.000 

.000 Ship 2 	SCHEDULES Ship 3 AT 8. 
SEIZES 2 OF Tugs 
SEIZES 1 OF Jetties 
HOLDS FOR 3.000, UNTIL 7.000 

.000 	RELEASES 2 TO Tugs 
HOLDS FOR 10.000, UNTIL 17.000 

.000 Ship 3 SCHEDULES Ship 4 AT 12. 
SEIZES 2 OF Tugs 
AWAITS 1 OF Jetties 

2.000 Ship 4 SCHEDULES Ship 5 AT 16. 
AWAITS 2 OF Tugs 

The traces are clearly different. This brings into question the whole approach 

proposed. The question is whether the behaviour of the system has been incorrectly 

modelled when generating the CCS model or whether DEMOS fails to implement 

the required semantics. 

The CCS model shows two major differences. First, it allows a unit of time to pass 

between the tugacq2 and jacq 1 actions at the start of the CWB trace. This shows that 

time passing is treated as an action of equal priority with "real" actions prefixed with 

&. Although this does not affect the outcome of the present model, it must be 

carefully monitored in cases where time is explicitly used. Second, the DEMOS 

model becomes deadlocked, as claimed, after time 8.00, when ship 3 has seized two 

tugs. The CCS model instead allows a further tugacqi, which release the jetty and 

removes the potential for deadlock. 

These problems concern the non-determinism of CCS choices. Thus, although agents 

may have been generated in a certain sequence during the evolution of a model, there 
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is nothing in CCS to guarantee which ones will act first. This will be a problem 

wherever an event triggers a state change which could non-deterministically enable 

several pending processes. In fact even the non-deadlocking version of this model 

shows different behaviour in the two descriptions. 

What must really be done in CCS to model the behaviour of the DEMOS model? On 

close examination of its definition, DEMOS implements Acquire as operating on a 

first come first served basis, even if some processes, requiring smaller amounts of a 

resource but arriving later, are thereby blocked unnecessarily. This alters the 

sequence of events in the model significantly. To support the DEMOS view of 

Acquire, any such action might be seen as taking as much resource as is available at 

the time and waiting for more to become available. This is not the same as making 

CCS acquires into a sequence of unit acquires, unfortunately, since this does not 

block other processes from subsequently jumping the queue when a release occurs. 

Thus, a FIFO queueing mechanism, described below, would be needed. 

The alternative is to redefine Acquire in the discrete event simulation package as 

operating in line with the CCS semantics of section 3.4.2 and leave a greedy option 

for the cases where the current implementation is useful. This seems more likely to 

avoid confusion. Indeed in most cases it appears unreasonable to prevent processes 

requiring smaller amounts of a resource from proceeding, unless there is an explicit 

resource management mechanism designed to achieve this in the actual system being 

modelled. From the Chapter 4 onwards with a rewritten version including both 

options, with non-queueing as the default, is assumed not just for resources, but for 

Bins and Stores. This forms part of modified DEMOS as presented in chapter 5. 

First In First Out (FIFO) Resource 

To model the actual behaviour of a DEMOS Res requires a much more complex 

version of resources, using the FIFO mechanism described in section 3.4.2 to control 

access. The importance of such an implementation of waiting is that greater 

reproducibility is guaranteed in the CCS model, as was noted for WaitQs. It also has 

the side effect of enforcing fairness in models, both DEMOS and CCS, which might 

otherwise produce starvation. 

Modelling the harbour system using a FIFO queue for resources can reproduce the 

behaviour of the original DEMOS model, except for the non-deterministic passing of 
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time. The principal difference is that all Acquire requests are now tagged with a 

unique identifier for the process which is trying to acquire the resource. This is 

inserted into the resource's FIFO queue and the resource only carries out its side of 

Acquire requests tagged with that identifier. The harbour model now looks as shown 

in Figure 3.30. 

3.3U: 1110 resource version of harbour model in CCS 

IBoat 

jAcq,i .jGot,1 . tugAcq,2  .tGot,2. tugRel 2  . tugAcq,1  .tGot 1 . tugRel,1 . jRel 

NTugs  
Tugs< >NTugs 	Le 	tAcq. tGot, .Tugs< >NTugsn) 

n=1 

I Tugs< >k 	 clef 

k 
tAcq. tGotj,n  Tugs< >k n  + 

I n=I 

+ 

NTugs 
>jAcq .Tugs< ü,fl]>k 

n=k+1 
NTugs-k 

tugRel. Tugs< >(k+m) 
m=I 

0<k<NTugs 
NTugs 

>'jugRelm.Tugs< >m 
M= I 

NTugs  
tAcq. tGot, .Tugs< [a,b] : L>NTUgSn) 

n=1 
NTugs 

tAcq.Tugs< [a,b] : L :[j,n]> 

Tugs<>o 	 Lef 

Tugs< [a,b] : L>NTugs  

Tugs< [a,b] : L>k 
	def 

+ 	tReib. t&Ota b .Tugs<L> 

b-I 
+ 	>JtRelm.(Tugs< [a,b] L>k+m) 

M=1 
NTugs-k 

+ 

	

	tRelm.(Tugs< [a,b] : L>k+m) 
m=b+1 

Tugs< [a,b] L>0  

0<k<NTugs 

tReib. tGOta b .TUgS<L> 

b-I 
+ 	>jRelm.Tugs< [a,b] : L>k 

M=1 
NTugs 

+ 	>jRelm.Tugs< [a,b] : L>k 
m=b+1 
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NJetts 
Lef Jettys< >Njetts 	 JjAcqjGotj, .Jettys< >NJettsn 

Jetlys<>k def  

k 	 NJetts 

	

jAcq. jGot .Jettys< >kfl 	+ 	JjAcq.Jettys< [j,n]>k 
n=1 

NJetts-k 
+ 	jugRel.Jettys< >(k+m) 

M=1 

O<k<NJetts 
NJetts 

Jettys< >0 	
Lef >jugRelm.Jettys< >m 

M=1 

NJetts 
Jettys< [a,b] : L>NJetts 	jAcq. jGot, .Jettys< [a,b] L>Njettsn 

NJetts 
Jettys< [a,b] : L>k 	 ,jAcq.Jetlys< [a,b] : L :[j,n]> 

n=1 

	

+ 	jRelb. J(ta,b .Jetlys<L> 
b-i 

	

+ 	jRelm.(Jettys< [a,b] : L>k+m) 
M=1 
NJetts-k 

	

+ 	jRelm.(Jettys< [a,b] : L>k+m) 
m=b+i 

O<k<NJetts 
Jettys< [a,b] : L>0 	jRel. IGOtab  .Jettys<L> 

b-i 

	

+ 	>JRelm.Jettys< [a,b] : L>k  
M=1 
NJetts 

	

+ 	YjRelm.Jetlys< [a,b] : L>k  
m=b+i 

Model 	 (Tugs2  I Jettys2  I Boat I Boat I Boat) \ L(Model) 

Angle brackets denote lists of integer pairs, each consisting of a process tag and an 
amount required. Within lists capital letters denote sub-lists and square brackets 
contain one pair. ":" is the concatenation operator. 

This result applies equally to the other blocking synchronisations, in particular to 

Bin and Store. Bin follows a similar, but unbounded, pattern to Res. Store requires a 

pair of lists, combining the double list structure of a CondQ with the pair list of the 

FIFO resource. In Chapter 6 some examples of CondQ and WaitQ models are 

shown, using this FIFO approach and experiments on these are given in Appendix C. 
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3.6 Further work 

There are still a number of problems still to be resolved before a complete definition 

of simulation behaviour is reached. Most importantly, the analysis must be extended 

to consider stochastic models with continuous time. This is most obvious in the case 

of the definition of Interrupt. It requires considerable work, but Hillston's work with 

PEPA [37] and Strulo's CCS extensions [96] offer directions to consider. It may also 

be sensible to revisit the Synchronous Calculus and see if it offer solutions. 

Whatever solution is found needs to address the difficulties of generalising 

functional properties over ranges of timing and branching probabilities, which 

represent the environment and data dependent aspects of models. 

Ell 



Chapter 4 

Graphical formalism for simulation 

4.1 Introduction 

This chapter defines the graphical formalism which formed the starting point of the 

work of this dissertation. The thesis being tested throughout this work is that it is 

possible to define formally a means of describing discrete event simulation models, 

to represent these as diagrams and to generate from these versions which can be 

solved for their quantitative properties, initially by simulation, and which can be 

used to prove useful results about their behaviour without resorting to simulation. In 

Chapter 2 a survey of typical graphical description approaches was presented. Here, 

a version suitable for the purposes of this dissertation is defined. This is built from 

those elements which were given formally defined semantics (in terms of CCS) in 

Chapter 3 and will be shown, in Chapter 5, to be capable of automatic translation 

into both a discrete event simulation language (modified DEMOS) and CCS, by 

constructing a tool which performs the task. 

The starting point for the graphical formalism developed here is the activity diagram 

notation, introduced by Birtwistle [13] and extended slightly by Hughes [40]. The 

initial reason for this choice was familiarity with it and the availability of the 

DEMOS discrete event simulation package, for which it was developed. Indeed, the 

original purpose of the work leading to this dissertation was the production of a 

comprehensive graphical interface for DEMOS, but this was eventually relegated to 

a sub-task. As well as familiarity, activity diagrams were attractive because 

experience had shown them to be powerful as a description tool and intuitively 

simple to grasp. 

As well as Birtwistle's and Hughes' work, a number of attempts have been made to 

produce activity diagram based graphical tools for DEMOS. The Process Interaction 

Tool developed at Edinburgh within the SIMMER Alvey project [72] led directly to 
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the work of this dissertation. Work in the SIMMER project also led to a first attempt 

to define a complete notion of activity diagrams [73]. The Process Interaction Tool 

also formed the basis of the PIT [6] work of the IMSE ESPRIT II project [75], where 

a number of concepts expressible in the vocabulary of activity diagrams, such as 

servers and sources of entities, were added by Uppal and Barber for perceived 

modelling convenience. 

The contribution made here is to define carefully a minimum set of mechanisms 

which retain the generality of process based simulation modelling and, most 

importantly, a proper notion of hierarchical modelling, which is consistent with 

general rules for data abstraction and which is able to be mapped directly onto an 

underlying simulation language. In defining this set of mechanisms, first Birtwistle's 

activity diagrams are extended in line with Chapter 3 and then hierarchical 

modelling is considered, in search of completeness of description. A formal notation 

for describing such diagrams is created, using Extended Backus-Naur Form as its 

basis. 

4.2 Extending activity diagrams for flat models 

A set of diagrams to specify process based discrete event models is presented below. 

The approach developed is based on the informal conventions of activity diagrams 

first used to describe models for the DEMOS package, but here extended to allow 

complete descriptions of a much wider range of models. The set of mechanisms is 

that defined formally in Chapter 3. It forms basis of the concept of an atomic process 

in section 3.2. Descriptions at this level give the behaviour of a process in 

algorithmic terms, as a life cycle script. 

Graphical description of a process type requires both a way of showing the flow of 

control through such a process type and a way of representing interactions and 

synchronisations engaged in by instances of it. Construction of a model or sub-

model defines the linkages between instances of processes, by mapping their 

required interactions onto instances of those objects which support such interactions. 

Many synchronisations among processes can be mapped onto queues, which is the 

only mechanism in queueing network based formalisms such as PAWS. However, 

the use of higher level abstractions, such as resources in GPSS, adds to the ease of 

description and widens the range of mechanisms which can conveniently be 

represented. Activity diagrams were defined to provide a convenient flow of control 
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description, based on flow charts, and to allow easy description of a wide range of 

useful synchronisation mechanisms, based on activity cycle diagrams. This makes 

them a good starting point for building a complete diagramming convention for 

process interaction. 

4.2.1 The model from chapter 2 again 

A simple example of an atomic process description is shown in Figure 4.1. The 

model is the harbour from Chapter 2, which was examined in CCS in section 3.5.1. 

It includes Birtwistle's standard symbols of a rectangular box for a delay, annotated 

with a description of the associated activity, and a circle for a resource, annotated 

with a description of the resource and the initial amount available. New symbols are 

needed to complete even this simple example. Hughes added a lower semi-circle, 

annotated with the process name, which marks the start of the process life cycle, and 

an inverted form of the start symbol, with no annotation, to mark the termination of 

the process. In the Simmer Process Interaction Tool synchronisation nodes were also 

added, to show where resources are acquired and released. This last extension is a 

significant change from Birtwistle's convention of attaching synchronisations to hold 

boxes and allows the exact order of all such synchronisations to be specified. 

Figure 4.1: Simple activity diagram of harbour model 
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Various forms of arrowed line could be used to represent the type of a link, but the 

actual type is fully determined by the types of the nodes which it joins. Thus the 

lines joining delay to delay, delay to start or delay to termination represent control 

flow in the process, in the same manner as in conventional flow charts. On the other 

hand, the lines joining resources to synchronisation nodes represent acquisition or 

release of amounts of those resources. 

Acquisition and release constitute, respectively, a potential blocking of the flow of 

control in the process due to contention with other processes and a potential freeing 

of another process currently blocked by this process. The amount to be acquired or 

released is shown as an annotation to the link, while the direction of the arrow on the 

line determines which action is intended. All external interactions are shown by 

synchronisation nodes. In this sort of process type description the objects to which 

synchronisation nodes are linked are there purely to show the type of 

synchronisation by which any instance of this type will be linked to other process 

instances. As it happens, this example does not use other process types, simply a 

stream of Boat processes. In such simple cases the model can be completely 

described by suitable annotation of the process type description, with amounts of 

resources and inter-arrival times added in this case. This is analogous to very simple 

computer programs, where procedural abstraction is not needed 

4.2.2 The complete menu of symbols 

Figure 4.2 shows the complete set of symbols used in extended activity diagrams to 

describe atomic processes. These are divided into flow of control symbols and 

synchronisation symbols, involving resource and queue blocking. 

4.2.3 Flow of control symbols 

The flow of control symbols are similar to those used in conventional flow charts, 

with decision nodes, loop-start nodes, branch/loop-end nodes, start and terminate 

nodes. There are also hold nodes, which represent activities whose durations are 

defined by expressions containing constants, visible state variables and stochastic 

variables. Holds are usually regarded as part of the flow of control, but this is 

considered in more detail in section 4.2.5 below. Synchronisation nodes indicate 

points at which the flow of control requires an interaction with another process 

instance. These nodes are linked by directed edges indicating flow of control. There 

must be a connected path from the start node to all other nodes and from each other 
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node to the end node. The algorithmic description of an atomic process type is 

contained in the directed graph made up from these symbols. 

4.Z: tomulete menu oi extended 
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The presence of the loop-start/end nodes removes the need for cycles in these 

graphs. A decision or loop-start node is associated with the next succeeding 

branch/loop-end node. 

4.2.4 Synchronisation and communication primitives 

The second set is of symbols which describe interactions between process instances. 

Two forms are used; links direct from one process to another and links to passive 

objects. 

Direct scheduling of one process by another is shown as an arrow from one 

synchronisation node to another or, where creation as well as scheduling is 

implied, to a start node. Interruption of an activity by another process as an 

arrow from a synchronisation node in one process into a hold in another. 

Communication through a passive object, such as a resource or a condition 

queue, is shown by an outgoing arrow to the passive object from a 

synchronisation node in the output process and an incoming arrow from the 

passive object to a synchronisation node in the input process. 

The distinction is actually more a descriptive convenience than a necessity, as 

discussed in section 4.2.5 below. From a syntactic point of view, these conventions 

allow unambiguous identification of any synchronisation node/directed edge/second 

node triple. Semantically synchronisation nodes are ambiguous, as are edges, but 

their meaning is always established by the syntactic triples in which they must be 

found. 

The wait queue is a double queue. One, slave, process signals that it wants to 

become a passive, attributed object. Another, master, process requests from this 

queue a coopted slave process which remains passive until it is rescheduled, by a 

subsequent direct scheduling. 

Several communications are attributed or parameterised. A resource, store or bin 

request has an amount, a condition queue request has a Boolean expression and a 

message queue request has an object. Wait queue communications have processes as 

attributes. 
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4.2.5 A digression on holds and schedules 

This section picks up certain loose ends concerning the representation of the passage 

of time in process based simulation models. In section 3.3.2 it was noted that 

sequential behaviour of processes can be broken into sub-processes which schedule 

each other. In the description of flow of control above it was noted that direct 

scheduling of one process by another has a slightly different representation to other 

interactions between processes. It is possible to resolve these points in the context of 

extended activity diagrams, but the result is slightly more cumbersome. 

The first point is that the instantiation and scheduling of a new process, currently 

represented by an arrow from a synchronisation node into the start node of another 

process could, for consistency, but at the expense of more nodes, be represented as 

shown in Figure 4.3. This implies that any newly created process is initially passive, 

until explicitly scheduled. This is in fact what happens in the equivalent DEMOS 

code. 

Figure 4.3: Elaboration of explicit initial scheduling of a process 

Process 0 	Process 1 	 Process 0 	Process 1' 

Schedule Y 	Creat 

Schedule 

A second elaboration is to force an explicit representation of the scheduling of a 

stream of process instances, often modelled in DEMOS as each instance first 

creating and scheduling a successor before beginning its own activities. Figure 4.4 

shows the extended activity diagram view of this. In STC's version of PIT this was 

handled by defining a special process, called a Source, which cycled endlessly 

scheduling a new instance of the process in the stream and then holding for the inter-

arrival time. 
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Figure 4.4: Elaboration of a process stream 
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Thirdly, it is possible to remove the special structure of one process scheduling 

another, by introducing a time delay node between the scheduler and the scheduled. 

This treats time as a state variable like any other and its advance as potentially 

unblocking a delayed process. Although this is a realistic approximation to the 

underlying event list mechanism, it requires a rather low level view of the model 

from the modeller's point of view. However, it does promote consistency in the 

representation of state change. Figure 4.5 shows the effect on a diagram. 

Figure 4.5: Explicit representation of a scheduling delay 
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Finally, the discussion of section 3.3.2 can be applied, either using the explicit delay 

in scheduling or not, to remove Hold as a flow of control symbol and unify the 
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notion of time delay and the other forms of blocking in a model. Essentially this 

results in a hold becoming two synchronisation nodes, from the first of which an 

arrow goes to a scheduling delay node and into the second of which an arrow returns 

from that node. Figure 4.6 shows this effect, in a similar manner to Figure 3.3. 

Figure 4.6: Hold represented as scheduling delay 

Process 1 Process 1' 

T ==> 4 uIe 

The result could be thought of as a canonical set of symbols for the representation of 

process based simulation models. In the notation actually used in this dissertation the 

time advance aspects are abstracted from the general state change concept and holds 

are used, along with direct scheduling between processes. 

4.2.6 A formal grammar for extended activity diagrams 

The diagrams presented are in fact a formal language. Like any textual language it is 

desirable to be able to express the syntactic structure of extended activity diagrams 

through a suitable grammar. Unlike textual languages, diagrams are two 

dimensional. This requires a slightly extended form of the Backus-Naur type meta-

languages normally used for expressing context free programming languages. 
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i igure 4.,: Iirammar 01 hat level or extended activity diagrams 

graph = 	object * 

object = 	res 	I 	bin I 	store 	I 	condq 
I 	waitq I 	messageq 	I process 

process = 	start 	thread end 

thread = 	flowcom * 

owcom = 	syntriple 	I cond 	I 	loop 	I hold 

cond 	= if < thread II ((llink thread rlink) I (rlink thread llink)) > end 

loop = 	while thread end 

syntriple = 	acquire 	I take 	I 	remove 
I receive 	I 	waituntil I 	coopt 	I newsched 
I release 	I 	give I 	add 	I send 
I signal 	I 	wait I 	schedule 	I interrupt 

acquire = 	synch inlink res 

take = 	synch inlink bin 

remove = 	synch inlink store 

receive = 	synch inlink messageq 

waituntil = 	synch inlink condq 

coopt = 	synch inlink waitq 

newsched = 	synch outlink start 

release = 	synch outlink res 

give = 	synch outlink bin 

add = 	synch outlink store 

send = 	synch outlink messageq 

signal = 	synch outlink condq 

wait = 	synch outlink waitq 

schedule = 	synch outlink synch 

interrupt = 	synch outlink hold 
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The structure of extended activity diagrams is almost that vertical connection implies 

flow of control and horizontal connection implies communication/synchronisation. 

In fact, apart from horizontal branching to distinguish false from true outcomes in 

decisions, this is always true. If it is examined more closely, the brief horizontal 

divergence after a decision can be taken as an elided instantaneous scheduling or 

more simply as a splitting into two vertical continuations. In either interpretation it 

can be ignored. The top to bottom dimension is more complex than the horizontal, 

since it contains nested structures - loops and conditional branches - enclosed in 

bracketing symbol pairs. The horizontal dimension of communication 

synchronisation is expressible in a very simple regular expression grammar, while 

the vertical dimension of flow of control requires a more general context free 

grammar. By treating these two dimensions as distinct, as if links in one have a 

different significance to those in the other, and by distinguishing two types of 

horizontal link - incoming and outgoing - and two types of vertical link - downward 

and branching, a complete meta-language and grammar can be defined. 

In this grammar, normal extended BNF conventions are followed quite closely. Bold 

face is used for terminal symbols, italics for non-terminals, Times Roman for meta-

symbols. The normal BNF meta symbols used are vertical bar ("I") for alternatives in 

a production, equals ("=") for production, asterisk ("*") for repetition of symbols 

("one or more"), parentheses to delineate sub-expressions. In an extension of BNF 

additional symbols are used; angle brackets to delineate forking ("<") and joining 

('5.") of parallel vertical sequences and double vertical bar ("II") to separate such 

sequences. 

Unlike normal BNF grammars, this produces diagrams composed of linked nodes, 

rather than strings of characters. This requires a modified understanding of 

juxtaposition of symbols. Unless modified explicitly, wherever one symbol follows 

another it should be taken as meaning that the first symbol either occurs directly 

above the second or is linked to it by an arrow which leaves the bottom of the first 

and enters the top of the second. The angle bracket / double bar notation is an 

explicit indication that the parallel sequences defined share a common preceding and 

succeeding node. The other explicit modifiers are ilink (rlink), which says the first 

symbol is linked to its successor by an arrow leaving its left (right) side and entering 

the right (left) side of its successor, and inlink (outlink), which says that the first 

symbol is linked to its successor by an arrow into (from) the first, from (into) the 
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second. The route taken by these links and the exact position of the nodes is not 

fixed, allowing them to be drawn in an infinite number of ways, but guaranteeing the 

connectivity of the resulting graph. 

4.3 Typical examples of extended activity diagrams 

There follow two further examples of practical, flat models, represented as extended 

activity diagrams. They show that a single level of description can be sufficient for 

modelling, but also approach the limit of what can be described without resort to 

some form of hiding of detail. 

4.3.1 A simple example 

To see the use of a selection of these symbols, consider Figure 4.8, which is a 

practical example, described more fully in [68]. This contains all the typical 

elements in a single level activity diagram representation of a model. 

The model represents a lineprinter connected to several host computers on a 

network. Each host process has a life cycle in terms of the lineprinter. The other 

activities of the Host are ignored in this model, but they could quite easily be 

reflected stochastically in the inter-polling time. A Host tries to gain access to the 

lineprinter whenever it has a file in its print queue. If it is unsuccessful, it will back 

off for some inter-poll time and then try again. If it is successful, it seizes the 

lineprinter until it has printed its file. It is then required to back off for a longer time, 

before trying again. This is designed to allow other machines to achieve access more 

easily. 

The practicality of the scheme being modelled is not really important, although it 

matches a genuine design. What is useful is that the model demonstrates many of the 

symbols in the vocabulary above. Two important additions to the set used in the first 

model are to be seen: 

loop-start and end nodes, annotated with a condition and showing forking and 

joining; 

master/slave processes; allowing one process to act as a passive resource to 

another for part of its life cycle. 
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Note that the host process never terminates. Files start as active processes, allowing 

each to schedule its successor and thus determining the inter-arrival rate of files. 

They then enter the Host's printer queue, becoming passive objects. They are finally 

reawakened by the Host after printing and terminate after reporting. 

Figure 4.8: Network printer model 
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4.3.2 A further practical example 

Figure 4.9 illustrates the use of the condition queue, by means of an apparently 

simple model of an ethernet like protocol. The CSMA property of ethernets is that 

no station may attempt to transmit while the channel is busy, i.e. another station is 
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broadcasting. This is represented in the diagram by a conditional wait following the 

attempt transmission phase of the transmitter's life cycle. This delays the process 

until the condition is satisfied. The use of such a device in the diagram makes the 

model rather simple to describe. Unfortunately such a feature is notoriously difficult 

to program. The required effect is that once the channel is freed by its current user all 

the transmitters waiting for it try to transmit simultaneously. This effect of 

simultaneity is not natural to the interleaved execution of most process based 

simulation systems. A solution to this problem is considered in depth in Chapter 6. 

In this example the packets are passive, but possess attributes, such as length, and so 

are drawn as arriving in message queues. The diagram is clearly incomplete as a 

description of a model, since there is no indication of how packets arrive or are 

disposed of. In fact it is a useful working sketch of the behaviour of one part of a 

model, but is not sufficient as a description of that model. The complete model 

would be too complex to fit easily as an activity diagram. Having reached roughly 

the limits of activity diagrams, a more extensive approach is required to continue. 
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4.4 Hierarchy - Configuration Diagrams 

In a further refinement to activity diagrams, hierarchical modelling of compound 

processes in terms of their constituent sub-processes or components is now allowed. 

This is expressed in the form of configuration diagrams, which are introduced here. 

The use of a diagramming technique has the beneficial effects of: 

natural expression of parallelism; 

encouragement of high level thinking; 

easier interchange of ideas with non-programmers. 

The use of diagrams leads to the formulation of small models, which is generally a 

good thing. Too often the tendency is to over-model. However, in some cases there 

is a need to model quite complex systems in more detail than can be represented in a 

single diagram. Figures 4.8 and 4.9 are probably as complicated as is sensible for the 

paradigm of activity diagrams. 

As defined in Chapter 3, a compound process consists of a number of instances of 

interacting sub-processes and their synchronisation mechanisms. This approach 

allows partitioning of a model into sub-models hierarchically, since a non-atomic 

sub-process at one level can itself be decomposed into further sub-processes. An 

important benefit arises from the fact that many real world systems are structured in 

an analogous way and so this approach allows the structure of the real world system 

to be retained in the simulation model. This overall approach is equivalent to object 

oriented programming, with each process description equivalent to a class and each 

process instance equivalent to an object. Thus the realisation of such models in an 

object oriented language proves very straightforward. SIMULA [12,74] is almost 

ideal in this sense. 

4.4.1 A simple hierarchical model 

Figure 4.10 is taken from example 4.1 of [13] and shows a model where two 

processes co-exist. Each is sufficiently simple that no confusion or crowding results 

from combining them. However, it is easy to imagine that more detailed modelling 
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of the individual processes, essentially expanding the hold boxes 'read data' and 

'write data' into full algorithmic descriptions, could make the diagram unreadable. 

Then some means of hiding detail becomes necessary. Ideally this should match 

some real property of modularity in the system represented by the model. The 

technique suggested is to use configuration diagrams, as shown in figure 4.11. 

Figure 4.10: Flat version of Reader/Writer model 

Reader 	 Writer 

Acquire 1 	Acquire 3 
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Read dat 	 pdate fil 

Release 1 	Release 3 

The algorithmic detail of the atomic process descriptions, contained in the activity 

diagrams for reader and writer processes, is suppressed, leaving only the external 

links to the processes visible (figures 4.1 la and 4.1 lb). Module level description 

allows more complex systems to be described, without overcrowding the diagram. It 

also has other advantages, as example 4.12 will show. 
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By combining the two modularised atomic processes, a compound process 

description or model description (Figure 4.11 c) is produced, depending on the level 

in the model. Both are represented by configuration diagrams. Here diagrams only 

use a simple box and appropriate link symbols from activity diagrams, such as the 

resource, bin and queue symbols. Only those links which can be used to attach this 
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component to others are represented here, but in fact there is no reason not to mix 

atomic and modularised processes. In the tool described in Chapter 5 more restricted 

conventions are needed, as outlined below. 

4.4.2 A practical example using hierarchy 

Figure 4.12 shows a very complex activity diagram, containing two processes, the 

PINP (packet input process) and the POUTP (packet output process) of an X.25 type 

protocol, level 3. For details of models of the full protocol see Pooley and 

Birtwistle[69] and Beisnes and Bringrud [11]. This simplified version is actually 

very similar in structure to the example of figure 4. 10, but the description is far more 

detailed. This makes it a candidate for the use of configuration diagrams to allow 

further modelling without sacrificing readability. 



Chapter 4: 	Graphical Formalism for Simulation 
	 Wt 

Figure 4.13 shows the process of turning the model into a configuration diagram, 

which is a process of abstraction. Note that the modularisation of the lower level 

description matches the logical and physical structure of the system modelled. This 

is a natural and good use of abstraction. 
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Figure 4.14 shows the use of the resulting process descriptions, along with a module 

level description of the PAD (packet assembler/dis-assembler) process to describe a 
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compound DTE (data terminating equipment) process. Each compound process 

description or process module description preserves its external links, but hides 

internal detail. This is an object oriented modelling view, where only the external 

interface to an object is accessible to other objects. 

Figure 4.14: Further levels of X.25 - DTE 

Finally, figure 4.15 shows the recursive application of configuration diagrams, with 

the DTE process being reduced to a single compound process and then combined to 

form a node compound process description. Such abstractions are applicable in 

theory to arbitrary depths of description, allowing correspondingly complex systems 

to be described. 
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Figure 4.15: Top level X.25 view - a node 
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4.4.4 Grammar and types for configuration diagrams 

Certain safeguards must be applied when combining modules in this way. 

Conceptually, it is merely necessary to overlay equivalent links. For this to have true 

meaning, however, the links must be of equivalent type. The convention demands 

the notion of strong typing for all components and links. The type of a 

communication/synchronisation link is defined by the object at the other end of it, 

which is expressed syntactically in the grammar of extended activity diagrams in 

section 4.2.7. For configuration diagrams, this grammar is further extended by 

adding a new alternative for object, called submodel and allowing this, followed by 

a number of synch nodes corresponding to the number of external links (parameters) 

and schedule points for this modularised process and a number of hold nodes, 

corresponding to interruptable holds visible within this modularised process, to form 

a subprocess. Only one link is needed from a subprocess to an object, even if there 

would be more than one in its atomic level description, since it is merely a reference 
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to the object which is the actual parameter to match a formal parameter in the 

DEMOS Entity. In the CCS model it is the name by which an internal action is re-

labelled. In principle the link could be in either direction, but here it is assumed to be 

from the subprocess to the other object. This may seem to lose information which 

might be important, but the tool in Chapter 5 demonstrates that it is sufficient. Links 

to submodel nodes are assumed to be newsched triples. Links to the synch nodes of 

a subprocess are assumed to be schedule triples. Links to a hold node of a 

subprocess are assumed to be interrupt triples. The last two are problematic, as they 

require knowledge of the internal behaviour of the subprocess to be used correctly. 

They are included for completeness, but are not expected to be widely used. 

ure 4.16: Full grammar of extended activit 

graph 	= 

object 	= 
condq 

subprocess 

process 

thread 	= 

cond 	= 
end 

loop 	= 

syntriple 	= 
receive 

send 

interrupt 

acquire 	= 

take 	= 

remove 	= 

receive 	= 

waituntil 	= 

object * 

res 	I 	bin 	I 	store 

waitq I 	messageq 	I 	process 

start thread end 

flowcom * 

syntriple 	I 	cond I 	loop I 	hold 

if < thread II ((llink thread rlink) I (rlink thread ilink))> 

while thread end 

acquire 	I take 	I 

waituntil 	I coopt 	I 
release 	I give 	I 

signal 	I wait 	I 

synch inlink res 

synch inlink bin 

synch inlink store 

synch inlink messageq 

synch inlink condq 

remove 

newsched 
add 

schedule 
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coopt 

newsched 

release 

give 

add 

send 

signal 

wait 

schedule 

interrupt 

subprocess 

parbind 
mqbind 

resbind 

binbind 

storebind 

inqbind 

cqbind 

wqbind 

entbind 

synch outlink res 

= 	synch outlink bin 

= 	synch outlink store 

= 	synch outlink messageq 

= 	synch outlink condq 

synch outlink waitq 

= 	synch outlink synch 

= 	synch outlink hold 

= 	submodel 	(parbind )* 

= 	resbind 	I binbind 

I 	cqbind I wqbind 

= 	synch outlink res 

= 	synch outlink bin 

= 	synch outlink store 

= 	synch outlink messageq 

= 	synch outlink condq 

= 	synch outlink waitq 

= 	synch outlink start 
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= 	synch inlink waitq 

synch outlink 	( 	start I 	submodel 	) 

I 	storebind 

I 	entbind 
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Figure 4.17: Example of actual symbols in configuration diagrams 

Submodel node 

4.4.5 Application specific description 

In most models such abstractions will correspond to actual components. In many 

case studies only a small number of modules will need to be redefined, as many 

lower level ones will have remained unchanged from earlier work. This leads 

towards the notion of reusable module definitions. This applies both to the diagrams 

and to any other form of representation, including separately compiled object 

modules. In practice, most modelling of complex systems is probably able to work in 

terms of libraries of standard component models, with only a few additional or 

changed algorithmic descriptions. Thus, most modelling in a particular field will be 

able to proceed in terms of configuration diagrams alone. As this involves no 

knowledge of component implementation, it is expected to be a much more natural 

and attractive level for non-specialist modellers to use. 

It is also possible to define meaningful graphical representations for process 

modules, resources and queues in diagrams, to enhance their readability for users 

from particular backgrounds. Thus, it might be claimed that the configuration 

diagramming technique is extensible towards particular application areas. In subjects 

such as modelling of flexible manufacturing systems (FMS), existing conventions 

can be incorporated removing the need to master a new set of symbols. 
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4.4.6 Top-down and bottom-up 

The examples shown all proceed bottom-up, i.e. building from simple, low level 

components towards complex systems. This is merely for ease of explanation, 

starting by constructing single level, algorithmic descriptions. In fact model design 

may proceed top-down just as easily. Thus, it is possible to sketch the top level of a 

system as a configuration diagram and decompose this to give lower level 

component descriptions. The only requirement is that, for a complete system 

description, the higher level descriptions must all lead ultimately to an algorithmic 

description. 

4.5 Conclusions 

The technique of extended activity diagrams, including configuration diagrams 

offers a flexible way of describing models in process oriented terms. Such 

descriptions are very useful for communicating models both amongst modellers and 

to laymen. The set of symbols suggested here is believed to form the basis of a 

standard for such descriptions. 

By supplying appropriate information about each symbol's attributes, it is also 

possible to provide sufficient information to make the coding of actual programs 

from these diagrams completely mechanical. This allows the use of direct graphical 

entry of simulation models on graphical workstations, thereby extending the concept 

of dialogues [14] to include graphics as input. In Chapter 5, a new version of such a 

tool is built for the purposes of this dissertation, using the concepts developed in this 

and the preceding chapter. It adds the important new capability of generating CCS 

equivalent models directly from the same representation. 

Activity and configuration diagrams are, it is contended, an important step away 

from the need to view the mastery of programming as a key part of effective 

simulation, by allowing the modeller to concentrate on understanding the modelling 

process and so removing a major barrier to more widespread use of simulation. 



Chapter 5 

A tool to demonstrate and simplify combined 
modelling 

5.1 Introduction 

In Chapter 3 the possibility of defining a mapping between CCS descriptions of 

behaviour and an extended version of the DEMOS simulation language, modified 

DEMOS, was explored. In Chapter 4 a graphical formalism for expressing modified 

DEMOS models was elaborated. In this chapter the practicality of combining 

discrete event simulation with a behavioural analysis tool based on a process 

algebra, generating both from a shared graphical description is demonstrated. 

Several tools have appeared which combine simulation and exact quantitative 

solvers using a common input format [106] [8,10]. A series of tools, beginning with 

the SIMMER Process Interaction Tool [72], have shown the potential for generating 

DEMOS models from graphical input. The translation of a subset of unmodified 

DEMOS syntax into workbench code for either CCS or SCCS given by Tofts in 

[100] was implemented by him as two SML programs. These permit the conversion 

of DEMOS programs into either process algebra and the use of the Concurrency 

Workbench to prove properties of the systems. GreatSPN and DSPNExpress, 

graphically based stochastic Petri net tools, allows both simulation and structural 

analysis of their underlying place transition net models. 

Here, a new tool called Demographer allows both modified DEMOS discrete event 

simulation models and CCS process algebra models to be generated from a common 

graphical description. The former can be solved by the DEMOS discrete event 

solver, while the latter can be analysed by the Concurrency Workbench. 
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5.2 Demographer 

Demographer is a simple graphical editor for creating both modified DEMOS 

discrete event simulation models and Calculus of Communicating Systems (CCS) 

[58] models directly from extended activity diagrams as described in Chapter 4. The 

current version runs under MS/DOS and is written entirely in SIMULA. An earlier 

version, using less well defined definitions of extended activity diagrams exists for 

X Windows under UNIX. Compilation and execution of modified DEMOS models is 

currently done separately, but it is intended that they should be integrated into the 

graphical front end. 

CCS is generated in the syntax of the Concurrency Workbench for most parts of the 

language. Both the basic calculus and its temporal extension can be generated. The 

Concurrency Workbench (CWB) remains a separate tool, but it is trivial to load the 

output of Demographer into it. By integrating the two types of modelling in a pair of 

compatible tools, the benefits of both approaches are more easily obtained. At the 

same time the process of modelling is simplified and consistency between the two 

solvable forms of the model is ensured. 

5.2.1 The basic tool 

Demographer allows the user to draw enhanced activity diagrams, by selecting 

symbols from a menu and placing them on a canvas, which is divided into a grid of 

squares. Each symbol occupies one square in the grid. Symbols are connected by 

drawing linking symbols in the squares between them. The types of the symbols 

joined and the direction of the links determine their meaning, in line with the formal 

grammar for extended activity diagrams developed in Chapter 4. 

Many symbols require additional information to be supplied to complete the 

description of the model. For instance, the Hold symbol requires a description of the 

duration of the delay it represents. Additionally many symbols can usefully be 

annotated by a short comment or description. This is possible by selecting a symbol 

and invoking an open form operation. This will cause an input form menu 

appropriate to that symbol to be displayed. The user may then enter the required 

information by typing into this form. 
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Figure 5.1: Demographer user interface 

When a model's description is believed to be correct and complete the user may 

request that a DEMOS program be generated from it. This is done by activating the 

Generate button. The user will then be asked for the name of a file into which the 

DEMOS source is to be written. 

As well as saving the DEMOS source, the user may save and load the graphical 

representation and annotation. This is stored in a standard format called DIA format, 

which is common to both versions of Demographer. Thus models created under 

MS/DOS may be used by the X Windows version by transferring the files, which are 

in ASCII format. The current MS/DOS version is complete, while the X Windows 

version may not be able to recognise some symbols. CCS generation is currently a 

separate program, reading the DIA representation of the model and writing CCS to a 

new file. 
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5.3 modified DEMOS 

Here the redefined version of DEMOS, known as modified DEMOS, is outlined. 

This builds all synchronisation objects, such as resources, with an option for FIFO 

priority queueing, as in unmodified DEMOS, and an option for releasing blocked 

Entitys as soon as they are able to proceed. This implements the versions of Acquire, 

Remove and Take needed to allow equivalence between DEMOS simulation 

behaviour and that expected by CCS without using FIFO resources etc. 

5.3.1 Supporting non-FIFO blocking 

The changes to the DEMOS package include a global flag which can be set and reset 

to force all new synchronisation objects subsequently created to be FIFO or non-

FIFO. Within these objects, their behaviour can be modified after creation by calling 

a setting or a resetting procedure to modify their internal FIFO flag. 

5.3.2 Introduction of Store object 

The problems with unbounded buffer objects, represented by Bin in unmodified 

DEMOS, are dealt with by introducing a Store object, as defined in Chapter 3. This 

has two queues, rather like a WaitQ, one for Entitys blocked trying to Remove part of 

the contents of the Store and one for those blocked trying to Add to it. As with Res 

and Bin, Store objects in modified DEMOS may use strict FIFO queueing or allow 

those with smaller requests to proceed if those in front are still blocked. 

5.4 Active versus passive objects - a digression 

The process view of simulation is built on a distinction between active objects 

(processes) and passive ones (resources etc.). In Chapter 3 it was necessary to view 

all objects in the CCS world as active. It is therefore worth considering whether re-

implementing DEMOS in this way would lead to any real differences. If so, it would 

be sensible to do so to ensure consistency with the CCS definition of DEMOS 

semantics. 

To investigate this question, a version of DEMOS was built using only Entity, to 

model active objects, and CondQ, to model communication. These correspond 

directly to the CCS primitives of agents and complementary actions. To illustrate the 
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results of this, the effects on Res are considered. It is typical of the other 

mechanisms. 

5.4.1 Res as an Entity 

A Res maintains a count of how much of a resource is unused. This amount is set 

initially and may never exceed its initial value. It supports two interactions with 

Entitys - Acquire and Release. 

Acquire is a request from an Entity process for an amount of the resource being 

modelled. This request blocks the requesting process and can be modelled by its 

passivation after entering a request queue. In this way it is identical to an Entity 

which enters a DEMOS WAITQ and becomes a slave or which enters a CondQ and 

performs a WaitUntil sufficient resource is available. In the former case, the Res is 

very similar to the master process, Coopting the requesting process by using Find to 

express the condition that its required amount of the resource be less than or equal 

to that available. In the latter case the Res would Signal the CondQ on receiving a 

Release message from an Entity. Release increments the amount of resource 

available and activates the Res process either to look for slaves which can now be 

Coopted or to Signal its CondQ. 

The choice of which way to represent a Res as an Entity is therefore unclear. The 

form which gives the simplest representation and is closest to a CCS model is 

chosen, i.e. in terms of a CondQ. 

Figure 5.2: Res as an Entity/CondQ pair - M_Res 

ENTITY class MRES(RAmount); integer RAmount; 
begin ref(CONDQ) WQ; 

procedure ACQtJIRE(Amount); integer Amount; 
begin 

WQ.WaitUntil(Amount<=RAmount and Current==WQ.First); 
RAmount 	RAmount - Amount; 

end; 

procedure RELEASE(Amount); integer Amount; 
begin 

RAmount 	RAmount + Amount; 
WQ. Signal; 

end; 
WQ 	new CONDQ(Title&s Queue'); 

end; 
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Figure 5.3: Comparison of Res and M_Res traces 

Trace using DEMOS RES 	 Trace using M_RES 

TIME/ CURRENT 	AND ITS ACTION(S) 	TIME/ CURRENT 	AND ITS ACTION(S) 

0.000 DEMOS 	SCHEDULES BOAT 1 NOW 	0.000 DEMOS 	SCHEDULES TUGS 1 NOW 
HOLDS FOR 100.00,UNTIL 	 SCHEDULES JETTIES 1 NOW 

100.000 	 SCHEDULES BOAT 1 NOW 
BOAT 1 SCHEDULES BOAT 2 AT 5.00 	 HOLDS FOR 100.00,UNTIL 

SEIZES 2 OF TUGS 	100.000 
SEIZES 1 OF JETTIES 	 TUGS 1 `TERMINATES 
HOLDS FOR 3.000, UNTIL 	 JETTIES 1 	̀TERMINATES 

3.000 	 BOAT 1 SCHEDULES BOAT 2 AT 5.00 
3.000 RELEASES 2 TO TUGS 	 HOLDS FOR 3.000, UNTIL 

HOLDS FOR 10.000, UNTIL 3.000 
13.000 	 3.000 SIGNALS TUGS is Que 
5.000 BOAT 2 SCHEDULES BOAT 3 AT 10.0 0 	 HOLDS FOR 10.000, UNTIL 

SEIZES 2 OF TUGS 	13.000 
SEIZES 1 OF JETTIES 	5.000 BOAT 2 SCHEDULES BOAT 3 AT 10.0(0 
HOLDS FOR 3.000, UNTIL 	 HOLDS FOR 3.000, UNTIL 

8.000 	 8.000 
8.000 RELEASES 2 TO TUGS 	 8.000 SIGNALS TUGS is Que 

HOLDS FOR 10.000, UNTIL 	 HOLDS FOR 10.000, UNTIL 
18.000 	 18.000 
10.000 BOAT 3 SCHEDULES BOAT 4 AT 15.0 1)0.000 BOAT 3 SCHEDULES BOAT 4 AT 15.0 C 0 

SEIZES 2 OF TUGS 	 W'UNTIL IN JETTIES l's 
AWAITS 1 OF JETTIES 	13.000 BOAT 1HOLDS FOR 3.000, UNTIL 

13.000 BOAT 1SEIZES 1 OF TUGS 	16.000 
HOLDS FOR 3.000, UNTIL 	15.000 BOAT 4 SCHEDULES BOAT 5 AT 20.0(0 

16.000 	 W'UNTIL IN TUGS l's Que 
15.000 BOAT 4 SCHEDULES BOAT 5 AT 20.0 1)6.000 BOAT 1SIGNALS TUGS is Que 

AWAITS 2 OF TUGS 	 SIGNALS JETTIES l's 
16.000 BOAT 1RELEASES 1 TO TUGS 	 ***TERMINATES 

RELEASES 1 TO JETTIES 	 BOAT 3 LEAVES JETTIES l's 
***TERMINATES 	 HOLDS FOR 3.000, UNTIL 

BOAT 3 SEIZES 1 OF JETTIES 	19.000 
HOLDS FOR 3.000, UNTIL 18.000 BOAT 2WUNTIL IN TUGS is Que 

19.000 	 19.000 BOAT 3 SIGNALS TUGS i's Que 
18.000 BOAT 2AWAITS 1 OF TUGS 	 HOLDS FOR 10.000, UNTIL 
19.000 BOAT 3RELEASES 2 TO TUGS 	29.000 

HOLDS FOR 10.000, UNTIL 	BOAT 4 LEAVES TUGS i's Que 
29.000 	 W'UNTIL IN JETTIES l's 

BOAT 4 SEIZES 2 OF TUGS 	 BOAT 2 LEAVES TUGS is Que 
AWAITS 1 OF JETTIES 	 HOLDS FOR 3.000, UNTIL 22.000 

BOAT 2 SEIZES 1 OF TUGS 	20.000 BOAT 5SCHEDULES BOAT 6 AT 25.0 
HOLDS FOR 3.000, UNTIL 	 W'UNTIL IN TUGS l's Que 

22.000 	 22.000 BOAT 2 SIGNALS TUGS l's Que 
20.000 BOAT 5 SCHEDULES BOAT 6 AT 25.0 0 	 SIGNALS JETTIES is 

AWAITS 2 OF TUGS 	 ***TERMINATES 
22.000 BOAT 2 RELEASES 1 TO TUGS 	 BOAT 4 LEAVES JETTIES l's 

RELEASES 1 TO JETTIES 	HOLDS FOR 3.000, UNTIL 25.000 
***TERMINATES 

BOAT 4 SEIZES 1 OF JETTIES 
HOLDS FOR 3.000, UNTIL 

25.000 

5.4.2 Testing M_Res 

To verify the behaviour of M_Res, the harbour model from Birtwistle was modified 

to use M_Res rather than Res and the traces compared. These are given above. A 
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similar approach was used to verify the other re-writings. Despite certain differences 

in the trace messages, the sequence of actions is identical. 

