
Formalising The Description Of
Process Based Simulation Models

Robert John Pooley

PhD
University of Edinburgh

1995

Abstract

Discrete event simulation has grown up as a practical technique for estimating the

quantitative behaviour of systems, where direct measurement is undesirable or

impractical. It is also used to understand the detailed behaviour of such systems. Its

theory is largely that of experimental science. Theories of simulation largely centre on

statistical approaches to validating the measures generated by such models, rather than

on the verification of their detailed behaviour. This dissertation presents an approach

to understanding the correctness of the behaviour of discrete event simulation models,

using Miler's Calculus of Communicating Systems (CCS).

It is shown that a common framework based on the process view of models can be

constructed for hierarchical modelling, where both performance and functional

properties are of interest. As a formal basis for this framework, a hierarchical

graphical modelling language (Extended Activity Diagrams) is developed. A semantics

is developed for this language, in terms of CCS. This language is shown to map onto

the major constructs of the DEMOS discrete event simulation language, extended to

allow hierarchical modelling and to resolve certain ambiguities. The result is a new

version of DEMOS known as modified DEMOS. A graphically driven tool based on

such a framework is presented. It allows models to use a combination of simulation

and functional techniques to answer both performance questions (what is the

throughput under a certain load) and functional questions (will the system deadlock

under certain assumptions). In particular this tool can support process oriented

simulations of models, using modified DEMOS, and functional analysis, based on

both the basic version and the timed extension of Milners Calculus of Communicating

Systems and using the Concurrency Workbench. A number of examples of interesting

applications of this approach to typical models are presented.

Table of contents

Abstract . ii
Acknowledgements..iii
Declaration..iii
Abstract..ii
Acknowledgements..iii
Declaration..iii
1.1 	The 	problems 	addressed..1
1.2 	Overview...2
2.1 	Introduction..4
2.2 	Approaches 	to 	discrete 	event 	simulation.................................. 5

2.2.1 Event based .. 5
2.2.2 Activity 	based..6
2.2.3 Transactions based..6
2.2.4 Process 	based..7
2.2.5 The relationship among these views............................7

2.3 	Languages for process based simulation8
2.3.1 SIMULA ...8
2.3.2 DEMOS 	..8
2.3.3 Alternatives 	to 	DEMOS...9

2.4 	A comparison of existing graphical formalisms.........................10
2.4.1 General 	...10
2.4.2 A simple system to model .. 11
2.4.3 Flowcharts ...12
2.4.4 Activity cycle or wheel diagrams................................14
2.4.5 Hocus activity cycle diagrams15
2.4.6 GPSS 	transaction 	block 	diagrams...............................16
2.4.7 Simscript 	diagrams..18
2.4.8 Simulation Nets and Simulation Graphs20
2.4.9 PAWS queueing networks.......................................21
2.10 Petri-nets ...23
2.4.11 Slam 	II 	network 	diagrams..25
2.4.12 DEMOS 	activity 	diagrams..28

2.5 	Sub-models and 	hierarchies..29
2.5.1 IPG sub-models ... 29
2.5.2 Flow equivalent service centres and other aggregated
sub-models ... 29
2.5.3 Sub-models in DEMOS ..30
2.5.4 HIT 	...31

2.6 	Formal representation of discrete event simulations32
2.6.1 Formalising 	the 	modelling 	process..............................32

The 	Conical 	Methodology...32
Multifaceted Modelling..33

2.6.2 Formalising simulation models..................................33
DEVS..34
Simulation nets...35
Petrinets 	..38

2.7 	Process algebras...38
2.7.1 	CCS 	...39
2.7.2 Temporal 	CCS...41
2.7.3 Synchronous CCS (SCCS)......................................42
2.7.4 Concurrency workbench...42
2.7.5 Stochastic 	extensions 	to 	CCS....................................42
2.7.6 Other work using process algebras to express

simulation semantics 	 .43
2.8 Process 	logics 	...44

2.8.1 	Hennesy-Milner 	logic...44
2.8.2 	The 	modal 	rn-calculus .. 46

Notation for fixed points 48
Some useful intuitive interpretations....................49

3.2 Process interaction..53
3.2. 1 	Interaction of processes ..54
3.2.3 	Hierarchies of Processes ...56

3.3 Sequential process behaviour..57
3.3. 1 	Decomposition and Composition of Processes................57
3.3.2 	Breaking Down 	Sequential 	Behaviour..........................57

Caseone...58
Casetwo 58

3.3.3 	Delays and Aggregation.. 59
3.4 Formal semantics for process based simulation.........................60

3.4.1 	Modelling process interaction simulation primitives in
CCS..61
3.4.2 	Active 	processes...62

Conditional looping..65
Scheduling..66

3.4.2 	Passive objects ..67
Shared resource pool 	- 	Res.....................................67
Unbounded producer/consumer 	- 	Bin70
Bounded buffer 	- 	Store ..71
First In First Out (FIFO) Queue..................................73
Master/slave 	- 	WaitQ/Coopt...................................74
Signalling changes in conditions 	- 	CondQ/Signal...........76
Interrupt... 79
Message queues..80

3.4.4 	Building 	complete 	models..80
Overall model definition ... 80
Building 	hierarchies..81

3.5 Validating the CCS definition of DEMOS primitives...................83
3.5.1 	Validating resource contention for DEMOS....................84

Concurrency Workbench Model84
First In First Out (FIFO) Resource87

3.6 Further 	work...90
4.1 Introduction..91
4.2 Extending activity diagrams for flat models..............................92

4.2.1 	The model from chapter 2 again 93
4.2.2 	The complete menu of symbols94
4.2.3 	Flow of control symbols ...94
4.2.4 	Synchronisation and communication primitives...............96
4.2.5 	A digression on holds and schedules...........................97
4.2.6 	A formal grammar for extended activity diagrams99

4.3 Typical examples of extended activity diagrams.........................102
4.3.1 	A simple example ...102
4.3.2 	A 	further 	practical 	example.......................................103

4.4 Hierarchy 	- 	Configuration 	Diagrams......................................105
4.4.1 	A 	simple 	hierarchical 	model......................................105
4.4.2 	A practical example using hierarchy108
4.4.4 	Grammar and types for configuration diagrams III
4.4.5 	Application specific description114
4.4.6 	Top-down and bottom-up .. 115

4.5 Conclusions..115

5.1 Introduction 	 . 116
5.2 Demographer 	 . 117

5.2. 1 	The basic tool..117
5.3 modified DEMOS ...119

5.3.1 	Supporting non-FIFO blocking119
5.3.2 	Introduction of Store object......................................119

5.4 Active versus passive objects - a digression119
5.4.1 	Res as an Entity 	...120
5.4.2 	Testing M_Res ..121

5.5 The current set of symbols...122
5.5.1 	Linking ...123

5.6 Attributes of symbols...123
5.6.1 	Attribute grammars for activity diagrams.......................123
5.6.2 	Attributes and properties of symbols in Demographer........124
5.6.3 	Flow of control symbols ...124

Start symbol 	..124
Endsymbol ...125
Holdsymbol..125
Choice 	symbol..126
While symbol...126
End-branch symbol ..126
Synchronisation 	symbol...127

5.6.4 	Passive object symbols...128
Resource 	..128
Bin...128
Store...129
Message Queue...129
Condition Queue ...129
WaitQueue..129
Sub-model 	..130

5.7 Implementation ..130
5.7.1 	Loading and saving models......................................131
5.7.2 	Interpreting the diagram..131
5.7.3 	Generating 	flat 	models..132
5.7.4 	Generating hierarchical models..................................132

Building an atomic component process..........................133
Assembly of compound processes...............................133
Hierarchical model assembly134

5.8 Conclusions and further work...134
6.1 What modellers need to know...136
6.2 Simplification of models ...137

6.2. 1 	Identification of redundancy in models.........................137
Elimination 	of 	transitions..137
Eliminating complete states139
Unreachable states in processes..................................142