5.5 The current set of symbols 
The set of symbols described here is essentially the same as that described in 
Chapter 4. Their connection into a graph has to match the grammar in Figure 4.16. 

0 
C 

ligure 5.4: Symbols used in 

Start of process 
Resource 

End of process 	 Bin 

Choice 
	

Store 

While 
	 Message 

queue 

Delay 

Condition 
- 	 queue 

+ 

+ 

End branch 

Synchronisation 

Wait 
queue 

Sub-model 

4 	Linking 
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5.5.1 Linking 

The extended activity diagram grammar specifies only a general topological notion 

of placing and linking of symbols. The precise mapping onto a display medium is 

left to the implementor. In particular, linking is likely to depend on the format of the 

canvas used. In Demographer a grid of squares is assumed, with one node per non-

empty square. Links are composed of directed link nodes, joining the objects nodes, 

which is rather restrictive in terms of the number of paths possible between exit side 

and entrance side of the nodes being joined, but seems adequate in most cases. This 

works for the linking definitions in the grammar, since no node is required to have 

more than one link attached to any side. As well as upwards, downwards, leftwards 

and rightwards, link nodes can indicate changing direction by ninety degrees and 

crossing of links. 

Placing two flow of control nodes in adjacent squares is interpreted as linking them 

if that makes sense in terms of the grammar. 

A sub-model node may have several links to it. This is supported in the grammar by 

requiring synchronisation and hold nodes to be attached beneath the sub-model so 

that links may be made to them. The synchronisation nodes which match parameters 

must be attached to objects in a top to bottom order which matches the order of the 

parameters of that sub-model (see below). 

5.6 Attributes of symbols 

As was remarked at the end of Chapter 4, by suitable definition of attributes for the 

nodes in an extended activity diagram, a complete model or sub-model can be 

generated automatically, either in DEMOS or in (T)CCS. This section describes 

those attributes required in Demographer at present. Most are concerned with 

DEMOS code generation. Demographer allows up to six attributes per node, 

presenting a menu with a line, starting with a prompt, for text to be entered for each 

attribute that is required for that node type. 

5.6.1 Attribute grammars for activity diagrams 

A similar approach was used successfully in the earliest versions of the Process 

Interaction Tool [72]. In this and subsequent PIT tools [6] an elaborate language for 

the definition of annotated graphs was developed, known as Graph Definition 
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Language (GDL). GDL led to a generic graph editing tool [70,72], which was 

customised by reading in a GDL file when starting up. This file defined node types, 

their appearance, how they could be linked and what attributes they should have in 

their form menus. It was necessary, however, to write from scratch a backend 

processor for the data structures produced for any given graph type. In later versions, 

GDL was extended to be the language in which models were stored as well. 

Having produced in this dissertation a formal grammar for extended activity 

diagrams, it is now clear that GDL was acting as an attribute grammar meta-

language. Unfortunately this insight was not available at that time and it is very 

clumsy when viewed in this light. Perhaps as a result of this, the true power of 

attribute grammars, as used in compiler compilers, was not exploited, namely the 

ability automatically to generate required output from the attribute definitions. 

Although the MS/DOS version of Demographer uses no GDL form of input to drive 

it, the partial X Windows version has shown that this is possible for at least a subset 

of the symbols. No further claims are made at the present, but it seems likely that 

such an approach will lead to a truly general graphical editing and synthesising tool 

5.6.2 Attributes and properties of symbols in Demographer 

Although up to six attributes are allowed, most symbols use fewer. In the following 

list, those with an asterisk are optional, i.e. may be left blank and still allow a model 

to be generated. As well as the attributes, some idea of the corresponding DEMOS 

code is given. The CCS follows the correspondences to DEMOS worked out in 

Chapter 3, as far as could be achieved before work halted. 

5.6.3 Flow of control symbols 

Start symbol 

A process starts with a start symbol. If several start symbols are drawn above each 

other, a corresponding number of instances of that type of process is to be generated. 

The start symbol requires the user to specify: 

a name, 	used to define the entity class and a reference to an instance of 

it. The class name has the suffix "_C" appended. Currently each instance of 

the same process has a separate (identical) class definition. 
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an initial scheduling delay used literally as given as a parameter to 

Schedule for the instance after its creation. 

an inter-arrival time * 	if empty, this field is ignored, if used, the type 

of a distribution (such as NegExp) and its parameters, as required by 

DEMOS, should be given. A suitable unique distribution is generated, whose 

name is a combination of the name in this start node and a suffix meaning 

arrivals. The first action of the process will now be to schedule its successor 

according to this distribution, generating a stream of arrivals. 

three lines for declaration of local variables. These will be inserted exactly as 

typed at the start of the class for this process. Although intended to support 

conditional expressions, any legal SIMULA declarations or statements are 

accepted here. 

End symbol 

This indicates the end of a sequence of symbols intended to represent one process. 

No annotation is required. 

Hold symbol 

This indicates a delay for some activity. 

It requires 

a reason 	which will be enclosed in comment delimiters ('!' and ';) and 

inserted into the process actions before the Hold. 

a delay 	currently taken literally as the text of the parameter to the 

corresponding Hold statement in the DEMOS program. 
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Choice symbol 

This allows the model to choose to follow one of two paths until some future joining, 

which is marked by an end-branch symbol. The second of these branches may be 

omitted. This corresponds to the if-then-else and the simple if-then in a 

programming language. 

It requires 

a reason 	which is inserted into a comment in the same manner as for 

hold. 

a condition which will be used to generate a value of True or False. 

Currently this is inserted exactly as typed between the words if and then in 

the DEMOS program. 

The path followed when the condition is True is that leading from the bottom of the 

choice symbol. When the condition is false, the path to the left or right is followed. 

Testing for the existence of the else branch is done in that order. If no path in either 

direction is found, the program simply skips the true branch if the condition is False 

and carries on from the end branch symbol. 

While symbol 

This is rather like the choice symbol and has the same annotations. 

Instead of performing the true branch once only, it continues to repeat it as long as 

the condition remains True. If condition is given as the literal "true" or is never 

altered, the loop will continue indefinitely. There is no else branch to a while and 

none is checked for. Again the extent of the loop is marked by an end-branch 

symbol. 

End-branch symbol 

This marks the end of a sub-part of the process' behaviour, currently the branches of 

a condition or the body of a while loop. It has no attributes. 
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Synchronisation symbol 

This indicates that an action defined by a link to or from an external synchronisation 

mechanism is to take place before continuing. Currently an incoming (outgoing) link 

has the following meanings for synchronisationnodes within process graphs: 

External node type Incoming link Outgoing link Parameter required 

Resource Acquire Release Amount - integer 

Bin Take Give Amount - integer 

Store Remove Add Amount - integer 

Message Queue Receive Send Object - ref (Message) 

Condition Queue Wait Until Signal Condition - Boolean by name 

Wait Queue Coopt Wait None 

Synchronisation Node  Schedule Delay - real 

Start or Submodel Node  Schedule Delay - real 

Hold  Interrupt Signal - integer 

It requires 

a reason 	which is used as a comment. 

a parameter value 	which will be of the type shown in column 3 above. 

Synchronisation nodes are also used below submodel nodes, to define parameters to 

and scheduling of submodel entities. Again the meaning of a link is determined by 

the type of node to which a link is made. There is no code generated for the 

scheduling and interrupting links, as this has already been generated within the 

submodel's code. The outgoing links all bind actual objects to the formal parameters 

of the submodel. Incoming links are only significant for the node on the other end, 

which cannot be a passive object. 
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External node type Incoming link Outgoing link Parameter required 

Resource Not used. ref(Res) param Not used 

Bin No used ref(Bin) param Not used 

Store Not used ref(Store) param Not used 

Message Queue Not used ref(MessageQ) 

param  

Not used 

Condition Queue Not used ref(CondQ) param Not used 

Wait Queue Not used ref(WaitQ) param Not used 

Synchronisation Node  ref(Entity) param Not used 

Start Node  ref(Entity) param 	INot used 

Hold  ref(Entity) param 	I Not used 

5.6.4 Passive object symbols 

The following symbols represent objects outside process descriptions, passive 

objects. The meaning of a link is fixed by the type of node to which a link is made. 

Resource 

This corresponds to a DEMOS Res. It requires: 

a name 	- used to build a ref (Res) declaration, a new Res statement 

and to tag any Acquire and Release calls in processes linked to this resource. 

an amount 	- used in new Res statement as initial amount & limit of res. 

Bin 

This corresponds to a DEMOS Bin. It requires: 

a name 	- used to build a ref (Bin) declaration, a new Bin statement 

and to tag any Take and Give calls in processes linked to this bin. 

an amount 	- used in the new Bin statement as the initial amount held. 
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Store 

This corresponds to a DEMOS Store. It requires: 

a name 	- used to build a ref (Store) declaration, a new Store statement 

and to tag any Remove and Add calls in processes linked to this store. 

an amount 	- used in the new Store statement as the initial amount held. 

a limit 	- used in the new Store statement as the limit of capacity. 

Message Queue 

This corresponds to a DEMOS MessageQ. It requires: 

a name 	- used to build a ref (MessageQ) declaration, a new 

MessageQstatement and to tag any Send and Receive calls in processes 

linked to this message queue. 

Condition Queue 

This corresponds to a DEMOS CondQ. It requires: 

a name 	- used to build a ref (CondQ) declaration, a new CondQ 

statement and to tag any Signal and WaitUntil calls in processes linked to 

this condition queue. 

a Boolean flag all 	- used to control the extent of searching when a Signal 

is received. 

Wait Queue 

This corresponds to a DEMOS WaitQ. It requires: 

a name 	- used to build a ref (WaitQ) declaration, a new WaitQ 

statement and to tag any Wait and Coopt calls in processes linked to this wait 

queue. 
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Sub-model 

This corresponds to a separately defined process. See section 5.7.4 for details. It 

requires: 

a name 	- used to build a ref (Name) declaration, a new Name 

statement and to tag any schedules or interrupts to this submodel. 

A parameter name and type list 	- used to identify the types of objects to 

which this node's dependent synchronisation nodes should be attached. 

5.7 Implementation 

The general operation of Demographer is described in this section. Although much is 

independent of a particular version, some aspects refer to either the MS/DOS or the 

X Windows version. Various formats and representations are used at different stages, 

stored in ASCII files. Figures 5.5 and 5.6 show the structure of the two current 

versions. 

Figure 5.5: Structure of files in the MS/DOS version of Demographer 

Stored diagramSave Demographer 	 DEMOS 	I 

DIA format 	 source 

Load  

Concurrency 
CGEN 	 Workbench 

backend 	 style 
CCS or TCCS 

Figure 5.6: Structure of files in the X Windows version of Demographer 
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5.7.1 Loading and saving models 

Demographer begins by asking for the name of an input file. If given, this should be 

in the DIA format used by all versions of Demographer. If no name is given, an 

empty canvas is created. If a valid file name is given, the canvas will appear with the 

corresponding diagram displayed and the underlying annotations will also have been 

loaded. 

The format of stored diagrams is a simple minded representation of the grid, its 

nodes and their attributes. For each non-empty square in the grid the following is 

output in a fixed format: 

X and Y co-ordinates in the grid, 

type of node as an integer, 

the text entered into each of the six possible fields holding attributes. 

Although this is not very compact, it is simple and complete. Links are represented 

as chains of appropriately directed and overlaid directed link nodes for the squares 

they cross. The essence of the DIA representation is that the complete description of 

the grid is enough to define the model. 

5.7.2 Interpreting the diagram 

Demographer works at three levels when interpreting an activity diagram. 

It begins by making a complete scan of the grid, locating all nodes 

corresponding to objects in the grammar. A linked list of records is created 

for these. 

When generating output, processes are parsed in a simple recursive descent 

manner, by following flow of control links from each start node and sub-

models are parsed by interpreting the chain of synchronisation nodes linked 

beneath them. 
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When a synchronisation node is found during the parsing of a process or sub-

model, its type and partner are established by following, forwards or 

backwards, the link to the other node in its node-link-node triple. Where a 

synchronisation node has links attached to both sides, this is treated as two 

synchronisation nodes, the first with the left link , the second with the right 

link attached. 

5.7.3 Generating flat models 

The generation of models is done in three passes through the data gained by 

scanning the grid. 

First the start nodes on the object list are used to identify the processes described and 

to output an Entity, in DEMOS, or a binding of an agent to an identifier, in CCS, for 

each of these. In model generation, the mapping of processes is quite simple, the 

only outside information being found in objects at the other end of links to or from 

synchronisation nodes. Any inter-arrival time distributions found in the start node 

are added to the object list at this time. 

A second pass down the object list is then used to generate declarations of ref 

variables for all objects in a DEMOS model. This is again straightforward, involving 

the use of the name field to create an identifier of appropriate type. For an entity the 

type will be the name with the suffix "_c", as for the identifier in the corresponding 

Entity declaration. This pass produces no output in a CCS model. 

The third pass generates instances of objects. In DEMOS this means new statements, 

with identifier, class name and title all generated from the name field. Other 

parameters to the objects are found from other attribute fields as defined above. In 

CCS, instances are bound by parallel composition with a DEMOS agent and 

appropriate restriction of label visibility. Passive objects are generated according to 

their templates defined in Chapter 3, in some cases, such as resources, having their 

extent defined by a parameter attribute. 

5.7.4 Generating hierarchical models 

There are two stages in the construction of a hierarchical model using Demographer, 

building of components and assembly of models. The first of these is further sub-

divided into building of atomic processes and assembly of compound processes. At 
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the moment they are assumed to work bottom up, but this constraint should be 

relaxed in future versions. 

Building an atomic component process 

In Chapter 3 the general notion of component based process oriented modelling was 

introduced. Demographer follows this view quite closely. Thus the initial task is to 

construct the lowest level, atomic processes to be used. Since these are intended to 

be re-usable, they must retain all information necessary for their incorporation in 

higher level, compound components or complete models. An atomic process 

description in Demographer consists of a single process described by a start/end 

node pair and their linking flow of control nodes. All communications and 

interactions with other objects are shown by including those objects. In the case of a 

Schedule call to another process a submodel node is used, with no dependent 

synchronisation nodes. No attributes, other than their Name fields are used in these 

object nodes. These names are used as the identifiers of the formal parameters of the 

Entity sub-class generated. 

Generation of DEMOS code proceeds in the same way as for a complete model, 

except that the ref variable declarations in the full model are replaced with the 

building of a formal parameter list in the header of the Entity sub-class. A list of the 

identifiers and types of all parameters id also generated, automatically, in the Params 

field of the form of the Start node. This will be used when importing the sub-model 

at higher levels. 

CCS generation is fairly straightforward for atomic processes, except for nested 

structures, i.e. loops, where dummy sub-agent names are created to help with 

recursion, and conditions, where only a representative sub-range of possibilities are 

tested, for simple comparisons or a place marker is generated for anything more 

complicated. Again, where Bins and certain queue structures are required, only a 

subset of possible values are generated. 

Assembly of compound processes 

A compound process description can contain all the elements of a full model. This 

means that some means of distinguishing objects local to the generated compound 

process (those inside the shaded areas in Chapter 4) and objects to be left external. In 

the generated DEMOS, those locally defined will have to be treated in the same way 
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as processes in a full model, with ref declarations and new statements being included 

in the body of the Entity sub-class, while those left external will be added to the 

formal parameter list. One and only one full process description is required and 

allowed in a compound process description. This will control the scheduling by the 

generated Entity body of the locally defined sub-processes. 

Sub-model nodes are used to introduced predefined sub-processes. These require a 

name, which is used to locate files describing their external interface. Once this is 

supplied, they can construct a parameter identifier/type list, from information output 

when their underlying code was generated. It is currently left to the user to add a 

corresponding number of synchronisation and hold nodes below the sub-model. 

These must be linked in the order of the parameter list to the objects intended as the 

actual parameters. This may sound cumbersome, but works reasonably effortlessly. 

Future version of the tool will generate the synchronisation nodes automatically. 

Thus DEMOS code generation proceeds as a combination of full model and atomic 

process code generation, with any unsatisfied parameters (unmatched links) being 

propagated out by adding them to this Entity's formal parameter list. Satisfied 

parameters are supplied with appropriate ref variable identifiers in the actual 

parameter list within Entity new statements. Unsatisfied parameters get the formal 

parameter name used to pass them out. 

CCS generation is more complicated for this level, since parameter matching in 

DEMOS corresponds to renaming and hiding in CCS. Thus an analogous phase of 

link matching is performed. 

Hierarchical model assembly 

At the top level model assembly proceeds as a combination of flat model generation 

and compound process generation. No outward parameter propagation is possible at 

this level, of course. No detailed process description is needed for the main program. 

Any process descriptions at this level are treated as new Entity definitions. 

5.8 Conclusions and further work 

The current version of Demographer is as complete as was needed to produce this 

dissertation. It demonstrates that all the features defined in the graphical language of 

extended activity diagrams can be automatically converted into DEMOS and that 
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many of them can be automatically converted into CCS. The limitations on the latter 

stem from the lack of support in either CCS or TCCS for stochastic and continuous 

values. This makes it impossible to deal with time in the manner required in 

quantitative modelling. It can be argued that DEMOS only supports the usual digital 

computer's discrete approximation to continuous values, but this can only be 

modelled realistically in CCS or TCCS for very restricted ranges of value, with any 

kind of accuracy. 

The problems of stochastic variables is less important, as noted elsewhere, since a 

range of important properties can be shown to hold for any branching probabilities 

or rates. Such models are conservative in what they predict as safe, but are often still 

of use. More hopefully, a number of new probabilistic and stochastic process 

algebras, such as TIPP [31] and PEPA [37,30], are emerging which include the 

desired features. It is an important continuation of this work to investigate the use of 

mappings from extended activity diagrams into these algebras. 



Chapter 6 

Exploiting CCS for Simulation Models 

6.1 What modellers need to know 

The use of functional properties is fuelled by a number of questions in the minds of 

modellers. In this chapter some of the most important are examined in the context of 

CCS and the modal ji-calculus as a means for reasoning about them. Among the 

questions that might be tackled are the following. 

1 	Does a simplification change behaviour? 

In order to make execution of simulation models tractable, it is often desirable to 

simplify areas of detail. This leads to questions such as: "Can the detailed 

modelling of this sub-model be replaced by a stochastically determined hold?" 

and "Does it change the behaviour of the model if I replace a sub-model with a 

formula?" 

There are two approaches to dealing with this sort of question. The first is to 

formulate rules for simplifications which are guaranteed to leave behaviour 

unaltered. Since models are expected, at least in part, to be generated by 

composing predefined instances of components, it would be unsurprising if this 

did not cause redundant states to be included. The second approach is to make 

some simplification and to have a means of testing whether important properties 

are unaltered. 

2 	Does the model's implementation mask a problem? 

Since discrete event models are actually executed in an interleaved manner, 

rather than in an asynchronously concurrent one, it is difficult to guarantee that 
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the modeller's intentions are reflected by the behaviour of the system. Examples 

include conditional waiting intended to model genuinely concurrent enabling of 

blocked processes, as in the CSMAICD protocol of Ethernet, and implementation 

of acquire which hides starvation, as in the standard DEMOS version of 

reader/writer locking. 

3 	Are there implications of structuring the model hierarchically? 

For ease of expression and reuse of sub-models modellers may need to know if a 

hierarchical model corresponds to its flat equivalent or behaves as expected 

overall. This requires ways of testing that important properties are or remain true 

in a hierarchical model. 

Having identified the sorts of questions that modellers might want to ask, it is now 

possible to examine how successfully they are addressed by testing their CCS 

equivalents. In the rest of this chapter the problems identified above are considered 

in turn by the use of typical examples. It is clear that CCS offers considerable 

potential, but it is not clear yet where its limits lie. 

6.2 Simplification of models 

In this section the two approaches to simplification described above are considered 

in turn. First the possibility of identifying, from the CCS model, simplifications 

which leave the simulation model's behaviour unaltered is considered. Then ways of 

identifying equivalence of models simplified by intuition are considered. 

6.2.1 Identification of redundancy in models 

Some conditions for eliminating actions and states are identifiable in terms of the 

CCS representation of a model. In some cases these may in themselves identify 

useful information about the system being modelled. 

Elimination of transitions 

To show how elimination of potential transitions is possible, irrespective of timings, 

the example in figure 6.1 uses the basic Calculus, as it would be generated 

automatically by Demographer, to model a simpler version of the harbour model 

from section 3.5.1, creating only three, terminating boats and reducing the initial 

number of tugs to two. This simplifies any analysis, and it will be used again to 

investigate deadlock. 
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Figure 6.1: CCS of a simnie harbour model 

BOAT Le jAcqi . tugAcq2 . tugRel2 . tugAcqi 	tugReli 	jRel1 

TUGS2  (tugAcqi .TUGS i)  + (tugAcq2.TUGS0) 

TUGS1  (tugAcqi .TUGS0) + (tugReli .TUGS2) 

TUGS0  (tugReli .TUGS1 ) + (tugRel2.TUGS2) 

JETTIES2  (jAcqi .JETTIES1 ) + (jAcq2.JETI'IESo) 

JETTIES1 Lef (jAcqi .JETTIES0) + (iRe/i .JETTIES2) 

JETTIES0  (jRel .JETTIES1 ) + (jRel2.JETTIES2) 

MODEL (TUGS2  I JETTIES2  I BOAT I BOAT I BOAT) \L(MODEL) 

Restricting MODEL by the sort of its unrestricted self, L, allows its components to 

be simplified, since they can no longer engage in any outside communications, only 

in zs. By applying the results of the CCS Expansion Law [58], any choices in agents 

within MODEL which begin with a label in N, where fl contains those labels not 

matched by a complementary action within the same scope, i.e. which are not 

partners in 'rs, may be eliminated. In other words, if the model is prevented from 

engaging in any outside activity, any branches guarded by actions which cannot be 

satisfied internally can be pruned without changing the overall behaviour of the 

model. 

This significantly reduces the complexity of the Jetties resource, as shown in Figure 

6.2, allowing edges in the resulting transition graph to be removed. In the current 

example it does not lead to a simpler simulation model, but in some models it would 

have an even greater effect, eliminating states in the transition graph not just 

transitions. State elimination is examined in the next section. 

Figure 6.2: Simplified CCS of Jetties resource from Harbour model 

JETTIES2 	 (jAcqi .JETTIES1 ) 

JETTIES1 	
Lef 	(jAcq .JETTIES0) + (jReli .JETTIES2) 

JETTIES0 	(jReli.JETTIES1) 
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In fact such simplifications are possible at any point where restriction is applied. 

This means that each sub-model definition is a potential point for elimination of 

transitions. Taking the reader/writer model from section 4.4.1, as it would appear if 

the two processes were first modelled separately and then combined, the resulting 

CCS model is as given in Figure 6.3. 

Fi2ure 6.3: Hierarchically constructed Reader/Writer model in CCS 

Reader buffRAcq1 	buffRRel l  Reader 

Writer buffWA cq3 	buffWReI1  Writer 

SharedBuff3 Le I buffSAcq1  SharedBuff2+buffSAcq2.SharedBuff1+buffSAcq3  SharedBuff 

SharedBuff2  de f buff3'Acq1  .SharedBuff1+buffSAcq2  SharedBuff0+buffSRel1  .SharedBuff3  

SharedBuff1  buffSAcq1 .SharedBuffo+buffSRel2.SharedBuff3+buffSRel1  .SharedBuff2  

SharedBuff0  buffSReI3  SharedBuff3+buffSRel2. SharedBuff2+buffSRel1  SharedBuff 

Reader [buff sAcq 1 /buffRAcq 1  ,buffSReIjbuffRRel1 ] I 

df 
Writer [buffSAcq3/buffWAcq3,buffSRel3/buffivRel 3 ] I 

Model - Writer [buffSAcq3/buffwAcq3,buffsRel3/bufflvRel 3 ] I 	buffSRel, buffSRe13  

SharedBuff3 	 ) 

As in the harbour model, not all of the possible actions in the resource are matched 

by complementary ones in Reader or Writer. They cannot be removed until they are 

restricted, but can then form a simplification. The Buffers resource no longer needs 

those actions using buftSAcq2  or buffSRel2  and these are eliminated below. 

Figure 6.4: Reduced form of Buffers resource 

SharedBuff3 	buffSAcq 1.SharedBuff2 	+ 	buffSAcq3.SharedBuff0  

SharedBuff2 	buffSAcqi.SharedBuffi 	+ 	buffSRel1 .SharedBuff3  

SharedBuffi 	buffSAcqi.SharedBuffo 	+ 	buffSRel1 .SharedBuff2  

SharedBuffo Lef buffSRel3.SharedBuff3 	+ 	buffSReli.SharedBuffi  

Eliminating complete states 

One major claim for Petri net models as a formalism for simulations has been their 

ability to identify redundant states, in the context of a particular marking, and so 
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allow simplification of the model at run time. Yucesan and Schruben also show how 

to eliminate states in their event based simulation formalism. In very simple models, 

such as the previous two examples, CCS can help to reduce the number of paths 

between states in a model. This in turn can simplify the analysis of the behaviour of 

the model. The question remains as to whether it is ever possible in the CCS model 

to eliminate states completely. 

In terms of a state transition diagram, elimination of a potential state in a sub-model 

is possible if there are no edges entering it in the combined model where it is used. 

In CCS terms, this means that no agent corresponding to a certain state in the sub-

model agent is ever activated as the result of an action in the overall model agent. In 

terms of the reader/writer example, this could mean that, for instance, the agent 

SharedBuff2  could be shown never to follow any of the actions possible in Model. 

By re-formulating that model with both readers and writers working in units of two 

buffers, such a condition is easily created. 

Following the reasoning above, a simple example of a model where certain levels of 

resource are unreachable is now created. In such a simple case this may seem trivial, 

but in more complex models, such possibilities may be far from obvious. Consider a 

simple factory model, where there are two machines, a Mill and a Polisher. The Mill 

shapes pieces and then passes them to the Polisher. Since the pieces are long, the 

Mill cannot begin work on a new piece until the Polisher has half finished its current 

piece. Pieces are transferred on dollies. The Mill loads its ingots from two Dollies, 

while four are needed by the Polisher to move milled pieces for polishing. At the 

halfway point the Polisher can release two Dollies. 

: 	A simnie model for unused resource states 

Mill 	Lef 	dollyAcq2 . dollyRel2 haljDone.Mill 

Polisher 	Lef 	dollyAcq4 . dollyRel2  . haljDone . dollyRe12  .Polisher 
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5 
Dollies5 	 dol1yAcq1  .Dollies5. 

i=1 
ii 	 5-n 

Dollies 	 >dollyAcq .Dollies + IdollyReli.Dolliesi, 
i=1 	 j=1 

where O<n<5 

Dollies0 	Lef>dollyRel .Dollies1  

Factory 	 (Mill I Polished Dolliess)\L(Factory) 

Intuitively it seems that the number of Dollies can never reach an even number. This 

can be verified easily in this simple example. This fact, together with the earlier rule, 

reduces the resource Dollies5  as shown in Figure 6.6. 

1 IgUU U U.U. 	IlUIII I U3VU1L LIU, VV 	I UUUIIU  all L LaLU3 UIIIII IIIauU 

Dollies5 	 dollyAcq2  .Dollies +dollyAcq4.Dolliesi 

Dollies3 	 dollyRel2.Dollies5  

Dollies 	 dollyRel2.Dollies3  

This is clearly simpler to reason about, although its usefulness in simplifying a 

simulation may be small unless it is being very carefully coded. Since it is hoped that 

resources will be built-in primitives in any simulation package, it would be 

necessary to have ways of recognising useful simplifications. One such case would 

be where the upper limit of the amount of resource in use was unreachable. This is 

clearly true in the example, as no state with the resource, Dollies0, is ever reached. 

Thus the resource can be further modified as shown in Figure 6.7. 

.'/: Dollies resource normaliseci to zero lower bound 

Dollies4 	 dollyAcq2  .Dollies2+dollyAcq4.Dollieso 

Dollies2 	 dollyRel2.Dollies4  

Dollies0 	Lef 	dollyRel2  .Dollies2+dollyRel4  .Dollies4 
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The failure of the original resource to reach zero implies that there is more resource 

available than the model can make use of. This can be used to establish a tuning of 

the system being modelled and can also allow the simulation to normalise the 

amount of resource at a lower level. For full generality, it should be noted that: 

there is a surplus n of resource Res when for all i in the range O..n-1, Res1  is 

unreachable. 

In the case given, a further simplification can be made, since those resource states 

involving odd numbers of dollies are unreachable. This permits the use of a resource 

with a unit representing two dollies, which can be reflected in the DEMOS model as 

well as reducing complexity in reasoning about the model. An alternative use of the 

same kind of analysis is found where the amount of a Bin or a Store can be shown 

never to exceed a certain limit. This is useful in providing a bound for the Bin 

(making it into a Store) or reducing the bound on a Store. 

Unreachable states in processes 

The examples so far have shown simplification of passive objects, such as resources. 

It is also interesting to investigate state elimination in processes. The simplest case is 

again the elimination of alternatives in choices which are prefixed by unmatched 

actions. This is quite likely to happen in reusing components within models. A more 

complex situation occurs where the actions appear to be matched, but the unwinding 

of earlier actions absorbs their complement. Put simply, an action and its 

complement must appear together in at least one state for an agent prefixed by that 

action to be reachable. The simple example in Figure 6.8 shows both of these in 

terms of an office services bureau and a messenger service, where the messenger 

service only accepts one delivery per day. 

t.S: 1-'rocesses with redundant states in UCS 

Bureau 	 typing .C1  + copying .C2  + printing .C3  

Messenger 	typing.D1  + copying.D2  

Model 	 (Messenger I Bureau)\{ typing,copying,printing 

In the agent Model, the Bureau cannot evolve into C3, but can evolve into C1  or C2, 

because the Messenger service will not accept printing from it. It is important to note 
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that this occurs as far as CCS is concerned because of the restriction of the label 

printing, which prevents any outside agent combining further to provide the 
complement to printing , which represents the absence of an alternative transport 

service. This is a simple case. Now consider the agent in Figure 6.9. In Problem, 

Emergency cannot become C3  or C1 . 

ON: 	Pre-emntive action removing successor states 

Emergency 	typing .Bureau 

Problem 	Lef 	(Emergency I Messenger)\{ typing,copying,printing 

To test for such cases, the modal t-calculus at first seems likely to be useful. It can 

provide the answer to the question, "In all successor states is there any where further 

progress is impossible?" and thus one possibility of eliminating redundant paths is 

established. This can be written, using the Box operator defined in Chapter 2, as: 

Box <->T 

which is the same as establishing deadlock freedom. It asks whether a dead-end can 

be reached, but not how many dead ends there are nor which states they are. If such a 

dead-end does exist and can be located it may reveal unnecessary dead states which 

were included on the assumption that deadlock could not happen. It does reveal that 

the model is not well behaved in reaching a steady state, since a dead-end is an 

absorbing state, killing the model. In general this is a sign of an error in the model's 

formulation. It is shown in section 6.3.3 below that the Concurrency Workbench 

provides a way of testing for deadlock which allows all states to be fully identified. 

Unfortunately it does not provide an answer to the original question. In fact there is 

no obvious way of exploiting a transition or reachability graph view, which starts 

from an initial state and generates successor states, to find unreachable states in 

some general graph of states. 

A more useful question is to establish whether any sub-states in the component 

processes do not lie on the paths reachable from the start state of the combined 

model. At first sight this seems impossible to answer for the general case. Special 

conditions were identified above which may be used when dealing with resources 

and buffers to establish whether they can be simplified. A similar method, removing 
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agents from the definition of components and establishing that combined behaviour 

is unchanged, can be applied more generally, but is rather a brute force approach 

without some insight into likely cases. If such insight is available, the approach of 

section 6.2.2 is applicable. 

Returning to built-in Concurrency Workbench functions, the min command binds to 

an identifier the smallest model which is observationally equivalent to a given 

model. This is an interesting possibility for simplifications, but may lead to re-

formulations which no longer have recognisable DEMOS equivalents. Also, the 

reduced model is defined by the Workbench in terms of meaningless names and 

there seems no easy way of relating these back to the original. 

The Workbench also allows the complete set of reachable agents (states) to be 

generated for an agent (model). This offers another approach. The existence of 

unreachable agents results from the restriction of certain labels when the model is 

composed. Otherwise the workbench assumes that externally generated actions are 

always possible. By generating the reachable states both with and without such 

restriction, comparisons may be made to establish which states are redundant. This is 

shown to be successful in the testing of these examples in Appendix C. 

6.2.2 Comparing models simplified by hand 

The danger with such sophisticated approaches to understanding behaviour is that 

they will not be attempted by those who see themselves primarily as simulation 

modellers and not as concurrency experts or formal modellers. In most cases the 

simplification is carried out in an informal manner and modellers are unable to 

establish whether such modifications are dangerous, except by running the resulting 

simulation models and examining their traces. It is therefore worth considering how 

far it is possible for a simulation modeller to ask whether an informally justified 

simplification, performed in order to speed up execution of a model, preserves its 

original behaviour. A suitable small example seems the best way to examine this. 

Consider a simple communications system, shown in Figure 6. 10, where a terminal 

inputs data to create a Stream of frames and sends these to a Transmitter, where 

packets are built out of frames before being passed to an output stage which sends 

them down a channel. 
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Figure 6.10: Activity diagrams of network model 

a: Before simplification by hand 

rans 

Input 

Initialise 	 Memory 
Write 

	

Link 	 Build 

Buffers 
Transmit 

This example contains two processes which might reasonably be modelled 

separately. For the purposes of simplification they will be considered one at a time. 

Since the only communication between them is through a schedule call from the 

Stream process to the Trans process this is reasonable. 

The first simplification replaces the internal logic of the Stream process with a 

simple hold. This is justified intuitively by noting that it was originally made up of 

two sequential holds, with one bracketed by an acquire/release of a resource. As long 

as this resource is not already in use this should have no effect. 
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b: After first simplification by hand 

Trans) 

Input 

and 

Initialise 

Link 	 Build 

Buffers 
Transmit 

The second simplification applies the same sort of thinking to the Stream process. 

Since this releases the Link resource only to re-acquire it immediately after the Build 

phase of its operation, it might be safe to assume that it merely keeps the Link 

throughout. 

To decide which if any of these simplifications is valid, from a behavioural point of 

view, corresponding CCS models were constructed and tested with the Concurrency 

Workbench. In writing these models the question of which resources were to be 

considered local and which global had to be answered and the decision was taken 

that the Memory resource would be considered as local to the Stream process, while 

the Link and Buffers resources would be global. This is reflected in the fact that 
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memAcq4  and meinRel4  are restricted when the agent input is defined, to represent a 

single Stream process and its Memory, in Figure 6.1 la, while linkAcq1 , linkRel1 , 

C: After alternative simplification by hand 

\Tran 

lnut I 

I 

and 
Wte 

IfliS 

Link 	 Build 

and 
Transmit 

Buffer 

buffAcq2  and buffRel2  are only restricted when two Trans processes are combined in 
Modeib. 
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Figure 6.11: CCS versions of models in figure 6.10 

a: Full model 

Stream (T) memAcq4  (Tw it,) memRel4 	tSched .Stream 

Mem4 Lef 	mem4cq4.Mem0 

Memo  memRel4.Mem4  

Input (Stream I Mem4)\ { memAcq4,memRel41 

Modela  Llf 	(Input I Input) 

Trans tSched. linkAcq 1  .Starter 

Starter (T 11) buffAcq2 	linkRell  Builder 

Builder (T Ud) linkAcq 1  .Transmitter 

Transmitter (TTransmi t) buffRel2  . linkRel 1  .Trans 

Link1 Lef 	linkAcq 1  .Link0  

Link0  linkRel .Link1  

Buffs2  buffAcq2.Buffs0  

Buffs0  buffRel2.Buffs2  

Modeib  def 

(Trans I Trans I Link1  I Buffs2)\ { linkAcq 1  ,linkRel ,buffAcq2,bufJRel2} 

Model (Models  IMOdelb )\{ tSched} 

b: First simplification by hand 

Stream 	Lef 	(Tjnput iT nte) tSched .Stream 

Input 	Lef 	Stream 

The effect of this simplification is to leave the externally observable behaviour of the 

overall model unchanged. Since the Memory resource was totally private and only 

used sequentially, it could never lead to alternatives within the Stream agent. Since it 

cannot engage in external actions, it can be safely removed. 
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c: Alternative simplification by hand 

Trans 	 tSched. linkAcq 1  .Starter 

Starter 	 (T1 ) buffAcq2  .Builder 

Builder 	 (TBuild+TTrsmit)TranSmitter 

Transmitter 	buffRel2 . linkRel1  .Trans 

The second modification is less successful. Since the Trans processes compete for 

the Link and Buffs resources, the removal of the releasing of the Link means that 

there is one less point where the other Trans process could acquire it. Where it does 

acquire it the contention leads to potential deadlock, which is lost in the simplified 

version. This is clearly a dangerous simplification. Testing with the Concurrency 

Workbench, as shown in Appendix C, makes this quite apparent. 

6.3 Phenomena which cause problems 

As well as wanting to obtain the simplest model with the desired behaviour, it is 

often important to know whether a model avoids certain problems. If not, knowing 

before executing the model may help in two ways. Firstly, the behaviour may be a 

correct representation of the behaviour of the system being modelled. In this case 

either it will help in setting up appropriate experiments using this model or, in cases 

where the simulation is being conducted to establish behavioural properties, will 

save costly simulation, which might not have revealed the problem anyway. 

Secondly, the behaviour of the model may not match that of the system and the pre-

analysis then indicates a need to re-code the model to produce the correct behaviour. 

In both cases, a lot of unnecessary time can be saved and potentially misleading 

results avoided. 

6.3.1 Simultaneous events 

In Chapter 2 Schruben and Yucesan's rules for analysis of the structure of simulation 

nets were described. Schruben offers in his Rule 3 a way of identifying possibly 

simultaneous events. Such situations are at the heart of a number of problems with 

execution of interleaving actions in discrete event simulations. When two events 

occur together, the simulation must decide to let one proceed first, even though no 
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simulation time elapses, i.e. though the simulation clock does not advance. This is 

typically resolved by branching probabilities, by establishing priorities or by 

treating the situation as a race condition. Probabilities allow a choice of which action 

is allowed to be made according to some random drawing and an associated 

probability function, preventing any others. Priorities may be decided by the 

programmer or pre-defined, i.e. in Petri net simulators it is normal to allow timeless 

(Instantaneous) transitions to fire first. Race conditions allow the activity which 

would finish first to proceed and kill any others starting at the same time. Where the 

time to complete an activity is defined stochastically, this is effectively a 

probabilistic choice based on the relative rates of completion of the activities. It is 

easy enough to handle probabilistic choices in a simulation, once they are identified. 

The same is true of priorities. Most problems arise from events which are expected 

to be genuinely concurrent. 

Genuinely simultaneous events 

To see this problem in one manifestation, consider modelling the CSMAICD level of 

an Ethernet. Simplifying this to one of its aspects, each station on an Ethernet is 

allowed to try to transmit as long as the net is free. The stations have the capability 

of sensing when this changes, by detecting the presence or absence of the carrier 

signal (carrier sense medium access or CSMA). If one station starts to transmit, 

others which subsequently wish to do so are forced to wait until the current 

transmission is complete. Thus there may be several stations blocked at the end of a 

transmission. Once the Ether is free they will all sense this and try to transmit, 

effectively, simultaneously. This results in their packets colliding, which they are 

also able to detect (collision detect or CD). When a collision occurs, all transmitting 

stations back off by an individually determined random interval, to minimise the 

chances of a further collision. Collisions can also occur where one station begins 

transmitting and is followed by a second before the first carrier has reached it. This 

cause of collision is not considered in what follows, for simplicity. 

A system with this form of backoff seems simple enough to model, given the Res, 

CondQ and WaitUntil constructs in the process interaction paradigm. In Figure 4.9 

an activity diagram for a suggested model was given. (In fact that also included a test 

for a maximum number of re-tries after collision before abandoning the packet, 

which is also not considered here for simplicity.) Unfortunately, the accurate 

representation of such a protocol is not as straightforward as it seems. Some 
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alternative models, all of which are based on genuine attempts by modellers, for this 

situation are considered below in an attempt to isolate the potential causes of 

confusion. Then, using the CCS equivalents of these models, the contribution that 

could be made by behavioural analysis prior to simulation is assessed. 

A naïve model using just Res 

Many modellers have fallen into the obvious trap of treating Ethernet as a simple 

resource contention problem. Thus they model the channel as a Res with amount 1 

and have stations competing to acquire it, as shown in the activity diagram in Figure 

6.12. This model has the advantage of simplicity, but inevitably causes a problem, 

since the first station in the queue for the Res will always get to transmit, without the 

others getting to try.' 

1 The DEMOS versions and corresponding traces of these models are found in Appendix B. 



Chapter 6: 	Exploiting CCS for Simulation Models 	 152 

Figure 6.12: Activity diagram and CCS of naïve Ethernet as Res model 

a: 

b: the CCS model 

Station inQTake1  .-e-A—cql  Sending 

Sending Lef (TTraflsm jt) eRel 1  .Station 

Source Lef (T.jVj) inQGive 1  .Source 

InQ0  inQGive 1.InQ1  

JnQ inQGive 1 .InQ 1  + inQTake1.InQ 1  O<n<Maxint 

'QMaXint 
Lef inQTakel.InQMfll 

Transmitter (Station I Source I InQ0)\{ inQTake1 , inQGive1  } 

Ether1 Lef eAcq1.Ether0 

Ether0  eRel1  .Ether1  

Model 
NStations 

(Ether,  I 	fJTransmitter 	\{ eAcq1 , eRel I
} 1=1 	 ) 
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Running the DEMOS model, the trace reveals that one of the stations continues with 

its transmission and the others are blocked, rather than them all backing off. This is 

as one might expect from an analysis of the DEMOS Res mechanisms. It is also 

important to notice that this is not dependent on the queueing version in unmodified 

DEMOS, but still applies to modified DEMOS. 

Simplifying the model to its key elements, by focusing on the Station and Channel 

processes and assuming that there is always a packet to transmit, and assuming two 

Stations, a transition graph can be derived which helps to show what is restricting 

the behaviour of the system in undesirable ways. Transmission is only possible when 

a Station has reached Station2 . This is never the case for both Stations at the same 

time. 

1iure t. 1i: Iransiflon 2ranfi tor naive itnernet monet 

(Station I Station I Channel I ) 
pTake1  

(Station I Station1  I Channel1 ) 
	— 	 (Station1  I Station1  I Channel1 ) 

cAcq1 	 pTake1 	 cAcq1  

(Station I Station2  I Channel0) 
	

—> 	 (Station2  I Station1  I Channel0) 

cRel1 	 pTake1 	 L cRel1  

'I, 

(Station I Station I Channel1 ) 
	 — 	 (Station I Station1  I 

Channel1 ) 
pTake1  

Introducing a CondQ to model concurrent behaviour 

Instead of simply using a resource, a CondQ could be used, as shown in Figure 6.13, 

to hold Station processes until the Ether becomes free1 . Once a transmitting Station 

has finished, it is responsible for signalling that the Ether is free. Then, before 

acquiring the Ether Res, each Station in turn can check if the length of the queue for 

the Ether is greater than one. If so, a collision has occurred and the Station should 

back off. Unfortunately this still depends on a queue (this time a CondQ), each of 

I Only those parts of the CCS models which are new or have changed are shown in Figures 6.15 and 6.16. 
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whose members is scheduled in turn, thereby removing itself from that queue, before 

testing for collision. The CondQ's length decreases each time a Station leaves it, 

until the last Station finds the number remaining has reached zero and proceeds to 

transmit. Collision, shown by a backoff, now happens for all but one of the Stations, 

which is still not quite what is wanted. This has a similar restriction, shown by its 

transition graph, to the model using just the resource. 

Figure 6.14: CondQ used to model Ethernet 

a: Activity diagram 

our 1  
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b: The CCS 

Stationd inQTake1 . eWaitUntil Jd  .Waiting 

Waiting sched1 .Trying1  

Trying1  

NStations 

+ (eLen0. eAcq 1  .Sending1 ) 

i=1 

Sending1  (TTransmit) eRel 1  .Doned 

Done1d eQSignal .Stationld  

Source (Ti,) inQGive 1  .Source 

InQ0  inQGive 1 .InQ1  

InQ inQGive 1 .InQ 1 	+ 	inQTakei.InQn i 

O<n<Maxint 

"QMaxint 
Lef inQTakel.InQMaxint l 

Transmitter3d (Station1 	I Source I InQ0)\{ inQTa ke 	inQGive i I 

Ether1 Lef eAcq1.Ether0 

Ether0 Lef eRel1.Ether1 

EtherQ<L>len Le f - e Wait Until .EtherQ<L,n>ien+i  + 	eQSignal.Signal<L>1  

Signal< >len def= EtherQ< >len  

- Signal<h,L> len sched 	.Signal<L>11 	+ 	eLenien  .Signal<h,L>1  

Model 
NStats 

Ether I EtherQ< >0 	fJStation1  }L(Model) 

The transition graph in Figure 6.15 shows the relevant part of this model's behaviour 

for a three Station model. It starts from the state where one Station has just finished 

transmission and released the Ether resource, while the other two are waiting for this 

to happen. The first to go backs off and the second proceeds. There are two side 

branches, marked etc., which are ignored. The first is the case where the Station 

which has just finished tries immediately to transmit another packet and enters the 

CondQ, taking its length to three. It is easy to show that the same possibilities result, 

except that now the original two waiting Stations back off, while the one that has just 

finished sends again. The other branch shows both the waiting Stations being 
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scheduled before either tests the CondQ's length. This is not the behaviour of the 

DEMOS model, since the effect of one process scheduling another is to place it in 

the event list behind the current one, not to preempt the current one. It was not felt 

worth the extra complexity of preventing this in the current model. 
6.15: transition 	for CondO Lthernet model 

(Trans1  I Wait.2  I Wait3  I EQ<2,3>2  I E1 ) 

.J- eQSignal 
(Stat1  I Wait2  I Wait3  I EQ<2,3>2  I E1 ) 

	- 	(Wait1  I Wait2  I Wait3  I EQ<2,3,1>3  I E1 ) 

eWaitUntil1 	 l- etc. 

.1- sched2  
(Stat1  I Try2  I Wait I EQ<3>1  I E1 ) 

	
(Stat1  I Try2  I Try3  I EQ< >0  E1) 

sched3  
.1. eLen 	 etc. 

(Stat1  I (TB,,)Try2 l Wait3  I EQ<3>1  I E1 ) 

L sched3  

(Stat1  I (TBO)Try2  ITry3  I EQ< >0  E1) 

-.1' eLen0.eAcq1  
(Stat1  I (TBO)Try2  I Send3  I EQ< >0  E0) 

Schruben's rules and this model 

If this mechanism is modelled using Schruben's simulation nets, described in 

Chapter 2, the same problem re-asserts itself. Schruben's Rule 3 is: Event scheduling 

priorities are required when the intersection of the state variable sets of two vertices 

is non-empty. This fails to distinguish the possibility of multiple competing instances 

of the same event, which is allowed in the extended Simulation Graph formalism 

through parameterised edges carrying process identifiers, from simple contention. If 

the graphs are unrolled, so that each process instance is separately represented, Rule 

3 identifies that there is a possible problem, but does not identify what it is. 

Schruben's rules are really concerned with tie-breaking rather than concurrent 

events. 