6.2.2 	Comparing models simplified by hand.........................144
6.3 Phenomena 	which 	cause 	problems..149

6.3.1 	Simultaneous events ..149
Genuinely 	simultaneous 	events...................................150

A naïve model using just Res............................151
Introducing a CondQ to model concurrent
behaviour...153

Schruben's rules and this model156
A "correct" model of CSMA/CD behaviour............156

Races..163

6.3.2 	Starvation . 163
Expressing starvation.....................................167

6.3.4 	Deadlock ...168
Formalising the proof for the harbour model..........168
A Concurrency Workbench experiment................170
Generalising the result to larger numbers of
boats..171
Probability of deadlock in the model....................171
Comparison with the DEMOS model...................171
Testing with the Concurrency Workbench.............173

6.3.4 	Backward propagation of blocking174
6.4 	Using hierarchies and sub-models ..177
6.5 	Conclusions..177

6.5.1 	Successes 	using 	CCS...177
6.5.2 	Successes 	with 	the 	modal 	rn-calculus 178
6.5.3 	Failures using CCS ...178
6.5.4 	Failures with the modal rn-calculus178
6.5.5 	Limits of the Concurrency Workbench.........................179
6.5.4 	Further 	work...179

7.1 	General ...181
7.2 	Semantics of discrete event simulation181
7.3 	Deciding properties of discrete event models............................182
7.4 	Automating the analysis of simulation models...........................182
7.5 	Further 	work...182
7.6 	Assessment...183

References
Appendix A: Implementation of Demographer
Appendix B: Demos models and output 206

Chapter3..207
Figure3.4..207
Figure3.15 	..210

Chapter4 .. 214
ChapterS .. 215

Figure 4.1 .. 215
Figure4.8..216
Figure4.9..217

Chapter 5..222
The implmentation of M_SIM ... 222

Chapter 6..225
EWrap.sirn ... 225
Figure6.12 	..226
Trace of Figure 6.12..227
Figure6.14 	..228
Trace 	from 	Figure 	6.14...229
Figure6.16 	..230
Trace 	from 	Figure 	6.16...231
Figure6.18 	..232

Appendix C: CCS models and output
Chapter3..241

Figure3.2..241
Figure3.3..242
Figure3.4..243
Figure3.5..243
Figure3.6..244
Figure3.7..246
Figure3.8..248

Figure3.9 .. 250

Figure3.l0 ..251

Figure3.11 ..252

Figure3.13 and 3.15 ...254
Figure3.17 ..254

Figure3.19 ..256
Figure3.20 ..257
Figure3.21 ..258

Figure3.22 ..260

Figure3.23 ..260
Figure3.24 ..261
Figure 3.26/7/8..261

Chapter6..262

Figure 6.1 ..262

Figure6.3..262
Figure 6.5..263
Figure6.8..263

Figure6.9..264

Figure6.11 ..265

Figure6.12 ..265
Figure6.14 ..266

Figure6.16 ..269

Figure6.18 ..271
Figure6.21 ..271

Figure6.22 ..272

Figure6.25 ..273
Figure 6.27 274

Table of figures
Figure 2.1: Next event model of a simple MIM/1 queue 6
Figure 2.2: Flowchart of harbour model (style of Tocher) 13
Figure 2.3: Activity cycle diagram of harbour model 14
Figure 2.4: Hocus representation 15

b: Hocus basic symbols 15
Figure 2.5: GPSS block diagram of harbour model 17
Figure 2.6: Simscript event model of harbour model 19
Figure 2.7: A simulation net for the harbour model 20
Figure 2.8: PAWS IPG of harbour model 22
Figure 2.9: Simple Petri net of harbour model 24
Figure 2.10: Slam network diagram of harbour model 27
Figure 2.11: DEMOS activity diagram of harbour model 28
Figure 2.12: Flow equivalent sub-models in queueing networks 30
Figure 2.13: HITGRAPHIC Diagram 32
Figure 2.14: Simplified simulation graph of the harbour model 37
Figure 3.1: Process hierarchy in an X.25 model 57
Figure 3.2: Simple sequential decomposition 58
Figure 3.3: Simple loop decomposition 59
Figure 3.4: A DEMOS sequential Entity and a corresponding TCCS agent 63
Figure 3.5: A DEMOS repeating Entity and a corresponding TCCS agent 63
Figure 3.6: DEMOS Entity using a local variable and corresponding TCCS

agent 64
Figure 3.7: A DEMOS Entity using a local variable in a conditional choice 65
Figure 3.8: A DEMOS Entity using a local variable in a conditional loop 65
Figure 3.9: A DEMOS Entity creating and scheduling a new Entity 66
Figure 3.10: A DEMOS Entity scheduling a passivated Entity 67
Figure 3.11: 2 Demos Res objects used by 1 Entity and corresponding

TCCS 68
Figure 3.12: General definition of a DEMOS Res in TCCS 69
Figure 3.13: Demos Bin object used by two Entitys and their corresponding

TCCS agents 70
Figure 3.14: General form of a Bin represented in TCCS 71
Figure 3.15: Demos Store object used by two Entitys and their

corresponding TCCS agents 73
Figure 3.17: Master and slave Entitys with a WaitQ and their CCS

representation 75
Figure 3.18 General CCS representation of a WaitQ 76
Figure 3.19: An Entity waiting on a condition and an Entity signalling a

change 72
Figure 3.16: General form of Store object represented in TCCSthrough a

CondQ 77
Figure 3.22: One Entity interrupting another 80
Figure 3.20: The version of the simple model with All set to False 78
Figure 3.21: The version of the simple model with All set to true 79
Figure 3.23: Defining a complete model in CCS 81
Figure 3.24: The hierarchical model of the Dining Philosophers 82
Figure 3.25: CCS hierarchical model of the dining philosophers 83
Figure 3.26: Demos source code for the "deadlocking" harbour model 84
Figure 3.27: "Deadlocking" harbour modelled in TCCS. 85
Figure 3.28: Concurrency workbench model of harbour 85
Figure 3.30: FIFO resource version of harbour model in CCS 88
Figure 4.1: Simple activity diagram of harbour model 93
Figure 4.2: Complete menu of extended activity diagram symbols 95
Figure 4.3: Elaboration of explicit initial scheduling of a process 97

Figure 4.4: Elaboration of a process stream 98
Figure 4.5: Explicit representation of a scheduling delay 98
Figure 4.6: Hold represented as scheduling delay 99
Figure 4.7: Grammar of flat level of extended activity diagrams 100
Figure 4.8: Network printer model 103
Figure 4.9: Ethernet model 104
Figure 4.10: Flat version of Reader/Writer model 106
Figure 4.11: Forming a configuration diagram of the Reader/Writer model 107
Figure 4.12: Flat model of level 3 of X.25 type protocol 108
Figure 4.13: Module abstraction of X.25 level 3 109
Figure 4.14: Further levels of X.25 - DTE 110
Figure 4.15: Top level X.25 view - a node 111
Figure 4.16: Full grammar of extended activity diagrams 112
Figure 4.17: Example of actual symbols in configuration diagrams 114
Figure 5.1: Demographer user interface 118
Figure 5.2: Res as an Entity/CondQ pair - M_Res 120
Figure 5.3: Comparison of Res and M_Res traces 121
Figure 5.4: Symbols used in Demographer 122
Figure 5.5: Structure of files in the MS/DOS version of Demographer 130
Figure 5.6: Structure of files in the X Windows version of Demographer 130
Figure 6.1: CCS of a simple harbour model 138
Figure 6.2: Simplified CCS of Jetties resource from Harbour model 138
Figure 6.3: Hierarchically constructed Reader/Writer model in CCS 139
Figure 6.4: Reduced form of Buffers resource 139
Figure 6.5: A simple model for unused resource states 140
Figure 6.6: Dollies resource with redundant states eliminated 141
Figure 6.7: Dollies resource normalised to zero lower bound 141
Figure 6.8: Processes with redundant states in CCS 142
Figure 6.9: Pre-emptive action removing successor states 143
Figure 6.10: Activity diagrams of network model 145

b: After first simplification by hand 146
c: After alternative simplification by hand 147