A "correct" model of CSMA/CD behaviour 

To allow true concurrency to be represented in this case, the model needs to be 

reformulated so that the Ethernet is an active process, which can co-opt the waiting 

stations and set them to backoff if more than one wishes to proceed. This involves a 

flag within the Station process, which records when a transmission has been 

successful, and a means of indicating to a re-scheduled Station whether a collision 
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has occurred. In the model in Figure 6.16 a Res and a Store are used for this, but 

these are strictly used as a Boolean and an integer, respectively. 

Figure 6.16: A correctly behaving Ethernet model 

a: The activity diagram 
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b: The CCS model 

Stationd iQTake 	sAcq j Trying1 

Trying sAvail. eQWait1d .Waiting 	+ 	sAvail 1 .Station d 

NStats 

Waiting eSchedd.1cA vail0. etAcq 1 (TTrsmjt)Donejd+ cA vail1 .BackOff1d 
i=1 

Donel d sRel 	etRel1 Trying1 

BackOffld cRem 	(TBackoff) Trying1 

Ethernet eQCoopt1d. etAcq1 .Used1d 

Usedd 

NStats 

eQLen0.Next+ Y
,
eQLen. cAdd11 ).Next1d 

Next1d etRel 	eSchedld .ReSched 

ReSched 

NStats 

eQLen0.Ethernet 	+ 
I

eQLeni.eQCOOPtid. eSched d .ReSched 

Sending sAcq1.Sending0 	+ 	sAvail1 .Sending1 

Sending0 sRel 1 .Sending1 	+ 	sAvail0 .Sending0 

NStats  
Cols0 cAdd.Cols 	 + 	cAvail0 .Cols0 

i= I 

Cols 
NStats-n 

+ cRem1.Cols 1 + 	cAvail .Cols 

NStats ~! n >0 

COlSNStats 
Lef cRem 1 .COlSNStatsl + 	CAVailNStats .COlSNStats 

EQ< >o Lef eQWait.EQzn>1 + 	eQLen0 .EQ< >o 

EQ.<n,L> eQ Waitm.EQ<n,L,m>j+i + eQCoopt .EQ<L>11 

+ 	eQLen .EQ<n,L>1 

L is any list of unique integers in 0. .NStats, n not in L, k not in L, NStats~!n >0, NStats~k >0 

1Q0 iQGive 1 .InQ1 

JQ iQGive1 .InQ 1 	+ 	iQTake1 .InQ 1 	0 < n:5 Maxint 

IQ Maxint 
def = I aice1 . n 	Maxint-1 

Sender Lef (T) iQGive 1 .Sender 

EtherR1 etA cq1.etRei1.EtherR1 
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Transmitterd Le  = 	(Station d  I Sender I 1Q0  I Sending1 ) 

\ { sAcq ,sRel , ,iQGive ,iQTake ,sAvail ,sAvail 

NStats 	 \ 

Model 	Ethernet flTransmitterj  I EtherR I Colso  I EQ< >0  \L(Model) 
) 

This model is much more complicated than its unsuccessful predecessors. Although 

it still reduces to a fairly compact DEMOS model, as shown in Appendix B, its logic 

requires some careful analysis. From this it is possible to find some general 

characteristics which are necessary for a process based discrete event model to show 

genuine concurrency. Unfortunately the current version of the Concurrency 

Workbench could not analyse the complete model, but it did provide useful feedback 

in the form of the reachable states of the components and in simulating the outcomes 

for the model in the relevant regions of its transition graph. 

As with the simpler models, the Source is irrelevant to the behaviour in which we are 

interested, simply imposing an occasional delay at the start of a Station process. 

Internally the Station uses the Sending resource to keep track of whether it has just 

transmitted or not, i.e. as a Boolean flag. This sets the stopping condition of the inner 

loop in the Station. As long as it is trying to transmit, the Station first waits for the 

Ethernet process to set up the correct conditions and then follows either a transmit 

branch or a backoff branch, depending on the state of the Cols store. The EtherR 

resource controls whether a Station or the Ethernet proceeds, i.e. prevents the 

Ethernet scheduling further Stations while one is transmitting. It has no effect if the 

Stations have to back off. 

The Ethernet is only active when there are Stations in the EQ, i.e. waiting to 

transmit, and when the EtherR resource is free. This is essentially the carrier sense 

aspect of CSMAICD. Once it becomes active, the Ethernet enacts the collision detect 

aspect of the protocol, checking how many Stations are currently waiting in the EQ, 

setting a flag for each of them accordingly, by adding that number to Cols, and 

scheduling all of them. Once it has done this the Ethernet gives away control by 

releasing the EtherR resource and waiting in the EtherQ for new Stations to arrive 

for transmission and then for the EtherR resource to be free. 
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This intricate mechanism seems at first sight too specific to the CSMAICD protocol 

to be capable of generalisation. On closer examination, however, it reveals some 

essential requirements for a general mechanism, which are: 

The model must be able to reach a state where more than one process could 

perform the same next action. 

The case where only one such process currently exists must be differentiated 

from the case where many are ready, by a test which gives the same, correct 

answer to every ready process, in a manner which will not be altered when others 

begin to act. 

Each process must now act according to the test result, allowing the others to do 

the same for as long as their independent, concurrent activities last. 

While there may be many special cases where this could be done differently, the 

central scheduling process shown here is a general solution. The Wait Queue (EQ) 

performs the task of blocking potential actors until the scheduler is free to proceed. 

The Res (EtherR) blocks and releases the scheduling agent according to the 

conditions for the action of interest being allowed. The Store (Cols) provides a flag 

for each agent awoken by the scheduler as well as a flag to differentiate the single 

agent case. Indeed it is tempting to add such a primitive to modified DEMOS. It is 

important to note that no new arrivals can be allowed in the Wait Queue once the 

scheduler has gained control and made the test of the concurrency level. This is 

easily enforced, since the scheduler does not cause time to advance or in any other 

way yield control until it returns to the co-opting side of the Wait Queue itself. 

But this depends on general reasoning about the model. CCS has provided no direct 

answers so far, except to show why the simple resource model and the CondQ model 

failed. However, those cases showed an important test that can be applied to 

determine whether a model can mimic concurrency. If there are no states reachable 

in the model where all those agents which should be able to perform an action 

simultaneously have that action as their next one, the model is not adequate. Figure 

6.17 shows parts of the transition diagram for the successful model, where all (both 

in this case) agents can proceed to backoff (6.17a), but transmission takes place 

when only one is initially waiting (6.17b). A further possibility is that at the start of 

6.17a the third Station agent reaches the Waiting state before the Ethernet agent 
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checks the EQ. This would happen where the third Station had a packet waiting 

before it ended its previous transmission (6.17c). 

All of the checking of the logic of this model was greatly assisted by the use of CCS. 

Simply producing a consistent model clarified many problems. Getting the model 

accepted by the Concurrency Workbench provided further checking of the model's 

consistency. Once entered, the use of the States command, to find the total state set, 

and the sim command, to follow the paths shown in Figure 6.17, allowed detailed 

debugging. 

Figure 6.17: Transition diagram for modelling of true concurrency 

a: Collision and backoff 

(Done1  I Waitin92  I Waitin93  I etAcq I  Used2  I EQ<3>1  I Colso  I EtherR0) 

sRel1  .etRel1  .sAvail1  etAcq1  

'I, 
(Station1  I Waitin92  I Waitin93  I Used2  I EQ<3>1  I Cols I EtherR0) 

eQLen1  .cAdd2.etRel1  .eSched2  cAvail2  

1/ 
(Station1  I BackOff2  I Waitin93  I ReSched I EQ<3>1  I ColS2  I EtherR0) 

eQLen1  .eCoopt3.eSched3 	cAvai12  

(Station1  I BackOff2  I BackOff3  I ReSched I EQ< >0 I Cols2  I EtherR1) 
eQLen0  cAvail2  

(Station1  I BackOff2  I BackOff3  I Ethernet I EQ< >0  Cols2  I EtherR1 ) 
cRem1  cRem1  

(Station1  I (T 02)Trying2  I (T 02)Trying3  I Ether I EQ< >0  Cols0  I EtherR1) 



Chapter 6. 	Exploiting CCS for Simulation Models 	 162 

b: Successful transmission 

(Done1  I Station2  I Waitin93  I etAcq1  .Used3  I EQ< >0 I Cols0  I EtherR0) 

sRel1  .etRel1  .sAvail1  etAcq1  

1 

(Station1  I Station2  I Waitin93  I Used3  I EQ< >0  Cols0  I EtherR0) 
eQLen0.etRel1  .eSched3  cAvail0.etAcq1  

'I, 

(Station1  I Station2  I (TTrans3)D01 3  I ReSched I EQ< >0  I Cols0  I EtherR0) 
eQLen0  

(Station1  I BackOff2  I (TTrafls3)Done3  I Ethernet I EQ< >0  I Cols0  I EtherR0) 

C: Immediate re-transmission, collision and backoll 

(Done1  I Waiting2  I Waitin93  I etAcq1  .Used2  I EQ<3>1  I Cols0  I EtherR0) 

sRel1  .etRel1  .sAvail1  .iQTake1  .sAcq1  etAcq1  

(Trying1  I Waitin92  I Waiting3  I Used2  I EQ<3>1  I CoIs0  I EtherR0) 
sAvail0.eQ Wait3  

(Waiting1  I Waiting2  I Waitin93  I Used2  I EQ<3,1>2  I Cols0  I EtherR0) 
eQLen2.cAdd3.etRel1  .eSched2  cAvail3  

1 

(Waiting1  I BackOff2  I Wa1ting3  I ReSched I EQ<3,1>2  I Cols2  I EtherR0) 
eQLen2.eCoopt3  .eSched3 	cAvai13  

'I, 

(Waiting1  I BackOff2  I BackOff3  I ReSched I EQ<l>1  I Cols2  I EtherR1 ) 
eQLen1.eCoopt1  .eSched1 	cAvai13  

(BackOff1  I BackOff2  I BackOff3  I ReSched I EQ< >0 I Cols2  I EtherR1) 
eQLen0  cAvail3  

1 
(Station1  I BackOff2  I BackOff3  I Ethernet I EQ< >0  Cols2  I EtherR1 ) 

cRem1  cRem1  cRem1  

1 

((T 01)Trying1  I (T 02)Trying2  I (T 02)Trying3  I Ether I EQ< >0  I Cols I EtherR1 ) 

It had been anticipated that the modal j.t-calculus could be employed to answer some 

of these questions, but in practice it seemed poorly adapted to making general 

queries such as: 
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if a state is reached where two or more agents are in the Wait Queue, is it 

possible for an agent to reach the broadcasting state before all of those in the 

queue have backed off. 

This may be due to poor understanding of the capabilities of modal logics and 

remains an open question. 

Races 

A race occurs where more than one activity can be under way at the same time, but 

where only the first to complete will actually be deemed to have succeeded. An 

example might be where several packets enter a packet switched network, but where 

only the first one to reach the destination node will be accepted, the others being 

lost. This is different from the idea of simultaneously acting events, since the time of 

completion determines which is deemed to have occurred. It seems unlikely that 

CCS or any discrete time variant will answer many meaningful questions, apart from 

cases where a deterministic delay is involved for all racing processes. In all cases, 

the same condition for a race being able to happen applies as for concurrent activities 

above. A test on the duration of each event could then determine which one proceeds 

and which ones die, but this requires an extension to the semantics of CCS. It would 

be more appropriate to consider PEPA or a similar stochastic process algebra for 

such cases. 

6.3.2 Starvation 

The reader/writer model of Chapter 4 shows an example of a resource used to 

enforce mutual exclusion. This can also be used to implement a semaphore. Under 

appropriate timings this model can produce starvation. Figure 6.18 shows the 

mapping into TCCS for that model. 
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Figure 6.18: Reader writer model as an example of potential starvation 

a: The activity diagram 

Reader 	 Writer 

Acquire 1 	Acquire 3 

uffers 	I 
Read dat 	 pdate fil 

Release 1 	Release 3 

b: The CCS 

Reader . buffAcqi (Tread)Thinker 

Thinker def 	bufjRel 1  (T hflk)Reader 

Writer ö. buffAcq3  (Tupdate)Updater 

Updater Lef buffRel3 (Tsearch) Writer 

Buffs3  8.buffAcqi.Buffs2+ 8.buffAcq3.Buffso 

Buffs2  .buffAcqi.Buffsi+ 8.buffReli.Buffs3  

Buffs  .buffRel1 .Buffs2  

Buffso Lei 6.buffRel3.BUffS3 

Model (Reader I Reader I Writer I 

Buffs3)\{buffAcq1,buffAcq3,buffRel1,buffRel3} 
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Consider the Reader process. This is a simple cyclical process, defined in CCS by a 

right recursion. It requires only one buffer to proceed. The Writer process is 

structurally similar, but needs to acquire all the buffers before it can update them. 

This simple mutual exclusion example is interesting since it may induce starvation of 

the Writer by the Reader processes if the timings of the Readers are unfavourable. 

The resource is modelled as usual and is simplified as before. Finally the model is a 

parallel composition of all processes 

Since there are only two Reader processes and only in them can a buffAcqi take 

place, and the only way to reach a Buffso state is following a buffAcq3, the only 

possible action of a Buffso agent is a buffRel3. Thus the graph of Model has two sub-

graphs, which are only joined by the start state. 

The problem of starvation may be summarised as the situation where, although it is 

theoretically possible to reach an agent (or sub-graph of the transition graph) within 

a model, under certain timing and priority or resource conditions, created when the 

other has proceeded, this cannot happen. Unlike the more general notion of 

unfairness, without timing information the best that can be said is that the possibility 

does or does not exist, i.e. that there is a choice from which two or more disjoint sub-

agents start and at least one of them contains a cycle which can prevent return to the 

choice. 

In the model above, this is clearly the start agent, Model. The two sub-agents Reader 

and Writer both cycle back to this choice, but Reader may remain within an internal 

cycle of activity. This is not strictly the same as livelock, since progress may be 

made by the overall system, even though part of it is starved. Working without 

timings the reachability graph of Figure 6.19 is produced. 

It would be comparatively simple to phrase a question in the modal m-calculus of the 

form, "Is it possible for the model to reach a state (or perform an action) in the 

Writer cycle once it has reached (performed) one in the Reader inner cycle?" One 

such question is written in the Workbench syntax as: 

hi X (Thinkerl  Thinkerl Writerl Buffsl)\(buffAcql,buffAcq3,buffRell,buffRel3} 

cp X mm (X.<buffAcq3>T 
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Thus, once the structure of the model is apparent, an answer can be expected. It is 

still perhaps reasonable to expect a modeller to be able to do this. 

0.19: Keader/%Vriter reacflatnhity graph without 

(Reader I Reader I Writer I Buffs3) 

I 	I 	 I 	I 
buffRel1 	buffAcq j 	buffAcq3 	buffRe13  

I 	I 	 I 	I 
(Thinker I Reader I Writer I Buffs2) 	(Reader I Reader I Updater I Buffs0) 

I 	 I 
bufJRel j 	buffAcq j  

I 	 '1' 
(Thinker I Thinker I Writer I Buffs1 ) 

It is the secondary cycle between the two reader processes that prevents the writer 

from engaging in any activity. If timings are added which force the model into bad 

behaviour, the temporal version of CCS can be used to show this, as shown in Figure 

6.21. The timings in the Writer agent are unimportant, as it will never be allowed to 

start as long as both Readers do not release their buffers simultaneously. The Reader 

agent is extended into a series of sub-agents corresponding to time advancing. The 

overall model uses time prefixes to schedule the various Readers and Writers out of 

time with each other. The transition graph is now as shown in Figure 6.22. 

Figure 6.21: Reader/Writer TCCS with timings forcing starvation 

Reader0 	 . buffAcqi . Thinker0  

Thinker0 	Lef 	(3)Thinker1 

Thinker1 	def 	buffRel . Reader1  

Reader1 	 (1)Reader0  

Model 	 (Reader 0  I (2)Reader 0  I (1) Writer I Buffers3)\L (Model) 
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6.22: The Reader/Writer transition graph snowing starvation 

(Reader0  I (2)Reader0  I (1)Writer I Buffers3) 

buffAcqi 
1 

(Thinker0  I (2)Reader0  I (1)Writer I Buffers2) 

(2) 
1 

((1)Thinker1  I Reader0  I Writer I Buffers2) 

buffAcqi 
'I, 

((1)Thinker1  I Thinker0  I Writer I Buffers1 ) 

(1) 
17 

(Thinker1  1(2)Thinker,  I Writer I Buffers1 ) 

buffReli 
'I, 

(Reader1  I (2)Thinker 1  I Writer I Buffers2) 

(1) 

(Reader0  I (1)Thinker1  I Writer I Buffers2) 

buffAcqi 

(Thinker0  I (1)Thinker1  I Writer I Buffers1 ) 

The last state is identical, when re-ordered, to an earlier state and so the model will 

cycle indefinitely without Writer ever acting. 

Expressing starvation 

The property that starvation may be possible can be given in English as follows. 

Given a choice state, generated by applying the expansion theorem to the parallel 

composition of two agents, there is, from that state of the model, a path which 

may revisit that choice, but need not do so. If timing information or priorities are 
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added, it is possible to show cases where such a system will definitely behave 

badly. 

6.3.4 Deadlock 

The most widely known liveness property is probably deadlock. It is clearly capable 

of being represented in CCS, as noted in Chapter 2. Here the use of modified 

DEMOS and of CCS is shown to detect deadlock correctly in the harbour model. 

Formalising the proof for the harbour model 

To show whether deadlock is possible, irrespective of timings, and to explore why 

the Workbench gives different results to DEMOS, we initially use the simplified 

model used to show transition elimination above. This simplifies the analysis and is 

also important to an understanding of why DEMOS fails to behave in the way 

predicted. Together these changes give the model in Figure 6.22. 

Figure 6.22: Harbour CCS model to show deadlock 

BOAT jAcqi . tugAcq2 . tugRel2 . tugAcqi . tugReli . jReli 

TUGS2  (tugAcqi.TUGS1 ) + (tugAcq2.TUGS0) 

TUGS1 (tugAcqi .TUGS0) + (tugReli .TUGS2) 

TUGSO  Le IL (tugRel 1  .TUGS1 ) + (tugRel2.TUGS2) 

JETTIES2 (jAcqj.JE]TIES1) 

JE7-TIES1 (jAcq .JE1TIES0) + (/Reli .JE]TIES2) 

JETTIES0 (/Reli.JETTIES1) 

MODEL (TUGS2  I JE77IES2  I BOAT I BOAT I BOA]) \ L(MODEL) 

This model simplifies the original model by allowing only three boats. That is 

sufficient, since it produces the deadlock. A simple proof then shows that this result 

generalises to larger numbers of boats. In other models it might be necessary to have 

more instances, depending on the number of interlocking resource acquisitions 

involved. The question of how many instances of each process type may be needed 

is examined in more detail below. Now there is a simple enough model to analyse by 

hand. The following transition diagrams are shown in Figure 6.23. 
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Figure 6.23: Transition diagram for deadlocking harbour model 

a: a boat 

b tugAcq2 	JA 1 	tugRe12 	tugAcql 	jRell 	tugRell 
0 - 	1 	2 .- 	3 -4 	4 -5 - 	6 

b: a 'tugs resource 

tugqj to  
tugq] 1 tugelj 2 

t2 	 tug4el2 t2 
14q2 to tug,,eli t1 

C: a Jetties resource. 

(fRetj 
I—*J2 

jRelj 
- ii 

d: the overall transition 

(bO I bO I bO I t2 I j2) 
tugAcq2 
jAcqi 

tugRell 

(b3 IbOIbOIt2Ijl) 
tugAcq 1 '1- 	 'I' tugAcq2 

(b4IbOIbOItlIjl) 	(b3IbiIbOItOIj1) 
tugRell 'J' 	 L jAcqi 

(b5IbOIbOItiIjl) 	(b3b2IbOItOIjO) 
jRell 't' 	 '1' tugRe12 

(bO lbOitliji) 	(b3!b3IbOIt2IjO) 
tugAcq 1 '1' 	L tugAcq2 

(b4 I b3 I bO I t2 I jO) 	(b3 I b3 I hi I tO I jO) 

Note in order to simplify the proof that follows, that any acquisition of a resource 

creates an agent capable of accepting its release and that this effect is cumulative 

over acquisitions. This means that releases are never capable of blocking the actions 
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of an agent. Thus it is safe to assume that a BOAT will never be blocked once it has 

reached b4. In analysing the overall model's transition diagram we can take 

advantage of this to ignore paths reaching a combination containing this point, since 

the corresponding boat will be guaranteed to be able to complete and so leave at 

most two others, which can easily be shown to be deadlock free for the amounts of 

resource specified. Using these building blocks produces the overall state transition 

diagram for the model. The state (b3 I b3 I bi I tO IjO) is a deadlock. This shows that 

this model is capable, under certain timings or choices of action, of deadlocking. 

A Concurrency Workbench experiment 

With these insights a concurrency Workbench experiment was conducted, which 

demonstrated the expected behaviour. The full experiment is given in Appendix C. 

In figure 6.24, only part of the output from the Workbench's f dabs command is 

given, showing just the sequence of states leading to deadlock. The deadlock state is 

marked with a double asterisk.' Thus, the workbench agrees with the expected 

behaviour. 

Figure 6.24: Concurrency workbench experiment 

a: 	mouei ior me concurrency vvoruencn 

bi 31 'jal.B2 
bi 32 'tr2.B3 
bi 33 'tal.34 
bi 34 'trl.35 
bi 35 'jrl.O 

bi Tugs2 (tal .Tugsl) + (ta2 .Tugso) 
bi Tugsl (ta1.Tugso)+(tr1.Tugs2) 
bi TugsO (tr1.Tugs1)+(tr2.Tugs2) 

bi Jetty2 (jal.Jettyl) 
bi Jettyl (jal.JettyO) + (jrl.Jetty2) 
bi JettyO (jrl.Jettyl) 

bi Model (Tugs2 I Jetty2 I 30 I BO 
30) \{tal,ta2, trl,tr2,jal,jrl} 

The concurrency workbench regards any state where no further actions are possible as a deadlock. Thus 
it shows two deadlock states in the complete output, the true deadlock and the state where all processes 
have reached 0, the CCS passive state. 
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b: Selected results from fdobs command 

===> Model * 

===> (TugsO I 	Jetty2 EQ BO j 	B1)\(jal,jr1,tal,ta2,trl,tr2} 
===> (TugsO I 	Jettyl BO BO E2)\(jal,jrl,tal.ta2,trl,tr2) 
===> (Tugs2 I 	Jetyl EQ BO B3)\{jal,jrl,tal.ta2,trl,tr2) 
===> (TugsO I 	Jettyl BO Bl B3)\(jalJrl,tal,ta2,tr1,tr2) 
===> (TugsO JettyO I 	BO B2 B3)\(jal,jrl,tal,ta2,trl,tr2} 
===> (Tugs2 JettyO BO B3 B3)\{jal,jrl,tal,ta2,trl,tr2} 
===> (TugsO I 	JettyO Bi B3 B3)\(jal,jrl,tal,ta2,trl,tr2)** 

Generalising the result to larger numbers of boats 

It is straightforward to prove that a model which has the potential to deadlock with n 

processes of a certain type retains this potential with n+l processes, so long as one of 

the processes can proceed to termination on its own and releases all the resources it 

has used in doing so. If it does so, the model reduces to its equivalent with one less 

process of this type. Since what remains is known to potentially deadlock, the 

original model could do so under the correct choices or timings. Thus for open 

models, i.e. models where certain process types are both generated and terminate, a 

proof of potential deadlock for n of one of these process types is a proof for the same 

model with n+ 1. 

Probability of deadlock in the model 

The probability of deadlock in such a model can be seen to be the probability of it 

choosing any of the paths leading to a deadlock state. Since this can only happen if a 

minimum number of processes of each type is present concurrently, the probability 

of deadlock has an upper bound given by the probability that this number of 

processes is reached. What is more, in the harbour model the deadlock state occurs 

only when two boats are tied up unloading and a third one acquires two tugs. Thus 

the probability of deadlock is the probability of this transition happening conditioned 

on the probability of two boats being tied up. This informal reasoning about 

probabilities would require considerable further work to produce a general approach 

to posing questions about stochastic models, but it is interesting to speculate how the 

modal ji-calculus or a similar logic might be used in this way. 

Comparison with the DEMOS model 

To return to the original DEMOS model of Birtwistle, it is necessary to extend the 

TUGS agent to include a TUGS3  state and re-introduce the corresponding actions. 
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This gives a simplified 3 tug resource and new transition graph shown in Figure 

6.25. 

Figure 6.25: CCS and transition graph changes for three tug harbour 

a: CCS model 

TUGS3 	 (tugAcqi.TUGS2) + (tugAcq2.TUGS1 ) 

TUGS2 	 (tugAcqi .TUGS1 ) + (tugAcq2.TUGS0) + (tugReli .TUGS3) 

TUGS ] 	 (tugAcqi .TUGS0) + (tugReli .TUGS2) + (tugRel2.TUGS3) 

TUGS0 	 (tugReli .TUGS1 ) + (tugRel2.TUGS2) 

b: transition 

t3 

Itu&c12 t3 

tugq2 t1 tugel1 2 tugelj ti 
tugqj o {tu4el2 t2 

1tu&eli t3 

tu$qj t1 tuqj 2 

tug4q2 to 

In a similar way to the two tug model overall state transition diagram can be 

generated and examined for deadlock states. Since the resulting graph is rather 

complex, it is given in Appendix C. It shows no such states. This is reasonable, since 

the maximum number of un-terminated boats that can ever be past bO at any one 

time is bounded by: 

the number of jetties available (2), which limits the number at stages b2..b5; 

the number of boats that have acquired the tugs they need to be at stage b 1, 

b4orb5; 
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the fact that boats at b4 or beyond are bound to terminate and so may be 

discounted. 

Taking these facts together, the worst case, of boats beyond bO and not guaranteed 

termination, is two boats at b3 (unloading) and one at bi (waiting for one of the b3 

boats to leave). Only if the b3 boats are both blocked as a result can deadlock occur. 

In the two tug model, this worst case led to deadlock as no tugs or jetties were then 

free. However, in the three tug model, at most one boat can be in state b  and if this 

is so at least one boat can always leave state b3 and so terminate, freeing a jetty and 

a tug. Thus the three tug model is guaranteed deadlock free. In fact no model with an 

odd number of tugs can ever deadlock. 

This leads to the conclusion that the DEMOS model must be incorrect or that the 

DEMOS solver executes it incorrectly in terms of the CCS definition of its 

semantics, since it demonstrably does deadlock. In fact, recalling that unmodified 

DEMOS defines Acquire as always operating on a first come first served basis, some 

processes, requiring smaller numbers of a resource but arriving later, are thereby 

blocked unnecessarily. This ensures that many starvation conditions cannot arise, but 

introduces more cases of seeming deadlock. 

Testing with the Concurrency Workbench 

Figure 6.26: Testing three tug model with Concurrency Workbench 

a: CCS model 

bi BO 'ta2.B1 
bi BI jal.B2 
bi B2 'tr2.33 
bi B3 tal.B4 
bi B4 trl.B5 
bi B5 jrl.O 

bi Tugs3 (ta1.Tugs2)+(ta2.Tugs1) 
bi Tugs2 (tal.Tugsl)+(ta2 .TugsO)+(trl.Tugs3) 
bi Tugsl (tal.TugsO)+(trl.Tugs2)+(tr2 .Tugs3) 
bi TugsO (tr1.Tugs1)+(tr2.Tugs2) 

bi Jetty2 (jal.Jettyl) 
bi Jettyl (jal.JettyO) + (jrl.Jetty2) 
bi JettyO (jrl.Jettyl) 

bi Model (Tugs3 I Jetty2 I BO 1 130 1 B0)\{ta1,ta2,trl,tr2,ja1,jr1} 
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n: eiecteci 

===> Model 
===> (Tugsl Jetty2 
===> (Tugsl I Jettyl 
===> (Tugs3 	I Jettyl 
===> (Tugsl Jettyl 
===> (Tugsl 	I JettyO 
===> (Tugsl 	I JettyO 
===> (Tugs0 	I JettyO 

BO I BO I B1)\(ja1,jr1,tal,ta2,tr1,tr2) 
30 	BO 	B2)\{jal,jr1,ta1,ta2,tr1,tr2) 
BO 	BO 	B3)\(ja1,jr1,ta1,ta2,tr1,tr2) 
BO 	Bi 	B3)\(ja1,jr1,ta1,ta2,tr1,tr2) 
BO 	B2 	B3)\{ja1,jr1,tal,ta2,tr1,tr2} 
Bi 	33 	B3)\(ja1,jr1,ta1,ta2,tr1,tr2)* 
Bi 	B3 	B4)\ja1,jr1,ta1,ta2,tr1,tr2) 

Again the key states have been selected. The previous deadlock state, marked with 

an asterisk, is passed to reach a path to completion. 

6.3.4 Backward propagation of blocking 

An extremely common problem in analysing the effects of a simulation model is 

establishing where the root of a phenomenon lies. This is most often due to 

backward propagation of a problem due to blocking. Thus a slow process emptying 

a finite buffer may cause a process which is filling that buffer to appear too slow. To 

consider whether CCS can help us to analyse this sort of problem, consider a small 

case study reported by a consultant. 

Kiteck [49] reported on the use of a discrete event simulation package with animated 

output of state changes in a warehouse simulation. An extended activity diagram of 

the core of this model is shown in Figure 6.27. The execution of the model revealed 

that a Wrap Machine was unable to empty its input conveyor belt fast enough to 

keep up with the incoming stream of pallets. The graphical animation showed very 

clearly pallets clogging the conveyor and led to the, erroneous, initial conclusion that 

the wrap machine was too slow. 
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Figure 6.27: Activity diagram of Kiteck's model 

Pallet 	 Wrap 	 AGV 
Arrival 	 Machine 	 Shuffle 

Carry  
Unwrapped 

Post-wrap 
I 	 buffer 

Conveyor 	Wrap 

Closer analysis of the arrivals showed that, in fact, the Wrap Machine did not have 

to do anything with most of the pallets and was merely acting as buffer space for 

them. The true problem was that there was a one place buffer beyond the Wrap 

Machine, where pallets waited for an automatic guided vehicle (AGV) shuttle to 

carry them into the warehouse. Since it was not always able to remove pallets fast 

enough, the wrap machine often sat idle, acting as a passive buffer, rather than 

getting on with its job of wrapping. The problem was propagated backwards and the 

use of animation obscured the true cause of the problem. 

In essence the question that needed answering was, "If the Wrap stage appears 

blocked, is there some later stage which could be causing this?" More formally, it is 

necessary to determine whether the inability of the Wrap Machine to perform its 

input action might be due to an output action being unable to proceed and, if so for 

which process that action was waiting. This must then be repeated for the blocking 

process and so on, until no further blocking can be identified. 
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The CCS model for Kiteck' s warehouse is straightforward and is given in outline in 

Figure 6.28. In this un-timed version no distinction is made between pallets needing 

wrapping and those not. An alternative model is given in appendix C, showing how a 

mixture of the two sorts could be modelled. 

Fi2ure 6.28: CCS version of Kiteck's model 

Arrival cbAdd .Arrival 

WrapMC Lef cbRem . Wrapping 

Wrapping oBuffAdd1  .WrapMC 

AGVShuttle led oBuffRem 1  .AGVShuttle 

OBuff 1  oBuffRem 1 .OBuff0  

OBuff0  oBufAdd1 .OBuff 1  

CBelt0 Lef cbAddj .CBelt1  

CBelt cbAddi .CBelt +1  + cbRem1.CBelt 1 	O<n<Limit 

CBeltLjmjt  cbRem .CBeltLjm jt l 

Model (Arrival I WrapMC I AGVShuttle I OBuff, I CBelt0  )\L(Model) 

It is simple to discover potential blocking in most cases, by removing the process 

under consideration from the model and seeing which other processes become 

blocked. Thus, if the AGV Shuttle is removed, it is clearly possible for the Wrap 

Machine to be unable to proceed once the Post-wrap Buffer is full. This is 

unsurprising, even from the original extended activity diagram, in such a simple 

case, but might not be obvious from more complex models. Thus it is possible to 

claim a double benefit of the approach being developed. Firstly, the clarity of the 

graphical notation may help in the identification of possible problems. Secondly, the 

ability to perform rigorous examinations of questions, allows their unambiguous 

resolution. 

There is a possibility of using the modal 1.1-calculus for examining this sort of 

question, but it seems to require that the blocked state be fully developed. Again this 

may be due to lack of full understanding of the possibilities and should remain an 

open issue. 
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6.4 Using hierarchies and sub-models 

Most of the basic concepts of hierarchy in process based simulation were discussed 

in chapter 4 and in section 6.2. In order to make effective use of sub-models in a 

formally defined simulation language, it is necessary either to store the CCS model 

along with the modified DEMOS one or to be able to generate it at need. In fact the 

most economical way of storing libraries of sub-models would be as the internal 

representation of an Extended Activity Diagram (DIA format), from which all 

versions can more or less be generated automatically. 

The potential for problems resulting from the use of externally defined sub-models 

can be illustrated by returning to the example developed in Figure 6.10. There it was 

shown that simplification of the Stream process would not modify the functional 

behaviour of the overall model. This might seem an innocuous example, but by a 

simple change to the interpretation of this process, a very dangerous change is 

produced. If the Memory resource is not made local to the Stream process, the effect 

of introducing it into a model is totally different, since it could then compete for this 

resource with other processes. Fortunately this sort of thing, which may be 

ambiguous in the sort of activity diagram used in Figure 6.10, is very clear in the 

CCS model, since the actions to acquire and release the resource are no longer 

restricted to the Stream process. As with many of the problems discussed here, this 

seems obvious once it is pointed out, but in the context of re-using predefined sub-

models it represents a very real danger. 

6.5 Conclusions 

This chapter has examined the usefulness of the ideas developed earlier in this 

dissertation in the light of a number of problems and examples. It has attempted to 

demonstrate that the basic thesis, that it is possible to formalise process based 

discrete event simulation models in terms of CCS, should be strengthened to say that 

it is useful to simulation modellers to be able to do so. 

A number of issues have been raised or left unresolved by this chapter, which 

suggest that there is scope for further work on this topic. 

6.5.1 Successes using CCS 
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From the examples considered in this chapter, it seems reasonable to claim that the 

use of CCS is a clear aid to a simulation modeller. The presence of a formal 

alternative to the activity diagram and DEMOS representations offers another view 

of a model. Since it is structured and testable, many simple errors can be eliminated. 

In particular, interfaces and hiding assumptions can be examined, preventing 

accidental scope errors and highlighting the effects of sub-model combination. 

Assumptions about independence and concurrency can be carefully checked. 

6.5.2 Successes with the modal j.i-calculus 

Deadlock detection and potential starvation checking with the aid of the modal i-

calculus are made possible. This provides an important step in verifying models. 

Other questions can be posed for specific models. 

6.5.3 Failures using CCS 

The interleaving semantics of CCS and TCCS, while built on similar assumptions to 

the execution of discrete event simulation models on single processor machines, 

cannot deal with either stochastic or continuous states. This is a limit to their 

precision when dealing with models, since the results are inevitably conservative 

with respect to a model operating under specific assumptions. The need to express if-

then-else as a guard on one branch and a guard testing the complement on the other 

often leads to unwieldy summations to test the complement of a single integer. Tests 

of this sort are impractical and force the use of simplified CCS models with reduced 

ranges when applying the Concurrency Workbench. 

Attempts to incorporate time into these models were frustrating. The TCCS view of 

time is inadequate to express the really interesting problems and explicit 

synchronisation actions were often necessary to force actions to occur before time 

advanced. It seems that a review of alternative forms of time advance and 

synchronisation is needed to improve on this. 

6.5.4 Failures with the modal j.t-calculus 

Identification of redundant states with CCS is not helped by the calculus, since it 

does not deal in unreachable states. The learning curve for the calculus is very steep 

and makes it unlikely that modellers will choose to use it. It does not offer a means 

to ask probabilistic questions at the moment and much further work is necessary to 
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develop an equivalently powerful level of interrogation of simulation models. It was 

of limited general use for questions of genuine concurrency and of blocking 

propagation. It cannot deal effectively with general questions of fairness. 

This area was tackled very late in the work described and should be the subject of 

further, careful research. 

6.5.5 Limits of the Concurrency Workbench 

The Concurrency Workbench, in the form available when the work of this 

dissertation was carried out, proved useful, but unwieldy and less helpful than might 

have been the case. It is also limited by the rapid increase in the memory demands it 

makes as the number of states in a model increases. Checking for redundant states is 

quite cumbersome, even with the help of the Workbench. 

The lack of a fully integrated value passing syntax is a serious omission in the 

current version. A converter from value passing to basic calculus and this should be 

included in the working system. The lack of an if-else construct in the Workbench 

syntax is particularly regrettable. 

More thought needs to be given to ease of understanding when presenting output. 

Commands such as min and fdobs would be much easier to use if their output was 

related more closely to the structure of the models on which they operate. It appears 

that some of these issues are being addressed in version 7 of the Workbench, but this 

was not available at the time of this work. 

6.5.4 Further work 

This chapter has shown that the application of process algebra techniques provides 

both an aid to writing good simulation models and a complement to them in terms of 

the range of questions that can be answered. The major challenges are in closer 

coupling of the two approaches. In particular the following areas seem obvious 

targets for further research: 

integration of the tools involved to allow Concurrency Workbench functions to 

be available more directly and in forms more closely related to the activity 

diagram description of models; 
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development of new process algebra querying functions targeted at the questions 

asked by simulation modellers, such as redundant state detection and concurrent 

action analysis; 

extension to stochastic and real valued models, possibly using PEPA or a similar 

algebra; 

development of an applicable process logic for use with the above, expressed at 

an appropriate level for simulation modellers. 



Chapter 7 

Conclusions 

7.1 General 

The results of this dissertation can be summarised as follows. 

The semantics of discrete event simulation languages are at present poorly 

described, but can be investigated using a process algebra, such as CCS to formalise 

the description of the interactions involved. 

It is possible to design a graphical formalism which is sufficiently powerful to 

express the most widely used features of process oriented discrete event simulation 

and to generate executable models directly from these when suitably annotated. 

It is possible to extend this to express the hierarchical construction and 

decomposition of such models and to generate executable models and re-usable 

component sub-models from these diagrams, when suitably annotated. 

Using a suitably revised version of a discrete event simulation language, in this 

case DEMOS, it is possible to show important properties such as equivalence, 

liveness and starvation without resorting to execution of the models, by means of 

analysis of an equivalent process algebra model. 

A tool based on a graphical interface can be constructed to support automatic 

generation of both executable simulation models and equivalent process algebra 

models. 

7.2 Semantics of discrete event simulation 

Existing simulation languages are defined informally and precise definitions are often 
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buried in manuals. Since discrete event simulation usually proceeds on a monoprocessor 

system, some sort of event interleaving is always required and genuinely simultaneous 

events have to be scheduled in a deterministic order to allow reproducibility of results. 

Chapter 3 demonstrated that the use of a process algebra, such as CCS, helps the designer 

of such a language avoid ambiguities. It can also allow users of the language to test their 

understanding of the semantics of constructs in the language. 

7.3 Deciding properties of discrete event models 

The difficulty of knowing whether a model accurately represents the behaviour of the 

system it is intended to model is central to the credibility of discrete event simulation. 

Since any given run of a model is a random walk throught the event space of the model, 

execution is not an adequate means of establishing such behaviourial properties. It has 

been shown, however, that the use of CCS to represent a model can allow us to analyse 

some important properties in advance of quantitative simulation. 

Furthermore, the preservation of important properties under simplification and 

restructuring is important when trying to formulate an efficiently solvable model. Again, 

the use of CCS has been shown to be of help in locating and exploiting simplifications and 

component based re-use of sub-models. 

7.4 Automating the analysis of simulation models 

While many tools for graphical generation of simulation models have appeared in the last 

few years, none have any formal underpinning. It has been shown here that such a tool 

can be built to incorporate both discrete event simulation and process algebra behaviourial 

analysis from a common representation. 

Furthermore, the notion of hierarchical modelling has been developed in terms of the 

graphical, simulation and process algebra representation of models. This greatly aids the 

use of graphical techniques for large and complex models. The system developed here is 

likely to be very useful in situations where large models are being built and component 

models are being re-used from libraries. 

7.5 Further work 

The work of this dissertation has been developed in terms of the basic Calculus of 
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Communicating Systems. While this has been shown to be powerful, general and useful, 

it does not allow for the use of additional information available to the modeller. In 

particular, it does not deal with stochastic measures of time and non-determinism. Nor 

does it have useful ways of handling sequential execution of moedis of concurrent 

systems. The alternatives of stochastic and synchronous process algebras need to be 

explored in some detail to assess their contribution. 

Closer integration of the graphical interface and the functional analysis software is very 

desirable. Even if the Concurrency Workbench could be tailored to ask the questions 

requiring answers in simulation modelling, it presents its results in an opaque manner. 

Reimplementation of these features within the context of Activity Diagrams seems a 

fruitful approach. At the same time some new forms of analysis might be added, to deal in 

more specific ways with questions such as concurrent event modelling. The modal i-

calculus is too obscure to be used directly. 

Finally a considerable amount of work remains in evaluating the approaches developed 

here on real modelling problems. This is much more possible as a result of the tools 

developed in this work. 

7.6 Assessment 

The results of this work are not all positive, but in a number of areas the usefulness of 

combining functional analysis of systems with simulation modelling has been clearly 

shown. The avenues still open suggest that some at least of the open issues can be 

resolved. The overall assessment is, therefore, that the work reported has been 

worthwhile and has potential for exploitation. 
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Appendix A 

Source of Demographer 

This Appendix contains the source of the PC version of Demographer used in Cahpter 5 
of this dissertation. 

DOS graphical editor for DEMOS; 

begin 
short integer grin; 

integer Left = 127, Middle = 26, Right = 31; 	Delete,d,PageDn; 

integer Movet = 5, MoveR = 4, MoveU = 28, MoveD = 14; 	Cursor keys; 

Node types are defined here as 

integer Hold_Sym = 1, Start_Sym = 2, End_Sym = 3, Decision_Sym = 4, 
Synch_Sym = 5 Link_Sym = 6, Res_Sym = 7, Mlii le_Sym = 8 
Bin_Sym = 9, Store_Sym = 10, Sub_Sym = 11, Max_Sym = Sub_Sym; 

Link symbols indicating direction are 

integer LR = -1, ML = -2, DU = -3, liD = -4, 
RU = -5, RD = -6, LU = -7, LD = -8, 
UR = -9, DR "-10, UL 	-ll, DL =-12, Del = -13; 

Powers of two used to store current links in Diag table; 

integer L_R = -1, R_L = -2, D_U = -4, U_D = -8, 
R_U =-16, R_D =-32, L_U =-64, LD =-128, 
U_R =-256,D_R =-512,UL=-1024,DL=-2048; 

Direction of current move when linking is one of 

integer lip=l, Dn=-1, Lf=2, Rt=-2, NW=0; 

Colours used are 

integer Black = 0, White = 15, Red = 4, Blue = 1, LGrey = 7, Green = 2, 
Yellow = 14, LGreen = 10; 

Size of grid in squares; 

integer XSquares = 25, YSquares = 15; 

integer button, x, y, ox, oy, ob, d, CurrSymb, PrevSymb, I, J; 
character Current_Char, Prey_Char; 
Boolean Exited, No_Move, Linking, First Link; 
text String, F_Name; 
text array Titles(DL :Max_Sym,1:6); 
text array Form(0:XSquares,0:YSquares,1:6,l:2); 
integer array Diag(0 :XSquares, 0 :YSquares); 
integer array Lnk(Rt:Lf,DL:0); 
integer array SynibMap(DL:LR); 

ref (InFile) InF; 
ref (outfile) OF; 

external class drawing = '.. \drawing\drawing'; 

drawing(16) 
begin 

This is the prefixed block that does the graphics; 

procedure gen; 
begin 

DEMOS generating backend for graphical input programs; 

integer Iden = 1; 
integer 	 Sched = 2, Successor = 3, Locals = 4; 	Start node; 
integer 	 Amount = 2; 	 Res or Bin; 
integer 	 Period = 2; 	 Mold; 
integer 	 Condition =2; 	 Condition; 

integer Downwards = 1, Upwards = 2, Leftwards = 3, Rightwards = 4; 
ref (outfile) model; 
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text F_Name; 

SetColour(LGreen); 
FillSquare)260, 0, 85, 500) 
J 	TextLine(280); 

SetPos)J,1) 
OutText)'Name of DEMOS output file); 
F_Name 	InText(40) Strip; 
model 	new OutFile(F_Name); 

inspect model do 
begin 

procedure OutLine)T,D); text T; integer D; 
begin 

Print out the text with 0 spaces of indentation and a newline; 
OutText(Blanks)D)&T); 
Out Image; 

end; 

text procedure GetNext)T); name T; text T; 
begin 

text Res; 
character Ch; 
T 	T.Strip; 
if T==NoText then GetNext - NoText else 
begin 

Res :- Blanks)80); 
while T.GetChar=' ' do; 
T.SetPos)T.Pos-1) 
Ch ;= T.GetChar; 
while Ch<>' 	and then T.More do 
begin 

Res.PutChar)Ch(; 
Ch := T.GetChar; 

end; 
if not TMOre then Res.Putchar)Ch); 
T 	T.Sub)T.Pos,T.Length-T.Pos+l); 
GetNext 	Res.Strip; 

end; 
end; 

class Global_Item)X,Y,Ident); integer X,Y; text Ident; 
begin 

ref )Global_Item) Next; 
end; 

Global _item class Dist_Item(Sort, P1, P2); text Sort, P1, P2; 
begin 
end; 

class Global List; 
begin 

ref (Global_Item) First; 
procedure Into (New_Item); ref (Global_Item) New item; 
begin 

New _Item.Next 	First; 
First 	New Item; 

end; 
ref )Global_Item) procedure Get; 
begin 

Get ;- First; 
First ;- First.Next; 

end; 
Boolean procedure Empty; Empty 	First==none; 

end; 

ref (Global_List) Entity_List, Entity_List2, 
Res_List, Res_List2, 
Bin List, Bin_List2, 
Store List, Store_List2, 
Sub List, Sub_List2, 
Dist List, Dist_List2; 

procedure Read—Table; 
begin 

integer X, Y, I; 
while not Lastltem do 
begin 

X 	Inlnt; Y 	mInt; 
Diag)X,Y) := Inlnt; 
Inlmage; 
for 	=1 step luntil 6 do 
begin 

Form)X,Y,I,2) 	Copy)Image.Strip); 
Inlmage; 

end; 
end; 

end; 

procedure Prologue; 
begin 

outline) "begin' , 0) 
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outline('extemal class demos;",3); 
outline('DEMOS",3); 
outline('begin",3); 

end; 

procedure Epilogue; 
begin 

Outlmage; 
OutLine("Hold)InReal);",6); 
OutLine('end",3); 
OutLine('end',O); 

end; 

procedure Find_Globals; 
begin 

Locate all entities, Reses, Bins etc.; 
integer X, Y; 
for X := 0 step 1 until XSquares do 

for Y := 0 step 1 until YSquares do 
begin 

if Diag(X,Y) = Start_Sym then 
Entity_List.Into(new Global_Item)X,Y,Form(X,Y,Iden,2))) else 

if Diag(X,Y) = Res_Sym then 
Res_List.Into)new Global_Item)X,Y,Form(X,Y,Iden,2))) else 

if Diag(X,Y) = Bin_Sym then 
Bin_List.Into)new Global Item(X,Y,Form)X,Y, Iden,2))) else 

if Diag(X,Y) = Store _Sym then 
Store_List.Into(new Global_Item)X,Y,Form)X,Y,Iden,2))) else 

if Diag(X,Y) = Sub_Sym then 
Sub_List.Into(new Global_Item(X,Y,Form(X,Y,Iden,2))); 

end; 
end; 

procedure Build—Entities; 
begin 

Output the class declarations of the entities; 
text T, Dist; 
integer Xl,Yl; 

procedure Follow(X, Y, Heading); name X, Y; 
integer X, Y, Heading; 

begin 
Follow a link to its end; 

switch Coming := Down—W, Up—W, Left—W, Right_H; 
integer Link—Type; 

Link_Type : -Diag(X,Y); 
GoTo Coming)Heading); 

Down—W: 
if Lin]c_Type//)512*2)*2<>Link_Type//512  then 
begin 

X := X + 1; 
Heading := Rightwards; 

end else 
if Link_Type//)2048*2)*2<>Link_Type//2048 then 
begin 

X := X - 1; 
Heading := Leftwards; 

end else 
if Link_Type//)8*2)*2<>Link_Type//8  then 
begin 

Y := Y + 1; 
Heading := Downwards; 

end else GoTo Skip; 
GoTo Done; 

Up-M: 
if Link _Type//)256*2)*2<>Link_Type//256  then 
begin 

X := X + 1; 
Heading := Rightwards; 

end else 
if Link _Type// (1024*2) *2<>LinkType//1o24 then 
begin 

X := X - 1; 
Heading := Leftwards; 

end else 
if Link _Type//)4*2)*2<>Link_Type//4 then 
begin 

Y 	Y - 1; 
Heading := Upwards; 

end else GoTo Skip; 
GoTo Done; 

Left—W: 
if Link_Type//)2*2)*2<>Link_Type//2  then 
begin 

X = X - 1; 
Heading := Leftwards; 

end else 
if Link _Type//)128*2) *2.<>Linkpype//128 then 
begin 
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Y Y + 1; 
Heading := Downwards; 

end else 
if Link_Type//(64*2)*2<>Link_Type//64 then 
begin 
YY - 1; 
Heading : Upwards; 

end else G0T0 Skip; 
GoTo Done; 

Right-W:  
if Link_Typel/(1*2)*2<>Link_Type//l  then 
begin 

X 1= X + 1; 
Heading := Rightwards; 

end else 
if Link..Type//)32*2)*2<>Link_Typel/32  then 
begin 

Y := Y + 1; 
Heading := Downwards; 

end else 
if Link_Type//(16*2)*2*>Link_Typel/16  then 
begin 

Y := Y - 1; 
Heading 	Upwards; 

end else GoTo Skip; 
GoTo Done; 

Done: 
if Diag(X,Y)<O then Follow(X,Y,Heading); 

Skip: 
end; 

procedure Follow_Back(X, Y, Heading); name X, Y; 
integer X, Y, Heading; 

begin 
Follow a link to its origin; 

switch Coming := Down-W, Up-W, Left-W, Right-W; 
integer Link_Type; 

Link-Type := -Diag(X,Y); 
GoTo Coming(Heading); 

Down-W: 
if Link_Type//(64*2)*2,z>Link_Type//64  then 
begin 

X := X -I-  1; 
Heading := Rightwards; 

end else 
if Link_Type//(16*2)*2<>Link_Type//16  then 
begin 

X := X - 1; 
Heading := Leftwards; 

end else 
if Link _Type//(4*2)*2<>Link_Type//4 then 
begin 

Y := Y + 1; 
Heading := Downwards; 

end else GoTo Skip; 
GoTo Done; 

Up-W: 
if Link _Type/I (128*2) *2<>LjnkType//128 then 
begin 

X := X + 1; 
Heading := Rightwards; 

end else 
if Link _Type//(32*2)*2<>Link_Typel/32  then 
begin 

X := X - 1; 
Heading := Leftwards; 

end else 
if Link _Type//(8*2)*2<>Link_Type//8  then 
begin 

Y := Y - 1; 
Heading := Upwards; 

end else GoTo Skip; 
GoTo Done; 

Left-W: 
if Link_Type//(1*2)*2nLink_Type//l  then 
begin 

X := X - 1; 
Heading 	Leftwards; 

end else 
if Link _Type// (256*2)  2<>LinkType//2S6 then 
begin 

Y := Y + 1; 
Heading := Downwards; 

end else 
if Link_Typel/ (512*2) *2<>LinkType//5l2 then 
begin 

Y := Y - 1; 
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Heading 	Upwards; 
end else GoTo Skip; 
GoTo Done; 

Right—W:  
if Link_Type//(2*2)*2<>Link_Type//2  then 
begin 

X 	X + 1; 
Heading 	Rightwards; 

end else 
if Link_Typeu/(1024*2)*2<>Link_Tpe//1024  then 
begin 

Y := Y + 1; 
Heading 	Downwards; 

end else 
if Link_Type//(2048*2)*2<>Link_Type//2048  then 
begin 

Y 	Y - 1; 
Heading 	Upwards; 

end else GoTo Skip; 
GoTo Done; 

Done 
if Diag(X,Y)<O then Follow_Back(X,Y,Heading); 

Skip 
end; 

procedure Next_Sym(X,Y); name X,Y; integer X,Y; 
begin 

integer OldX OldYW; 
Boolean Failed; 
if Y<>ll then 
begin 

OldX 	X; OldY := Y; Y := Y+l;W:Downwards; 
if Diag(XY)zO then Follow(X,Y,W); 
if X=OldX and Y=OldY+l and X<>24 then 	Went nowhere; 
begin 

X 	X+l; Y := OldY;W:Rightwards; 
if Diag(X,Y) <0 then Follow(X,Y,W); 
if X=OldX+l and Y=OldY and OldX<>0 then 
	

Still nowhere; 
begin 

X 	X-2;W:teftwards; 
if Diag(X,Y)<0 then Follow(X,Y,W); 
if X=OldX-1 and Y=OldY and Y<>0 then 
	

Check Upwards; 
begin 

X OldX; Y 	Y-l;W:Upwards; 
if Diag(X,Y)<0 then Follow(X,Y,W) 
Failed 	X=OldX and Y=OldY-l; 

end; 
end; 

end; 
end; 
if Failed then 
begin 

Y 	Y+l; 
if Diag(X,Y+1)>0 then Y 	Y+1 else 
if Diag(X+1,Y)>0 then X := X+1 else 
if Diag(X-1,Y)>0 then X 	X-1 else 
if Diag(XY-1)>0 then Y 	Y-1 else 
begin 

OutLine(***Missing link  from***,1);  
Outlnt(X,4) ;OutInt(Y,4) ;Outlmage; 

end; 
end; 

end; 

procedure Diagram(Xl,Yl,X,YGoing); name Xl,Yl; 
integer Xl,Yl,X,YGoing; 

begin 
Boolean Ended; 
integer OldX, OldY, W; 
switch Sym_Action := H_Sym, S_Sym, E_Sym, D_Sym, Sy_Sym, L_Sym, R_Sym, 

W_Sym, 5_Sym, St_Sym, Su_Sym; 

if Diag(Xl,Yl)<O then Follow(Xl,Yl,Going); 

while not Ended do 
begin 

GoTo Sym_Action(Diag(Xl,Yl)); 

H_Sym: 
OutLine('Hold("&Form(Xl,Yl,Period,2)&);,9); 
Next_Sym(Xl,Yl) 
GoTo Done; 

S_Sym: 
GoTo Done; 

E_Sym: 
Ended True; 
GoTo Done; 

D_Sym: 
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if Foriu(Xl,Y1,Iden,2)<>NoText then 
OutLine(( "&Form(X1,YlIden,2)&";,9); 

Outtine(if &Form(Xl,Yl,Condition,2)&" then9); 
OutLine) "begin", 9) 
OldX := XI; OldY := Yl+l; 
Diagram(OldX,OldYXl,Yl,Downwards); 
if Diag(Xl+l,Yl)<>O or Diag(Xl-1,Yl(<>O then 
begin 

OutLine("end else begin",9); 
if Diag(Xl+l,Yl)<>O then 
begin 

Xl 	Xl+l; 
H : Rightwards; 

end else 
begin 

Xl : Xl-l; 
W := Leftwards; 

end; 
Diagram(Xl,Yl,Xl,Yl,W); 

end; 
OutLine(end;',9); 
Next_Sym(Xl,Yl); 
GoTo Done; 

Sy_Sym: 
begin 

procedure Handle_Drop; 
begin 

if Form(Xl,Yl,Iden,2)<>Notext then 
OutLine)! "&Form(Xl,Yl,Iden,2)&";",9); 

if Diag(OldX,OldY)=Res_Sym then 
OutLine(Form(OldX, OldY, Iden, 2)& 
'Release('&Form(Xl,Yl,Iueount,2)&);,9) 

else if Diag(OldXOldY)=Bin_Sym then 
OutLine(Form(OldX,OldY, Iden, 2) & 
".Give(&Form(Xl,Yl,Zenount,2)&');',9) 

else 
OutLine (Form )OldX, OldY, Iden, 2) & 
".Add(&Form(Xl,Yl,Axnount,2)&');',9); 

end; 

procedure Handle_Grab; 
begin 

if Form)Xl,Yl,Iden,2)<>Notext then 
OutLine)"! "&Form)Xl,Yl,Iden,2)&";",9); 

if Diag(OldX,OldY(=Res_Sym then 
OutLine(Form(OldX,OldY, Iden,2)& 

'.Acquire)'&Form(Xl,Yl,Amount,2(&"(;',9) 
else if Diag(OldX,OldY( = Bin _Sym then 

OutLine (Form )OldX, OldY, Iden, 2) & 
".Take)"&Form(Xl,Yl,Amount,2)&');',9( 

else 
OutLine (Form)OldX, OldY, Iden, 2) & 

".Remove('&Form(Xl,Yl,lanount,2)&');",9); 
end; 

if Diag(Xl-1,Yl('zO then 
begin 

OldX "'Xl-1 ; OldY: 'Yl ;W: =Lef twards; 
Follow(OldX,OldY,W(; 
if OldX<>Xl-1 or OldY<>Yl then Handle_Drop else 
begin 

Follow _Back(OldX, OldY,W) 
if OldX'z>Xl-1 or OldY<>Yl then Handle Grab; 

end; 
end; 
if Diag(Xl+l,Yl(<O then 
begin 

OldX: =X14-1 ;OldY: =Yl ;W:Rightwards; 
Follow(OldX,OldY,Rightwards); 
if OldX<>Xl+l or OldY<>Yl then Handle_Drop else 
begin 

Follow _Back(OldX, OldY,Rightwards); 
if OldX<>Xl+l or DldY<>Yl then Handle Grab 

end; 
end; 
Yl ""Yl+l; 
if Diag)Xl,Yl(<O then Next_Sym(Xl,Yl(; 

end; 
GoTo Done; 

L_Sym 
Ended := True; 
GoTo Done; 

R_Sym 
GoTo Done; 

W_Sym: 
if Form(Xl,Yl,Iden,2)<>NoText then 

OutLine)"! "&Form)Xl,Yl,Iden,2)&";",9); 
OutLine)'while "&Form)Xl,Yl,Condition,2)&" do",9); 
OutLine)'begin', 9); 
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Yl 	Yl+l; 
Diagram(XlYlXl,Yl,Downwards); 
Outtine(end;",9); 
Next_Sym(Xl,Yl(; 
GoTo Done; 

B._Sym: 
GoTo Done; 

St_Sym; 
Go To Done; 

Su_Synu 	Go To Done; 

Done; 
end; 

end; 

inspect Sub_List do 
begin 

while not empty do inspect first do 
begin 

OutLine(%include &Ident.Strip& .sim", 6); 
Sub_List2 . Into(Get); 

end; 
end; 

inspect Entity_List do 
begin 

while not empty do inspect first do 
begin 

integer Count; 
Outlmage; 
OutLine)entity class &Ident.Strip&_C; 6); 
OutLine('begin 6); 
for Count 	0 step 1 until 2 do 
begin 

T ;- Form(X,Y,Locals+Count,2) .Strip; 
if T<>NoText then OutLine(&T,9); 

end; 
T ;- Form(X,Y,Successor,2) Strip; 
if T<>NoText then 
begin 

Dist 	copy(Ident&'_A); 
OutLine)new '&Ident&_C ( 	&Ident& 

.Schedule(&Dist&.Sample);,9); 
Dist_List.Into(new Dist_Item(X,YDist, 

GetNext(T) GetNext(T) ,GetNext(T)fl; 
end; 

Process the activity diagram; 

Allow for several heads; 
XI := X; Yl := Y; 
while Diag(XlYl+l)=Start_Sym do Yl 	Yl+l; 
Yl := Yl + 1; 

This does the real work and is used recursively for nested branches; 

Diagram(Xl,Yl,X,Y,Downwards); 

OutLine(end-of-&First.Ident&;,6); 
Out Image; 
Entity_List2 .Into)Get) 

end; 
end; 

end; 

procedure Print_Decls; 
begin 

inspect Entity_List2 do while not Empty do 
begin 

OutLine)ref(&First.Ident&_C) &First.Ident&; 6); 
Entity_List. Into (Get); 

end; 
inspect Sub_List2 do while not Empty do 
begin 

OutLine(ref(&First.Ident&_C) "&First.Ident&; 6); 
Sub_List. Into (Get); 

end; 
inspect Res—List do while not Empty do 
begin 

OutLine) ref (Res) &First . Ident&'; 6); 
Res _List2 . Into(Get( 

end; 
inspect Bin List do while not Empty do 
begin 

OutLine(ref(Bin) &First.Ident&; ,6(; 
Bin _List2 . Into (Get); 

end; 
inspect Store_List do while not Empty do 
begin 

OutLine(ref(Store( &First.Ident&';,6(; 
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Store _List2 .Into(Get) 
end; 
inspect Dist List do while not Empty do 
inspect First when Dist—Item do 
begin 

OutLine)"ref)"&Sort&") "&Ident&";",6); 
Dist_List2 Into (Get) 

end; 
end; 

procedure Print News; 
begin 

Print Out the object generation statements; 
inspect Entity—List do while not Empty do 
begin 

	

OutLine)First.Ident&" 	new "&First.Ident&"_c)""" 
&First.Ident&""" 

Entity_List2 Into (Get) 
end; 
inspect Res_List2 do while not Empty do 
begin 

inspect First do 
OutLine)Ident&" 	new Res (""" 

&Ident&""" "&Form)X,Y,I'aiount,2)&");",6); 
Res _List . Into (Get); 

end; 
inspect Bin_List2 do while not Empty do 
begin 

inspect First do 
OutLine(Ident&" 	new Bin)""' 

&Ident&""", "&Form)X,Y,Amount,2)&") ; ", 6); 
Bin _List. Into (Get); 

end; 
inspect Store_List2 do while not Empty do 
begin 

inspect First do 
OutLine)Ident&" :- new Store)"'" 

&Ident&""", "&Form(X,Y,Amount,2)&") ; ", 6); 
Store_List. Into (Get); 

end; 
inspect Dist_List2 do while not Empty do 
begin 

inspect First when Dist—Item do 
begin 

OutText)" 	"&Ident&" :- new "&Sort&" )""" 
&Ident&""", 

if P2c>NoText then OutText(","&P2); 
OutLine(");",O(; 

end; 
Gist_List. Into (Get) 

end; 
end; 

procedure Print Schedules; 
begin 

Schedule the initial entities; 
inspect Entity_List2 do while not Empty do 
begin 

inspect First do 
OutLine)Ident&".Schedule)"&Form)X,Y,Sched,2(&");",6); 

Entity_List. Into (Get) 
end; 
inspect Sub_List2 do while not Empty do 
begin 

inspect First do 
Outtine(Ident&".Schedule)"&Forrn)X,Y,Sched,2)&");",6); 

Sub _List.Into (Get); 
end; 

end; 

Open(Blanks)80)) 
Entity—List 	new Global_List; 
Entity_List2 :- new Global_List; 
Sub List :- new Global_List; 
Sub_List2 	new Global_List; 
Res—List 	new Global_List; 
Res_List2 	new Global_List; 

Bin _List 	new Global_List; 
Bin _List2 	new Global_List; 
Store_  List 	new Global_List; 
Store _List2 	new Global_List; 
Dist—List 	new Global_List; 
Dist_List2 	new Global_List; 

Prologue; 
Find _Globals; 
Build_  Entities; 
Print _Dads; 
Print _News; 
Print _Schedules; 
Epilogue; 
Close; 

end+inspect+model; 
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end-procedure--Gen; 

procedure Read_Diag(F); ref (InFile) F; 
begin 

integer X, Y, I; 
inspect F do 
while not Lastltexn do 
begin 

X:= mInt; Y 	mInt; 
Diag(X,Y) 	mInt; 
Inlmage; 
for I := 1 step 1 until S do 
begin 

Form(X,Y,I,2) ;- Copy(Image.Strip); 
Inlmage; 

end; 
end; 

end; 

procedure Draw_Diag; 
begin 

integer X,Y; 
for X := 0 step 1 until XSquares-1 do 

for Y 	0 step 1 until 11 do 
begin 

Display_Square(Diag(X,Y) Y*20 ,X*20, Y*20,X*20);  
SetColour(White); 
DrawSquare(Y*20±15,X*20,20,20) 

end; 
end; 

Define the basic symbols for the diagrams; 

procedure Print_Sym(Syrnbol,Y,X,Colour); integer Symbol, Y, X, Colour; 
begin 

switch PSYM 	HoldSym, StartSym, EndSym, DecisionSym, SynchSym, LinkSym, 
ResSym, Whi leSym, BinSym, StoreSym SubSym, 

LRLink, RLLink, DtJLink, tjDLink, RULink, RDLink, 
LULink, LDLink, URLInk, DRLInk, ULLink, DLLink; 

integer Old-Colour; 
if Symbol<> 0 and then Symbol>= DL and then Symbol<=Max_Sym then 
begin 

if Symbol<0 then Symbol ;= Max _Sym - Symbol; 
Old _Colour 	SetColour(Colour) 
GoTo PSYM(Symbol(; 

HoidSym: DrawSquare(Y+17,X+2,16,16) 
goto Done; 

StartSym; DrawLine(Y+21,X+3,0,14); 
Draw5ector(Y+21,X+10,7, 500, 500, 0); 
goto Done; 

RndSym: 	DrawLine(Y+29,X+5,0,14); 
DrawSector(Y+29,X+10,7,0,500,0); 
goto Done; 

DecisionSym: Drawtine(Y+18,X+10,7,-8); 
Drawtine(Y+18,X+10,7,8); 
DrawLine(Y+25,X+2,7,8); 
DrawLine(Y+25,X+18,7,-8); 
goto Done; 

SynchSym: DrawLine)Y+25,X+3,0,14); 
Drawtine)Y+15,X+10, 20, 0) 
DrawCircle)Y+25,X+10,3); 
goto Done; 

LinkSym; DrawLine(Yi-25,X+3,0,14); 
Orawtine)Y+15,X+10,20,0) 
goto Done; 

ResSym: DrawCircle)Y+25,X+10,7); 
goto Done; 

WhileSym; DrawSector)Y+25,X+10,7,750,750,0); 
SetColour(if X>480 then Green else LGreen); 
DrawLine)Y+25,X+3, 0,7); 
DrawLine(Y+25,X+10,7,0); 
SetColour(Colour); 
DrawLine)Y+32,X+10,3,3); 
DrawLine(Y+32, X+10, -3,3); 
goto Done; 

SinSym: DrawLine(Y+18,X+3,15,3); 
DrawLine )Y+18 , X+17,l5, -3); 
DrawLine)Y+33,X+6,0,8); 
goto Done; 

StoreSym: DrawSquare)Y+19,X+4,16,12); 
DrawLine)Y+23,X+4,0,12); 
DrawLine(Y+27,X+4, 0,12); 
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DrawLine(Y+32,X+4,0,12); 
goto Done; 

SubSym: 	DrawSquare(Y+23,X+6,8,8); 
goto Done; 

LRLink: 	DrawLine(Y+25,X,0,20); 
DrawLine(Y+21,X+16, 4,4); 
GoTo Done; 

RLLink: DrawLine(Y+25,X,0,20); 
DrawLine)Y+29,X+4,-4,-4); 
goto Done; 

DtiLink: DrawLine)Y+15,X+10,20,0); 
DrawLine)Y+18,X+13, -3, -3); 
goto Done; 

UDLink: DrawLine)Y+15,X+10,20,0); 
DrawLine)Y+32,X+7,3,3); 
goto Done; 

RULink: DrawSector(Y-'-15,X,10,750,250,0); 
goto Done2; 

RDLink: 	DrawSector(Y+35,X,10,0,250,0); 
goto Done2; 

LULink: 	DrawSector)Y*15,X+20,10,500,250,0); 
goto Done2; 

LDLink: 	DrawSector)Y+35,X+20,10,250,250,0); 
goto Done2; 

JJRLink: 	DrawSector)Y-1-35,X+20,10,250,250,0); 
goto Done2; 

DRLink: 	DrawSector(Y+15,X+20,10,500,250,0); 
goto Done2; 

ULLink: DrawSector(Y+35,X,10,0,250,0); 
goto Done2; 

DLLink: 	DrawSector(Y+15,X, 10,750, 250,0); 
goto Done2; 

Done2: 	SetColour)White); 
DrawSquare ) Y+ 15 , X, 20, 20) 

Done: 	SetColour(Old_Colour); 
end; 

end-Print_Sym; 

procedure Set Forms; 
begin 

Titles)Hold_Sym,1) :- "Reason: 
Titles(Hold_Sym,2) :- "Delay: 

Titles (Start_Sym, 1) :- "Name: 
Titles(Start_Sym,2) :- "Scheduling: 
Titles(Start_Sym,3) :- "Successor: 
Titles)Start_Sym,4) :- "Locals: 
Titles(Start_Sym,5) :- "Locals: 
Titles(Start_Sym,6) :- "Locals: 

Titles(Res_Sym,l) :- "Name: 
Titles)Res_Sym,2) :- "Amount: 

Titles(Decision_Sym,l) :- "Reason: 
Titles(Decision_Sym,2) :- "Condition: 

Titles)Synch_Sym,l) :- "Notes: 
Titles(Synch_Sym,2) :- "Amount: 

Titles(While_Sym,l) :- "Reason: 
Titles(While_Sym,2) :- "Condition: 

Titles)Bin_Sym, 1) :- )"Name: 
Titles(Hin_Sym, 2) :- )"Amount: 

Titles(Store_Sym,1) :- "Name: 
Titles)Store_Sym,2) :- "Amount: 

Titles)Sub_Sym,l) :- "Name: 
Titles(Sub_Sym,2) :- "Source file: 
Titles)Start_Sym,3) - "Parameters: 

end; 

procedure Draw_Button(Y,Colour,Action); 
integer Y,Colour; text Action; 

begin 
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SetColour)Colour); 
FillSquare)Y, 575, 55, 55) 
Setpos(TextLine)Y+35) ,TextPos(580)); 
OutText (Action); 

end; 

procedure Display_Square(Symbol,NewY,NewX,OldY,OldX); 
integer Symbol, NewY,NewX,OldY,OldX; 

begin 
integer D, 5; 

if OldX<500 then 
begin 	; Started on the canvas; 

SetColour (LGreen); 
if not No—Move then 
begin 	 Restore the square moved from; 

S 	Diag(OldX//20,OldY//20); 
FillSquare(OldY+15,OldX, 20, 20) 
if S<>0 then 
begin 

if S>0 then Frint_Sym)S,OldY,OldX,Blue) else 
begin 

D 	-1; S : -5; 
while S<>0 do 
begin 

if ((S//2)*2)<>S  then Print_Sym)D,OldY,OldX,Blue(; 
S 	S//2; 
D 	D - 1; 

end; 
end; 

end; 
end else FillSquare(NewY+15,NewX,20,20); 
SetColour)White); 
DrawSquare)OldY+15,OldX,20,20); 
if NewX<500 then 
begin 

if Symbol>0 then Print_Sym)Symbol,NewY,NewX,Blue( else 
begin 

D := -1; Symbol 	-Symbol; 
while Symbol<>0 do 
begin 

if )(Sylsbol//2)*2)<>Symbol  then Print_Sym(D,NewY,NewX,Blue); 
Symbol 	Symbol//2; 
D 	D - 1; 

end; 
end; 

end; 
end else 
if )OldX>=500 and then OldX<560) then 
begin 	 Started on the menu area; 

if OldY>=40 then 
begin 

SetColour)White); 
DrawSquare(OldY+15,OldX,20,20(; 

end; 
if NewX<560 then 

begin 	 Moved to the canvas or menu area; 
SetColour)Red); 
DrawSquare(NewY+15,NewX,20,20); 

end else 
begin 	; Movedto the button area; 

if NewY<120 then Draw_Button)55,Red, 'Exit') 
else Draw_Button)120,Red, 'Generate'); 

end 
end else 
begin 	 ; Started on the button area; 

if OldY<120 then Draw _Button)55,Green, 'Exit') 
else Draw_Button)120,Green, "Generate"); 

if NewX<560 then 
begin 	 Moved to the menu area; 

SetColour)Red); 
DrawSquare)NewY-f15,NewX, 20,20); 

end else 
begin 	Movedto the button area; 

if NewY<120 then Draw _Hutton)55,Red, 'Exit') 
else Draw _Button)120,Red, "Generate"); 

end 
end; 

end; 

procedure Draw_Link(OldY,OldX,NewY,NewX,PrevSymb(; 
name PrevSymb; integer OldY,OldX,NewY,NewX, FrevSymb; 

begin 
Draw a link from one square to another. Must be adjacent; 

integer NewDirection; 
NewOirection OldYNewY+2*)OldXNewX);  
PrevSymb 	Lnk)NewDirection//20,PrevSymb); 
if First Link then 
begin 

First Link 	False; 
Display_Square)Diag)OldX//20,OldY//20( ,OldY,OldX,OldY,OldX(; 
SetColour)OJhite); 
DrawSguare)OldY+15,OldX,20,20) 
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end; 
Diag)OldX//20,OldY//20) 	Diag(OldX//20,OldY//20) + SymbMap)PrevSymb); 
Print_Sym)PrevSymb,OldY,OldX, Blue); 

end; 

Initialise the links table; 

Lnk)tip,0) :=DU; Lnk)Dn,0) :=UD; Lnk)Lf,0) :=RL; Lnk)Rt,0) :=LR; Lnk)NW,0) =0; 
Lnk(tip,LR):=RtJ; Lnk)Dn,LR):RD; Lnk)Lf,LR):*Del;Lnk)Rt,LR)LR; Lnk)NW,LR):0; 
Lnk)Up,RL):=LU; Lnk(Dn,RL):=LD; Lnk)Lf,RL):*RL; Lnk)Et,RL):=Del;Lnk)NW,RL):=0; 
Lnk(tip,DU):=DU; Lnk(Dn,DU):Del;Lnk(Lf,DU):=tJL; Lnk(Rt,DU):UR; Lnk)NW,DU);"O; 
Lnk)Up,UD):=Del;Lnk(Dn,tJD);=tJD; Lnk)Lf,UD):*DL; Lnk(Rt,UD):DR; Lnk)NW,tJD):=0; 
Lnk(Up,RtJ):=DU; Lnk(Dn,RU):=De1;Lnk)Lf,RU):=UL; Lnk(Rt,RU):UR; Lnk)NW,RtJ)0; 
Lnk)Up,RD):=Del;Lnk)Dn,RD):=tJD; Lnk)Lf,RD):*DL; Lnk(Rt,RD)DR; Lnk)NW,RD):=0; 
Lnk)tJp,LU):=DU; Lnk)Dn,LtJ):=Del;Lnk(Lf,LU):=UL; Lnk)Rt,LU):=UR; Lnk)NW,L,tJ):*0; 
Lk)Up,LD):=Del;Lnk(Dn,LD):=UD; Lnk)Lf,LD):=DL; Lnk(Rt,LD):DR; Lnk)NW,LD):'0; 
Lnk)Up,tJR):=RU; Lnk)Dn,UR):=RD; Lnk)Lf,JR):=Del;Lnk(Rt,UR):=LR; Lnk)NW,UR):=0; 
Lnk)Up,DR):=RtJ; Lnk(Dn,DR):=RD; Lnk)Lf,DR):=Del;Lnk)Rt,DR):=LR; Lnk)NW,DR):=0; 
Lnk)tJp,UL)=W; Lnk)Dn,tJL):*LD; Lnk)Lf,UL);RL; Lnk)Rt,tJL)=Del;Lnk)NW,UL):=0; 
Lnk)Up,DL)=LU; Lnk)Dn,DL):=LD; Lnk)Lf,DL):=RL; L,nk)Rt,DL):Del;Lnk)NW,DL):=0; 

Create a map from symbols to stored symbols; 

SymbMap)LR):=L_R; SymbMap)RL):=R_L; SymbMap)DtJ):=D_tJ; SymbMap)1JD):U_D; 
SymbMap(RtJ):=R_U; SymbMap(RD):=R_D; SymbMap)LU):=L_U; SymbMap)LD):=L_D; 
SymbMap(UP)=TJ_R; SymbMap)DR):=D_R; SymbMap)UL):=D_L; SymbMap(DL):=D_L; 

Create the main canvas window; 

Set_Forms; 
SetColour)LGreen); 
FillSquare)0,0,255,500); SetPos)1,TextPos)100)); 
OutText("Demos graphical input); 

Create the menu window; 

SetColour)Green); 
FillSquare)0, 500, 255, 60) 
SetPos)l,TextPos)515) 
OutText)'Menu'); 

Add the symbols to the menu window; 

for I ;= Hold _Sym step 1 until Store _Sym do 
Print_Sym)I, 1*20+20,  500,Yellow) 

Add the links to the menu window; 

Print_Sym)LR, 20+20, 520,Yellow) 

Add sub-models to the menu window; 

Print_Sym)Sub_Sym, 40+20, 520,Yellow) 

SetColour(White); 
for I = 55 step 20 until 255 do Drawline)I,500,0,60); 
Drawtine)0, 500,255, 0) 
DrawLine ) 55, 520, 200, 0) 
DrawLine)55,540,200,0) 
DrawLine)0, 560,255, 0) 

Set up the control panel; 

SetPos(l,TextPos)570)); 
OutText) "Controls"); 

Draw _Button(55,Green,"Exit"); 	Make the Exit button; 
Draw B_utton)l20,Green, "Generate"); 	Make the Generate button; 

Draw the grid; 

SetColour(White); 
for I 	0 step 20 until 500 do DrawLine)15,I,240,0); 
for I := 15 step 20 until 255 do DrawLine)I, 0, 0, 500); 

Check for a file to load; 

SetPos)TextPos)280) 1) 
OutText)"Give input file name )Type 'Cr' for no)"); 
F_Name :- InText)40); 
if F_Name <> NoText then 
begin 

InF :- new InFile)F_Name); 
InF.Open(Blanks)80)) 
Read_Diag)InF); 
No Move 	True; 
Draw_Diag; 
No_Move = False; 

end; 

X 	500; Y := 40; 
SetColour)Red); 
DrawSquare)Y+15,X,20,20); 
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CurrSymb 	Hold_Sym; 
Linking 	False; 

The main input loop; 

while not Exited do 
begin 

First check for cursor key presses; 
Current—Char 	Inchar; 
if Current_Char= 1 then Exited=Txi.ie else 
if Current_Char=Char(MoveR) then Move right; 
begin 

X := if X<540 then X + 20 else 580; 
if Linking then Draw _Link(Y,X-20Y,X, PrevSymb) 

else Display_Square(CurrSymb,Y,XY,if X=580 then 540 else X-20); 
No_Move := False; 

end else 
if Current_Char=Char(MoveL) then Move left; 
begin 

X 	if X>540 then 540 else if X>20 then X-20 else 0; 
if Linking then Draw_Link(YX+20,Y,X,PrevSyTtth) 

else Display_Square(CurrSymb,Y,XY,X+20); 
No_Move False; 

end else 
if Current_Char=Char(MoveD) then Move down; 
begin 

Y := if Y<200 then Y+20 else 220; 
if Linking then Draw_Link)Y-20X,Y,XPrevSymb) 

else Display_Square(CurrSymbY,X,Y-20,X) 
No_Move False; 

end else 
if Current_Char=Char(MoveIJ) then Move up; 
begin 

if X>=500 then Y 	if Y>60 then Y-20 else 40 

	

else Y 	if Y>20 then Y-20 else 0; 
if Linking then Draw_Link(Y+20,XY,XPrevSymb) 

else Display_Square(CurrSymb,Y,X,Y+20,X); 
No_Move False; 

end else 
if Current_Char=char(Left) then Change the current symbol or insert it; 
begin 

if X>500 and then X<560 and then Y<240 then 
begin 

if X<520 then 
begin 

CurrSymb 	Y//20 - 1 
end else if Y>40 then CurrSymb 	Sub_Sym else 
begin 

CurrSymb 	-Y//20 + 1; 
Linking 	False; 

end 
end else 

Add or delete a symbol; 

if Y<240 and then X<500 then 	Set the symbol at the current position; 
begin 

if CurrSymb<0 then 
begin 

Linking 	not Linking; 
First_Link Linking; 
PrevSyinb 	0; 

end else 
begin 

SetColour (Black) 
Diag(X//20, '1/120) := CurrSymb; 
Display_Sojiare)CurrSymb,Y,X,Y,X); 

No_Move := True; 
end 

end else 

Control panel button pressed; 
if X>=560 then 	) Quit; 
begin 

if Y<120 then Exited 	True else Den; 
end 

end else 
if Current_Char=Char)Middle) then 	Delete current symbol; 
begin 

if X<500 and then Y<240 then 
begin 

Diag)X//20, '11/20) 	0; 
SetColour )LGreen); 

FillSquare)Y--15,X,20,20) 
SetColour)Red); 
DrawSquare)Y+15,X,20,20) 
Print_Sym )CurrSymb, Y, X, Blue); 

end 
end else 
if current_char=Char(Right) then 	; Enter form attributes; 
begin 

SetColour(LGreen); 
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FillSquare(260,0,85, 500); 
J 	Texttine(280); 
if Diag(X//20Y//20)<>0 then for I 	0 step 1 until 5 do 
begin 

if Titles(Diag(X//20,Y//20),I+l)=/= notext then 
begin 

SetPos(J+I,l) 
Form)X//20,Y//20,I+1,1) 	Titles(Diag(X//20Y//20)Ii-1); 
OutText(Titles(Diag(X//20,Y//20),I+1)); 
SetPos(J+I,20) 
OutText)Form(X//20,Y//20,I+12)&" ') 
String 	InText(40) Strip; 
if String<>NoText then Form(X//20,Y//20,I+1,2) 	String; 

end; 
end; 

end; 
ox := x; oy 	y; ob 	Button; Prey_Char 	Current_Char; 

end; 

end; 

Write out the matrix; 
OutText(Which file for saving the model?); BreakOutlmage; 
Inlmage; 
F_Name 	copy)Sysln.Image.Strip); 
if F_Name<>NoText then OF - new OutFile (F_Name); 
inspect OF do 
begin 

Open(blanks(80) 
for I 	0 step 1 until YSquares do 
begin 

for J := 0 step 1 until XSquares do if Diag)j,i) ne 0 then 
begin 

outint)j,8) ;outint)i,8) 
outint)Diag)j,i),14) ; outimage; 
for d 	1 step 1 until 6 do 
begin 

outtext)Form)j,i,d2)) 
outimage 

end; 	of one form; 
outimage; 

end; 	of one symbol; 
outimage; 

end; 	of the grid; 
Close; 

end; 
if Inf=/=None then InF.Close; 

end 



Appendix B 

Demos Models and Traces 

This Appendix contains the DEMOS source and, where appropriate, output of some 
of the models used in Chapters 3, 4, 5 and 6 of this dissertation. 
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Chapter 3 

Figure 3.4 

Entity class Seq; 
begin 

Harnrner.Acquire(l); 
Hold (3 
Harnmer.Release(l); 

end; 

Figure 3.5 

Entity class Seq; 
begin 

while True do 
begin 

Hammer.Acquire(l); 
Hold (3 
Harniner.Release(l); 

end; 
end; 

Figure 3.6 

Entity class Seq; 
begin 

integer Val; 
Val := 4; 
while True do 
begin 

Val := Val + 2; 
Hold (3 
Val 	Val * 2; 

end; 
end; 

Figure 3.7 

Entity class Seq; 
begin 

integer Val; 
Val := 4; 
while True do 
begin 

Val := Val + 2; 
Hold(3) 
if Val<lO then Val := Val * 2 else Val := 4; 

end; 
end; 
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Figure 3.8 

Entity class Seq; 
begin 

integer Val; 
Val := 4; 
while Val<10 do 
begin 

Val := Val + 2; 
Hold (3 

end; 
end; 

Figure 3.9 

Entity class Station; 
begin 

while True do 
begin 

new Packet.Schedule(3.0); 
Hold(2.0) 

end; 
end; 

Entity class Packet; 
begin 
end; 

Figure 3.10 

Entity class Station; 
begin 

while True do 
begin 

Pl.Schedule(3 .0); 
Hold(2.0) 

end; 
end; 

Entity class Packet; 
begin 

Pass ivate; 
end; 

ref (Packet) P1; 
P1:- new Packet(P1); 
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Figure 3.11 

entity class Ship—C; 
begin 

new Ship.Schedule(4); 
grab 2 tugs; 

Tugs .Acquire (2) 
and a jetty; 

Jetties.Acquire(l); 
Hold (3 
let the tugs go; 

Tugs . Release (2) 
Hold(l0) 
ready to leave; 

Tugs.Acquire(l); 
Hold (3 
clear of jetty; 

Jetties.Release(l); 
gone away; 

Tugs.Release(l); 
end-of-Ship; 

ref(Res) Jetties, Tugs; 

Ship :- new Ship_c("Ship); 
Tugs :- new Res("Tugs", 3); 
Jetties :- new Res("Jetties", 2); 

Figure 3.13 

Entity class Producer; 
begin 

while True do 
begin 

Hold (Make_Time) 
Wid.Give(l); 

end; 
end; 

Entity class Consumer; 
begin 

while True do 
begin 

Wid.Take(l); 
Hold (Finish_Time) 

end; 
end; 

ref(Bin) Wid; 

Wid :- new Bin("Widgets',O) 
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Figure 3.15 

Entity class Producer; 
begin 

Hold (Make_Time) 
Widgets.Add(l); 
repeat; 

end; 

Entity class Consumer; 
begin 

Widgets . Remove ( 1) 
Hold (Finish_Time) 
repeat; 

end; 

ref (Store) Widgets; 

Widgets :- new Store(hlWidgetshl  4 0) 

Figure 3.17 

Entity class Car; 
begin 

new Car('Car") .Schedule(ArrivalTime); 
Hold(TripTimel); 
FerryQueue . Wait; 

end; 

Entity class Ferry; 
begin 

ref(Car) Cargo; 
while True do 
begin 

Cargo :- FerryQueue.Coopt; 
Hold (VoyageTimel); 
Cargo . Schedule ( 0) 
Hold (VoyageTime2); 

end; 
end; 

ref (WaitQ) FerryQueue; 

FerryQueue:- new WaitQ('Ferries") 
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Figure 3.19 

Entity class Waiter; 
begin 

CQ.Waituntil (Val>3); 
end; 

Entity class Signaller; 
begin 

while True do 
begin 

Val := Val + 1; 
CQ. Signal; 

end; 
end; 

integer Val; 

ref (CondQ) CQ; 
CQ :- new CondQ("CQ"); 
Figure 3.22 
Entity class Interrupted; 
begin 

Hold(TDo); 
if Interrupt=3 then new 

Interrupted( "Ited") .Schedule(0); 
end; 

Entity class Interrupter; 
begin 

Ited.Interrupt(3); 
end; 

Ited :- new Interrupted("Ited"); 
Iter :- new Interrupter("Iter"); 
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Figure 3.24 

EXTERNAL class DEMOS; 
DEMOS class E_DEMOS; 
begin 

Entity class Philosopher(R±ght_Fork, Left_Fork, T_Feed, T_Think); 
ref(Res) Right_Fork, Left_Fork; REAL T_Feed,T_Think; 

begin 
while True do 
begin 

Right_Fork. acquire (1); 
Hold.(O.2) 
Left_Fork. acquire (1); 
Hold(T_Feed); 
Right_Fork . release (1) 
Left_Fork. release (1); 
Hold(T_Think); 

end; 
end of Philosopher; 

end of E_DEMOS; 

begin 
EXTERNAL class E_DEMOS; 
E_DEMOS 
begin 

ref(Res) Forkl, Fork2, Fork3; 
real I_T_Feed, I_T_Think; 

I_T_Feed 	InReal; I_T_Think := InReal; 

Forkl :- new Res("Fork',l); 
Fork2 :- new Res(Fork" ,l); 
Fork3 :- new Res(Fork',l) 

new Philosopher("P" , Forkl, Fork2, I_T_Feed, I_T_Think) .Schedule(0); 
new Philosopher( P , Fork2 , Fork3, I_T_Feed, I_T_Think) . Schedule(0); 
new Philosopher( P , Fork3, Forkl, I_T_Feed, I_T_Think) . Schedule(0); 

Hold(lOO.0) 
end; 

end 
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Figure 3.26 

begin 
external class demos; 
DEMOS 
begin 

entity class Ship_C; 
begin 

new Ship.Schedule(4); 
grab 2 tugs; 

Tugs.Acquire(2); 
and a jetty; 

Jetties.Acquire(l); 
Hold (3 
let the tugs go; 

Tugs . Release (2) 
Hold ( 10) 
ready to leave; 

Tugs.Acquire(l); 
Hold (3 

clear of jetty; 
Jetties.Release(l); 
gone away; 

Tugs . Release ( 1) 
end-of-Ship; 

ref(Ship_C) Ship; 
ref(Res) Jetties; 
ref(Res) Tugs; 
Ship :- new Ship_c("Ship"); 
Tugs :- new Res("Tugs", 3); 
Jetties :- new Res('Jetties", 2); 
Ship.Schedule(0 .0); 

Hold(l00) 
end 

end 
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Chapter 4 
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Chapter 5 

Figure 4.1 

begin 
external class demos; 
DEMOS 
begin 

entity class ShipC; 
begin 

new Ship.Schedule(4); 
grab a jetty; 

Jetties.Acquire(l); 
grab 2 tugs; 

Tugs.Acquire(2); 
Hold (3 
let the tugs go; 

Tugs.Release(2); 
Hold(l0) 
ready to leave; 

Tugs.Acguire(l); 
Hold (3 
clear of jetty; 

Jetties . Release (1) 
gone away; 

Tugs.Release(l); 
end-of-Ship; 

ref(Ship_C) Ship; 
ref(Res) Jetties; 
ref(Res) Tugs; 
Ship :- new Ship_c(Ship); 
Tugs 	new Res(Tugs", 3); 
Jetties :- new Res("Jetties", 2); 
Ship.Schedule(0 .0); 

Hold(l00) 
end 

end 
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Figure 4.8 

begin 
external class DEMOS; 
DEMOS 
begin 

Entity class Host_c(PQ); ref (WaitQ) PQ; 
begin 

ref(File_c) Fl; 
new File _c.Into(PQ); 
while True do 
begin 

Fl :- PQ.coopt; 
while Printer.Avail=0 do Hold(0.01); 
Printer.Acquire(l); 
Hold (4 0) 
Printer - Release (1); 
Hold(l.0) 

end; 
end; 

Entity class File_c(PQ); ref(WaitQ) PQ; 
begin 

new File_c('File') .Schedule(2.0); 
PQ.Wait; 

end; 

ref(Res) Printer; 

Printer :- new Res("Printer" ,l) 

for I 	1 step 1 until mInt do 
new Host_c ("Host", new WaitQ) . Schedule (0.0); 

Hold(InReal); 
end; 

end 
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Figure 4.9 

external class DEMOS; 
DEMOS 
begin 

character Ch; 
Boolean Refresh, 

TraceOn, 
ReportOn, 
Contention; 

integer I, 
Small, Medlum, 
Threhold, 
NumberofXmit; 

ref (Count) NumberofAttempt, 
NumofContention, 
NumberofFailures, 
NumberofSuccess; 

long real SimTime 
Arrivaload, 
RefreshTime, 
BackOffScale; 

ref(WaitQ) EtherQ; !For transmitter waiting for ether to clear; 
ref(CondQ) Packet6; 
ref(Channel) Ether; 

Reporting and tracing; 

procedure Tracelmage(T,N); text T; real N; 
begin 
if TraceOn then 

begin 
OutText(T); 
OutFix(N, 2, 12); 
Out Image; 

end 
end. .of. .Tracelmage; 

Grocedure ReportEvent(Mess, Num); text Mess; integer Num; 
begin 
if TraceOn then 

OutText('Time ");OutFix(Time,2,10); OutText(' 	); 
OutText(Mess); if Num>O then OutText(, b XMitter); 
Outlnt (Abs (Num) , 12); 
Out Image; 
end. .of. .ReportEvent; 

Ethernet itself - state variables etc. 

entity class Channel; 
begin 
long real LastTime; 
Boolean Busy; 

Loop: 
Cancel; 
Numberofxmits := 0; 
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Allow them to try; 
while EtherQ.Length>O do EtherQ.Coopt . Schedule(O.0); 

Hold(O.0); 	 Go to back of event list; 
Contention := NurnberofXmits>l; 
if Contention then 
begin 

reportEvent ( Contention level , -NurnberofXMits); 
NumofContentions . Update (1); 

end; 
end. .of. .Channel; 

entity class Transmitter(InQ,N); ref(Queue) InQ; integer N; 
begin 
ref(Packet) Pkt; 
ref(IDist) Dell De12; 
integer NTries ,Mask; 
Dell :- new Randlnt(Edit(Delay,N) ,l,255) 

Loop: 
if InQ.Length=O then PacketQ.WaitUntil(InQ.Length>O); 

Loop2: 
if Ether.Busy then EtherQ.Wait; 
NumberofAttempts . Update (1); 
NumberofXmits :- NumberofXmits + 1; 	Attempts at this 

time; 
Ether.Busy := True; 
Hold (1. 8) 
if Contention then 
begin 

if NTries<16 then 
begin 
inspect Ether do 
begin 

Busy := False 
if Idle then Schedule(O.0); 

end; 
Mask := Mask*2 + 1 	Right shifted, one filled; 
Hold (mod(Dell.Sample,Mask+l)); 
NTries := NTries + 1; 
goto Loop2 

end else begin 
Abandon; 

NTries := 1; 
Mask := 0; 
inspect InQ.First when Packet do 
begin 

NumberofFailures . Update (1) 
ReportEvent(Packet abandoned); 
Failed := True; 
Schedule (0 . 0) 
end; 
inspect Ether do 
begin 
Busy := False; 
if Idle then Schedule(0.0); 
end; 

end; 
end else begin 



	

Appendix B: DEMOS models and traces 
	

219 

Transmit 
inspect InQ.First when Packet do if Size>1 then 

Hold( Size-i) 
NTries 	1; 
Mask 	0; 
inspect InQ.First when Packet do 
begin 

Out; 
Failed 	False; 

Schedule (0 . 0); 
NumberofSuccesses .Update(l); 
ReportEvent( Packet transmitted' ,N); 

end; 
inspect Ether do 
begin 

Busy := False; 
if idle then Schedule(0.0) 

end; 
Hold (0 . 0) 

end; 
repeat; 

end. . of. .Transmitter; 

Packet generation, one per transmitter; 

entity class Source(N); integer N; 
begin 
integer Size; 
real Choice; 
ref(RDist) Uni, Sizesl,Sizes2,Sizes3; 

ref (Queue) MyQ; 
ref(Packet) Pkt; 
ref (RDist) MyDelay; 
MyQ : - new Queue(Edit( 'Input ,N)); 
MyDelay : - new NegExp(Edit( 'ArrTime" ,N) , i/ArrivalLoad); 
Uni :- new Uniform("Uni",O 180) 
Sizesl :- new NegExp("Sizl",l/168); 
Sizes2 :- new NegExp("Siz2",l/1000); 
Sizes3 	new NegExp(Siz3',l/80000); 
new Tranmitter(Edit('XMitter",N),MyQ,N).schedule(0); 

Hold(MyDelay.Sarnple); 
Choice := Uni.Sample; 
Size 	if Choice<Small then Sizel.Sample 

else if Choice<Medium then Sizes2.Sample 
else Sizes3.Sample; 

Pkt new Packet(Edit("Packet,N),MyQ.Size); 
ReportEvent ("Packet for transmision' ,A) 
Tracelmage("Packet size is ,Size) 
Pkt . Schedule (0. 0); 

end. .of. .source; 

entity class Packet(Q,Size); ref (Queue) Q;  integer Size; 
begin 

real ArrTime; 
Boolean Failed; 
ArrTime := Time; 
PacketQ. Signal; 

end. .of. .Packet; 
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OutText("Howlong for this run?'); Outlmage; 
SimTime 	InReal; 
OutText( Tracing? In"); Outlmage; 
Inlmage; 
Ch := InChar; 
if Ch-'T' then Trace else TraceOn := Ch=y' or Ch='Y'; 
OutText("Percentages for Small and Medium?");Outlmage; 
Small := mInt; Medium := mInt; 
OutText("Threshold for initiating transmission?') ;outimage; 
Threshold 	mInt; 
OutText( 'Arrival rate of packets?") ;Outlmage; 
ArrivalLoad 	InReal; 
OutText("Data arrives at rate - 
OutReal( (Small*l80+(Medium_Small*l000+ 

(100_Medium)*80000)/ArrivalLoad/100, 4,12); 
Out Image; 
OutText("Refresh time?"); 
Outlmage; 
RefreshTime := InReal 
OutText("Back off scale?); Outlmage; 
EackOffScale := InReal; 

OutF :- new PrintFile("ether.tra"); 
OutF.Open(Blanks(80)); 

PacketQ :- new CondQ('PacketQ"); 
PacketQ .All =True; 
NuntherofAttempts : - new Count( "Attempts"); 
NumofContentions : - new Count ('Contentions'); 
NumberofFailures : - new Count ("Failures") 
NumberofSuccesses :- new Count("Successes"); 
EtherQ :- new WaitQ("EtherQ") 
for 	=1 step luntil 10 do 
new Source(Edit("Source",I),I).Schedule(O.0); 

Ether Schedule (0 0); 
if Time<SimTime then 

Hold(if SimTime<RefreshTime then SimTime else RefreshTime); 
while Time<SimTime do 
begin 

QueueQ Report; 
CondQQ Report; 
CountQ Report; 
Outf qua printfile .eject(l); 
Hold(RefreshTime); 

end; 
end--of--DEMOS--block 
end++of++program 
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Figure 4.10 

BEGIN EXTERNAL CLASS DEMOS; 
DEMOS 

Begin 
Ref(Res)Buffers; 

Entity Class Reader; 
Begin 

Read; 
Buffers.Acquire(l); 
Hold(2.0) 
Buffers.Release(l); 
Use; 
Hold (5 . 0) 
Repeat; 

End* * *Reader* * 

Entity Class Writer; 
Begin 
Gather; 
Hold (5 . 0) 
Write; 
Buffers.Acquire(3); 
Hold (3 . 0) 
Buffers .Release(3); 
Repeat; 

End* * *Writer* * 

Trace; 
Buffers 	New Res(Buffers', 3); 
New Reader(R) .Schedule(0.0); 
New Reader(R).Schedule(2.0); 
New Writer('W).Schedule(l.0); 
Hold(25.0) 

End; 
End; 
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Chapter 5 

The impimentation of M_SIM 

simset class msim; 
begin 

text procedure Join(T,F); text T; real F; 
begin 

text FT; 
FT 	Blanks(8); 
FT. PutFix (F, 2) 
Join 	T&" "&:FT; 

end; 

procedure Dump_Event_List; 
begin 

ref(Proc) P; 
P :- Event_List.First; 
while P=/= none do 
begin 

OutText(P.Title); 
OutFix(P.Ev_Time,2,8); 
Out Image; 
P :- P.Suc; 

end; 
end; 

Boolean Trace_Flag, 
Dump—Flag; 

ref(Head) Event_List; 
ref (Proc) Main; 

procedure Dump—On; Dump_Flag 	True; 
procedure Dump—Off; Dump—Flag := False; 
procedure Trace—On; Trace_Flag 	True; 
procedure Trace—Off; Trace_Flag := False; 

long real procedure Sim—Time; 

	

Sim—Time 	Current.Ev_Time; 

procedure Trace (Message); text Message; 
begin 

if Trace_Flag then 
begin 

OutText(Message&' at'); 
OutFix(Sim_Time,2, 8); 
Out Image; 

end; 
end; 

ref (proc) procedure Current; Current 	Event_List.First; 
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link class proc(Title); text Title; 
begin 

long real Ev_Time; 
Boolean Terminated, Failed, Priority; 

procedure Place_in_Event_List(In_Front); 
Boolean In_Front; 

begin 
ref (proc) p; 
if In—Front then Precede(Current) else 
begin 

P :- Event_List.Last; 
while P.Ev_Time>Ev_Time do P:- P.Pred; 
if In—Front then while P.Ev_Time=Ev_Time do P 	P.Pred; 
follow(P) 

end; 
if Dump_Flag then dump_event_list; 

end; 

procedure Wait _Until (Cond, WaitQueue); 
name Cond; Boolean Cond; ref(CondQ) WaitQueue; 

begin 
long real StartTime; 
if not Cond then 
begin 

Failed := True; 
Trace(Title&" waits until"); 
Wait (WaitQueue); 
while not Cond do Wait(WaitQueue); 
Trace(Title&" leaves "&WaitQueue.Title); 

end; 
Failed := False; 

end; 

procedure Waken(Delayed); long real Delayed; 
begin 

Trace(Title&" is woken"&Join(" to start at ",Sim_Time+Delayed)); 
Out; 

	

Ev_Time 	Sim_Time+Delayed; 
Place_in_Event_List (Priority); 
Resume(Current) 

end; 
Trace(Title&" is created"); 
detach; 
inner; 
Trace(Title&" terminates"); 

	

Terminated 	True; 
if suc=/= none then Sleep; 

end; 

procedure Sleep; 
begin 

Current Out; 
if Current =7= none then 
begin 

Trace(Current.Title&" restarts"); 
Resume (Current) 

end else Error("Passivate leaves Event List empty"); 
end; 
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procedure Wait(Q); ref(Head) Q; 
begin 

Current.Into(Q); 
Trace(Current.Title&" restarts); 
Resuine(Current); 

end; 

procedure Hold(Delayed); long real Delayed; 
begin 

ref(proc) C; 
C :- Current; 
inspect C do 
begin 
Trace(Title&' holds&Join(to restart at ,Sim_Time+Delayed)); 

Ev_Time := Sim—Time + Delayed; 
if suc=/=none and then suc qua Proc.Ev_Time<=Ev_Time then 
begin 

Out; 
Place_in_Event_List (False); 
Trace(Current.Title&" is restarted); 
resume(Current); 

end; 
end; 

end; 

proc class main_proc; 
begin 

while true do detach; 
end; 

head class CondQ(Title); text Title; 
begin 

procedure Signal(Sender); text Sender; 
begin 

Boolean Failed; 
ref(Proc) Next; 
Trace(Title& is signalled by "&Sender); 
Next :- First; 
Failed := True; 
while Next =7= none and then Failed do 
begin 

Next.Priority 	True; 
Next . Waken (0 . 0); 
Next.Priority 	False; 
Failed := Next.Failed; 
Next :- Next.Suc; 

end; 
end; 

end; 

Trace("Simulation starts'); 
Event—List :- new Head; 
Main 	new Main_Proc("My Sum"); 
Main. Into (Event_List); 
inner; 
Trace ( "Simulation ends); 

end; 
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Chapter 6 

EWrap.sim 

external class DEMOS; 
DEMOS class EWRAP; 
begin 

Entity class Source(InQ, Rate); ref(Bin)InQ; real Rate; 
begin 

ref (RDist) Arr_T; 
Arr_T :- new NegExp("Arrs",Rate) 
while True do 
begin 

Hold(Arr_T.Sample); 
InQ.Give(l); 

end; 
end; 

ref(RDist) T_Time, BackOff; 
ref (Res) Ether; 
integer I, N_Stations; 

BackOff - new Uniform( "Backoff" ,0.00l, 0.5); 
T_Time - new Uniform( "Trans", 0.01,3); 
Ether :- new Res("Ether,l) 
Sysout .OutText( 'How many stations?'); BreakOutlmage; 
N_Stations 	Sysin.Inlnt; 
inner; 
Sysout .OutText( "Tracing yin?"); BreakOutlmage; 
Inlmage; if Sysin.InCharzy' then Trace; 
Sysout.OutText("How long for this run?"); BreakOutlmage; 
Hold(Sysin.InReal); 

end; 
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Figure 6.12 

begin 
external class EWrap; 
EWrap 
begin 

entity class Station(InQ); ref(Bin) InQ; 
begin 

while True do 
begin 

InQ . Take (1); 
Ether . AcQuire (1) 
Transmit; 

Hold(T_Time. Sample); 
Ether. Release (1); 

end; 
end. .of. .Transmitter; 

for I := 1 step 1 until N_Stations do 
begin 

ref(Bin) InQ; 
InQ 	new Bin(Edit('InQ,I) ,O) 
new Source('Source",InQ,0.3).Schedule(O.0); 
new Station(Station,InQ) .Schedule(0); 

end; 
end--of--EtherWrap--block; 

end++of++program 
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Trace of Figure 6.12 

TIME/ CURRENT AND ITS ACTION(S) 
0.000 DEMOS 	HOLDS FOR 10.000, UNTIL 10.000 

Source 1 HOLDS FOR 2.044, UNTIL 2.044 
Station 1 	AWAITS 1 OF InQ 1 
Source 2 HOLDS FOR 1.538, UNTIL 1.538 
Station 2 	AWAITS 1 OF InQ 2 
Source 3 HOLDS FOR 1.084, UNTIL 1.084 
Station 3 	AWAITS 1 OF InQ 3 

1.084 Source 3 GIVES 1 TO InQ 3 
HOLDS FOR 2.584, UNTIL 3.668 

Station 3 	SEIZES 1 OF InQ 3 
SEIZES 1 OF Ether 
HOLDS FOR 2.127, UNTIL 3.211 

1.538 Source 2 GIVES 1 TO InQ 2 
HOLDS FOR 0.077, UNTIL 1.615 

Station 2 	SEIZES 1 OF InQ 2 
AWAITS 1 OF Ether 

1.615 Source 2 GIVES 1 TO InQ 2 
HOLDS FOR 4.258, UNTIL 5.873 

2.044 Source 1 GIVES 1 TO InQ 1 
HOLDS FOR 22.592, UNTIL 24.636 

Station 1 	SEIZES 1 OF InQ 1 
AWAITS 1 OF Ether 

3.211 Station 3 	RELEASES 1 TO 	Ether 
AWAITS 1 OF InQ 3 

Station 2 	SEIZES 1 OF Ether 
HOLDS FOR 0.617, UNTIL 3.828 

3.668 Source 3 GIVES 1 TO InQ 3 
HOLDS FOR 4.792, UNTIL 8.460 

Station 3 	SEIZES 1 OF InQ 3 
AWAITS 1 OF Ether 

3.828 Station 2 	RELEASES 1 TO 	Ether 
SEIZES 1 OF InQ 2 
AWAITS 1 OF Ether 

Station 1 	SEIZES 1 OF Ether 
HOLDS FOR 2.222, UNTIL 6.050 

5.873 Source 2 GIVES 1 TO InQ 2 
HOLDS FOR 2.316, UNTIL 8.189 

6.050 Station 1 	RELEASES 1 TO 	Ether 
AWAITS 1 OF InQ 1 

Station 3 	SEIZES 1 OF Ether 
HOLDS FOR 0.667, UNTIL 6.717 

6.717 	RELEASES 1 TO Ether 
AWAITS 1 OF InQ 3 

Station 2 	SEIZES 1 OF Ether 
HOLDS FOR 1.398, UNTIL 8.115 

8.115 	RELEASES 1 TO Ether 
SEIZES 1 OF InQ 2 
SEIZES 1 OF Ether 
HOLDS FOR 1.753, UNTIL 9.868 

8.189 Source 2 GIVES 1 TO InQ 2 
HOLDS FOR 8.025, UNTIL 16.214 

8.460 Source 3 GIVES 1 TO InQ 3 
HOLDS FOR 2.949, UNTIL 11.409 

Station 3 	SEIZES 1 OF InQ 3 
AWAITS 1 OF Ether 

9.868 Station 2 	RELEASES 1 TO 	Ether 
SEIZES 1 OF InQ 2 
AWAITS 1 OF Ether 

Station 3 	SEIZES 1 OF Ether 
HOLDS FOR 2.367, UNTIL 12.235 
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Figure 6.14 

begin 
external class EWRAP; 
EWRAP 
begin 

Entity class Station(InQ); ref(Bin) InQ; 
begin 

while True do 
begin 

InQ.Take(l); 
EtherQ.WaitUntil (Ether.Avail>O); 
while EtherQ.Length>O do 
begin 

Hold(BackOff .Sarnple); 
end; 
Ether Acquire (1) 
Hold(T_Time.Sample); 
Ether.Release(l); 
EtherQ Signal; 

end; 
end--of--Station; 

ref (CondQ) EtherQ; 

EtherQ 	new CondQ(EtherQ); 
for I 	1 step 1 until N_Stations do 
begin 

ref (Bin) InQ; 
InQ 	new Ein(Edit(InQ,I),O); 
new Source(Source,InQ,0.3).Schedule(0); 
new Station(Station,InQ).Schedule(0); 

end; 

end; 
end; 
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Trace from Figure 6.14 
Source 1 HOLDS FOR 2.044, UNTIL 2.044 
Station 1 	AWAITS 1 OF InQ 1 
Source 2 HOLDS FOR 1.538, UNTIL 1.538 
Station 2 	AWAITS 1 OF InQ 2 
Source 3 HOLDS FOR 1.084, UNTIL 1.084 
Station 3 	AWAITS 1 OF InQ 3 

1.084 Source 3 GIVES 1 TO InQ 3 
HOLDS FOR 2.584, UNTIL 3.668 

Station 3 	SEIZES 1 OF InQ 3 
SEIZES 1 OF Ether 
HOLDS FOR 2.127, UNTIL 3.211 

1.538 Source 2 GIVES 1 TO InQ 2 
HOLDS FOR 0.077, UNTIL 1.615 

Station 2 	SEIZES 1 OF InQ 2 
W'UNTIL IN EtherQ 

1.615 Source 2 GIVES 1 TO InQ 2 
HOLDS FOR 4.258, UNTIL 5.873 

2.044 Source 1 GIVES 1 TO InQ 1 
HOLDS FOR 22.592, UNTIL 24.636 

Station 1 	SEIZES 1 OF InQ 1 
W'UNTIL IN EtherQ 

3.211 Station 3 	RELEASES 1 TO Ether 
SIGNALS EtherQ 
AWAITS 1 OF InQ 3 

Station 2 	LEAVES EtherQ 
HOLDS FOR 0.036, UNTIL 3.247 

Station 1 	LEAVES EtherQ 
SEIZES 1 OF Ether 
HOLDS FOR 0.617, UNTIL 3.828 

3.247 Station 2 	AWAITS 1 OF Ether 
3.668 Source 3 GIVES 1 TO InQ 3 

HOLDS FOR 4.792, UNTIL 8.460 
Station 3 	SEIZES 1 OF InQ 3 

WUNTIL IN EtherQ 
3.828 Station 1 	RELEASES 1 TO Ether 

SIGNALS EtherQ 
AWAITS 1 OF InQ 1 

Station 2 	SEIZES 1 OF Ether 
HOLDS FOR 2.222, UNTIL 6.050 

5.873 Source 2 GIVES 1 TO InQ 2 
HOLDS FOR 2.316, UNTIL 8.189 

6.050 Station 2 	RELEASES 1 TO Ether 
SIGNALS EtherQ 
SEIZES 1 OF InQ 2 
HOLDS FOR 0.260, UNTIL 6.310 

Station 3 	LEAVES EtherQ 
SEIZES 1 OF Ether 
HOLDS FOR 0.667, UNTIL 6.717 

6.310 Station 2 	AWAITS 1 OF Ether 
6.717 Station 3 	RELEASES 1 TO Ether 

SIGNALS EtherQ 
AWAITS 1 OF InQ 3 

Station 2 	SEIZES 1 OF Ether 
HOLDS FOR 1.398, UNTIL 8.115 

8.115 	RELEASES 1 TO Ether 
SIGNALS EtherQ 
SEIZES 1 OF InQ 2 
SEIZES 1 OF Ether 
HOLDS FOR 1.753, UNTIL 9.868 

8.189 Source 2 GIVES 1 TO InQ 2 
HOLDS FOR 8.025, UNTIL 16.214 

8.460 Source 3 GIVES 1 TO InQ 3 
HOLDS FOR 2.949, UNTIL 11.409 

Station 3 	SEIZES 1 OF InQ 3 
W'UNTIL IN EtherQ 
9.868 Station 2 	RELEASES 1 TO Ether 
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Figure 6.16 

begin external class EWEAP; 
EWRAP begin 

Entity class Station(InQ); ref(Bin) InQ; 
begin ref (Res) GotOne; 

GotOne :- new Res(Gl,l); 
while True do 
begin 

LnQ.Take(l); 
GotOne.Acquire(l); 
while GotOne.Avail=O do 
begin 

EtherQ .Wait; 
if Collided.Avail=O then begin 

Ether.Acquire(l); 
Hold(T_Tirne.Sample); 
GotOne.Release(l); 
Ether.Release (1); 

end else begin 
Collided. Take (1) 
Hold(BackOff.Sample); 

end; 
end; 

end; 
end--of--Station; 
Entity class Ether_c; 
begin ref (Entity) Curr_S; 

while True do 
begin 

Ether. Acquire (1); 
Curr_S :- EtherQ.Coopt; 
if EtherQ.Length>O then begin 

Collided. Give ( 1) 
end; 
Ether. Release (1); 
Curr_S . Schedule (0. 0); 
if EtherQ.Length=0 then Hold(0); 
while EtherQ.Length>0 do 
begin 

Curr_S :- EtherQ.Coopt; 
Collided . Give (1) 
Curr_S . Schedule (0 . 0); 

end; 
end; 

end--of--Ether—c; 
ref(Bin) Collided; ref(WaitQ) EtherQ; 
for I:= 1 step 1 until N_Stations do begin ref(Bin) InQ; 

InQ :- new Bin(InQ,0) 
new Source('Source,InQ,0.3).Schedule(0); 
new Station('Station,InQ) .Schedule(0); 

end; 
new Ether_c(Ethernet') .schedule(0.0); 
Collided :- new Bin(Collisions,0); 
EtherQ :- new WaitQ(EtherQ'); 

end; 
end; 
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Trace from Figure 6.16 

TIME/ CURRENT AND ITS ACTION(S) Station 3 	SEIZES 1 OF Collisions 
FOR 0.112, HOLDS UNTIL 3.976 

Station 2 	SEIZES 1 OF Collisions 
.000 DEMOS 	HOLDS FOR 10.000, UNTIL 10.000 HOLDS FOR 0.303, UNTIL 4.167 
Ethernet 1 	SEIZES 1 OF Ether 3.976 Station 3 	WAITS IN EtherQ 

WAITS IN EtherQ Ethernet 1 	COOPTS Station 3 FROM EtherQ 
Source 1 HOLDS FOR 2.044, UNTIL 2.044 RELEASES 1 TO Ether 
Station 1 	AWAITS 1 OF mO SCHEDULES Station 3 NOW 
Source 2 HOLDS FOR 1.538, UNTIL 1.538 HOLDS FOR 0.000, UNTIL 3.976 
Station 2 	AWAITS 1 OF InQ Station 3 	SEIZES 1 OF Ether 
Source 3 HOLDS FOR 1.084 	UNTIL 1.084 HOLDS FOR 2.222, UNTIL 6.198 
Station 3 	AWAITS 1 OF InQ Ethernet 1 	AWAITS 1 OF Ether 

1.084 Source 3 GIVES 1 TO InQ 4.074 Station 1 	WAITS IN EtherQ 
HOLDS FOR 2.584, UNTIL 3.668 4.167 Station 2 	WAITS IN EtherQ 

Station 3 	SEIZES 1 OF mO 5.873 Source 2 GIVES 1 TO InQ 
SEIZES 1 OF Gl HOLDS FOR 2.316, UNTIL 8.189 
WAITS IN EtherQ 6.198 Station 3 	RELEASES 1 TO Gl 

Ethernet 1 	COOPTS Station 3 FROM EtherQ RELEASES 1 TO Ether 
RELEASES 1 TO Ether AWAITS 1 OF InQ 
SCHEDULES Station 3 NOW Ethernet 1 	SEIZES 1 OF Ether 
HOLDS FOR 0.000, UNTIL 1.084 COOPTS Station 1 FROM EtherQ 

Station 3 	SEIZES 1 OF Ether GIVES 1 TO Collisions 
HOLDS FOR 2.127, UNTIL 3.211 RELEASES 1 TO Ether 

Ethernet 1 	AWAITS 1 OF Ether SCHEDULES Station 1 NOW 
1.538 Source 2 GIVES 1 TO InQ COOPTS Station 2 FROM EtherQ 

HOLDS FOR 0.077, UNTIL 1.615 GIVES 1 TO Collisions 
Station 2 	SEIZES 1 OF InQ SCHEDULES Station 2 NOW 

SEIZES 1 OF Dl SEIZES 1 OF Ether 
WAITS IN EtherQ WAITS IN EtherQ 

1.615 Source 2 GIVES 1 TO InQ Station 1 	SEIZES 1 OF Collisions 
HOLDS FOR 4.258, UNTIL 5.873 HOLDS FOR 0.158, 	UNTIL 6.356 

2.044 Source 1 GIVES 1 TO InQ Station 2 	SEIZES 1 OF Collisions 
HOLDS FOR 22.592, UNTIL 24.636 MOLDS FOR 0.324, UNTIL 6.522 

Station 1 	SEIZES 1 OF InQ 6.356 Station 1 	WAITS IN EtherQ 
SEIZES 1 OF Gl Ethernet 1 	COOPTS Station 1 FROM EtherQ 
WAITS IN EtherQ RELEASES 1 TO Ether 

3.211 Station 3 	RELEASES 1 TO Gl SCHEDULES Station 1 NOW 
RELEASES 1 TO Ether HOLDS FOR 0.000, UNTIL 6.356 
AWAITS 1 OF InQ Station 1 	SEIZES 1 OF Ether 

Ethernet 1 	SEIZES 1 OF Ether HOLDS FOR 0.667, 	UNTIL 7.023 
COOPTS Station 2 FROM EtherQ Ethernet 1 	AWAITS 1 OF Ether 
GIVES 1 TO Collisions 6.522 Station 2 	WAITS IN EtherQ 
RELEASES 1 TO Ether 7.023 Station 1 	RELEASES 1 TO Cl 
SCHEDULES Station 2 NOW RELEASES 1 TO Ether 
COOPTS Station 1 FROM EtherQ AWAITS 1 OF InQ 
GIVES 1 TO Collisions Ethernet 1 	SEIZES 1 OF Ether 
SCHEDULES Station 1 NOW COOPTS Station 2 FROM EtherQ 
SEIZES 1 OF Ether RELEASES 1 TO Ether 
WAITS IN EtherQ SCHEDULES Station 2 NOW 

Station 2 	SEIZES 1 OF Collisions HOLDS FOR 0.000, UNTIL 7.023 
HOLDS FOR 0.036, UNTIL 3.247 Station 2 	SEIZES 1 OF Ether 

Station 1 	SEIZES 1 OF Collisions HOLDS FOR 1.398, 	UNTIL 8.421 
HOLDS FOR 0.260, UNTIL 3.471 Ethernet 1 	AWAITS 1 OF Ether 

3.247 Station 2 	WAITS IN EtherQ 8.189 Source 2 GIVES 1 TO InQ 
Ethernet 1 	COOPTS Station 2 FROM EtherQ HOLDS FOR 8.025, UNTIL 16.214 

RELEASES 1 TO Ether 8.421 Station 2 	RELEASES 1 TO Gl 
SCHEDULES Station 2 NOW RELEASES 1 TO Ether 
HOLDS FOR 0.000, UNTIL 3.247 SEIZES 1 OF InQ 

Station 2 	SEIZES 1 OF Ether SEIZES 1 OF Gl 
HOLDS FOR 0.617, UNTIL 3.864 WAITS IN EtherQ 

Ethernet 1 	AWAITS 1 OF Ether Ethernet 1 	SEIZES 1 OF Ether 
3.471 Station 1 	WAITS IN EtherQ COOPTS Station 2 FROM EtherQ 
3.668 Source 3 GIVES 1 TO InQ RELEASES 1 TO Ether 

HOLDS FOR 4.792, UNTIL 8.460 SCHEDULES Station 2 NOW 
Station 3 	SEIZES 1 OF InQ HOLDS FOR 0.000, UNTIL 8.421 

SEIZES 1 OF Gl Station 2 	SEIZES 1 OF Ether 
WAITS IN EtherQ HOLDS FOR 1.753, UNTIL 10.174 

3.864 Station 2 	RELEASES 1 TO Gl Ethernet 1 	AWAITS 1 OF Ether 
RELEASES 1 TO Ether 8.460 Source 3 GIVES 1 TO InQ 
SEIZES 1 OF InQ HOLDS FOR 2.949, UNTIL 11.409 
SEIZES 1 OF Dl Station 3 	SEIZES 1 OF InQ 
WAITS IN EtherQ SEIZES 1 OF Cl 

Ethernet 1 	SEIZES 1 OF Ether WAITS IN EtherQ 
COOPTS Station 1 FROM EtherQ 
GIVES 1 TO Collisions 
RELEASES 1 TO Ether 
SCHEDULES Station 1 NOW 
COOPTS Station 3 FROM EtherQ 
GIVES 1 TO Collisions 
SCHEDULES Station 3 NOW 
COOPTS Station 2 FROM EtherQ 
GIVES 1 TO Collisions 
SCHEDULES Station 2 NOW 
SEIZES 1 OF Ether 
WAITS IN EtherQ 

Station 1 	SEIZES 1 OF Collisions 
HOLDS FOR 0.210, UNTIL 4.074 
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Figure 6.18 

Begin 
External Class Demos; 
Demos 

Begin 
Ref(Res) Buffers; 
Real T—read, T_update, T_gather, T_use, T_sim; 

Entity Class Reader; 
Begin 

Buffers.Acquire(l); 
Hold(T_read); 	 Read; 
Buffers.Release(l); 
Hold(T_use); 	 Use; 

End Of Reader; 

Entity Class Writer; 
Begin 

Buffers .Acquire (3); 
Hold(T_update); 	 I Update; 
Buffers . Release (3) 
Hold(T_gather); 	 I Gather; 

End Of Writer; 

T_read: =Inreal; T_use =Inreal; 
T_update: =Inreal ; T_gather: =Inreal; 
T_sim 	Inreal; 

Buffers :- New Res('Buffers", 	3); 
New Reader(Reader) .Schedule(O.0); 
New Reader(Reader') .Schedule(O.0); 
New Writer(Writer°) .Schedule(O.0); 
Hold(T_sim); 

End; 
End 

232 



Appendix C 

This Appendix contains the CCS models of all models in Chapters 3 and 6 of this dissertation and, 
where appropriate, the corresponding Concurrency Workbench experiments using them. 
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Chapter 3 

Figure 3.2 

Model 

bi P0 3.0 

bi P1 2. esched.$0 
bi P2 $esched.1.0 

bi P3 (P1 I P2(\(esched) 

Output 

Command: states PO 
0 
1.0 
2.0 
P0 

Command: states P3 
($0 0)\esched 
($0 1.0)\esched 
(esched.$0 I $esched.1.0)\esched 
(1. esched.$0 I $esched.1.0(\esched 
P3 

Command: statesobs P3 
1 1 1 ===> ($0 I 0(\esched 
1 1 ===> ($0 1 1.0)\esched 
1 1 ===> (esched.$0 	$esched.1.0)\esched 
1 ===> (1. esched.$0 	$esched.1.0(\esched 
===> P3 

Command: statesobs PO 
1 1 1 ===> 0 
1 1 ===> 1.0 
1===> 2.0 
===> PO 

Command: cong 
Agent: PO 
Agent: P3 
true 
Command: eq 
Agent: PO 
Agent: P3 
true 
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Figure 3.3 

Model 

hi PO 3.P0 

hi P1 $eschedl.2. esched2.P1 
hi P2 $esched2.1. eschedl.P2 

hi P3 (P1 	eschedl.P2)\(eschedl,esched2) 

Output 
Command: if m303.cwb 
done. 
Command: states P0 

1.P0 
2.P0 
P0 

Command: states P3 
($eschedl .2. esched2 P1 I eschedl .P2( \{eschedl, esched2) 
(P1 I 1. 'eschedl.P2(\(eschedlesched2) 
(esched2 . P1 I $esched2 .1. eschedl .P2( \(eschedl, esched2) 
(1. esched2 P1 	$esched2 .1. eschedl .P2( \{aschedl, esched2} 
(2.esched2.P1 P2)\(eschedl,esched2) 
P3 

Command: eq 
Agent: P0 
Agent: P3 
true 
Command: Cong 
Agent: P0 
Agent: P3 
false 
Command: statesobs P0 

1 1 ===> 1 P0 
1 ==> 2.P0 
==> P0 

Command: statesobs P3 
1 1 1 ===> ($esChedl.2. esched2.Pl J eschedl.P2(\esched1,esched2} 
1 1===> (P1 I 1. esohedl.P2)\{eschedl,esched2} 
1 1 ===> (esched2.P1 	$esched2.1. eschedl.P2(\{eschedl,esched2) 
1 ===> (1. esched2.P1 	$esched2.1. eschedl.P2(\tesohedl,esched2} 
===> (2. esched2.P1 	P2(\{eschedl,esched2} 
===> P3 
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Figure 3.4 

Model 

bi Seq $hammerAcql.3. hammerRell.$0 

bi Hammerl $hammerAcql .Hananer0 
bi HammerO $hammerRell.1-lammerl 

bi Model (SeqHammerl) \{hammerAcqlhammerRell} 

Output 

Command: reduce 

Command: states Model 
Model 

= ($ 'hammerAcqi .3 'hammerRell . $0 I ShammerAcqi .Hammer0) \ ChammerAcql hammerRell) 
(3. 'hammerRell $0 	HammerO) \(hammerAcql,hammerRell) 
(2. 'hammerRell $0 	$hammerRell .Hammerl( \(hammerAcql,hammerRell} 
(1. 'hammerRell $0 	$hammerRell .Hammerl(\(hamxnerAcql,hammerRell} 
('hammerRell . $0 I $hammerRell .Hammerl) \{hammerAcql,hammerRell) 
($0 I Hammerl(\{hammerAcql,hammerRell} 

= ($0 I $hammerAcql .Hammer0( \thammerAcql,hammerRell) 

Figure 3.5 

Model 

bi Seq $'hammerAcq1.3. 'hammerRell.Seq 

bi Hammerl $hammerAcql.Hammer0 
bi HammerO $hammerRell.Hammerl 

bi Model (SeqlHammerl( \ChammerAcql,hammerRell} 

Output 

Command: states Model 
Model 

= ($ 'harmserAcql .3. 'hamrnerRell Seq I $hammerAcql .Hammer0( \{hammerAcql,hammerRell} 
= (Seq I Hammerl(\thammerAcql,hammerRell) 

(3. 'hammerRell .Seq 	Hammer0( \(hammerAcql,hammerRell) 
(2. 'hammerRell .Seq 	$hammerRell .Hammerl( \(hamrnerAcql,hammerRell} 
(1. 'hammerRell Seq 	$hammerRell .Hammerl( \(hammerAcql,hammerRell} 
(hammerRell .Seq I $hammerRell .Hammerl(\{hammerAcql,hammerRell} 
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Figure 3.6 

Model 
hi Seql va1Ass4.Seq2 
hi Seq2 (vaiGet4. valAss6.Seq3+valcet5. valAss7.Seq3+vaiGet6. 'valAss8.Seq3\ 
+vaiGet7.valAss9.Seq3*vaicets. vaiAsslO.Seq3+valGet9. valAssll.Seq3\ 
+vaiGetlO. valAssl2.Seq3) 
hi Seq3 3.(valGet4. valAss8.Seq2+valGet5. vaiAsslO.Seq2+valGet6. valAssi2.Seq2\ 
+valGet7 .valAssl4 .Seq2+valGet8. valAssl6 .Seq2+valGet9. valAssl8.Seq2\ 
+valGetiO. valAss2O Seq2) 

bi ValO valAssi .Vall+valAss2 .Vai2+valAss3 .Va13+valAss4 .Val4\ 
+valAss5 .Va15+valAss6 .VaiS+vaiAss7 .Va17+valAss8 .Va18\ 
+va1Ass9.Va19+valAss1O.Va11O+ $valGetO.ValO 
hi Vail vaiAssl.Vaii+vaiAss2.Va12+vaiAss3.Va13+valAss4.Va14\ 
+valAss5 .Va15+valAss6 .Va16+valAss7 .Vai7+vaiAss8 .Va18\ 
+va1Ass9 .Va19-i-vaiAsslO .VallO+ $ vaiGetl Vail 
bi Va12 valAssi .Vall+valAss2 .Va12+vaiAss3 .Vai3+valAss4 .Va14\ 
+valAss5 .Va15+valAss6 .Va16+vaiAss7 .Va17+valAss8 .ValS\ 
+va1Ass9 .Va19+valAsslO .VallO+ $ valGet2 .Va12 
bi Va13 vaiAssi.Vaii+vaiAss2.Val2+vaiAgs3.Va13+valAss4.Val4\ 
+valAss5 .Va15+valAss6 .Va16+valAss7 .Vai7i-vaiAss8 .Va18\ 
+va1Ass9 .Va19+vaiAsslO .VallO+ $ valGet3 .Va13 
hi Va14 valAssi .Vall+valAss2 .Vai2+vaiAss3 .Va13+valAss4 .Va14\ 
+valAss5 .Vai5+vaiAss6 .Vai6+vaiAss7 .Va17+valAss8 .Va18\ 
+valAss9 .Va19+valAsslO .VailO+ $ valGet4 .Va14 
hi Va15 vaiAssl.Vail+valAss2.Va12+vaiAss3.Va13+valAss4.Vai4\ 
+vaiAss5 .Va15+valAss6 .Va16+valAss7 .Vai7+vaiAss8 .ValS\ 
+valAss9 .Va19+valAsslO .VaiiO+ $ valGet5 .Vai5 
bi Va16 valAssi .Vall+valAss2 .Vai2+valAss3 .Va13+valAss4 .Va14\ 
+valAss5 .VaiS+vaiAss6 .Vai6+vaiAss7 .Va17+valAss8 .Va18\ 
+va1Ass9 .Va19+valAssiO .VallO+ $ valGet6 Va16 
hi Va17 valAssl.Vail+vaiAss2.Vai2+vaiAss3.vai3+valAss4.Vai4\ 
+valAss5 .Va15+valAssi .Va16+valAss7 .Va17+valAss8 .Va18\ 
+valAss9 .Va19+valAsslO.VailO+ $ valGet7 .Va17 
hi Va18 valAssi .Vall+valAss2 .Vai2+valAss3 .Va13+valAss4 .Vai4\ 
+valAss5 .Va15+valAss6 .Va16+vaiAss7 .Va17+valAss8 .Va18\ 
4-va1Ass9.Va19+va1AsslQVa11O+ $va1Get8.Va18 
bi Va19 valAsslVali+vaiAss2.Va12+vaiAss3.Val3+valAss4.Val4\ 
+valAss5 .ValS+vaiAss6 .VaiE+valAss7 .Va17+valAss8 .Va18\ 
+va1Ass9 .Va19+valAsslO .VallO+ $ vaiGet9 .Va19 
bi ValiO vaiAssl .Vall+valAss2 .Va12+valAss3 .Va13+valAss4 .Va14\ 
+vaiAss5 .Va15+valAss6 .Va16+vaiAss7 .Vai7+valAss8 .Va18\ 
+valAss9 .Va19+valAsslC .VailO+ $ valGeilO .ValiO 

bi Seq (Seql I ValO)\ 
\(vaiAsslvalAss2,valAss3valAss4,vaiAss5,valAss6,valAss7,\ 
valAss8,valAss9,vaiAssiOvaiAssllvaiAssl2, \ 
valGetO valGetl valGet2 valGet3 valGet4 valGet5 valGet6 valGet7, 
valGetS valGet9 valGetlO) 
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Output 

Command: States Seq 
(valAssl2.Seq2 I 

Va16) \{valAssl,valAsslOvalAssll,valAssl2,valAss2,valAss3 ,valAss4,valAss5valAss6,valAss7 valAss8 
,valAss9,valGetOvalGetl,valGetlO,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,valGet8,valGet9 

((va1Get4. valAss8.Seq2 + va1Get5. valAsslO.Seq2 + valGet6. valAssl2.Seq2 + 
valGet7.valAssl4.Seq2 + valGet8. valAssl6.Seq2 + valqet9. 'valAsslB.Seq2 + 
valGetlO. valAss2O.Seq2) I 
$valGet6.Va16)\(valAssl,valAsslO,valAssll,valAssl2,valAss2valAss3,valAss4,valAss5valAss6,valAs 
s7valAss8,valAss9,valGetO,valGetl,valGetlO,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,valGe 
t8, valGet9) 

(1.(valGet4. valAss8.Seq2 + va1Get5.va1Ass1O.Seq2 + valGet6.valAssl2.Seq2 + 
valGet7.valAssl4.Seq2 + valGet8. valAssl6.Seq2 + valGet9. valAssl8.Seq2 + 
valGetlO. valAss2O.Seq2) 
$valGet6.Va16)\(valAssl,valAsslO,valAssll,valAssl2valAss2,valAss3valAss4valAss5,valAss6,valAs 
s7,valAss8valAss9valGetO,valGetl,valGetlQ,valGet2,valGet3 valGet4,valGet5,valGet6,valGet7,valGe 
t8 valGet9) 

(2.(valGet4. valAss8.Seq2 + va1Get5. valAsslO.Seq2 + valqet6. valAssl2.Seq2 + 
valGet7.valAssl4.Seq2 + valGet8. valAssl6.Seq2 + va1Get9. valAsslS.Seq2 + 
valGetlO. valAss2O.Seq2) I 
$valGet6.Va16)\(valAsslvalAsslO,valAssll,valAssl2,valAss2,valAss3,valAss4,valAss5,valAss6,valAs 
s7,valAss8,valAss9,valGetO,valGetivalGetlO,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7valGe 
t8 ,valGet9) 

(Seq3 I 
Va16)\(valAssl,valAsslOvalAssll,valAssl2,valAss2,valAss3,valAss4,valAss5,valAss6valAss7,valAss8 
,va1Ass9,va1GetO,va1Get1,va1Get1Ova1Get2,va1Get3,va1Get4,va1Get5,va1Get6,va1Get7,va1Get8,va1Get9 

(valAss6.Seq3 I 
Va14) \{valAssl,valAsslO,valAssll,valAssl2,valAss2,valAss3 ,valAss4,valAss5,valAss6 ,valAss7 ,valAss8 
,valAss9,valGetO,valGetl,valGetlQ,valGet2,valGet3,valGet4valGet5,valGet6,valGet7valqet8vajqet9 

(Seq2 
Va14)\{valAssl,valAsslO,valAssll,valAssl2,valAss2valAss3,valAss4valAss5,valAss6,valAss7,valAss8 
,valAss9,valGetOvalGetl,valGetlO,valGet2,valGet3,valGet4valGet5,valGet6,valGet7,valqet8,valGet9 

Seq 

Command: statesobs Seq 
1 1 1 ===> (valAssl2.Seq2 I 

Va16)\{valAssl,valAsslO,valAssll,valAssl2,valAss2,valAss3,valAss4,valAss5valAss6,valAss7,valAsa8 
,valAss9,valGetO,valGetl,valGetlOvalGet2 ,valGet3,valGet4,valGet5,valGet6,velGet7,valGet8,valGet9 

1 1 1 ===> ((valGet4. valAss8.Seq2 + va1Get5. valAsslO.Seq2 + valGet6. valAssl2.Seq2 + 
va1Get7.valAss14.Seq2 + valGetS. valAsslG.Seq2 + valGet9. valAssl8.Seq2 + 
valGetlO. 'valAss2O.Seq2) I 
$va1Get6.Va16)\va1Ass1,va1Ass1O,va1Ass11,va1Ass12va1Ass2,va1Ass3,va1Ass4,va1Ass5,va1Ass6,va1As 
57, valAss8 , valAss9 , valGetO valGeti , valGetlO, valGet2 , valGet3 , valGet4 valGet5 valGet6 valGet7 , valGe 
t8 , valGet9 } 

1 1 ===> (1.(va1Get4. 'valAss8.Seq2 + va1Get5.'va1Ass1O.Seq2 + valGet6. 'valAssl2.Seq2 4-

valGet7.valAssl4.Seq2 + valGet8. valAssl6.Seq2 + valGet9. valAssl8.Seq2 + 
valGetlO. 'valAss2O.Seq2) 
$'va1Get6.Va16)\va1Ass1,va1Ass1O,va1Ass11,va1Ass12,va1Ass2,va1Ass3,va1Ass4,va1Ass5,va1Ass5,va1As 
s7,valAsa8,valAss9,valGetO,valGetl,valGetlO,valGet2,valGet3,valGet4,valGet5,valGet6,valqet7,valqe 
tS ,valGet9) 

1 ===> (2.(valGet4. 'valAss8.Seq2 + va1Get5.'va1Ass1O.Seq2 + valGet6.'valAssl2.Seq2 + 
valGet7.valAssl4.Seq2 + valGet8. 'valAssl6.Seq2 + valGet9. valAssl8.Seq2 + 
valGetlO. valAss2O.Seq2) I 
$'valGet6.Va16)\{valAssl,valAsslO,valAssll,valAssl2,valAss2,valAss3,valAss4,valAss5,valAss6,valAs 
s7,valAss8,valAss9,valGetO,valGetl,valGetlO,valGet2,valGet3,valGet4,valGetS,valGet6,valGet7,valqe 
t8 ,valGet9) 

===> (Seq3 I 
Va16) \{valAsal ,valAsslO,valAssll,valAssl2 ,valAss2,valAss3 ,valAsa4,valAss5,valAss6,valAss7 ,valAss8 
,valAss9,valGetO,valGetl,valGetlO,valGet2,valGet3,valGet4,valGet5,valqet6,valqet7,valqet8,valGet9 

===> ('valAss6.Seq3 I 
Va14)\CvalAssl,valAsslO,valAssll,valAssl2,valAss2,valAss3,valAss4,valAss5,valAss6,valAss7,va].Assg 
,valAss9,valGetO,valGetl,valGetlO,valqet2,valqet3 ,valGet4,valGet5,valGet6,valGet7,valGet8,valGet9 

===> (Seq2 I 
Va14)\va1Ass1,va1Ass1O,va1Ass11,va1Ass12,va1Ass2,va1Ass3,va1Ass4,va1Ass5,va1Ass6,va1Ass7,va1Ass8 
,valAss9,valGetO,valGetl,valGetlO,valGet2,valGet3,valqet4,valqet5,valqet6,valqet7,valqet8,valqetg 

==> Seq 
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Figure 3.7 

Model 

bi Seqi va1Ass4.Seq2 

bi Seq2 (valGet4. valAss6.Seq3+valGet5. valAss7.Seq3+valGet6. valAss8.Seq3\ 
+valGet7 .valAss9 .Seq3+valGet8. valAsslO.Seq3+valGet9. valAssil .Seq3\ 
+valGetlO. valAssl2.Seq3+valGetll. valAssl3.Seq3+valGetl2. valAssl4.Seq3) 
bi Seq3 3.(valGet4.valAss8.Seq2+valGet5.valAsslO.Seq2-i-valGet6.valAssl2.Seq2\ 
+valGet7.valAssl4Seq2+valGet8. valAssl6.Seq2+valcei9. valAssl8.Seq2\ 
+valGetlO. valAss4.Seq2+valGetll. valAss4.Seq2-i-valGetl2. valAss4.Seq2\ 
+valGetl3 valAss4 .Seq2+valGetl4. valAss4 .Seq2) 
bi ValO valAssl .Vall+valAss2 .Va12+valAss3 .Val3+valAss4 .Va14\ 
+valAss5 .Va15+valAss6 .Va16+valAss7 .Va17+valAssS .ValS\ 
+valAss9 .Va19+vaiAsslO .VallO+valAssll .Valil+valAssl2 .Vall2+\ 
valAssl3 .Va113+valAssl4 .Vall4+ $ valGetO .ValO 
bi Vail valAssi.Vali+vaiAss2.Va12+valAss3.Va13+valAss4.Va14\ 
+vaiAss5 .ValS+vaiAss6 .Va16+valAss7 .Va17+vaiAss8 .Va18\ 
+valAss9 .Va19+vaiAsslO .VallO+valAssll .Valli+valAssl2 .Vall2'-\ 
valAssl3 .Va113+valAssl4 .Vali4+ $ valGeti Vail 
bi Va12 vaiAssl .Vali+valAss2 .Va12+vaiAss3 .Va13+valAss4 .Val4\ 
+valAss5 .Va15+valAss6 .Vai6+valAss7 .Va17+vaiAss8.Va18\ 
+valAss9 .Val9+valAsslO .ValiO+valAssil .Valll+valAssi2 .Va112+\ 
valAssl3 .Vali3+valAssl4 .Vall4+ $ vaiGet2 .Va12 
bi Va13 valAssl .Vall+valAss2 .Va12+valAss3 .Va13+valAss4 .Va14\ 
+vaiAsst .Va15+valAss6 .Va16+valAss7 .Vai7+vaiAss8 .Va18\ 
+valAss9 .Va19+vaiAsslO .VallO+valAssll .Valli+valAssl2 .Vall2+\ 
valAssi3 .Va113+valAssl4 .Vali4+ $ valGet3 .Va13 
bi Va14 valAssi Vali+valAss2 .Va12+vaiAss3 .Val3+valAss4 .Val4\ 
+valAss5 .Va15+valAss6 .VaiS+valAss7 .Va17+valAss8 .Va18\ 
+valAss9 .Va19+valAssiO .VallO+valAssil .Valll+valAssi2 .Vail2+\ 
valAssl3 .Vall3+valAssl4 .Va114+ $ valGet4 .Va14 
bi Va15 vaiAssl .Vall+valAss2 .Va12+valAss3 .Va13-s-valAss4 .Va14\ 
+valAss5 .Va15+valAss6 .ValG+valAss7 .Va17+valAss8 .Va18\ 
+valAss9 .Va19+valAsslO .VailO+valAssll .Vaill+valAssl2 .Va112+\ 
valAssl3 .Va113+valAssi4 .Vali4+ $ valGet5 .Va15 
bi Va16 valAssi .Vaii+valAss2 .Va12+vaiAss3 .Val3+valAss4 .Va14\ 
+vaiAss5 .Va15+valAss6 .Val6+valAss7 .Va17+valAssS .Va18\ 
+valAss9 .Va19+valAsslO .VallO+vaiAssli .Valil+valAssl2 .Va112+\ 
valAssi3 .Vali3+valAssl4 .Va114+ $ valGet6 .Va16 
bi Va17 vaiAssl .Vall+valAss2 .Va12+valAss3 .Va13+valAss4 .Va14\ 
+valAss5 .Va15+valAss6 .Vai6+valAss7 .Vai7+valAss8 .Va18\ 
+valAss9 .Va19+valAsslO .VailO+valAssll .Valll+valAssl2 .Va112+\ 
valAssl3 .Va113+valAssl4 .Vali4+ $ valGet7 .Va17 
bi ValS valAssl.Vall+valAss2.Vai2+valAss3.Val3+valAss4.Va14\ 
+valAss5 .Va15-i-vaiAss6 .Va16-i-valAss7 .Va17+valAss8 Vai8\ 
+valAss9 .Va19+valAsslO .ValiO-I-valAssil .Valll+valAssi2 .Vall2+\ 
vaiAssi3 .Vali3+valAssl4 .Va114+ $ valGet8 .Va18 
bi Va19 valAssl.Vall+valAss2.Va12+valAss3.Vai3+valAss4.Va14\ 
+valAss5 .ValS+valAss6 .Va16+valAss7 .Vai7+valAss8 .ValS\ 
+valAss9 .Va19+valAsslO .VallO+valAssll .Valll+valAssl2 .Va112+\ 
valAssl3 .Vail3+valAssi4 .Vali4+ $ valGet9 .Va19 
bi VallO vaiAssl .Vall+valAss2 .Va12+valAss3 .Vai3+valAss4 .Va14\ 
+valAss5 .Va15+valAss6 .Va16+valAss7 .Va17+valAss8 .VaiS\ 
+valAss9 .Va19+valAsslO .ValiO+valAssll .Valll+valAssi2 .Vall2+\ 
valAssl3 .Vall3+vaiAssl4.Va114+ $valGetiO.VallO 
bi Valli valAssi .Vali+valAss2 .Vai2+valAss3 .Va13+valAss4 .Val4\ 
+valAss5 .Va15+valAss6 .Va16+valAss7 .Va17+valAss8 .ValS\ 
+valAss9 .Va19+valAsslO .VallO+valAssll .Valll+valAssl2 .Vali2+\ 
valAssl3 .Va113-i-valAssi4 .Va114+ $ vaiGetil .Valll 
bi Va112 valAssi .Vall+valAss2 .Va12+valAss3 .Va13+valAss4 .Va14\ 
+valAss5 .Va15+valAss6 .Vai6*valAss7 .Va17+valAss8 .Va18\ 
+valAss9 .Val9+valAssiO .VallO+valAssll .Valll+valAssl2 .Va112-i-\ 
valAssl3 .Vall3+vaiAssl4 .Vali4+ $ valGetl2 .Va112 
bi Va113 valAssi .Vall+valAss2 .Va12+valAss3 .Vai3+vaiAss4 .Va14\ 
+valAss5 .Va15+valAss6 .Va16+valAss7 .Vai7i-valAss8 .VaiS\ 
+valAss9 .Va19+valAsslO .VallO+valAssll .Valll+valAssi2 .Va112+\ 
valAssl3 .Vali3+vaiAssl4 .Va114+ $ valGetl3 .Vail3 
bi Va114 valAssi .Vaii+valAss2 .Va12+valAss3 .Vai3+valAss4 .Va14\ 
+valAss5 .Val5+valAss6 .Va16+valAss7 .Va17+valAss8 .Va18\ 
+valAss9 .Va19+vaiAsslO .VallO+valAssil .Valll+valAssl2 .Vali2+\ 
valAssl3 .Va113+valAssi4 .Vall4+ $ vaiGeti4 .Va114 

bi Seq (Seqi I ValO)\ 
\(vaiAsslvaiAss2valAss3valAss4vaiAss5valAss6valAss7vaiAss8valAss9\ 
valAsslOvalAsslivalAssl2,vaiAssl3valAssi4valAssi6valAssl7valAssl8\ 
valGetO,vaiGetivaiGet2,valGet3valGet4valGet5,valGet6,valGet7 \ 
valGet8valGet9vaiGetlO,valGetllvalGetl2,vaiGetl3valGetl4) 
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Output 

Command: states Seq 
(valAss4.Seq2 I 

Va114)\(valAsslvalAsslO,valAssllvalAssl2valAssl3,valAssl4valAssl6,valAssl7,valAssl8,valAss2,v 
alAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGetO,valGetl,valGetlO,valGetll,valCetl2 
,valGetl3,valGetl4,valGet2,valGet3,valGet4,valGet5valGet6,valGet7,valGet8,valGet9) 

((va1Get4. valAss8.Seq2 + valGet5. valAsslO.Seq2 + valGet6. valAssl2.Seq2 + 
va1Get7.va1Ass14.Seq2 + va1Get8. valAssl6.Seq2 + valGet9. valAsslS.Seq2 + valGetlO. valAss4.Seq2 
+ valGetli. valAss4.Seq2 + va1Get12. valAss4.Seq2 + va1Get13. valAss4.Seq2 + 
va1Get14. valAss4.Seq2) I 
$valGetl4.Va114)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6,valAssl7,valAssl 
8,valAss2 ,valAss3,valAss4valAss5,valAss6,valAss7,valAss8,valAss9,valGetO,valGetl,valGetlOvalGet 
11,valGetl2,valGatl3 ,valGetl4valGet2,valGet3,valGet4,valGet5,valGet6valGet7,valGet8,valGet9) 

(1.(va1Get4. valAss8.Seq2 + va1Get5. valAsslO.Seq2 * va1Get6. 'valAssl2.Seq2 + 
va1Get7.va1Ass14.Seq2 + va1Get8. valAssl6.Seq2 + va1Get9. valAssl8.Seq2 + valGetlO. valAss4.Seq2 
+ valGetli. valAss4.Seq2 + va1Get12. valAss4.Seq2 + valGetl3. valAss4.Seq2 + 
va1Get14. valAss4.Seq2) 
$valGetl4.Va114)\{valAsslvalAsslO,valAssll,valAssl2,valAssl3,valAssl4valAssl6,valAssl7,valAssl 
8,valAss2,valAss3 ,valAss4,valAss5valAss6valAss7valAss8valAss9valGetO,valGetl,valGetlO,valGet 
11,valGetl2valGetl3,valGetl4,valGet2,valGet3 valGet4,valGet5,valGet6,valGet7,valGet8,valGet9) 

(2.(va1Get4.va1Ass8.Seq2 + va1Get5.va1Ass1O.Seq2 + va1Get6.va1Ass12.Seq2 + 
va1Get7.va1Ass14.Seq2 + va1Get8. valAssl6.Seq2 + va1Get9. valAssl8.Seq2 + valGetlO. valAss4.Seq2 
+ valGetli. valAss4.Seq2 + va1Get12. valAss4.Seq2 + va1Get13. valAss4.Seq2 + 
va1Get14. valAss4.Seq2) I 
$valGetl4.Va114)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4valAssl6,valAssl7,valAssl 
8,va1Ass2,va1Ass3,va1Ass4,va1Ass5,va1Ass6,va1Ass7va1Ass8,va1Ass9,va1Get0,va1Get1va1Get10,va1Get 
11,valGetl2,valGetl3,valGetl4valGet2,valGet3,valGet4valGet5valGet6valGet7,valGet8,valGet9) 

(Seq3 I 
Va114)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6valAssl7,valAssl8valAss2,v 
alAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGetO,valGetl,valGetlO,valGetll,valGetl2 
valGetl3 valGetl4 valGet2 valGet3 valGet4 valGet5 valGet6 valGet7 valGet8 valGet9) 
(valAssl4.Seq3 I 

Va112)\(valAssl,valAsslO,valAssll,valAssl2valAssl3,valAssl4,valAsslS,valAssl7valAssl8,valAss2,v 
alAss3 valAss4 valAss5 valAss6 valAss7 valAss8 valAss9 valGetD valGeti valGetlO valGetli valGetl2 
,valGetl3,valGetl4,valGet2valGet3valGet4valGet5,valGet6,valGet7,valqet8,valGet9) 

(Seq2 I 
Va112) \va1Ass1,va1Ass10,va1Ass11,va1Ass12va1Ass13 valAssl4,valAssl6,valAssl7,valAsslB,valAss2,v 
alAss3 valAss4 valAss5 valAss6, valAss7 valAss8 valAss9 valGet0 valGetl valGetlO valGetil valGetl2 
,valGetl3,valGetl4,valGet2,valGet3 ,valGet4,valGet5,valGet6,valGet7valGet8,valGet9} 

(valAssl2.Seq2 I 
Va16)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4valAssl6,valAssl7,valAsslS,valAss2,va 
lAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGet0,valGetl,valGetlO,valGetll,valGetl2, 
valGetl3,valGetl4,valGet2,valGet3,valGet4,valGet5,valGet6valGet7valGet8,valGet9) 

((valGet4. valAss8.Seq2 + va1Get5. valAsslO.Seq2 + valGet6. valAssl2.Seq2 + 
va1Get7.va1Ass14.Seq2 + va1Get8. valAssl6.Seq2 + va1Get9. valAsslS.Seq2 + valGetlO. valAss4.Seq2 
+ valGetil. 'valAss4.Seq2 + valGetl2. valAss4.Seq2 + va1Get13. valAss4.Seq2 + 
va1Get14. valAss4.Seq2) I 
$va1Get6.Va16)\Cva1ss1,va1Ass10,va1Ass11,va1Ass12,va1Ass13,va1Ass14,va1Ass16,va1Ass17,va].Ass18 
valAss2,valAss3,valAss4,va].Ass5,va].Ass6valAss7,valAss8,valAss9,valGet0,valGetivajGetlO,valGetll 
,valGetl2,valGetl3,valGetl4,valGet2,valGet3,valGet4,valGet5valGet6,valqet7,valGet8,valqet9) 

(1.(valGet4. valAss8.Seq2 + va1Get5. valAsslO.Seq2 + va1Get6. valAssl2.Seq2 + 
va1Get7.va1Ass14.Seq2 + valGet8. valAssl6.Seq2 * va1Get9. 'valAsslS.Seq2 + valGetlO. valAss4.Seq2 
+ valGetll. valAss4.Seq2 + va1Get12. valAss4.Seq2 * va1Get13. valAss4.Seq2 + 
va1Get14. valAss4.Seq2) I 
$valGet6.Va16)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6,valAssl7,valAssl8, 
valAss2,valAss3 ,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGet0,valGetl,valGetlQ,valGetll 
,valGetl2valGetl3,valGetl4,valGet2,valGet3,valGet4,valGet5valqet5,valqet7,valqetg,valqet9) 

(2.(va1Get4. valAss8.Seq2 + va1Get5. valAsslO.Seq2 + va1Get6. valAssl2.Seq2 + 
va1Get7.va1Ass14.Seq2 + valGet8. valAsslG.Seq2 + va1Get9. valAssl8.Seq2 + valGetlO. valAss4.Seq2 
+ valGetll. valAss4.Seq2 + valGet12. valAss4.Seq2 + va1Get13. valAss4.Seq2 * 
va1Get14. valAss4.Seq2) I 
$va1Get6.Va16)\va1Ass1va1Ass10,va1Ass11va1Ass12,va1Ass13,va1Ass14,va1Ass16,va1Ass17,va1Ass18, 
valAss2,valAss3valAss4,valAss5,valAss6valAss7,valAss8,valAss9,valGetQ,valGetivalGetlQ,valGetll 
,valGetl2 ,valGetl3,valGetl4valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,valGet8,valGet9) 

(Seq3 I 
Va16)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3valAssl4,valAssl6,valAssl7valAssl8,valAss2va 
lAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGetQ,valGetl,valGetjO,valGetll,valGetl2, 
valGetl3valGetl4,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7valGet8,valqet9) 

(valAss6.Seq3 I 
Va14) \{valAssl,valAsslOvalAssllvalAssl2 ,valAssl3 ,valAssl4,valAssl6,valAssl7 ,valAssl8valAss2 ,va 
lAss3 valAss4,valAsst,valAss6,valAss7,valAss8,valAss9valGet0valGetl,valGetlO,valGetll,valGetl2, 
va1Get13va1Get14,va1Get2,va1Get3va1Get4,va1Get5,va1Get6,va1Get7,va1Get8va1Get9) 

(Seq2 I 
Va14)\{valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6,valAssl7,valAssl8,valAss2,va 
lAss3,valAss4,valAss5,valAss6,valAss7,valAss8valAss9,valGet0,valGetl,valGetlO,valGetll,va1Get12, 
valGetl3,valGetl4valGet2,valGet3,valGet4valGet5valGet6,valGet7,valqet8,valqet9) 

Seq 
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Figure 3.8 

Model 
bi Seql va1Ass4.Seq2 

bi Seq2 )valGet4. valAss6 .Seq3+valGet5. valAss7 .Seq3+valGet6. valAss8.Seg3\ 
+valGet7 .valAss9 .Seq3+valGet8. valAssl0Seq3+valGet9 valAssli .Seq3\ 
+valGetlQ $O-i-valGetll $O+valGetl2 $0) 

bi Seq3 3.Seq2 

bi ValO valAssl .Vall+valAss2 .Va12+valAss3 .Val3+valAss4 .Va14\ 
+valAss5 .Va15+valAss6 .Va16+valAss7 .Va17-i-valAss8 .Va18\ 
+vaiAss9 .Va19+valAssl0 .VaiiO+valAssil .Valll+valAssl2 .Vall2+\ 
vaiAssl3.Vall3+valAssi4.Va114+ $valGet0.ValO 

bi Vail valAssi .Vall+valAss2 .Va12+vaiAss3 .Va13+vaiAss4 Va14\ 
+valAss5 .Val5+valAss6 .Va16+vaiAss7 .Va17-fvalAss8 .Va18\ 
+vaiAss9 .Va19+vaiAssi0 .VailO+vaiAssll .Valll+valAssi2 .Va112+\ 
valAssl3 .Va113+valAssl4 .Vali4+ $ valGetl .Vall 

bi Va12 vaiAssl .Vali+valAss2 .Va12+valAss3 .Vai3+valAss4 .Val4\ 
+valAss5 Vai5+valAss6 .Vai6+valAss7 .Va17+vaiAss8 .Val8\ 
+valAss9 .Vai9+valAsslO .ValiO+valAssii .Valll+vaiAssl2 .Va112*\ 
valAssl3 .Vail3+vaiAssi4 .Vall4+ $ vaiGet2 .Vai2 

bi Va13 valAssi .Vall+valAss2 .Va12+valAss3 .Va13+valAss4 .Vai4\ 
+valAss5 .Va15+vaiAss6 .Val6+vaiAss7 .Vai7+valAss8 .ValB\ 
+valAss9 .Va19+valAsslO .VailO+valAssll .Valll*valAssl2 .Vall2+\ 
valAssl3 .Va113+valAssl4 .Va114+ $ valqet3 .Va13 

bi Va14 valAssl .Vall+valAss2 .Va12+valAss3 .Vai3+valAss4 .Va14\ 
i-valAss5 .Vai5+valAss6 .Va16+valAss7 .Va17+valAss8 .Va18\ 
+valass9 .Va19+valAsslO .VallO-'-valAssli .Vaili+valAssi2 .Vail2+\ 
valAssl3 .Vail3+valAssl4 Va114+ $ valGet4 .Vai4 

bi Va15 valAssi .Vall+valAss2 .Va12+valAss3 .Vai3+valAss4 .Va14\ 
+valAss5 .Va15+valAss6 .Va16+valAss7 .Va17+valAss8 .ValS\ 
+valAss9 .Va19+valAssl0 .Vali0+valAssll .Valli+vaiAssl2 .Va112+\ 
valAssl3 .Va113+valAssl4 .Vall4+ $ 'valGet5 .Va15 
bi Va16 vaiAssl .Vall+valAss2 Va12+valAss3 .Val3+vaiAss4 .Vai4\ 
+valAss5 .Va15+valAss6 .Va16+valAss7 .Va17+vaiAssS .Va18\ 
+valAss9 .Va19+valAsslO .VallO+valAssli Valli+valAssl2 .Vall2+\ 
valAssi3 .Va113+valAssl4 .Va114+ $ valGet6 .Vai6 
bi Va17 valAssl.Vali+vaiAss2.Vai2+valAss3.Va13+valAss4.Va14\ 
-'-valAssS .Va15+valAss6 .Va16+valAss7 .Va17+valAssS .Val8\ 
+valAss9 .Va19+vaiAssl0 .VallO+valAssll .Valll+valAssl2 .Vall2+\ 
va1Ass13 .Va113+valAssl4 .Vail4+ $ valGet7 .Va17 
bi ValS vaiAssl .Vall+valAss2 Va12+valAss3 .Va13+valAss4 .Va14\ 
+valAss5 .Va15+valAss6 .Va16+valAss7 .Va17+valAssS .Va18\ 
+valAss9 .Va19+valAsslO .VallO+valAssll .Valli+valAssl2 .Vall2+\ 
valAssl3 .Va113+valAssl4 Valll+ $ valGet8 .Va18 
bi Va19 valAssi .Vall-i-valAss2 .Va12+valAss3 .Va13-I-valAss4 .Val4\ 
+valAss5 .Val5+valAss6 .Vai6+vaiAss7 .Val7+valAss8 .Va18\ 
+valAss9 .Va19+valAsslO .VallO+valAssli .Valli+valAssl2 .Va112-i-\ 
valAssl3 .Va113+valAssl4 .Vali4+ $ valGet9 .Vai9 
bi VallO vaiAssl .Vall*valAss2 .Va12*vaiAss3 .Va13+valAss4 .Val4\ 
+valAss5 .Val5+valAss6 .Va16+valAss7 .Va17+valAss8 .Va18\ 
+valAss9 .Val9-i-valAssio .VallO+valAssll .Valll+valAssl2 .Va112+\ 
valAssl3 .Va113+valAssl4 .Vall4+ $ valGetlO .VallO 
bi Valil valAssi .Vail+valAss2 .Val2+valAss3 .Val3+vaiAss4 .Val4\ 
+valAss5 .Va15+valAss6 .Va16+vaiAss7 .Va17+valAss8 .Vai8\ 
+valAss9 .Va19+valAsslO .VallO+valAssll .Valll+valAssl2 .Vall2-f-\ 
valAssl3 .Va113+valAssl4 .Vall4+ $ valGetll .Valll 
bi Va112 valAssl .Vali+valAss2 .Va12+vaiAss3 .Va13+valAss4 .Va14\ 
+valAss5 .Va15+valAss6 .ValS+valAss7 .Val7+valAss8 .Va18\ 
+valAss9 .Va19+valAsslO .VallO+valAssll .Valli+valAssl2 .Va112+\ 
valAssl3 .Va113+valAssl4 .Va114+ $ valGeti2 .Va112 
bi Va113 valAssi .Vall+valAss2 .Val2+valAss3 .Va13+vaiAss4 .Va14\ 
+valAss5 .Va15+valAss6 .Va16+vaiAss7 .Vai7+valAss8 .ValS\ 
+valAss9 .Vai9+valAsslo .VallO+valAssll .Valll+valAssl2 .Vall2+\ 
valAssl3 .Vali3+valAssl4 .Va114+ $ 'valGetl3 .Vali3 
bi Va114 valAssi .Vall+valAss2 .Vai2+valAss3 .Vai3+vaiAss4 .Va14\ 
+valAss5 .Va15*valAss6 .Va16+valAss7 .Va17-f-valAss8 .Vai8\ 
+valAss9 .Va19+valAssl0 .VailO+valAssil .Valll+vaiAssl2 .Va112+\ 
valAssl3 .Va113-fvalAssl4.Vall4+ $ vaiGetl4.Va114 

bi Seq )Seql I ValO)\ 
\valAssl,valAss2,valAss3,valAss4,valAss5valAss6,vaiAss7valAssS,valAss9 \ 
valAsslO,valAssll,valAssi2,valAssl3 ,valAssl4vaiAssl6valAssi7 ,valAssl8 \ 
valGet0valGetivalGet2,valGet3,valGet4,valGet5valGet6,valGet7 \ 
valGet8,valGet9,valGetl0,valGetll,valGetl2,valGetl3valGetl4) 
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Output 

Command: states Seq 
($0 I 

$valGetlO.VallO)\{valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6,valAssl7,valAssl 
8,va1Ass2va1Ass3,va1Ass4,va1Ass5,va1Ass6,va1Ass7,va1Ass8,va1Ass9,va1GetOva].Get1,va1Get1Qva1Get 
11,valGetl2,valGetl3,valGetl4,valGet2,valGet3valqet4,valqet5,valqet6valGet7,valqet8valqet9) 

($0 I 
VallO)\(valAssl,valAsslO,valAssllvalAssl2,valAssl3,valAssl4,valAssl6,valAssl7,valAssl8valAss2v 
alAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9valGet0,valGetl,valGetlQ,valGetll,valGetl2 
,valGetl3valGetl4,valGet2,valGet3valGet4,valGets,valGet6valGet7,valqet8,valGet9} 

(Seq2 I 
$valGetlO.VallO)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3valAssl4,valAsslS,valAssl7,valAssl 
8valAss2,valAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGetO,valqetl,valGetlOvalGet 
11, valGetl2 valGetl3 valGetl4 valGet2 valGet3 valGet4 valGet5 valGet6 valGet7 valGetS valGet9) 

(1.Seq2 
$valGetlO.VallO)\(valAssl,valAsslOvalAssll,valAssl2,valAssl3,valAssl4,valAssl6valAssl7,valAssl 
8,valAss2,valAss3,valAss4,valAss5valAss6,valAss7valAssS,valAss9,valGetQ,valGetl,valGetlQ,valGet 
11,valGetl2,valGetl3 va1Get14,va1Get2,va1Get3,va1Get4,va1Get5,va1Get6,va1Get7,va1Get8,va1Get9) 

(2.Seq2 
$va1Get10.Va110)\(va1Ass1va1Ass1O,va1Ass11,va1Ass12,va1Ass13va1Ass14,va1Ass16,va1Ass17,va1Ass1 
8valAss2,valAss3 ,valAss4,valAss5,valAss6,valAss7,valAss8valAss9valGetOvalqetl,valGetlQ,valGet 
11,valGetl2valGetl3,valGetl4,valGet2,valGet3,valGet4valGet5valGet6,valGet7,valGet8,valqet9) 

(Seq3 I 
VallO)\(valAssl,valAsslO,valAssllvalAssl2,valAssl3,valAssl4,valAssl6valAss17,valAsslS,valAss2,v 
alAss3,valAss4,valAssSva1Ass6,valAss7valAss8,valAss9valGet0,valGetl,valGetlQ,valGetll,valGetl2 
,valGetl3,valGetl4valGet2,valGet3valGet4,valGet5,valGet6,valGet7,valGetSvalqetg) 

(valAsslO.Seq3 I 
Va18)\(valAsslvalAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6,valAssl7,valAssl8,valAss2,va 
lAss3,valAss4valAss5,valAss6,valAss7,valAssS,valAss9,valGetQ,valGetl,valGetlO,valGetll,valGetl2, 
valGetl3 valGetl4 valGet2 valGet3 valGet4 valets valGet6 valqet7 valGet8 valcet9) 

(Seq2 
$valGet8.Va18)\{valAss1,valAsslQvalAssll,va1Assl2,valAssl3,valAss14,valAss16,va1Assl7va1Ass18, 
valAss2,valAss3valAss4,valAss5,valAss6valAss7,valAss8,valAss9valqetO,valGetj,valqetlO,valGetll 
valGetl2,valGetl3,valGetl4,valGet2,valGet3,va1Get4,valGet5,valGet6,va].Get7,valqet8,valqetg) 
(1.Seq2 I 

$valGetS.Va18)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6,valAssl7,valAssl8, 
valAss2,valAss3,valAss4valAss5,valAss6,valAss7,valAssS,va1Ass9,valGetOvalGetl,va1GetlO,valGetlj 
valGetl2 valGetl3 , valGetl4 valGet2 valGet3 valGet4 valGet5 , valGet6 , valGet7 , valGet8 valGet9 

(2.Seq2 I 
$'valGet8.Va18)\CvalAssl,valAsslO,valAssll,valAssl2,valAssl3,valAss14,valAss16,va1Assl7,valAssl8, 
valAss2,valAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGeto,valGetl,valGetlo,valGetll 
,valGetl2,valGetl3,valGet14,valGet2,valGet3,valGet4,valGet5,valqet6,valGet7,valGet8,valqet9) 

(Seq3 
Va18)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAsslS,valAssl7,valAssl8,valAss2,va 
lAss3,valAss4,valAss5,valAss6,valAss7,valAssS,valAss9,valGetQ,valGetl,v51Get10,valGetll,valGetl2 
valGetl3 ,valGetl4,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,valqet8,valqet9) 

(valAss8.Seq3 I 
Va16)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,va1Assl4,valAssl6,valAssl7,va1Ass18,va1Ass2,va 
lAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGetQ,valGetl,valGet1O,valGetll,valGetll, 
valGetl3,valGetl4,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,vajGet8,valGet9) 

(Seq2 I 
$'va1Get6.Va16)\va1Ass1,va1Ass10,va1Ass11,va1Ass12,va1A5s13,va1Ass14,va1Ass16,va1Ass17,va1Ass18, 
valAss2,valAss3,valAss4,valAss5,valAss6,valAss7,valAssS,valAss9,va1GetQ,valGetl,va1GetlQ,valGetll 
valGetl2 , valGetl3 , valGetl4 , valGet2 , valGet3 , valGet4 , valGet5 , valGet6 , valGet7 valGet8 , valGet9) 

(1.Seq2 I 
$'va1Get6.Va16)\va1Ass1,va1Ass1O,va1Ass11,va1Ass12,va1Ass13,va1Ass14,va1Ass16,va1Ass17,va1Ass18, 
valAss2,valAss3,valAss4,valAss5,valAss6,valAss7,valAss8,va1Ass9,valGetQ,valGetl,valGetlo,valGetll 
valGetl2 valGetl3 , valGetl4 , valGet2 , valGet3 , valGet4 , valGet5 , valGet6, valGet7 , valGet8 , valGet9 

(2.Seq2 I 
$ 'valGet6.Va16)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAss14,va1Ass16,valAssl7,valAss18, 
valAss2,valAss3,valAss4,valAsss,valAss6,valAss7,valAssB,valAss9,valGetQ,valGet1,valGetlO,va1Get1l 
,valGetl2,valGetl3,valGetl4,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,valGet8,va1Get9} 

(Seq3 I 
Va16)\{valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6,valAssl7,valAsslB,valAss2,va 
lAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGeto,valGet1,va1Get1Q,valGet1l,va1Getl2, 
valGetl3,valGetl4,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,valGet8,valqet9} 

('valAss6.Seq3 I 
Va14)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAss14,va1Ass16,va1Ass17,valAssl8,va1Ass2,va 
lAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,va1Get0,valGetl,valGetlQ,valGetll,valGetll, 
valGetl3,valGetl4,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,valGet8,valGet9) 

(Seq2 I 
Va14)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6,valAss17,valAssl8,va1Ass2,va 
lAss3,valAss4,valAssS,valAss6,valAss7,valAss8,valAss9,valGetO,va1Get1,valGetlO,valGetll,valGetl2, 
valGetl3 ,valGetl4,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,valGet8,valGet9) 

Seq 
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Figure 3.9 

Model 

bi Station )3.Packet I 2.Station) 
bi Packet $0 

Output 

Command: sim Station 

Simulated agent: Station 
Transitions 

1: 	1 ---> 2.Packet I l.Station 

Sirs> 1 
1 ----> 

Simulated agent: 2.Packet 	l.Station 
Transitions: 

1: 	1 ---s l.Packet I Station 

Sim> 1 
1 ---> 

Simulated agent: iPacket 	Station 
Transitions: 

1: --- 1 ---> Packet 	(2.Packet I l.Station) 

Sirs> 1 
1 ---> 

Simulated agent: Packet 	)2.Packet I l.Station) 
Transitions: 

1: --- 1 ---> $0 I )l.Packet  I Station) 

Sirs> 1 
1 ---> 

Simulated agent: $0 I )l.Packet I Station) 
Transitions: 

1: ---- 1 ---> $0 I )Packet 	)2.Packet I l.Station)) 

Sims 1 
1 ---> 

Simulated agent: $0 I )Packet  I )2.Packet  I l.Station)) 
Transitions: 

1: --- 1 ---> $0 I )$0  I )l.Packet  I Station)) 

Sim> 1 
1 ---> 

Simulated agent: $0 I )$0 I )LPacket  I Station)) 
Transitions: 

1: --- 1 ---> $0 I ($0  I )Packet  I )2.Packet  I l.Station))) 
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Figure 3.10 

Model 

hi Station (3. pSched.$O I 2.Station) 
bi Packet $psched.$O 

Output 

Command: sim Station 

Simulated agent: Station 
Transitions: 

1: 	1 ---> 2. pSched.$O I 1.Station 

Sim> 1 
1 ---> 

Simulated agent: 2. pSched.$0 I l.Station 
Transitions: 

1: 	1 ----> 1. 'pSched.$O 	Station 

Sim> 1 
1 ---> 

Simulated agent: 1. pSched.$0 	Station 
Transitions: 

1: 	1 ---> pSched.$O I (2. pSched.$0 	1.Station( 

Sim> 1 
1 ---> 

Simulated agent: pSched.$0 I (2. pSched.$0 I 1.Station( 
Transitions: 

1: 	'pSched ---> $0 I (2. pSched.$0 I l.Station) 

Sim> 1 
pSched ---> 

Simulated agent: $0 I (2. pSched.$0 	l.Station) 
Transitions: 

1: 	1 ---> $0 	(1. pSched.$O I Station( 

Sim> 1 
1 ---> 

Simulated agent: $0 I (1. pSched.$0 I Station( 
Transitions: 

1: 	1 ---> $0 I (pSched.$0  I (2. pSched.$0 	1.Station() 

Simm 1 
1 ---> 

Simulated agent: $0 I (pSched.$O 	(2. pSched.$0 I l.Station(( 
Transitions: 

1: 	pSched ---> $0 1 ($0 I (2. pSched.$O I l.Station() 
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Figure 3.11 

Model 
hi Boat ($'jacql.$tugacq2.1.tugrel2.1.$tugacql.l.tugrell.jrell.$O\ 
2.Boat) 

hi Tugs3 $tugacql.Tugs2 + $tugacq2.Tugsl + $tugacq3.TugsO 
bi Tugs2 $tugacql.Tugsl * $tugacq2.TugsO * $tugrell.Tugs3 
hi Tugsl $tugacql.TugsO + $tugrell.Tugs2 + $tugrel2.Tugs3 
bi TugsO $tugrell.Tugsl + $tugrel2.Tugs2 + $tugrel3.Tugs3 

bi Jetties2 $jacql.Jettiesl + $jacq2.JettiesO 
bi Jettiesi $jacql.JettiesO + $jrell.Jetties2 
hi JettiesO $jrellJettiesl + $jrel2.Jetties2 

hi Model (Boat I Tugs3 J Jetties2)\(tugacql,tugacg2tugacq3,\ 
tugrell,tugrel2tugrel3,jacql,jacq2jrell,jrel2) 

Output 
Command: sic Model 
Simulated agent: Model 
Transitions: 

t<jacql> ---> (($tugacq2.1. tugrel2.l.$'tugacql.l. tugrell. jrell.$O I 2.Boat( I 
Tugs3 I Jettiesl(\(jacql,jacq2jrelljrel2tugacql,tugacq2tugacq3,tugrell,tugrel2,tugrel3) 

1 ---> (($jacql.$tugacq2.1. tugrel2.1.$tugacql.l. tugrell. jrell.$O I l.Boat) 
($tugacql.Tugs2 + $tugacq2.Tugsl + $tugacq3.TugsO) I ($jacql.Jettiesl + 
$jacq2.JettiesO)(\(jacgl,jacq2,jrell,jrel2,tugacql,tugacq2tugacq3,tugrell,tugrel2,tugrel3) 
Sim> 1 

t<jacql> ---> 
Simulated agent: (($tugacq2.1. tugrel2.l.$tugacql.l. tugrell. jrell.$O I 2.Boat(  I Tugs3 
Jettiesl)\{jacql,jacq2,jrell,jrel2,tugacql,tugacq2tugacq3,tugrell,tugrel2,tugrel3} 
Transitions: 

t<tugacq2> ---> ((1. tugrel2.l.$tugacql.l. tugrell. jrell.$O I 2.Boat( 	Tugsl 
Jettiesl)\{jacql,jacq2jrell,jrel2tugacqltugacq2,tugacq3,tugrell,tugrel2tugrel3} 

1 ---> (($tugacq2.1. tugrel2.l.$tugacgl.l. tugrell. jrell.$O I l.Boat(  I 
($tugacql.Tugs2 + $tugacq2.Tugsl + $tugacq3.TugsO) I ($jacql.JettiesO + 
$jrell.Jetties2((\(jacql,jacq2,jrell,jrel2tugacqltugacq2,tugacq3tugrell,tugrel2,tugrel3) 
Sim> 1 

t<tugacq2> ---> 
Simulated agent: ((1. tugrel2.l.$tugacql.1. tugrell. jrell.$O I 2.Boat( I Tugsl 
Jettiesl(\{jacql,jacq2jrell,jrel2tugacql,tugacg2,tugacg3tugrell,tugrel2,tugrel3} 
Transitions: 

1: 	1 ---> ((tugrel2.1.$tugacql.1. tugrell. jrell.$O I l.Boat)  I ($tugacql.TugsO + 
$tugrell.Tugs2 + $tugrel2.Tugs3( I ($jacql.JettiesO + 
$jrell.Jetties2((\(jacql,jacq2jrell,jrel2tugacql,tugacq2,tugacq3tugrelltugrel2,tugrel3} 
Sim> 1 

1 ---> 
Simulated agent: ((tugrel2.1.$tugacql.l.  tugrell. jrell.$O I l.Boat)  I ($tugacql.TugsO + 
$tugrell.Tugs2 + $tugrel2.Tugs3) I ($jacql.JettiesO + 
$jrell.Jetties2)(\{jacql,jacq2,jrell,jrel2,tugacgl,tugacq2,tugacg3tugrell,tugrel2tugrel3} 
Transitions: 

1: 	t<tugrel2> ---> ((l.$tugacql.1. tugrell. jrell.$O I l.Boat)  I Tugs3  I 
($jacql.JettiesO + 
$jrell.Jetties2))\(jacql,jacq2,jrell,jrel2tugacqltugacq2,tugacq3,tugrell,tugrel2,tugrel3) 
Sim> 1 

t<tugrel2> ---> 
Simulated agent: ((l.$tugacql.1. tugrell. jrell.$O I l.Boat) I Tugs3 I ($jacql.JettiesO * 
$jrell.Jetties2((\(jacgl,jacg2jrell,jrel2,tugacql,tugacq2,tugacq3,tugrelltugrel2tugrel3} 
Transitions: 

1: 	1 ---> (($tugacql.l. tugrell. jrell.$O I Boat( I ($tugacql.Tugs2 + $tugacq2.Tugsl 
$tugacq3.TugsO( I ($jacql.JettiesO + 
$jrell.Jetties2((\(jacql,jacq2jrell,jrel2,tugacgl,tugacq2,tugacq3tugrell,tugrel2tugrel3) 
Sim> 1 

1 ---> 
Simulated agent: (($tugacql.1. tugrell. jrell.$O I Boat(  I ($tugacql.Tugs2 + $tugacq2.Tugsl 
$tugacq3.TugsO( 	($jacql.JettiesO + 
$jre1l.Jetties2((\jacq1jacq2jrelljrel2,tugacql,tugacq2tugacq3,tugrelltugrel2tugrel3} 
Transitions: 

t<jacql> ---> (($tugacql.l. tugrell. jrell.$O 
($tugacq2.1.tugrel2.1.$tugacql.l.tugrell.jrell.$O I 2.Boat((  I ($tugacql.Tugs2 + 
$tugacq2.Tugsl + $tugacq3.TugsO( I 
JettiesO)\(jacqljacq2,jrelljrel2tugacql,tugacq2,tugacq3tugrell,tugrel2tugrel3} 

t<tugacql> ---> ((1. tugrell. jrell.$O I Boat( I Tugs2 I ($jacql.JettiesO + 
$jre1l.Jetties2))\jacq1jacq2,jre1ljrel2tugacql,tugacq2,tugacq3tugre1ltugrel2,tugrel3} 

1 ---> (($tugacql1. tugrell. jrell.$O I 
($jacql.$tugacq2.1.tugrel2.1.$tugacql.1.tugrell.jrell.$O I l.Boat)(  I ($tugacql.Tugs2 + 
$tugacq2.Tugsl + $tugacq3.TugsO( I ($jacql.JettiesO + 
$jrell.Jetties2((\(jacql,jacq2,jrell,jrel2,tugacql,tugacq2,tugacq3tugrell,tugrel2tugrel3) 

Sim> 1 
t<jacql> ---> 
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Simulated agent: (($tugacql.1. tugrell. jrell.$0 
($tugacq2.1.tugrel2.1.$tugacql.l.tugrell.jrell.$0 I 2.Boat)( I ($tugacql.Tugs2 * 
$tugacq2.Tugsl + $tugacq3.Tugso) 
Jettieso)\(jacql,jacq2,jrelljrel2,tugacqltugacq2tugacq3,tugrell,tugrell,tugrel3) 
Transitions: 

t<tugacq2> ---> (($tugacgl.1. tugrell. jrell.$0 I 
(1. tugrel2.1.$tugacql.1. tugrell. jrell.$0 I 2.Boat)) I Tugsl 
Jetties0)\{jacql,jacq2jrell,jrel2,tugacqltugacq2,tugacq3,tugrelltugrel2,tugrel3} 

t<tugacql> ---> ((1. tugrell. jrell.$0 
($tugacq2.1. tugrel2.1.$tugacql.1.  tugrell. jrell.$0 I 2.Boat)( I Tugs2 
Jettieso)\(jacqljacq2,jrelljrel2tugacqltugacq2tugacq3tugrelltugrel2tugrel3) 

1 ---> (($tugacql.1. tugrell. jrell.$0 I 
($tugacq2.1. tugrel2.1.$tugacql.1.tugrell.jrell.$0 I 1.Boat))  I ($tugacql.Tugs2 + 
$tugacq2.Tugsl + $tugacq3.Tugso) I ($jrell.Jettiesl + 
$jrel2 .Jetties2) (\(jacql jacq2, jrell jrel2 tugacqi, tugacq2 tugacq3, tugrell, tugrel2, tugrel3) 
Sim> 1 

t<tugacq2> ---> 
Simulated agent: (($tugacql.l.  tugrell. jrell.$0 I (1. tugrel2.1.$tugacql.l. tugrell. jrell.$0 
I 2.Boat)) I Tugsl 
JettiesO)\(jacqljacq2,jrelljrel2,tugacql,tugacq2,tugacq3,tugrell,tugrel2tugrel3) 
Transitions: 

t<tugacql> ---> ((1.tugrell. 'jrell.$O I (l.'tugrel2.1.$tugacql.l.tugrell.jrell.$0 
I 2.Boat)) I Tugs0 I 
JettiesO)\(jacgl,jacq2jrell,jrel2,tugacql,tugacq2tugacq3tugrelltugre].2,tugre].3) 

1 ---> (($tugacql.l.tugrell.jrell.$0 I (tugrel2.1.$tugacql.l.tugrell.jrej.1.$0 
l.Boat() I ($tugacql.TugsO + $tugrell.Tugs2 + $tugrel2.Tugs3) I ($jrell.Jettiesl + 
$jrel2.Jetties2))\(jacql,jacq2,jrell,jrel2,tugacql,tugacq2,tugacq3tugrelltugrel2,tugrel3} 
Sim> 1 

t<tugacql> ---> 
Simulated agent: ((1. 'tugrell. jrell.$0 I (1. tugrel2.l.$tugacql.l. tugrell. jrell.$0 I 2.Boat)) 
Tugs0 I JettiesO)\{jacql,jacq2,jrell,jrel2,tugacql,tugacq2,tugacq3tugrell,tugrel2,tugrel3} 

Transitions: 
1: 	1 ---> (('tugrell.jrell.$O I ('tugrel2.1.$tugacql.l.tugrell. jrell.$O I l.Boat)) 

($tugrell.Tugsl + $tugrel2.Tugs2 + $tugrel3.Tugs3) I ($jrell.Jettiesl + 
$jrel2.Jetties2()\(jacql,jacq2jrell,jrel2,tugacqltugacq2,tugacq3,tugrell,tugrel2,tugre].3) 
Sim> 1 

1 ---> 
Simulated agent: ((tugrell. jrell.$0 I ('tugrel2.1.$tugacql.l. tugrell. jrell.$0 I l.Eoat)) 
($tugrellTugsl + $tugrel2.Tugs2 + $tugrel3.Tugs3) I ($jrell.Jettiesl + 
$jrel2.Jetties2))\{jacql,jacq2,jrell,jrel2,tugacql,tugacq2,tugacq3,tugrelltugrel2,tugrel3} 
Transitions: 

t<tugrell> ---> (('jrell.$O j (tugrel2.1.$tugacql.l. tugrell. jrell.$0 I l.Boat)) 
Tugsl I ($jrell.Jettiesl + 
$jrel2.Jetties2))\(jacql,jacq2,jrell,jrel2tugacql,tugacq2,tugacq3,tugrell,tugrel2,tugrel3) 

t<tugrel2> ---> ((tugrell. jrell.$O I (1.$tugacql.1.  tugrell. jrell.$0 I 1.Boat)) 
Tugs2 I ($jrell.Jettiesl + 
$jrel2.Jetties2))\Cjacql,jacq2jrelljrel2,tugacql,tugacq2tugacq3tugrelltugrel2tugrel3} 
Sim> 1 

tetugrell> ---> 
Simulated agent: (('jrell.$O I ('tugrel2.1.$tugacql.1. tugrell. jrell$O I 1.Boat))  I Tugsl 
($jrell.Jettiesl + 
$jrel2.Jetties2)(\{jacql,jacq2,jrell,jrel2,tugacgltugacq2tugacq3,tugrell,tugrel2tugrel3} 
Transitions: 

t<jrell> ---> (($0 1 (tugrel2.1.$tugacql.1. tugrell. jrell.$0 I 1.Boat() 	Tugsl 
Jetties1(\jacq1,jacq2,jrel1,jrel2tugacql,tugacq2,tugacq3,tugrell,tugrel2,tugrel3) 

---. t<tugrel2> ---> (('jrell.$O I (1.$tugacql.1. tugrell. jrell.$0 I l.Soat() I Tugs3 
($jrell.Jettiesl + 
$jre12.Jetties2))\jacq1,jacq2,jre11jre12tugacq1,tugacq2,tugacq3,tugre11,tugrel2,tugrel3} 
Sim> 1 

t<jrell> ---> 
Simulated agent: (($0 I ('tugrel2.1.$'tugacql.1. 'tugrell. jrell.$0 I 1.Boat)(  I Tugsl  I 
Jettiesl(\{jacql,jacq2,jrell,jrel2,tugacql,tugacq2,tugacq3,tugre].].,tugrel2,tugrel3) 
Transitions: 

1: 	t<tugrel2> ---> (($0 I (1.$tugacql.1. tugrell. jrell.$0 I 1.Boat)(  I Tugs3  I 
Jettiesl(\{jacql,jacq2jrelljrel2,tugacql,tugacq2tugacq3tugre].l,tugrel2tugrel3) 
Sim> 1 

t<tugrel2> ---> 
Simulated agent: (($0 I (1.$'tugacql.l. tugrell. jrell$0 I 1.Boat((  I Tugs3  I 
Jettiesl( \{jacql jacq2, jrell jrel2, tugacql, tugacq2 tugacq3, tugrell tugrel2, tugrel3) 
Transitions: 

1: 	1 ---> (($0 I ($tugacql.1. 'tugrell. jrell.$0 I Boat((  I ($tugacql.Tugs2 + 
$tugacq2.Tugsl + $tugacq3.Tugso( I ($jacqlJettieso + 
$jrell.Jetties2((\{jacql,jacq2,jrell,jrel2,tugacql,tugacq2,tugacq3,tugre].ltugrel2tugrel3} 
Sim> 1 

1 ---> 
Simulated agent: (($0 I ($tugacql.1. tugrell. jrell.$0 I Boat() I ($tugacql.Tugs2 + 
$tugacq2.Tugsl + $tugacq3.Tugso( I ($jacql.Jettieso + 
$jrell.Jetties2()\(jacql,jacq2,jrell,jrel2,tugacql,tugacq2tugacq3tugrell,tugrel2tugrel3) 
Transitions: 

t<jacql> ---> (($0 I ($tugacql1. tugrell. jrell$0 I 
($'tugacq21.tugrel2.1.$'tugacql.ltugrell.jrell.$0 I 2.Boat(((  I ($tugacql.Tugs2 + 
$tugacq2.Tugsl + $tugacq3.TugsO( I 
JettiesO( \{jacql, jacq2, jrell, jrel2, tugacql, tugacq2, tugacq3, tugrell, tugrel2, tugrel3} 

t<tugacql> ---> (($0 I (1. tugrell. 'jrell$O I Boat((  I Tugs2  I ($jacqlJettiesO + 
$jrell.Jetties2)(\(jacqljacq2,jrell,jrel2tugacqltugacq2,tugacq3,tugrell,tugrel2,tugrel3} 
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Figure 3.13 and 3.15 

Model 

hi Producer 2. 'widGivel.Producer 
hi Consumer $widTakel.1.Consumer 

bi WidO $widGivel.Widl 
bi Widl $widGivel.Mid2 	$widTakel.MidO 
bi Mid2 $widGivel.Mid2 + $widTakel.Midl 
bi Wid3 $widGivel.Mid4 + $widTakel.Wjd2 
hi Mid4 $widrakel.Mid3 

hi Model (Producer I Consumer I WidO(\widTakelwidGivel) 

Output 

Command: statesobs Model 
===> Model 
1 ===> (1. widGivel.Producer 	$ widTakel.l.Consumer 	$widGivel.Widl(\widGivel,widTakel} 
1 1 ===> (widGivel.Producer 	$widTakel.l.Consumer I  $widGivel.Widl(\(widGivel,widTakel} 
1 1 ==> (Producer I $widTakel.l.Consumer I Widl(\(widGive1widTakel} 
1 1 ==> (Producer 	l.Consumer 	MidO(\{widGivel,widTekel} 
1 1 1 ===> (1. widGivel.Producer I $widTakel.l.Consumer  I ($widGivel.Mid2 + 

$widTakel .MidO( (\(widGivel,widTakel) 
1 1 1 ===> (1. widGivel.Producer 	l.Consumer I WidO(\(widGivel,widTakel) 
1 1 1 1 ===> (widGivel.Producer 	$widTakel.l.Consumer I ($widGivel.Mid2 + 

$widTakel.WidO( (\{widGivel,widTekel} 
1 1 1 1 ===> (widGivel.Producer 	Consumer I $widGivel.Widl(\widGivel,widTakel} 
1 1 1 1 ===> (widGivel.Producer 	l.Consumer 	WidO(\(widGivel,widTekel) 
1 1 1 1 ===> (Producer 	$widTekel.l.Consumer I Wid2(\{widGivel,widTakel) 
1 1 1 1 ===> (Producer 	l.Consumer 	Midl(\(widGivel,widTakel} 
1 1 1 1 1 ===> (1. widGivel.Producer I $widTakel.l.Consumer  I 

$widpakel . Midl ( \ {widGivel, widTakel) 
1 1 1 1 1 1 ===> (widGivel.Producer I $widTakel.l.Consumer 

$widTakel .Widl ( \ (widGivel widrakel) 
=== 1 1 1 1 1 1 ===> (widGivel.Producer 	Consumer I ($widGivel.Mid2 + 
$widTakel .WidO( ) \(widGivelwidTakel) 

1 1 1 1 1 1 => (widGivel.Producer 	l.Consumer I Midl(\(widGivel,widTekel} 
1 1 1 1 1 1 ===> (Producer I l.Consumer I Wid2(\(widGive1,widTake1) 

Figure 3.17 

Model 

hi Ferry $cooptFQ1.1. schedl.l.Ferry + $cooptFQ2.1. sched2.l.Ferry 
+ $cooptFQ3.1. sched3.l.Ferry 
bi Carl 1. waitFQl.$schedl.$O 
hi Car2 2. waitFQ2.$sched2.$O 
hi Car3 3. waitFQ3.$sched3.$O 

hi FQ $waitFQ1.FQ1 + $weitFQ2.FQ2 + $waitFQ3.FQ3 
hi FQ1 $cooptFQl.FQ + $waitFQ2.FQ12 + $waitFQ3.FQ13 
hi FQ2 $cooptFQ2.FQ + $waitFQ3.FQ23 + $waitFQ1.FQ21 
hi FQ3 $cooptFQ3.FQ + $waitFQ1.FQ31 + $weitFQ2.FQ32 
hi P012 $cooptFQ1.FQ2 + $waitFQ3.FQ123 
hi FQ13 $cooptFQ1.FQ3 + $weitFQ2.FQ132 
hi FQ21 $cooptFQ2.FQ1 + $waitFQ3.FQ213 
hi P023 $cooptFQ2.FQ3 + $waitFQ1.FQ231 
hi FQ31 $cooptFQ3.FQl + $waitFQ2.FQ312 
hi FQ32 $cooptFQ3.FQ2 + $waitFQl.FQ321 
hi P0123 $'cooptFQ1.FQ23 
hi P0132 $cooptFQ1.FQ32 
hi P0213 $cooptFQ2.FQ13 
hi P0231 $cooptPQ2.FQ31 
hi P0312 $cooptFQ3.F012 
hi P0321 $cooptPQ3.PQ21 

hi Model ( Ferry I Carl I Car2  I Cer3  I P0 (\{waitFQl,waitFQ2,waitFQ3,\ 
cooptFQl cooptFQ2, cooptFQ3, schedi, sched2 sched3 } 
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Output 
Command: states Model 

Model 
(($cooptFQl.l.  schedl.l.Ferry + $cooptFQ2.1. sched2.1.Ferry + $cooptFQ3.1. sched3.1.Ferry) 

waitFQ1.$schedl.$0 I 1. waitFQ2.$sched2.$0 I 2. waitFQ3.$sched3.$0 I ($waitFQl.FQ1 + 
$waitFQ2.FQ2 + 
$waitFQ3 .FQ3) ) \cooptFQl, cooptFQ2, cooptFQ3, schedi, sched2, sched3,waitFQl,waitFQ2,waitFQ3) 

(($cooptFQl.1.  schedl.l.Ferry + $cooptFQ2.1. 'sched2.1.Ferry + $cooptFQ3.1. sched3.l.Ferry) 
$schedl.$0 I 1. 'waitFQ2.$sched2.$O I 2. waitFQ3.$sched3.$0 I 
FQ1)\(cooptFQl,cooptFQ2,cooptFQ3, schedi, sched2,sched3,waitFQl,weitFQ2,waitFQ3) 

(1. 'schedl.l.Ferry I $schedl.$0 I 1. 'waitFQ2.$sched2.S0 J 2. 'waitFQ3.$sched3.$0 I 
FQ) \{cooptFQl, cooptFQ2,cooptFQ3,schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3) 

(($cooptFQl.1.  'schedl.l.Ferry + $cooptFQ2.1. sched2.l.Ferry + $cooptFQ3.l. sched3.1.Ferry) 
$schedl.$0 I 'waitFQ2.$sched2.$0 I 1. 'waitFQ3.$sched3.$0 I ($waitFQ2.FQ12 + $waitFQ3.F013 + 
$ 'cooptFQl .FQ)) \cooptFQl, cooptFQ2,cooptFQ3, schedl, sched2, sched3 ,waitFQl,waitFQ2,waitFQ3) 

('schedl.l.Ferry I $schedl.$0 	waitFQ2.$sched2.$0 I 1. 'waitFQ3.$sched3.$0 I ($waitFQl.FQ1 
$waitFQ2.FQ2 + $waitFQ3.FQ3)) 
\(cooptFQl, cooptFQ2,cooptFQ3,schedl sched2, sched3,waitFQl,waitFQ2,waitFQ3) 

(l. 'schedl.l.Ferry I $schedl.$0  I waitFQ2.$sched2.$0 I 1. 'waitFQ3.$sched3.$O j FQ) 
\(cooptFQl, cooptFQ2,cooptFQ3, schedi, sched2, sched3,waitFQl,waitFQ2,waitFQ3) 

((ScooptFQl.l. schedl.l.Ferry + $cooptFQ2.1. sched2.l.Ferry + $cooptFQ3.1. .sched3.1.Ferry) 
$schedl.$0 I $sched2.$0  I 1. 'waitFQ3.$sched3.$0 I FQ12) 
\ (cooptFQl, cooptFQ2, cooptFQ3, schedi, sched2, sched3 waitFQl waitFQ2 , waitFQ3) 

(schedl.l.Ferry I $schedl.$0  I $sched2.$0  I 1. waitFQ3.$sched3$0 I FQ2) 
\(cooptFQl, cooptFQ2,cooptFQ3, schedi, sched2,sched3 ,waitFQl,waitFQ2,waitFQ3) 

= (1.Ferry I $0  I 'waitFQ2.$sched2.$0 I 1. 'waitFQ3.$sched3.$0 I ($waitFQ1.FQ1 + 
$waitFQ2.FQ2 * $waitFQ3.FQ3)) 
\(cooptFQl, cooptFQ2, cooptFQ3, ached?, sched2,sched3,waitFQl,waitFQ2,waitFQ3) 

(1. schedl.1.Ferry I $schedl.$0 I $sched2.$0  I 1. waitFQ3.$sched3.$0I FQ2( 
\(cooptFQl,cooptFQ2, cooptFQ3, schedi, sched2, sched3,waitFQl,waitFQ2,waitFQ3) 

(($cooptFQl.1. schedl.1.Ferry + $cooptFQ2.1. 'sched2.1.Ferry + $cooptFQ3.1. sched3.l.Ferry( 
$schedl.$0 I $sched2.$0  I waitFQ3.$sched3.$0 I ($waitFQ3.FQ123 + $cooptFQ1.FQ2(( 
\(cooptFQl,cooptFQ2, cooptFQ3, schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3) 

(1.Ferry I $0  I $sched2.$0 I 1. waitFQ3.$sched3.$0 I FQ2( 
\cooptFQ1, cooptFQ2,cooptFQ3,schedl,sched2, sched3,waitFQl,waitFQ2,waitFQ3} 

('schedl.l.Ferry I $schedl.$0  I $sched2.$0  I 'waitFQ3.$sched3.$O I ($waitFQ1FQ21 + 
$waitFQ3.FQ23 + $cooptFQ2.FQ() 
\(cooptFQl, cooptFQ2, cooptFQ3 , schedl, sched2, sched3 ,waitFQl,waitFQ2,waitFQ3) 

(1. schedl.1.Ferry I $schedl$0  I $sched2.$0  I 'waitFQ3.$sched3.$0 I FQ2) 
\{cooptFQl, cooptFQ2, cooptFQ3, schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3} 

(($cooptFQl.1.  schedl.1.Ferry + $cooptFQ2.1. 'sched2.1.Ferry + $cooptFQ3.1. sched3.1.Ferry( 
$schedl.$0 I $sched2.$0  I Ssched3.S0 I FQ123( 
\(cooptFQl,cooptFQ2, cooptFQ3, schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3) 

= (($cooptFQl.1. 'schedl.l.Ferry + $cooptFQ2.1. sched2.l.Ferry + 
$cooptFQ3.1. sched3.1.Ferry) I $schedl.$0  I $sched2.$0  I $sched3.$0  I $'cooptFQ1.FQ23) 
\ (cooptFQl, cooptFQ2, cooptFQ3 , schedl, sched2 , sched3 , waitFQl , waitFQ2 , waitFQ3 

(Ferry I $0  I $sched2.$0  I 'waitFQ3.$sched3.$0 I ($waitFQ1.FQ21 + $waitFQ3.FQ23 + 
$ 'cooptFQ2 .FQ( ( \(cooptFQl, cooptFQ2 , cooptFQ3, schedl, sched2, sched3,waitFQl,waitFQ2 ,waitFQ3( 

('schedl.l.Ferry I $schedl.$0  I $sched2.$0  I $sched3.$0  I FQ23( 
\ cooptFQ1, cooptFQ2, cooptFQ3 , schedi, sched2, sched3 , waitFQl , waitFQ2 , waitFQ3 I 

= (1.Ferry I $0 I $sched2.$0  I waitFQ3.$sched3.$0  I ($waitFQl.FQ21 + $waitFQ3.FQ23 + 
$ 'cooptFQ2 .FQ)) \(cooptFQl,cooptFQ2,cooptFQ3,schedl,sched2, sched3,waitFQl,waitFQ2,waitFQ3) 

(1. 'schedl.l.Ferry I $schedl.$0  I $sched2.$0  I $sched3.$0  I FQ23( 
\ (cooptFQl, cooptFQ2 , cooptFQ3, schedl, sched2, sched3 , waitFQl , waitFQ2 , waitFQ3 

(1. 'sched2.1.Ferry I $0  I $sched2.$0  I 'waitFQ3.$sched3.$0  I 
FQ( \cooptFQ1,cooptFQ2,cooptFQ3, schedi, sched2,sched3,waitFQl,waitFQ2,waitFQ3) 

(Ferry I $0  I $sched2.$0 I $sched3.$0 I FQ23( 
\(cooptFQl,cooptFQ2, cooptFQ3, schedl,sched2, sched3,waitFQl,waitFQ2,waitFQ3) 

= (($cooptFQl.1. 'schedl.l.Ferry + $cooptFQ2.1. sched2.1.Ferry + 
$cooptFQ3.1. 'sched3.1.Ferry( I $0  I $sched2.$0  I $sched3.$0  I ($waitFQ1.FQ231 + $'cooptFQ2.FQ3)( 
\(cooptFQl, cooptFQ2,cooptFQ3 schedi, sched2, sched3 ,waitFQl,waitFQ2,waitFQ3) 
= (Ferry 1 $0 I $sched2$0  I $sched3.$0  I ($waitFQ1.FQ231 + $'cooptFQ2.FQ3() 

\cooptFQ1, cooptFQ2, cooptFQ3, schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3) 
(1.Ferry I $0  I $sched2.$0  I $sched3.$0  I FQ23( 

\ {cooptFQl, cooptFQ2, cooptFQ3, schedl, sched2, sched3 , waitFQl , waitFQ2 , waitFQ3 
= (1.Ferry I $0  I $sched2.$0  I $sched3.$0  I ($waitFQ1.FQ231 + $cooptFQ2.FQ3() 

\ (cooptFQl, cooptFQ2 , cooptFQ3, schedi, sched2, sched3 , waitFQl , waitFQ2 , waitFQ3 
('schedl.l.Ferry I $schedl.$0  I $sched2.$0 I $sched3.$0 I ($waitFQ1.FQ231 * $'cooptFQ2.FQ3)) 

\(cooptFQl,cooptFQ2,cooptFQ3, schedl, sched2,sched3 ,waitFQl,waitFQ2,waitFQ3) 
(1. 'sched2.1.Ferry I $0 I $sched2.$0  I $sched3.$0  I FQ3( 

\(cooptFQl, cooptFQ2, cooptFQ3,schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3} 
(sched2.1.Ferry I $0  I $sched2.$0  I $sched3.$0  I ($waitFQl.FQ31 * $waitFQ2.FQ32 + 

$ 'cooptFQ3 .FQ() \{cooptFQl, cooptFQ2, cooptFQ3, schedi, sched2,sched3 ,waitFQl,waitFQ2,waitFQ3} 
(1.Ferry I $0  I $0  I $sched3.$0  I ($waitFQl.FQ31 + $waitFQ2.FQ32 + 

$ cooptFQ3 .FQ) (\{cooptFQl,cooptFQ2, cooptFQ3, schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3} 
(Ferry I $0  I $0  I $sched3.$0  I ($waitFQ1.FQ31 + $waitFQ2FQ32 * $cooptFQ3.FQ(( 

\(cooptFQl, cooptFQ2, cooptFQ3, schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3) 
= (($cooptFQ1.1. 'schedl.l.Ferry + $cooptFQ2.1. 'sched2.1.Ferry + 

$cooptFQ3.1. 'sched3.1.Ferry( I $0 I $0  I $sched3.$0  I ($waitFQ1.FQ31 + $waitFQ2.FQ32 + 
$ cooptFQ3 .FQ( ( \(cooptFQl, cooptFQ2, cooptFQ3,schedl, sched2,sched3,waitFQl,waitFQ2,waitFQ3) 

(1. 'sched3.1.Ferry I $0  I $0  I $sched3.$0  I FQ( 
\(cooptFQl, cooptFQ2, cooptFQ3, schedi, sched2, sched3,waitFQl,waitFQ2,waitFQ3) 

('sched3.1.Ferry I $0  I $0  I $sched3.$0  I ($waitFQ1.FQ1 + $waitFQ2.FQ2 + $waitFQ3.FQ3)( 
\{cooptFQl, cooptFQ2, cooptFQ3, schedl,sched2, sched3,waitFQl,waitFQ2,waitFQ3( 

(1.Ferry I $0  I $0  I $0  I ($waitFQ1.FQ1 + $waitFQ2.FQ2 + $waitFQ3.FQ3)( 
\cooptFQ1, cooptFQ2 ,cooptFQ3, schedl, sched2 , sched3,waitFQl,waitFQ2,waitFQ3} 

(Ferry I $0  I $0  I $0  I ($waitFQ1.FQ1 + $waitFQ2.FQ2 + 
$waitFQ3 .FQ3( (\(cooptFQl, cooptFQ2, cooptFQ3,schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3) 

= (($cooptFQl.l. 'schedl.l.Ferry + $cooptFQ2.1. sched2.1.Ferry + 
$cooptFQ3.1. 'sched3.1.Ferry) 1 $0 I $0  I $0  I ($waitFQ1.FQ1 + $waitFQ2.FQ2 + $waitFQ3.FQ3)( 
\ {cooptFQl, cooptFQ2, cooptFQ3, schedl, sched2, sched3 , waitFQl, waitFQ2 , waitFQ3) 
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Figure 3.19 

Model 
hi Waiter $waitCQ.(valGet3.$0 + valGet0.Waiter + valGetl.Waiter\ 
+ valGet2.Waiter * valGet4.Waiter) 

hi ValO valAssl.Vall+valAss2.Va12+valAss3.Va13+valAss4.Val4 + $valGeto.ValO 

hi Vail valAssl.Vall+valAss2.Va12+valAss3.Va13+valAss4.Va14 + $valGetl.Vall 

bi Va12 valAssl .Vall+valAss2 .Va12+valAss3 .Va13+valAss4 .Va14 + $ valGet2 .Va12 

hi Va13 valAssi .Vall+valAss2 .Val2+valAss3 .Va13+valAss4 .Va14 + $ valGet3 .Va13 

bi Va14 valAssl.Vall+valAss2.Val2+valAss3.Va13+valAss4.Va14 + $valGet4.Val4 

hi Signaller valGet0. valAssi. waitCg.Signaller +\ 
valGeti. valAss2. waitCQ.Signaller +\ 
valGet2. valAss3. waitCQ.Signaller +\ 
valGet3. 'valAss4. waitCQ.Signaller +\ 
valGet4. valAss5. waitCQSignaller 

hi Model (Waiter I Signaller I ValO(\{waitCQ\ 
valGet0 valGeti valGet2 valGet3 valGet4, \ 
valAssO valAssi valAss2 ,valAss3 valAss4} 

Output 
Sim,  random 
For how many steps: 20 

t<valGet0> ---> 
t<valAssl> ---> 
t<waitCQ> ---> 
t<valGtl> ---> 
t<valGetl> ---> 
t<valAss2> ---> 
t<waitCQ> ---> 
t<valGet2> ---> 
t<valGet2> ---> 
t<valAss3> ---> 
t<waitCQ> ---> 
t<valGet3> ---> 
t<valGet3> --> 
t<valAss4> ---> 

** Simulation terminated: Deadlock. ** 

Simulated agent: ($0 I waitCg.Signaller 
Va14( \(valAss0valAssl,valAss2,valAss3valAss4,valGetO,valGetl,valGet2,valGet3,valGet4,wajtcg) 
Transitions: 

** Deadlocked. ** 
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Figure 3.20 

Model 
bi Waiterl vaiGet3.0 + valGetO. waitCQl.Waitingl\ 

+valGeti. waitCQl.Waitingl\ 
+valGet2. waitCQl.Waitingl\ 
+ valGet4. waitCQl.Waitingl 

hi Waitingi tryl.(valGet3.'goGol.0 + valGeto.noGol.Waitingl\ 
+ valGeti. noGol.Waitingl\ 
+ valGet2. noGol.Waitingl\ 
+ valGet4. 'noGol.Waitingl) 

bi Waiter2 valGet3.0 + valGetO. 'waitCQ2.Waiting2\ 
+ valGeti. 'waitCQ2.Waiting2\ 
+ valGet2. waitCQ2.Waiting2\ 
+ valGet4. 'waitCQ2.Waiting2 

bi Waiting2 try2.(valGet3. goGo2.0 + valGetO. 'noGo2.Waiting2\ 
+ valGeti. 'noGo2.Maiting2\ 
+ valGet2. 'noGo2.Waiting2\ 
+ valGet4. 'noGo2.Waiting2) 

hi ValO valAssi .Vall+valAss2 .Va12+vaiAss3 .Va13+valAss4 .Va14 + 'valGetO .ValO 
bi Vail valAssi .Vall+valAss2 .Va12+valAss3 .Va13+valAss4 .Va14 + 'valGeti Vail 
bi Va12 valAssi .Vall+valAss2 .Va12+valAss3 .Val3+valAss4 .Va14 + 'valGet2 .Va12 
hi Va13 valAssi .Vall+valAss2 .Va12+valAss3 .Val3+valAss4 .Va14 + 'valGet3 .Va13 
hi Va14 valAssl .Vall+vaiAss2 .Va12+valAss3 .Val3+valAss4 .Va14 + 'valGet4 .Va14 

hi Signaller valGetO. 'valAssi. 	signalCQ.done.Signailer +\ 
valGeti. 'valAss2. 'signalCQ.done.Signaller +\ 
vaiGet2. 'valAss3. 	signalCQ.done.Signaller +\ 
valGet3. 'valAss4. 'signalCQ.done.Signaller +\ 
valGet4. 'valAss5. 'signalCQ . done. Signaller 

hi CQ signalCQ.CQ + waitCQ1.CQ1 + waitCQ2.CQ2 
hi CQ1 signalCQ.Tryl000 + waitCQ2.CQ12 
hi CQ2 signalCQ.Try2000 + waitCQ1.CQ21 
hi CQ12 signalCQ.Tryl200 
bi CQ21 signalCQ.Try2lOO 
bi Try0000 	done.CQ 
bi Tryl000 	try1.(noGol.done.CQ1 + goGol.Try0000) 
hi TryOOlO 	done.CQ1 
bi Try2000 	try2.(noGo2. 	done.CQ2 + goGo2.Try0000) 
bi Try0020 	done.CQ2 
hi Try1200 	tryl.(noGol. done.CQ12 + goGol.Try2000) 
hi TryOO12 	done.CQ12 
hi Try2100 	try2.(noGo2.'done.CQ21 + goGo2.Tryl000) 
hi Try0021 	done.CQ21 
hi Try2010 	'try2.(noGo2.'done.CQ12 + goGo2.TryOO10) 
hi Tryl02O 	'tryl.(noGol.'done.CQ21 + goGol.Try0020) 
hi Model 	(Waiteri 	I 	Waiter2 	I 	Signaller 	I 	CQ 	I 	ValO)\(waitCQ1,waitCQ2,\ 
signalCQ, done, tryl, try2, goGol, goGo2 , noGol , noGo2, \ 
valGetO , valGeti , valGet2 , valGet3 , valGet4, \ 
valAssO , valAssi , valAss2 , valAss3 , valAss4 , valAss5) 

Output 
Sim> random 30 

t<valGet0> ---> 
t<valAssl> ---> 
tevalGeti> ---> 
t<waitCQl> ---> 
t<signalCQ> ---> 
t<tryl> ----> 
t<valGetl> ---> 
tevalGeti> ---> 
tenoGol> ---> 
t<done> ---> 
t<waitCQ2> ---> 
t'zvalGetl> ----> 
tevalAss2> ----> 
t<signalCQ> ---> 
t<tryl> 
t<valGet2> ---> 
tenoGol> ---> 
t<done> ---> 
t<valGet2> ---> 
t<valAss3> ---> 
t<signalCQ> ---> 
t<tryl> ---> 
t'zvalGet3s ---> 
tegoGol> ---> 
t<try2> ---> 
t<valGet3> ---> 
t<goGo2> ---> 
t<done> ---> 
t<valGet3> ---> 
t<valAss4> ---> 

Simulation complete. 
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Figure 3.21 

Model 

bi Waiterl valGet3.0 + valGetO. 'waitCQl.Waitingl\ 
+ valGetl. 'waitCQl.Waitingl\ 
+valGet2. 'waitCQl.Waitingl\ 
+ valGet4. 'waitCQl.Waitingi 

bi Waitingl tryl.(valGet3.goGol.0 + valGett.'noGol.Waitingi\ 
+ valGetl. 'noGol.Waitingl\ 
valGet2. 'noGol.Waitingl\ 

+ valGet4. 'noGol.Waitingl) 

bi Waiter2 valGet3.0 + valGetO. 'waitCQ2.Waiting2\ 
+ valGeti. 'waitCQ2.Waiting2\ 
+ valGet2. waitCQ2.Waiting2\ 
+ valGat4. 'waitCQ2.Waiting2 

bi Waiting2 try2.(valGet3.'goGo2.0 + valGeto. noGo2.Waiting2\ 
+ valGetl. 'noGo2.Waiting2\ 
+ valGet2. 'noGo2.Waiting2\ 
+ vaiGet4. noGo2.Waiting2) 

bi ValO valAssl.Vall+valAss2 .Va12-i-valAss3 .Va13+valAss4.Val4 + valGetO.ValO 
bi Vail vaiAssi.Vall+valAss2 .Vai2+vaiAss3 .Vai3+valAss4.Va14 + 'valGeti.Vall 
bi Va12 valAssi .Vall-i-vaiAss2 .Val2+vaiAss3 .Vai3+valAss4 .Va14 + 'valGet2 .Va12 
bi Va13 valAsal .Vall+valAss2 .Vai2-i-valAss3 .Va13+valAss4 .Va14 + 'valGet3 .Va13 
bi Va14 valAssl .Vall+valAss2 .Va12+vaiAss3 .Va13+valAss4 .Va14 + 'valGet4 .Va14 

bi Signaller valGetO. vaiAssl. 'signalcQ.done.Signaller +\ 
valGeti. vaiAss2. 'signalCQ.done.Signaller +\ 
valGet2. valAss3. 'signalCQ.done.Signaller +\ 
valGet3. valAss4. 'signalCQ.done.Signalier +\ 
vaiGet4. 'valAss5. 'signalCQ.done.Signaller 

bi CQ signalCQ.CQ + waitCQ1.CQ1 + waitCQ2.CQ2 
bi CQ1 signalCQ.Tryl000 + waitCQ2.CQ12 
bi CQ2 signalCQ.Try2000 + waitCQl.CQ21 
bi CQ12 signalCQ.Tryi200 
bi CQ21 signalCQ.Try2lOO 

bi Try0000 	'done.CQ 
bi Tryi000 	'tryl.(noGol.TryOOlO + goGol.Try0000) 
bi TryOOiO 	'done.CQl 
bi Try2000 	'try2.(noGo2.TryOO20 + goGo2.Try0000) 
bi Try0020 	done.CQ2 
bi Try1200 	'tryl.(noGol.Try2OlO + goGol.Try2000) 
bi TryOO12 	'done.CQ12 
bi Try2100 	'try2.(noGo2.TrylO2O + goGo2.Tryl000) 
bi Try0021 	'done.CQ21 
bi Try2010 	'try2.(noGo2.TryOO12 + goGo2.TryOO10) 
bi Tryl020 	'try1.(noGo1.Try0021 + goGol.Try0020) 

bi Model 	(Waiterl 	I 	Waiter2 	J 	Signaller 	I 	CQ 	I 	VaiO)\CwaitCQ1,waitCQ2,\ 
signalCQ, done, tryl, try2, goGol , goGo2 , noGol , noGo2, \ 
valGetO , valGetl , valGet2 , valGet3 , valGet4, 
valAssO , valAssl ,valAss2 valAss3 , valAss4 , valAss5} 
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Output 

Sirs> random 30 
tevalGetO> ---> 
t<valGet0> ---> 
t<valGetOs ---> 
t<valAssl> ---> 
t<waitCQ2> ---> 
t<signalCQ> ---> 
t<try2> ---> 
t<valGetl> ---> 
t<noGo2> ---> 
tadone> ---> 
t<waitCQl> ---> 
t<valGetl> ---> 
t<valAss2> ---> 
t<signalCQ> ---> 
t<try2> ---> 
t<valGet2> ---> 
t<noGo2> ---> 
t<tryl> ---> 
t<valGet2> ---> 
t<noGol> ---> 
tedone> ---> 
t<valGet2> ---> 
t<valAss3> ---> 
t<signalCQ> ---> 
t<try2> ---> 
t<valGet3> ---> 
t<goGo2> ---> 
tetryl> ---> 
t<valGet3> ---> 
t<goGol> ---> 

Simulation complete. 

Simulated agent: (0 I 0 1 done.Signaller I Try0000 I Va13) 
\(donegoGol,goGo2,noGol,noGo2signalCQ,tryl,try2,valAsso,valAsslvalAss2,valAss3,valAss4,valAss5 
valGetO valGeti valGet2 valGet3 valGet4 waitCQl waitCQ2) 
Transitions: 

1: 	tadone> ---> (0 1 0 1 Signaller I CQ  I \Ta13) 
\{done,goGol,goGo2,noGol,noGo2, signalCQ, tryl, try2,valAss0,valAssl,valAss2,valAss3,valAss4,valAss5 
,valGet0,valGetl,valGet2,valGet3,valGet4,waitCQ1,waitCQ21 
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Figure 3.22 

Model 
bi Ited CheckerlO 

bi CheckerO 0 
bi Checkerl l.(iGet3.Ited + iGetO.Checker0) 
bi Checker2 1. iGet3.Ited * iGet0.Checkerl) 
hi Checker3 1.(iGet3.Ited + iGet0.Checker2) 
bi Checker4 1.(iGet3.Ited + iGetO.Checker3) 
bi Checker5 1.(iGet3.Ited * iGet0.Checker4) 
bi Checker6 1.(iGet3.Ited + iGet0.Checker5) 
bi Checker7 1. (iGet3.Ited + iGet0.Checker6) 
bi Checker8 1.(iGet3.Ited + iGet0.Checker7) 
bi Checker9 1. (iGet3.Ited + iGet0.Checker8) 
bi CheckerlO 1.(iGet3.Ited + iGeto.Checker9) 

bi Iter 1. iGetO.l. iGet0.l. lGet3.$0 

bi Model (Ited I Iter)\(iGet3,iGet0) 

Output 
Command: if m322.cwb 
done. 
Command: states Model 

Model 
((iGet3.Ited + iGetO.Checker9) I 	iGeto.l.iGet0.1.lGet3.$0)\(iGetO,iGet3) 
(Checker9 I l.iGet0.l.lGet3.$0)\(iGeto,iGet3) 
((iGet3.Ited + iGet0.Checker8) I 	iGeto.l.lGet3.$0)\(iGeto,iGet3) 
(CheckerS I 1. lGet3.$O)\(iGet0,iGet3) 
((iGet3.Ited + iGeto.Checker7) 	lGet3.$0)\(iGet0,iGet3) 
((iGet3.Ited + iGet0.Checker7) 	$0)\iGetO,iGet3) 

Command: statesobs Model 
===> Model 

1 ===> ((iGet3.Ited + iGet0.Checker9) 	iGetO.l. iGet0.l. lGet3.$0)\{iGetOiGet3} 
1 ==> (Checker9 I 1. iGet0.l. lGet3.$0)\iGet0,iGet3) 
1 1 ===> ((iGet3.Ited + iGet0.Checker8) I 'iGet0.l.lGet3.$0)\{iGet0,iGet3) 
1 1 ===> (CheckerS I 1. lGet3.$0)\(iGet0,iGet3) 
1 1 1 ===> ((iGet3.Ited + iGet0.Checker7) I 'lGet3.$0)\(iGetO,iGet3) 
1 1 1 lGet3 ==> ((iGet3.Ited + iGet0.Checker7) I $0)\{iGet0,iGet3} 

Figure 3.23 

Model 

See Figure 3.11 

Output 

See Figure 3.11. 
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Figure 3.24 

Model 
bi Philosopher rtAcql.2. lfAcql.2. rfRell. lfRell.2.Philosopher 
bi Fork fAcql.NoFork 
bi NoFork fRell.Fork 
bi P1 Philosopher[al/rfAcql,a2/lfAcql,rl/rfRell,r2/lfRellJ 
bi P2 Philosopher[a2/rfAcql,a3/lfAcql,r2/rfRell,r3/lfRellJ 
bi P3 Philosopher[a3/rfAcqlal/lfAcql,r3/rfRell,rl/lfRell] 
bi Forkl Fork[al/fAcgl,rl/fRell] 
hi Fork2 Fork[a2/fAcql,r2/fRell} 
bi Fork3 Fork[a3/fAcq1,r3/fRel1] 
bi Model (Forkl I Fork2 I Fork3  I Fl  I P2  I P3)\(al,a2,a3,rl,r2,r3) 

Output 
Command: sim 
Agent: Model 
Simulated agent: Model 
Transitions 

t<a3> ---> (Forkl I Fork2 I NoFork[a3/fAcq1,r3/fRel1] I P1 I P2 
(2.'lfAcql.2.'rRe11. 1fRell.2.Philosopher([al/1fAcql,rl/lfRel1,e3/rfAcql,r3/rfRel1](\al,a2,a3,r 
1, r2 r3) 

t<a2> ---> (Forkl I NoFork[a2/fAcql,r2/fRel1) I Fork3 I P1 
(2.'lfAcql.2. rfRell.'lfRell.2.Philosopher)[a3/lfAcql,r3/lfRell,a2/rfAcql,r2/rfRell) 
P3) \ Cal, a2 a3 , ri, r2 r3) 

t<al> ----> (NoFork[al/fAcql,rl/fRell] I Fork2 I Fork3 
(2.'lfAcql.2.'rfRell.'lfRell.2.Philosopher)[a2/lfAcql,r2/lfRell,al/rfAcql,rl/rfRell] I P2 
P3) \ (al, a2 ,a3 rl r2, r3) 
Sim> random 12 

t<a3> ---> 
t<a2> ---> 
t<al> ---> 

** Simulation terminated: Deadlock. ** 

Simulated agent: (NoFork[al/fAcql, rlhfRell] I NoFork[a2/fAcql, r2/fRell] 
NoFork[a3/fAcql,r3/fRell] I (2.lfAcql.2. rfRell. lfRell.2.Philosopher) 
[a2/lfAcql,r2/lfRell,al/rfAcql,rl/rfRell] I 
(2.'lfAcql.2.'rfRell.'lfRell.2.Philosopher)[a3/lfAcgl,r3/lfRell,a2/r 

Figure 3.26/7/8 
Model 

bi Boat $ tugacq2 . $ jacqi. (WorklNewBoat) 
bi Work 3. tugrel2.lO.$tugacql.3.  tugrell. jrell.Idle 
bi NewBoat 4. 'n.Boat 
bi Idle 1.Idle 
hi Tugs3 ($tugacql.Tugs2)+($tugacq2.Tugsl)+($tugacq3.Tugso) 
hi Tugs2 ($tugacql.Tugsl)+($tugacq2.TugsO)+($tugrell.Tugs3) 
bi Tugsl ($tugacql.TugsO)+($tugrell.Tugs2)+($tugrel2.Tugs3) 
bi TugsO ($tugrell.Tugsl)-i- ($tugrel2.Tugs2)+($tugrel3.Tugs3) 
bi Jetty2 ($jacql.Jettyl) + ($jacq2.JettyO) 
bi Jettyl ($jacgl.JettyO) + ($jrell.Jetty2) 
hi JettyO ($jrell.Jettyl) + ($jrel2.Jetty2) 
hi Obs $n.Obs 
bi DEMOS ObsllOO.O 
hi Model (Tugs3lJetty2jBoat) 

\(tugacql, tugacq2, tugacq3, tugrell, tugrel2, tugrel3, jacqi, jacq2, jrell, jrel2) 
hi Frog (DEMOS I Model)\(n) 

Output 
Sim> 	t<tugacq2> ---> 

1 ---> 
t<jacgl> ---> 
1 ---> 
1 ---> 
1 ---> 
t<tugrel2> ---> 
1 ---> 
t<n> ---> 
t<tugacq2> ---> 
t<jacql> ---> 
1 ---> 
1 ---> 
1 ---> 
t<tugrel2> ---> 
1 ---> 
ten> ---> 
t<tugacq2> ---> 
1 ---> 
1 ---> 
1 ---> 
1 ---> 
1 ---> 
t<tugacql> ---> 
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Chapter 6 

Figure 6.1 

Model 
bi Boat jAl. tA2. tR2. tAl. ,jRl.O 
bi T2 (tAi.Ti) + (tA2.TO) 
bi Ti (tAl.TO) + (tRi.T2) 
bi TO (tRl.Ti) + (tR2.T2) 
bi J2 (jAi.Ji) + (jA2.JO) 
bi Ji (jAi.JO) + (jRl.J2) 
bi JO (jR1.J1) + (jR2.J2) 
bi Ml (T2IJ2IBoatIBoatIBoat)\(tAi  tA2, jAi, jA2,tRi tR2, jRl, jR2) 
bi 3s2 (jAi.Jsl) 
bi Jsl (jAl.JsO) + (jRl.Js2) 
bi JsO (jRi.Jsi) 
bi M2 (T2IJs2IBoatIBoatIBoat)\(tAi  tA2 tRltR2,jAi, jRi) 

Output 
Command: eq 
Agent: Ml 
Agent: M2 
true 
Command: cong 
Agent: Mi 
Agent: M2 
true 

Figure 6.3 

Model 
bi R bAl. bRi.R 
bi W bA3. bR3.W 
bi B3 (bAl.B2) +(bA2.B1) + (bA3.BO) 
bi B2 (bAl.Bi) +(bA2.BO) + (bRi.B3) 
bi Bi (bAi.BO) +(bR2.B3) + (bRi.B2) 
bi BO (bR3.B3) -+(bR2.B2) + (bR1.B1) 
bi Mi (RIRWB3)  \(bRl,bR2bR3,bAibA2,bA3) 
bi ER bRAi. bRR1.ER 
bi EW bWA3. bMR3.EW 
bi EM (B3IER[bAi/bRAibRl/bRR1JIER[bAi/bRA1,bRi/bRRi] IEW[bA3/bWA3,bR3/bWR3fl\ 
\ (bAi bA2, bA3 bRi bR2, bR3) 
bi SB3 (bSA1.SB2) + (bSA3.SBO) 
bi SB2 (bSAi.SB1) + (bSR1.SB3) 
bi SBi (bSA1.SBO) + (bSR1.SB2) 
bi SBO (bSR3.SB3) + (bSR1.SB1) 
bi EMi (SB3 ER[bSAi/bRAi,bSR1/bRR1] jER[bSAi/bRAibSRi/bRRi} I 
EW[bSA3/bWA3bSR3/bWR3] ) \ 
\(bSAl bSA3 bSRi, bSR3) 

Output 
Command: eq 
Agent: EM 
Agent: EMI 
true 
Command: cong 
Agent: EM 
Agent: EM]. 
true 
Command: eq 
Agent: Mi 
Agent: EMi 
true 
Command: cong 
Agent: Mi 
Agent: EM]. 
true 
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Chapter 6 

Figure 6.1 

Model 
bi Boat jAl. tA2. tR2. tA?. jRl.O 
bi T2 (tAi.T1) + (tA2.TO) 
bi Ti (tAi.TO + (tR1.T2) 
bi TO (tRl.Ti) + (tR2.T2) 
bi J2 (jAl.J1) + (jA2.JO) 
bi Ji (jAl.JO) + (jRl.J2) 
bi JO (jRl.Ji) + (jR2.J2) 
bi Mi (T2IJ2JBoatIEoatIBoat)\{tAl  tA2,jAi,jA2,tRi, tR2, jRl,jR2} 
bi Js2 (jAl.Jsi) 
bi Jsi (jAi.JsO) + (jRi.Js2) 
bi JsO (jRi.Jsl) 
bi M2 (T2Js2IBoatBoatBoat)\(tAi,tA2tRi,tR2,jAi,jRi) 

Output 
Command: eq 
Agent: Mi 
Agent: M2 
true 
Command: cong 
Agent: Mi 
Agent: M2 
true 

Figure 6.3 

Model 
bi R bA?. bRi.R 
bi W bA3. bR3.W 
bi 83 (bA?.B2) +(bA2.Bi) + (bA3.BO) 
bi B2 (bAlE?) +(bA2.BO) + (bRi.83) 
bi B? (bAi.BO) +)bR2.B3) + (bRl.B2) 
bi BO (bR3.B3) +(bR2.B2) + (bRiE?) 
bi Ml (RIRWB3)\(bRi,bR2,bR3,bAi,bA2,bA3) 
bi ER bRA?. bRR?.ER 
bi EM bWA3. bWR3.EW 
bi EM (B3IER[bAl/bRA1,bRl/bRRi] IER[bAi/bRAi,bRi/bRRiI EW[bA3/bWA3,bR3/bWR3])\ 
\ (bAl bA2, bA3 bRi bR2 bR3) 
bi SB3 (bSA1.8B2) + (bSA3.SBO) 
bi SB2 (bSA1.SB1) + (bSR1.SB3) 
bi SB? (bSA1.SBO) + (bSR1.SB2) 
bi SBO (bSR3.SB3) + (bSRi.SBi) 
bi EM1 (SB3jER[bSAi/bRAi,bSR1/bRRi] IER[bSAi/bRA1,bSR1/bRRiI I\ 
EW[bSA3!bWA3bSR3/bWR3] ) 
\ {bSAi bSA3 bSRi bSR3} 

Output 
Command: eq 
Agent: EM 
Agent: EM? 
true 
Command: cong 
Agent: EM 
Agent: EM? 
true 
Command: eq 
Agent: Mi 
Agent: EM? 
true 
Command: cong 
Agent: Ml 
Agent: EM? 
true 
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Figure 6.5 

Model 
bi M dA2. dR2.hD.M 
bi P dA4. dR2. hD. dR2.P 
bi D5 dA5DO + dA4.Dl + dA3.D2 + dA2.D3 + dAl.D4 
bi D4 dA4.DO + dA3.Dl + dA2.D2 + dAl.D3 + dRl.D5 
bi D3 dA3.JJO + dA2.Dl + dAl.D2 + dR2.D5 + dRl.D4 
bi D2 dA2.DO + dAl.Dl + dR3.D5 + dR2.D4 + dRl.D3 
bi Dl dAl.DO + dR4.D5 + dR3.D4 + dR2.03 + dRl.D2 
bi DO dR5.D5 + dR4.D4 + dR3.D3 + dR2.D2 + dRl.Dl 
bi F (MIPID5)\(dRldR2,dR3,dR4,dR5 dAl,dA2,dA3,dA4,dA5,hD) 

bi D15 dlA4.Dll+ dlA2.D13 
bi D13 dlR2.D15 + dlA2.Dll 
bi Dli diR2.Dl3 
bi Fl (M[diA2/dA2,dlR2/dR2JIP[dlA4/dA4,dlR2/dR2]fDl5)\(dlR2,dlA2,diA4,hD) 

Output 
Agent: F 
Agent: Fl 
true 
Command: eq 
Agent: F 
Agent: Fl 
true 

Figure 6.8 

Model 
bi Bureau typing.Ci + copying.C2 + printing.C3 
bi Messenger typing.D1 + copying.D2 

bi Ci 0 
bi C2 0 
bi C3 0 
bi Di 0 
bi D2 0 

bi Model (Messenger I Bureau)\(typing,copying,printing) 

bi Modell (Messenger I Bureau) 

Output 
Command: states Modell 

Di 	C3 
Di 	C2 
D2 	Cl 
D2 	C3 
Messenger Cl 
Messenger C3 
Messenger 	C2 
Di 	Bureau 
D2 	Bureau 
D2 	C2 
Di 	Cl 
Modell 

Command: states Model 
)D2 	C2 ( \ {Copying,printing, typing) 
(Di 	Ci) \ (copying,printing, typing) 
Model 
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Figure 6.9 

Model 

bi Bureau typing.Cl + copying.C2 + printing.C3 
bi Messenger typing.D1 * copying.02 

bi Cl 0 
bi C2 0 
bi C3 0 
bi Dl 0 
bi D2 0 

bi Model (Messenger I Bureau)\)typing,copying,printing} 

bi Modell (Messenger 	Bureau) 

bi Emergency typing.Bureau 

bi Problem (Messenger I Emergency)\)typingcopying,printing) 

bi Probleml (Messenger I Emergency) 

Output 

Command: states Problem 
(Dl I Bureau) \(eopying,printing, typing) 
Problem 

Command: states Probleml 
02 	Cl 
D2 	C3 
Messenger 	Cl 
Messenger 	C3 
Messenger 	C2 
02 	C2 
02 	Bureau 
Dl 	Cl 
Dl 	C3 
Dl I C2 
Messenger I Bureau 
Dl 	Emergency 
D2 	Emergency 
Dl 	Bureau 
Probleml 
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Figure 6.11 

First simolification - Model 
bi Stream memAcq4. memRel4. tSched.Stream 

bi Mem4 memAcq4.MemO 
bi MemO memRel4.Mem4 

bi Input (Stream I Mem4)\(memAcq4,memRel4} 

bi Modela (Input I Input 

bi Streami tSched.Streaml 

bi Inputl Streami 

bi Modelia (Inputillnputi) 

Output 
Command eq 
Agent: Modela 
Agent: Modella 
true 

Second simDlification - Model 
bi Trans tsched. linkAcqi. buffAcq2. linkRell.\ 
linkAcqi. buffRel2. linkRell Trans 

bi Linki linkAcql.LinkO 
bi LinkO linkRell.Linkl 

bi Huffs2 buffAcq2.BuffsO 
bi suffsO buffRel2.Buffs2 

bi Modeib (Trans I Trans  I Linki I Buffs2(\ 
\ClinkAcql linkRell,buffAcq2,buffRel2) 

bi Transi tsched. linkAcqi. buffAcq2. buffRel2. 'linkRell.Trans 

bi Modelib (Transi I Transi I Linki I Buffs2(\ 
\(linkAcql linkRell,buffAcq2,buffRel2) 

Output 
Command: eq 
Agent: Modeib 
Agent: Modelib 
false 

Figure 6.12 

Model 
bi Station eAcql.Sending 
bi Sending eRell.Station 

bi Etherl eAcql.EtherO 
bi EtherO eRellEtherl 

bi Model (Etherl I Station I Station I Station(\(eAcql,eRell} 

Output 
Command: states Model 

Model 
= (Etherl I Station I Station I Station(\(eAcqleRell) 

(EtherO I Sending I Station I Station(\(eAcql,eRell) 
= (EtherO 	Station 	Sending 	Station(\(eAcql,eRell) 
= (EtherO 	Station 	Station I Sending)\{eAcqleRell) 
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Figure 6.14 

Model 
bi Stationi eWaittJntill.Waitingl 
bi Waitingl $schedl.Tryingl 
bi Tryingi eLenl.l.Stationl + eLen2.1.Stationl +eLen3.1.Stationl\ 

+ etenO. eAcql.Sendingl 
bi Sendingl 4. eRell.Donel 
bi Donal eQSignal.Stationl 

bi Station2 eWaituntil2.Waiting2 
bi Waiting2 $sched2.Trying2 
bi Trying2 etenl.l.Station2 + eLen2.1.Station2 +eLen3.1.Station2\ 

+ eLenO. eAcql.Sending2 
bi Sending2 4. eRell.Done2 
bi Done2 eQsignal.Station2 

bi Station3 eWaituntil3.Waiting3 
bi Waiting3 $sched3.Trying3 
bi Trying3 eLenl.l.Station3 + eLen2.1.Station3 +eLen3.1.Station3\ 

+ etenO. eAcql.Sending3 
bi Sending3 4. eRell.Done3 
bi Done3 eQSignal.Station3 

bi Etherl $eAcql.EtherO 
bi EtherO $eRell.Etherl 

bi EtherQ0000 $eWaittjntill.EtherQlOOl + $ewaituntil2.EtherQ2001\ 
+ $eWaituntil3.EtherQ3001 + $eQsignal.Signal0000 

bi EtherQlOOl $eMaittjntil2.EtherQl2O2 + $eWaittjntil3.EtherQl302\ 
+ $eQsignal . SignallOOl 

bi EtherQ2001 $eWaituntill.EtherQ2102 + $eWaitUntil3.EtherQ2302\ 
+ $eQSignal.Signal200l 

bi EtherQ3001 $eWaitUntil2.EtherQ3202 + $eWaituntill.EtherQ3102\ 
+ $eQSignal.Signal300l 

bi EtherQ1202 $eWaituntil3.EtherQl233 + $eQSignal.Signal1202 
bi EtherQ1302 $eWaittJntil2.EtherQl323 + $eQSignal.Signal1302 
bi EtherQ2102 $eWaituntil3.EtherQ2l33 + $eQSignal.Signal2lO2 
bi EtherQ2302 $ewaituntill.EtherQ2313 + $eQSignal.Signal2302 
bi EtherQ3102 $eWaittJntil2.EtherQ3123 + $eQSignal.Signal3102 
bi EtherQ3202 $ewaituntill.EtherQ3213 * $eQSignal.Signal3202 

bi EtherQ1233 $eQSignal.Signall233 
hi EtherQ1323 $eQSignal.Signall323 
hi EtherQ2133 $eQSignal.Signal2133 
bi EtherQ2313 $eQSignal.Signal2313 
hi EtherQ3123 $eQSignal . Signal3l23 
hi EtherQ3213 $eQSignal.Signal3213 

bi Signal0000 EtherQ0000 

hi SignellOOl schedl. eLenO.Signal0000 
hi Signa12001 sched2. eLenO.Signal0000 
bi Signa13001 sched3. eLenO.Signal0000 

bi Signa11202 schedi. eLenl.Signal200l 
hi Signa11302 schedi. eLenl.Signal300l 
hi Signa12102 sched2. 'eLenl.SignallOOl 
hi Signal2302 sched2. eLenl.Signal300l 
bi Signa13102 sched3. eLenl.SignallOOl 
bi Signal3202 sched3. eLenl.Signal200l 

bi Signa11233 schedl. eLen2.Signal23O2 
bi Signall323 schedl. eLen2.Signal32O2 
hi Signa12133 sched2. eLen2.Signall3O2 
hi Signal2313 sched2. eLen2.Sigrial3lO2 
hi Signa13123 •sched3. eLen2.Signall2O2 
bi Signal3213 sched3. eLen2.Signal2lO2 

bi Model (EtherS I EtherQ1202  I Waitingl  I Waiting2  I Sending3)\ 
\(eAcql eRelleLeno, eLenl, eLen2eLen3, schedl,sched2,sched3,eQSignal, \ 
eWaitUntill, ewaitgntil2 eWaittJntil3) 

Output 
Command: states Model 

Model 
($eRell.Etherl 1 ($eQSignal.Signal1202 + $eWaitUntil3.EtherQl233) I $schedl.Tryingl 

$sched2.Trying2 
3. eRell.Done3)\(eAcql,eLenO,eLenl,eLen2eLen3,eQsjgnaleRell,ewajtrjntjll,ewaituntil2,ewajtrjntjl3 
schedl sched2, sched3) 
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= ($eRell.Etherl I EtherQ1202  I $schedl.Tryingl I Waitirxg2 
3 'eRell .Done3)\(eAcql,eLeno,eLenl,eLen2,eLen3, eQSignal, eRell,eWaituntill, ewaituntil2,eWaitUntil3 
schedl, sched2, sched3) 

3: ($eRell.Etherl I ($eQSigna1.Signa112O2 + $ewaitunti13.EtherQ1233) I $schedl.Tryingl  I 
$sched2.Trying2 I 
2. 'eRell.Done3)\(eAcql,eLeno,eLenl,eLen2,eLen3,eQsjgnal,eRe].1,ewajtrjntjll,ewajtuntjl2,ewajtuntjl3 
schedi, sched2 sched3) 

4: ($eRell.Etherl I ($eQSigna1.Sigria11202 + $ewaitunti13.EtherQ1233) I $schedl.Tryingl  I 
$sched2.Trying2 
1. 'eRell.Done3)\(eAcql,eLenO,eLenl,eLen2,eLen3,eQsjgnal,eRelj,ewajtrJntjll,ewajtuntjl2ewajtuntjl3 
schedl, sched2, sched3 

5: ($eRell.Etherl I ($eQSigna1.Signa11202 + $eWaitUnti13.EtherQl233) I $schedl.Tryingl I 
$sched2.Trying2 I 
'eRell.Done3)\{eAcql,eLenO,eLenl,eLen2,eLen3,eQsjgnaleRel1,ewajtuntjlj,ewajtrJntjl2,ewajtuntjl3,s 
chedi, sched2, sched3 
6: (Etherl 1 ($eQSigna1.Signa11202 + $eWaitunti13.EtherQ1233) I $schedl.Tryingl I $sched2.Trying2 

Done3)\eAcq1,eLen0,eLen1,eLen2,eLen3,eQs±gna1,eRe11,ewajtijntj11,ewajtuntj12,ewajtuntj13,sched1,s 
ched2, sched3 ) 
7: (Etherl I Signal1202 I $schedl.Tryingl 	$sched2.Trying2 I 
Station3) \ (eAcqi eten0 eLeni eLen2 , eten3 , eQsignal, eRell, eWaittJntill, eWaituntil2, eWaitUntil3, sched 
1, sched2 , sched3 
8: (Etherl I 'eLenl.Signa12001 I Tryinqi I $sched2.Trying2 I 
Station3(\(eAcql,eLeno,eLenl,eLen2,eLen3,eosignal,eRell,ewajttjntjll,ewajtuntjl2,ewajtr.jntil3,sched 
1, sched2, sched3) 
9: (Etherl I Signa12001 I 1.Stationl J $sched2.Trying2  I 
Station3) \ eAcq1, eLen0 eLeni, eLen2 , eLen3, eQSignal eRell, eWaittJntill, eWaituntil2, eWaituntil3, schod 
1, sched2 sched3 
10: (Etherl I 'eLeno.SignalOOOO I 1.Stationl I Trying2 
Station3)\(eAcql,eLenO,eLenl,eten2,eLen3,eQsignal,eRel1,ewajtuntjll,ewajtuntjl2,ewajtuntjl3sched 
1, sched2, sched3) 
11: (Etherl I Signal0000 I 1.Stationl  I 'eAcql.Sending2 
Station3)\(eAcq1,eLen0,eLen1,eLen2,eLen3,eQgjgna1,ep.e11,ewaituntj11ewajtuntj12ewajtnj3sched 
1, sched2, sched3) 
12: (EtherO I Signal0000 I 1.Stationl I Sending2 
Station3) \ (eAcqi, eLenO, eLeni, eLen2, eLen3 eQSignal, eRell eWaitUntill, eWaitUntil2 eWaitUntil3, sched 
1, sched2, sched3) 

= (Etherl I EtherQ3001  I 1.Stationl I 'eAcql.Sending2 
Waiting3) \(eAcq1 eLenO, eLenl, eLen2 eLen3 , eQSignal, eRell eWaitUntill, eWaitUntil2 , eWaitUntil3 sched 
1, sched2 sched3) 
13: (EtherO I EtherQ3001  I 1.Stationl  I Sending2 
Waiting3 )\(eAcq1,eLen0,eLen1,eLen2,eLen3,eQsigna1,eRe11,eWaitUntj11,eWaitUntj12ew5jtntj135h5 
1, sched2, sched3) 
14: ($eRell.Etherl 1 ($eQSigna1.Signa13001 + $eWaitUntill.EtherQ3102 + $eWaitUnti12.EtherQ3202) I 
Stationi I 3. 'eRell.Done2 
$sched3 .Trying3) \(eAcql, eLenO, eLenl,eten2, eLen3, eQSignal, eRell,eWaitUntill, eWaitUntil2, eWaitUntil 
3, schedi, sched2, sched3 ) 
15: ($eRell.Etherl I EtherQ3102  I Waitingl I 3. eRell.Done2 
$sched3 . Trying3) \ eAcq1, etenO, eLenl, eLen2, eten3 , eQSignal, eRell, eWaittJntill, eWaitUntil2 , eWaitUntil 
3, schedi, sched2, sched3 
16: ($eRell.Etherl I ($eQSigna1.Signa13102 + $eWaitUnti12.EtherQ3123) I $schedl.Tryingl  I 
2. 'eRell.Done2 I 
$sched3 .Trying3) \(eAcql,eLenO, eLenl, eLen2,eLen3, eQSignal, sWell, eWaitUntill,eWaitUntil2,ewaittjntjl 
3, schedi, sched2, sched3 
17: ($eRell.Etherl I ($eQSigna1.Siqna131O2 + $eWaitUnti12.EtherQ3123) I $schedl.Tryingl I 
1. 'eRell.Done2 
$sched3 .Trying3( \eAcq1, eLenO, eLenl,eLen2,eLen3,eQ5ignal, sWell, eWaitUntill, eWaitUntil2,eWaittJntjl 
3, schedi, sched2, sched3) 
18: ($eRell.Etherl I ($eQSigna1.Signa13102 + $eWaitUnti12.EtherQ3123) I $schedl.Tryingl I 
'eRell.Done2 I 
$sched3 .Trying3) \(eAcql, eLenO, eLenl,eten2,eLen3, eQSigxa1,eRe11, eWaitUntill, eWaitUntil2, eWaitUntil 
3, schedi, sched2, sched3) 
19: (Etherl I ($eQSigna1.Signa131O2 + $eWaitUnti12.EtherQ3123) I $schedl.Tryingl  I Done2  I 
$sched3 .Trying3) \(eAcql,eLeno,eLenl,eLen2, eLen3, eQSignal, eRell,eWaitUntill, eWeitUntil2, eWeitUntil 
3, schedi, sched2 , sched3) 
20: (Etherl I Signa13102  I $schedl.Tryingl I Station2  I 
$sched3 .Trying3) \(eAcql, eLeno,eLenl, eLen2,eLen3, eQSignal, eRell,eWaitUntill,ewaittjntjl2, eWaitUntil 
3, schedi, sched2, sched3 
21: (Etherl I 'eLenl.signallOOl I $schedl.Tryingl  I Station2  I 
Trying3) \ (eAcqi, eLenO, eLenl, eLen2, eLen3 , eQSignal, eRell, eWaitUntill , eWaitUntil2 , eWaitUntil3, schedi 
sched2, sched3) 

22: (Etherl I SignallOOl  I $schedl.Tryingl I Station2  I 
l.Station3)\(eAcq1,eLen0,eLen1,eLen2,eLen3,eQ5jgnal,eRe11,ewajtunti11,eWajtuntjl2ewagnj1350 
edl, sched2, sched3 ) 
23: (Etherl I 'eLenO.SignalOOOO  I Tryingi  I Station2  I 
l.Station3)\(eAcq1,eLenO,eLen1,eLen2,eLen3,eQsjgnal,eRel1,ewajtuntj11,ewajtUntj12eWajtgntj35h 
edi, sched2, sched3 
24: (Etherl I signal0000  I 'eAcql.Sendingl I Station2 I 

eWaitUnti12,eWaitUnti13,sch  
edi, sched2, sched3 
25: (EtherO I Signal0000  I Sendingi  I Station2  I 
l.Station3(\{eAcql,eLeno,eLenl,eLen2,eLen3,eQsjgnal,eRell,ewajtuntjll,ewajtuntjl2eWajtuntjl3sch 
edi, sched2, sched3) 

= (Etherl I EtherQ2001  I eAcql.Sendingl I Weiting2  I 
1 .Station3) \(eAcql,eLeno, eLeni, eLen2,eLen3,eQSignal, eRell, eWaitUntill,eWaitUntil2, eWaitUntil3,sch 
edi, sched2, sched3) 
26: (EtherO I EtherQ2001  I Sendingi  I Waiting2  I 
l.Station3)\(eAcql,eLeno,eLenl,eLen2,eLen3,eQsjgnal,eRell,ewajtUntjll,ewajtuntjl2,ewajtuntil3sch 
edi, sched2, sched3 ) 
27: ($eRell.Etherl I ($eQSigna1.Signa12001 + $eWaitUntill.EtherQ2102 + $eWaitUnti13.EtherQ2302( 
3. 'eRell.Donel I $sched2.Trying2 I 



Appendix C: CCS Models and Experiments for CiTE 	 268 

Station3) \ (eAcqi, eLenO eLeni, eLen2 , eLen3 , eQSigrial eRell eWaittJntill eWaittJntil2, eWaituntil3 , sched 
1, sched2, sched3) 

($eRell.Etherl I EtherQ2302 I 3. 'eRell.Donel I $sched2.Trying2 I 
Waiting3)\(eAcq1,eLen0,eLen1,eLen2,eLen3,eQsjgna1,eRe11,ewaj5untj11,ewajtuntj12,eajtn5j135c5 
1 sched2, sched3 

($eRell.Etherl I ($eQSigna1.81gna12302 + $eWaitUntill.EtherQ2313) I 2. 'eRell.Donel 
$sched2.Trying2 I 
$sched3 .Trying3) \{eAcql,eLeno,eLenl, eLen2,eLen3, eQSignal,eRell, eWaitUntill,eWaittJntil2, e6aittJnti1 
3, schedi sched2 sched3} 

($eRell.Etherl I ($eQsigna1.Siqna12302 + $e9JaittJntill.EtherQ2313) I 1. 'eRell.Donel 
$sched2.Trying2 
$sched3 .Trying3) \(eAcql, eLen0,eLenl,eLen2, eLen3,eQSignal,eRell, eWaitUntill, eWaitUntil2,eWaituntil 
3 schedi sched2 , sched3 } 

($eRell.Etherl I ($eQSigna1.S1gna12302 + $eWaitUntill.EtherQ2313) I 'eRell.Donel 
$sched2.Trying2 I 

3, schedi , sched2, sched3) 
(Etherl I ($eQSigna1.Signa12302 + $eWaitUntill.EtherQ2313) I Donel j $sched2.Trying2 I 

$sched3 .Trying3) \(eAcql,eLen0,eLenl,eLen2, eLen3, eQSignal,eRell, eWaitUntill, eWaitUntil2, eWaitUntil 
3, schedl, sched2, sched3) 

(Etherl I Signa12302 I Stationl I $sched2.Trying2 I 

3, schedi, sched2, sched3) 
(Etherl I 'eLenl.Signa13001 I Stationl  I Trying2 

$sched3 .Trying3) \(eAcql, eLenO, eLenl,eLen2, eLen3, eQSignal, eRell, eWaittjntill, eWaitUntil2, eWaitUntil 
3, schedl, sched2 , sched3 

(Etherl I Signa13001 I Stationl I 1.Station2 
$sched3 .Trying3) \(eAcql, eLenO, eLenl, eLen2,eLen3, eQSignal, eRell, eWaitUntill,eWaitUntil2,ewajtrjntjl 
3, schedi, sched2, sched3) 

(Etherl I 'eLeno.SignalOOOO I Stationl I 1.Station2 
Trying3) \(eAcql, eLenO, eLenl, eLen2, eLen3 , eQSignal,eRell, eWaitUntill, eWaitUntil2,eWaitUntil3,schedl 
sched2, sched3) 

(Etherl I Signal0000 I Stationl I 1.Station2 
'eAcql .Sending3) \{eAcql, eLenO, eLeni, eLen2, eLen3, eQSignal, eRell, ewaitUntill, eWaitUntil2, eWaitUntil 
3, schedi, sched2, sched3) 

(EtherO I Signal0000  I Stationl I 1.Station2 
Sending3) \(eAcql, eLen0,etenl, eLen2,eLen3, eQSignal,eRell,eWaitUntill, eWaitUntil2, eWaitUntil3,sched 
1, sched2, sched3) 

(Etherl I EtherQlOOl I Waitinqi I 1.Station2 
eAcqi . Sending3) \ (eAcql, eLenO, eLeni, eLen2, eLen3 eQSignal, eRell, eWaitUntill, eWaitUntil2, eWaitUntil 

3, schedl, sched2 , sched3) 
(EtherO I EtherQlOOl I Waitingl I 1.Station2 

Sending3( \(eAcql, eLen0,eLenl, eLen2,eLen3 , eQSignal, eRell, eWaitUntill, eWaitUntil2, eWaitUntil3 , sched 
1, sched2, sched3) 

($eRell.Etherl I ($eQSignal.SignallOOl + $ehaitUnti12.EtherQ12O2 + $eWaitUnti13.EtherQ1302) I 
$schedl.Tryingl I Station2 
3. 
schedi, sched2, sched3 
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Figure 6.16 

Model 
hi Stationi 'sAcql.Tryingl 
hi Tryingi sAvaill.Stationl + sAvailO. eQWaitl.Waitingl 
bi Waitingi $eSchedl. (cAvailO. etAcql.4.Donel\ 
+ cAvaill.SackOffl + cAvail2.BackOffl + cAvail3.BackOffl) 

bi Donel sRell. etRell.Tryingl 
bi BackOffi cRemi .$cAvailO. 1 .Tryingl 

bi Station2 sAcql.Trying2 
bi Trying2 sAvaill.Station2 + sAvailO. eQwait2.Waiting2 
bi Waiting2 $esched2. (cAvailO. etAcql.4.Done2\ 
+ cAvaill.BackOff2 + cAvail2.BackOff2 * cAvail3.BackOft2) 

bi Done2 sEell. etRell.Trying2 
hi BackOff2 cRemi . $cAvailO .1 . Trying2 

hi Station3 sAcql.Trying3 
bi Trying3 sAvaill.Station3 + sAvailO. eQwait3.Waiting3 
bi Waiting3 eSched3. (cAvailO. etAcql.4.Done3\ 
+ cAvaill.BackOff3 + cAvail2.BackOff3 + cAvail3.EackOff3) 

hi Done3 sRell. etRell.Trying3 
bi BackOff3 cRemi . ScAvailO .1 .Trying3 

hi Ethernet $eQCooptl.$etAcql.tisedl + $eQCoopt2.$etAcql.tised2 +\ 
$eQCoopt3 . $ • etAcqi .tjsed3 

hi Usedi eQLenO.Nextl + eQLenl. cAddl.Nextl + eQLen2. cAddl.Nextl 
bi Nexti etRell. eSchedl.ReSched 
hi Used2 eQLenO.Next2 + eQLenl. cAddl.Next2 + eQLen2. cAddl.Next2 
hi Next2 etRell. eSched2.ReSched 
bi Used3 eQLenO.Next3 + eQLenl. cAddl.Next3 + eQLen2. cAddl.Next3 
hi Next3 etRell. eSched3.ReSched 
bi ReSched eQLenO.Ethernet + eQLefli.cAddl.(eQcooptl.e5chedl.Re5ched\ 
+ eQCoopt2. eSched2.ReSched + eQCoopt3. eSched3.ReSched(\ 
+ eQLen2. cAddi. (eQCooptl. • eSchedl .Resched\ 
+ eQCoopt2. eSched2.ReSched + eQCoopt3. eSched3.ReSched) 

hi Sendingi $sAcql.SendingO + $sAvaill.Sendingl 
bi SendingO $sRell.SendingO + $sAvailO.Sendingo 

bi ColsO $cAddl.Colsl + $cAdd2.Cols2 + $cAdd3.Cols3 + $cAvailO.ColsO 
hi Colsi $cAddl.Cols2 + $cAdd2.Cols3 + $cReml.ColsO + $cAvaill.Colsl 
bi Cols2 $cAddl.Cols3 + $cReml.Colsl + $cAvail2.Cols2 
bi Cols3 $cReml.Cols2+ $cAvail3.Cols3 

hi EtherQ0000 $eQWaitl.EtherQlOOl + $eQWait2.EtherQ2001\ 
+ $eQWait3.EtherQ3001 + $eQLenO.EtherQ0000 

bi EtherQlOOl $eQWait2.EtherQl2O2 + $eQWait3.EtherQl302\ 
+ $eQCooptl.EtherQ0000 + $eQLenl.EtherQlOOl 

hi EtherQ2001 $eQWaitl.EtherQ2102 + $eQWait3.EtherQ2302\ 
+ $eQCoopt2.EtherQ0000 + $eQLenl.EtherQ2001 

bi EtherQ3001 $eQWait2.EtherQ3202 + $eQWaitl.EtherQ3102\ 
+ $ eQCoopt3 .EtherQ0000 + $ eQLenl .EtherQ300l 

hi EtherQ1202 $eQWait3 .EtherQl233 * $ eQCooptl .EtherQ200l + $ eQLen2 .EtherQl2O2 
hi EtherQ1302 $eQWait2 .EtherQl323 + $ eQCooptl .EtherQ300l + $ eQLen2 .EtherQl3O2 
bi EtherQ2102 $eQWait3.EtherQ2133 + $eQCoopt2.EtherQl001 + $eQLen2.EtherQ2102 
hi EtherQ2302 $eQWaitl.EtherQ2313 + $eQCoopt2.EtherQ3001 + $eQLen2.EtherQ2302 
hi EtherQ3102 $eQWait2.EtherQ3123 + $eQCoopt3.EtherQlOO1 + $eQLen2.EtherQ3102 
bi EtherQ3202 $eQwaitl .EtherQ32l3 + $ 'eQCoopt3 .EtherQ200l + $ eQLen2 .EtherQ32O2 

hi EtherQ1233 $eQCooptl.EtherQ2302 + $eQLen3.EtherQl233 
hi EtherQ1323 $eQCooptl.EtherQ3202 + $eQLen3.EtherQl323 
bi EtherQ2133 $ 'eQCoopt2 .EtherQl3O2 + $ eQLen3 .EtherQ2l33 
bi EtherQ2313 $ eQCoopt2 .EtherQ3lO2 + $ 'eQLen3 .EtherQ23l3 
hi EtherQ3123 $ eQCoopt3 .EtherQl2O2 + $ eQLen3 .EtherQ3l23 
hi EtherQ3213 $ eQCoopt3 .EtherQ2lO2 + $ eQLen3 .EtherQ32l3 

bi EtherRi $etAcql.EtherRO 
hi EtherRO $etRell.EtherRl 

hi Transmitterl (Stationi 	Sendingl( \sAcq1sRe11,sAvei1O, sAvaill} 
bi Transmitter2 (Station2 	Sendingl( \(sAcql,sRell, sAvailO sAvaill) 
bi Transmitter3 (Station3 	Sendingi) \{sAcql, sRell, sAvailO, sAvaill} 

hi Model (EtherRO I Ethernet  I EtherQ1202  I\ 
ColsO I Waitingi I Waiting2 I (Done3lSendingo(\(sAcql,sRellsAvailo,sAvaill))\ 

\ (etAcqi etRell, etenO, eteni, eten2 eLen3 eSchedl eSched2 eSched3 \ 
eQCooptl, eQCoopt2eQCoopt3,eQWaitl,eQwait2,eQwajt3, eQLen3, eQLen2,eQLenl, eQLenO, \ 
cAddi, cAdd2 cAdd3 cRerul, cAvailO cAvaill, cAvail2 cAvail3 
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Output 

Sun> random 40 
tesRell> ---> 
t<etRell> ---> 
t<eQCooptl> ---> 
t<sAvail0> 
t<eQwait3> ----> 
t<etAcql> ---> 
t<eQLen2> ---> 
t<cAddl> ---> 
t<etRell> ---> 
t<eSchedl> ---> 
tacAvaill> ---> 
t<eQLen2> ---> 
t<cAddl> ---> 
t<cReml> ---> 
t<eQCoopt2> ---> 
t<egched2> ---> 
t<eQLenl> ----> 
t<cAddl> ---> 
t<eQCoopt3> ---> 
t<eSched3> ---> 
t<eQLenO> 
t<cAvail2> ---> 
t<cAvail2> ---> 
t<cReml> ---> 
t<cReml> ---> 
1 ---> 
1 ---> 
t<cAvailO> ---> 
t<cAvail0> ---> 
t<cAvail0> ---> 
1 ---> 
tasAvailO> ---> 
sAvaill ---> 
sAcqi ---> 

t<eQWait3> ---> 
sAvaill ---> 
sAcqi ---> 

sAvailO ---> 
t<eQCoopt3> ---> 
t<eQWaitl> ---> 

Simulation complete. 

Command: states Ethernet 
eQCooptl. eSchedl.ReSched + eQCoopt2. eSched2.ReSched + eQCoopt3. eSched3.ReSched 
cAddl. (eQCooptl. eSchedl.ReSched + eQCoopt2. eSched2.ReSched + eQCoopt3. eSched3.ReSched) 

ReSched 
4 	eSched3 ReSched 

eSched2 ReSched 
eSchedl ReSched 
cAddl.Next3 

Next3 
cAddl.Next2 
Next2 
cAddl.Nextl 

Nextl 
Used3 

14; Used2 
Usedl 
$eQtooptl .$ etAcqi .Usedl + $eQCoopt2 .$ etAcqi .Used2 + $eQtoopt3 .$ etAcql .Used3 
$etAcql.tjsed3 
$etAcql.tJsed2 
$etAcql.tisedl 
Ethernet 

Command: states Stationl 
etRell.Tryingl 

Donel 
1.Donel 
2.Donel 
1.Tryingl 
3.Donel 
$cAvail0.1.Tryingl 
4.Donel 
BackOffi 

etAcql.4.Donel 
$eSchedl. (cAvailO. etAcql.4.Donel 
cAvailO. etAcql.4.Donel * cAvaill 
Waitingl 

eQWaitl.Waitingl 
Tryingl 
Stationl 

+ cAvaill.BackOffl + cAvail2.Backoffl + cAvail3.Backoffl) 
BackOffi * cAvail2.BackOffl + cAvail3.Backoffl 

270 
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Figure 6.18 

Model 
bi Reader bufacql. bufrell.Reader 
hi Writer bofacq3. bufrel3.Writer 
bi Euffers3 bufacql.Eufers2 + bufacq3.BuffersO 
bi Buffers2 bufacql.Bufersl + bufrell.Buffers3 
bi Buffersi bufacql.BuffersO + bufrell.Buffers2 
bi BuffersO bufrell.Buffersl + bufrel3.Buffers3 
hi Model )Buffers3ReaderReaderIWriter)\{bufacql,bufacq3,bufrell,bufre13} 

Output 
Command: states Model 

Model 
(Buffers2 I ThinkerO  I 2.ReaderO I l.Writer)\)bufacql,bufacq3,bufrellbufrel3} 
()$bufacql.Buffersl + $bufrell.Buffers3) I 2.Thinkerl  I l.Readero 

Writer) \)bufacql,bufacq3,bufrell,bufrel3) 
= )Buffers2 I Readerl I 2.Thinkerl 

$ bufacq3. bufrel3 Writer) \(bufacql,bufacq3,bufrell,bufrel3) 
)($bufacql.Buffersl + $bufrell.Buffers3) I l.Thinkerl I ReaderO 

$ bufacq3. bufrel3 Writer) \)bufacql,bufacq3bufrell,bufrel3) 
)Buffersl I l.Thinkerl I ThinkerO 

$ bufacq3. bufrel3 Writer) \)bufacql,bufacg3,bufrell,bufrel3) 
()$bufacql.Bufferso + $bufrell.Buffers2) I Thinkerl I 2.Thinkerl 

$bufacq3. bufrel3.Writer)\(bufacqlbufac3,bufrel1bufrel3} 

Figure 6.21 

Model 
hi ReaderO bufacql.Thinkero 
hi ThinkerO 3.Thinkerl 
bi Thinkerl bufrell.Readerl 
hi Readerl 1.Reader0 
bi Writer $bufacq3. 'bufrel3.Writer 
hi Buffers3 $bufacqlBuffers2 + $bufacq3.Buffers0 
hi Buffers2 $bufecql.Buffersl + $bufrell.Buffers3 
hi Buffersl $bufacgl.Bufferso + $bufrell.Buffers2 
bi BuffersO $bufrell.Buffersl + $bufrel3.Buffers3 
hi Reader0a 'bufacqlThinkero 
hi Thinker0a Thinkerl 
hi Thinkerla bufrell.Readerl 
hi Readerla ReaderO 
hi Modela\ )Buffers3 ReaderoalReaderOelWriter) \Cbufacql,bufacq3,bufrell,bufrel3) 

Output 
Command: states Modela 

Modela = )Buffers3 I Reader0a  I Reader0a  I Writer ) \{bufacql,bufacq3,bufrellbufrel3) 
)BuffersO 	ReaderOa 	Readeroa 	bufrel3 .Writer) \(bufacqlbufacq3,bufrell,bufrel3} 
)Buffers2 	Reader0a ThinkerO [Writer) \thufacql,bufacq3bufrell,bufrel3) 

= )Buffers2 ThinkerOl Readeroa 	Writer) \)bufacqi,bufacq3,bufrell,bufrel3) 
= )Buffers2 ReaderO 	ThinkerO 	Writer) \(bufacql,bufecq3,bufrell,bufrel3) 
= )Buffers2 ThinkerOj ReaderO I Writer) \{bufacql,bufacq3,bufrell,bufrel3) 
)Buffersl 	ThinkerO I ThinkerO 	Writer)\(bufacqlbufacq3,bufrellbufrel3) 

= )Buffersl j ThinkerO 	ThinkerO I $bufacq3. bufrel3.Writer) 
\ Cbufacql bufacq3 bufrell, bufrel3} 

) )Sbufacql .BuffersO +$bufrell.Buffers2)j 2 .Thinkerll 2 .Thinkerll $ 'bufacq3 'bufrel3 Writer) 
\{bufacql , bufacq3 huftell, bufrel3) 

))$bufacql.BuffersO + $bufrell.Buffers2) I l.Thinkerl I l.Thinkerl 
$ bufacq3 bufrel3 Writer) \(bufacql,bufacq3,bufrell,bufrel3} 

))$bufacql.BuffersO + $bufrell.Buffers2) I Thinkerl I Thinkerl 
$'bufacq3. 'bufrel3Writer)\{bufacql,bufacq3,bufrell,bufrel3} 

)Buffers2 I Readerl I Thinkerl 	$'bufacq3. 'bufrel3.Writer) \(bufacql,bufacq3,bufrell,bufrel3) 
= )Buffers2 I Thinkerl 	Readerl I $'bufacq3. 'bufrel3.Writer) 

\ )bufacql bufacq3 bufrell , buf rel3) 
)Buffers3 I Readerl  I Readerl 	$'bufacq3. 'bufrel3.Writer) \{bufacql,bufacg3,bufrell,bufrel3} 

= (Buffers3 	Readerl 	Readerl 	Writer) \(bufacql,bufacq3,bufrell,bufrel3) 
)Buffers0 Readerl Readerl 	bufrel3.Writer)\(bufacql,bufacq3,bufrell,bufrel3) 
()$bufacql.Buffers2 + $bufacq3.Bufferso) I ReaderO I ReaderO I $'bufacq3. 'bufrel3.Writer) 

\ (bufacql bufacq3 , buf rell bufrel3) 
12 )BuffersOlReaderolReaderOl  'bufrel3 Writer) \{bufacql,bufacq3,bufrell,bufrel3) 

)Buffers2 I ReaderO I ThinkerO I $'bufecq3. bufrel3.Writer) 
(bufacql , bufacq3 , buf tell, bufrel3) 

= )Buffers2 I ThinkerO I ReaderO I $'bufacq3. 'bufrel3.Writer) 
\ (bufacql bufacq3 , bufrell bufrel3) 

)Buffers3 I ReaderO I ReaderO I Writer)\)bufacql,bufacq3,bufrell,bufrel3) 
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Figure 6.22 

Model 

bi Bi jal.B2 
bi 32 tr2.33 
bi 33 tal.B4 
bi 34 trl.35 
bi 35 jrl.0 
bi Tugs2 (tal.Tugsl)+(ta2.Tugs0) 
bi Tugsl (tal.Tugs0)+(trl.Tugs2) 
bi TugsO (trl.Tugsl)+(tr2.Tugs2) 
bi Jetty2 (jal.Jettyl) 
bi Jettyl (jal.Jetty0) + (jrl.Jetty2) 
bi JettyO (jrl.Jettyl) 
bi Model (Tugs2 I Jetty2 I 30  I 30  I BO)\(tal,ta2,trl,tr2jal,jrl) 

Output 

Command: fidobs Model 
===> Model 

	

===> (Tugso 	Jetty2 	30 	30 	B1)\{jal,jrl,tal,ta2,trl,tr2} 

	

===> (TugsO 	Jettyl 	30 	BO 	B2)\(jal,jrl,tal,ta2,trl,tr2) 

	

===> (Tugs2 	Jettyl 	30 	BO 	33)\(jal,jrl,talta2,trl,tr2) 

	

===> (TugsO 	Jettyl 	BO 	B1 	33)\(jal,jrl,tal,ta2,trl,tr2) 

	

===> (Tugsl 	Jettyl 	BO 	30 	B4)\(jaljr1,tal,ta2,trl,tr2) 
===> 

 
(TugsO JettyO 30 32 B3)\(jal,jrl,tal,ta2,trl,tr2) 

	

===> (Tugs2 	Jettyl 	BO 	BO 	B5)\(jaljrl,tal,ta2,trl,tr2) 

	

===> (TugsO 	Jettyl 	BO 	B1 	35)\(jal,jrl,talta2,trl,tr2) 

	

===> (Tugs2 	JettyO 	BO 	B3 	33)\(jal,jrl,talta2trl,tr2) 

	

===> (Tugs2 	Jetty2 	30 	BO 	0)\jal,jrl,ta1,ta2,tr1,tr2) 
===> 

 
(TugsO JettyO 30 B2 B5)\(jal,jrltal,ta2,trl,tr2) 

===> 
 

(TugsO JettyO Bi B3 B3)\(jal,jr1,tal,ta2,trl,tr2) 

	

===> (TugsO 	Jetty2 	BO 	B1 	0)\(jal,jrl,tal,ta2,trl,tr2) 

	

==> (Tugsl 	JettyO 	30 	33 	B4)\(jal,jrl,talta2,trl,tr2) 
===> 

 
(TugsO JettyO 30 34 B4)\(jal,jrl,tal,ta2,trl,tr2) 

===> 
 

(TugsO Jettyl BO B2 0)\(jal,jrl,tal,ta2,trl,tr2) 

	

===> (Tu9s2 	JettyO 	30 	33 	B5)\ja1,jr1,ta1ta2tr1,tr2) 
==> 

 
(TugsO JettyO Bi B3 35)\(jal,jrl,tal,ta2,trl,tr2) 

	

===> (Tugsl 	JettyO 	30 	34 	B5)\(a1,jrl,ta1,ta2,trl,tr2) 
===>(Tugs2 Jettyl 30 B3 0)\(jal,jrl,tal,ta2,trl,tr2) 
===> 

 
(TugsO Jettyl 31 33 0)\(ja1,jrl,ta1ta2,trl,tr2) 

	

===> (Tugsl 	Jettyl 	30 	34 	0)\(jal,jrl,tal,ta2,trl,tr2) 
(Tugs2 JettyO BO 35 B5)\(jal,jrl,tal,ta2,trl,tr2} 

==> 
 

(TugsO JettyO 31 35 B5)\jal,jr1,tal,ta2trltr2) 
===> 

 
(TugsO JettyO 32 33 0)\{jal,jrl,tal,ta2,trl,tr2) 

	

===> (Tugs2 	Jettyl 	30 	35 	0)\(jal,jrl,tal,ta2,tr1,tr2) 
===> 

 
(TugsO Jettyl 31 35 0)\(jal,jrl,tal,ta2,trl,tr2) 
(Tugs2 JettyO 33 33 0)\(jal,jrl,tal,ta2,trl,tr2) 

	

===> (Tugs2 	Jetty2 	30 	0 	0)\(jal,jrl,tal,ta2,trl,tr2) 

	

===> (TugsO 	JettyO 	32 	35 	0)\(jal,jrl,tal,ta2,trl,tr2) 

	

===> (TugsO 	Jetty2 	Bl 	0 	0)\ja1,jr1,ta1,ta2tr1,tr2) 

	

===> (Tugsl 	JettyO 	B3 	34 	0)\ja1,jr1,ta1,ta2,tr1,tr2) 
===> 

 
(TugsO JettyO 34 34 0)\(jal,jrl,tal,ta2,trl,tr2) 

===> 
 

(TugsO Jettyl 32 0 0)\(jal,jrl,talta2,trl,tr2) 
===> 

 
(Tugs2 JettyO 33 35 0)\(jal,jrl,tal,ta2,trl,tr2) 

	

===> (Tugsl 	JettyO 	34 	35 	0)\{jal,jrltal,ta2,trltr2) 

	

===> (Tugs2 	Jettyl 	33 	0 	0)\(jal,jrl,tal,ta2,tr1,tr2) 

	

===> (Tugsl 	Jettyl 	B4 	0 	0)\(jal,jrl,tal,ta2,trl,tr2) 

	

===> (Tugs2 	Jettyl 	35 	0 	0)\{jal,jrl,tal,ta2,trl,tr2) 
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Figure 6.25 

Model 
bi 30 ta2.Bl 
bi 31 jal.B2 
bi 32 tr2.33 
bi 33 tal.34 
bi 84 trl.35 
bi 35 jrl.0 

bi Tugs3 (tal.Tugs2)+(ta2.Tugs1) 
bi Tugs2 (tal .Tugsl(+(ta2.Tugso)+(trl .Tugs3) 
bi Tugsl (tal .Tugso)+(trl .Tugs2(+(tr2 .Tugs3) 
bi Tugs0 (tr1.Tugsl)+(tr2.Tugs2) 

bi Jetty2 (jal.Jettyl) 
bi Jettyl (jal.Jetty0) * (jrl.Jetty2) 
bi Jetty0 (jrl.Jettyl) 

	

bi Model (Tugs3 I 	Jetty2 I 30 I BO 	80)\(tal,ta2,trl,tr2,jal,jrl) 

Output 
Command: fdobs Model 

===> Model 
===> (Tugsl Jetty2 BO 30 Bl)\(jaljrlta1,ta2,tr1,tr2) 
===> 

 
(Tugsl Jettyl 80 80 82)\{ja1,jrl,tal,ta2,tr1,tr2} 

	

===> (Tugs3 	Jettyl 	80 	30 	B3)\{jaljrl,tal,ta2,trl,tr2} 

	

===> (Tugsl 	Jettyl 	80 	31 	83(\(ja1jrl,ta1,ta2,tr1,tr2) 

	

===> (Tugs2 	Jettyl 	80 	BO 	84)\(jal,jrltal,ta2trl,tr2} 

	

===> (Tugso 	Jettyl 	BO 	31 	B4)\jaljr1,tal,ta2,trl,tr2) 

	

===> (Tugsl 	Jettyo 	80 	32 	133)\(jal,jr1,ta1,ta2,trltr2) 

	

===> (Tugs3 	Jettyl 	80 	BO 	B5)\(jal,jrl,tal,ta2,trl,tr2) 

	

===> (Tugs0 	Jettyo 	BO 	B2 	B4)\{jal,jr1,ta1ta2,tr1,tr2} 

	

==> (Tugsl 	Jettyl 	BO 	El 	B5)\(jal,jrl,tal,ta2,tr1,tr2) 

	

===> (Tugs3 	Jetty0 	30 	B3 	83)\(jal,jrl,ta1,ta2,trl,tr2) 
(Tugs3 Jetty2 80 30 0)\{ja1,jr1,tal,ta2trl,tr2} 

	

===> (Tugsl 	JettyO 	80 	32 	B5)\(ja1,jr1,tal,ta2,tr1,tr2) 

	

===> (Tugsl 	Jetty0 	B1 	B3 	83)\{jal,jrl,tal,ta2,trl,1r2} 

	

===> (Tugsl 	Jetty2 	BO 	Bl 	0(\{jal,jr1tal,ta2,trltr2} 

	

===> (Tugs2 	Jetty0 	30 	B3 	84)\{ja1jrl,ta1,ta2trl,tr2} 

	

===> (Tugso 	Jetty0 	Bi 	33 	B4)\(jaljrl,ta1,ta2,trl,tr2} 

	

===> (Tugsl 	Jetty0 	80 	84 	B4)\(jal,jr1,ta1,ta2,trltr2) 

	

===> (Tugsl 	Jettyl 	80 	82 	0)\(jal,jrl,tal,ta2,trl,tr2) 

	

===> (Tugs3 	Jetty0 	80 	B3 	B5)\{jal,jrlta1,ta2,trl,tr2} 

	

===> (Tugsl 	Jetty0 	31 	113 	B5)\{jal,jrl,tal,ta2,trl,tr2} 

	

===> (Tugs2 	Jetty0 	80 	34 	B5)\(jaljrl,tal,ta2tr1,tr2) 

	

===> (Tugs3 	Jettyl 	30 	33 	0)\(jal,jrl,tal,ta2trl,tr2) 

	

==> (Tugs0 	Jetty0 	81 	B4 	B5)\{jal,jrltal,ta2trl,tr2} 

	

===> (Tugsl 	Jettyl 	Bl 	B3 	0)\jal,jr1,ta1,ta2,tr1,tr2) 

	

===> (Tugs2 	Jettyl 	80 	B4 	0)\{ja1,jr1,ta1,ta2,trl,tr2} 

	

===> (Tugs3 	Jetty0 	BO 	B5 	B5)\(jaljrl,tal1a2,trl,tr2) 

	

===> (TugsO 	Jettyl 	31 	34 	0)\(ja1,jrl,ta1,ta2,tr1,tr2) 

	

===> (Tugsl 	Jetty0 	Bl 	B5 	B5)\jal,jrl,tal,ta2,tr1,tr2) 

	

===> (Tugsl 	Jettyo 	32 	B3 	0)\ja1,jr1:tal,ta2,tr1,tr2) 

	

===> (Tugs3 	Jettyl 	80 	35 	0)\(ja1jrl,ta1,ta2tr1,tr2) 

	

===> (TugsO 	Jetty0 	32 	34 	0)\(jal,jrl,tal,ta2,trl,tr2) 
===> 

 
(Tugsl Jettyl B1 35 0)\(jal,jr1:tal,ta2,tr11r2) 

	

===> (Tugs3 	Jettyo 	33 	B3 	0)\(ja1,jrl,tal,ta2,trl,tr2) 

	

===> (Tugs3 	Jetty2 	BO 	0 	0)\ja1,jr1,tal,ta2,tr1,tr2) 

	

===> (Tugsl 	Jettyo 	82 	35 	0)\(jal,jrl,ta1,ta2,trl,tr2) 

	

===> (Tugsl 	Jetty2 	Bl 	0 	0)\(jal,jr1,talta2trl,tr2) 

	

===> (Tugs2 	Jetty0 	33 	34 	0)\{jaJjr1,ta1,ta2,tr1,tr2) 

	

===> (Tugsl 	Jetty0 	84 	34 	0(\(jal,jrltal,ta2,trl,tr2) 

	

===> (Tugsl 	Jettyl 	32 	0 	0)\(ja1,jr1,tal,ta2tr1,tr2) 

	

==> (Tugs3 	Jetty0 	B3 	85 	0)\(jal,r1,ta1,ta2tr1,tr2) 

	

===> (Tugs2 	Jetty0 	B4 	85 	0)\{jal,jrl,talta2,tr1tr2} 

	

===> (Tugs3 	Jettyl 	33 	0 	0)\{ja1,jr1,tal,ta2trl,tr2} 

	

===> (Tugs2 	Jettyl 	B4 	0 	0)\(ja1,jr1,tal,1a2,tr1,tr2) 

	

===> (Tugs3 	Jettyl 	35 	0 	0)\(ja1jr1,tal,ta2,trltr2) 

	

===> (Tugs3 	Jetty2 	0 	0 	0)\(ja1,jrl,ta1ta2,tr1,tr2) 



Appendix C: CCS Models and Experiments for CW.B 

Figure 6.27 

Model 
bi Arrival 	cbAddl.Arrival 
bi WrapMC cbReml.Wrapping 
bi Wrapping oBuffAddl.WrapMC 
bi AGVShuttle 	oBuffReml .AGVShuttle 
bi OBuffl oBuffReml.OBuffO 
bi OBuffO oBuffAddl.OBuffl 
bi CBeltO cbAddl.CBeltl 
bi CBeltl cbAddl.CBelt2 + cbReml.CBeltO 
bi CBelt2 cbAddl.CBelt3 + cbReml.CBe1C1 
bi CBelt3 cbAddl.CBelt4 + cbReml.CBelt2 
bi CBelt4 cbReml.CBelt3 

bi Model (Arrival I WrapMC I AGVShuttle J OBuffl  I CBeltO(\ 
\{cbAddl, cbReml, oBuffAddl, oBuffReml) 

bi Mode12 (Arrival I WrapMC I OBuffl j CBeltO)\ 
\ (cbAddl, cbReml, oBuffAddl oBuffReml) 

Output 
Command: states Mode12 

Model2 
(Arrival 	WrapMC 	OBuffl 	CBeltl) \(cbAddl,cbReml,oguffAddl, oBuffReml} 
(Arrival 	WrapMC 	OBuffl 	CBelt2)\(cbAddl, cbReml, oBuffAddl, oBuffRemi) 
(Arrival 	Wrapping I OBuffl  I CBeltO)\(cbAddl,cbReml,oBuffAddl,oguffReml) 
(Arrival 	WrapMC I OBuffl J CBelt3(\CcbAddl,cbReml,oBuffAddl,osuffReml) 
(Arrival 	Wrapping I OBuffl I CBeltl(\{cbAddlcbRezol,oBuffAddl,oBuffReml) 
(Arrival 	WrapMC I OBuffl I CBelt4(\(cbAddl,cbRemloguffAddl,oBuffRemj) 
= (Arrival I Wrapping  I OBuffl  J CBelt2)\(cbAddlcbReml,oBuffAddl,opuffReml) 
(Arrival 	Wrapping 	OBuffl 	CBelt3) \(cbAddl, cbReml,oguffAddl, oBuffReml} 
(Arrival Wrapping OBuffl CBelt4)\(cbAddlcbReml,oBuffAddl,oguffReml) 

Command: states Model 
Model 
(Arrival WrapMC AGVShuttle OBuffO CBeltO)\(cbAddl,cbReml,oBuffAddl,oBuffReml) 
(Arrival 	WrapMC AGVShuttle 	OBuffl 	CBeltl( \(cbAddl, cbReml, oBuffAddl, oBuffReml) 
(Arrival 	WrapMC 	AGVShuttle 	OBuffO 	CBeltl) \(cbAddl, cbReml, oBuffAddl, oBuffReml) 
(Arrival WrapMC AGVShuttle OBuffl CBelt2(\(cbAddl,cbReml,oBuffAddl,oBuffReml) 
(Arrival 	Wrapping I AGVShuttle I OBuffl I CBeltO)\(cbAddlcbReml,oBuffAddl,oguffReml} 
(Arrival 	WrapMC I AGVShuttle I OBuffO I CBelt2)\(cbAddl,cbReml,oBuffAddl,oguffReml) 
(Arrival 	Wrapping I AGVShuttle I OBuffO I CBeltO)\(cbAddl,cbReml,oBufiAddl,oBuffReml) 
(Arrival 	WrapMC I AGVShuttle I OBuffl I CBelt3)\(cbAddlcbReml,oBuffAddlofluffReml} 
(Arrival 	Wrapping I AGVShuttle I OBuffl I CBeltl)\(cbAddl,cbReml,oBuffAddloBuffReml) 
(Arrival 	WrapMC I AGVShuttle I OBuffO I CBelt3)\(cbAddl,cbReml,oBuffAddl,opuffReml) 
(Arrival 	Wrapping I AGVShuttle I OBuffO  I CBeltl)\(cbAddl,cbReml,oguffAddl,oBuffReml) 
(Arrival 	WrapMC J AGVShuttle  I OBuffl  I CBelt4(\cbAddl,cbRemloBuffAddloBuffReml} 
(Arrival 	Wrapping I AGVShuttle I OBuffl I CBelt2)\{cbAddl,cbReml,oBuffAddl,osuffReml) 
(Arrival 	WrapMC I AGVShuttle I OBuffO I CBelt4(\(cbAddl,cbReml,oBuffAddl,oguffReml) 

= (Arrival I Wrapping I AGVShuttle I OBuffO I CBelt2(\{cbAddl,cbReml,oBuffAddl,oBuffReml) 
(Arrival I Wrapping 	AGVShuttle 	OBuffl I CBelt3( \{cbAddl, cbReml,oBuf fAddi, oBuffReml) 
(Arrival Wrapping AGVShuttle OBuffO CBelt3)\(cbAddl,cbReml,oBuffAddl,oBuffReml} 
= (ArrivalWrapping AGVShuttle I OBuffi  I CBe1t4)\(cbAddlcbRemloBuffAddloBuffReml) 

(Arrival I Wrapping  I AGVShuttle I OBuffO I CBelt4)\{cbAddl,cbRemloBuffAddl,oBuffReml} 
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