Figure 6.11: CCS versions of models in figure 6.10 148
First simplification by hand 148
Alternative simplification by hand 149

Figure 6.12: Activity diagram and CCS of naïve Ethernet as Res model 152
b: the CCS model 152

Figure 6.13: Transition graph for naïve Ethernet model 153
Figure 6.14: CondQ used to model Ethernet 154

b: The CCS 155
Figure 6.15: Transition graph for CondQ Ethernet model 156
Figure 6.16: A correctly behaving Ethernet model 157

b: The CCS model 158
Figure 6.17: Transition diagram for modelling of true concurrency 161

a: Collision and backoff 161
b: Successful transmission 162
c: Immediate re-transmission, collision and backoff 162

Figure 6.18: Reader writer model as an example of potential starvation 164
b: The CCS 164

Figure 6.19: Reader/Writer reachability graph without timings 166
Figure 6.21: Reader/Writer TCCS with timings forcing starvation 166
Figure 6.22: The Reader/Writer transition graph showing starvation 167
Figure 6.22: Harbour CCS model to show deadlock 168
Figure 6.23: Transition diagram for deadlocking harbour model 169

a Tugs resource 169
a Jetties resource. 169

d: the overall transition graph 169
Figure 6.24: Concurrency workbench experiment 170

b: Selected results from fdobs command 171
Figure 6.25: CCS and transition graph changes for three tug harbour 172

b: transition graph 172
Figure 6.26: Testing three tug model with Concurrency Workbench 173

b: Selected output 174
Figure 6.27: Activity diagram of Kiteck's model 175
Figure 6.28: CCS version of Kiteck's model 176

Chapter 1

Introduction

This dissertation contains the resolution of several questions that have been in my

mind for over a decade. I had hoped that the major benefit to me in completing this

document would be to lay to rest some of them. However, it is in the nature of

research that for every issue dealt with, several more spring, Hydra like, to replace

them. Perhaps the greatest benefit is really to have built a framework within which

these questions can be more clearly addressed and answers assessed.

1.1 The problems addressed

In designing complex systems, simulation is often used to establish both quantitative

(performance) and qualitative (behavioural) properties. Its use is, however, expensive

and often yields only approximate results. For qualitative properties, Petri nets,

process algebras and formal specification techniques are increasingly used. For

quantitative properties analytical or numerical modelling, using queues or stochastic

extensions to Petri nets, are often preferred. However, simulation remains the only

way to handle large models with complex interactions, because of the restricted

classes of models suitable for exact solutions and the state space explosion when

generating underlying Markov chains for numerical analysis.

Discrete event simulation tools are traditionally categorised as being based on one of a

small number of views of a model. A number of modelling tools are based on or can

support the process view of simulation as defined by Franta [27]. Several of these, as

well as others based on other views, have diagram conventions for users to define

their models and some support model construction via graphical interfaces based on

such diagrams. Unfortunately, whereas Petri nets generated from graphical tools can

be analysed for both functional and performance behaviour, the use of diagrams for

simulation is usually specific to one simulation tool and offers no help in

Chapter 1: 	Introduction
	

2

understanding the behaviour of models without actually simulating them. Since

discrete event simulation is in effect a (pseudo-)random walk through the state space

of the model, it is not possible to guarantee to visit all states without pre-analysis by

other means.

The work of this dissertation addresses the problem of developing a formal

understanding of process based discrete event simulation models. These are required

to be expressible in terms of diagrams suitable for direct graphical input on PCs or

workstations. At the same time they must be amenable to a priori functional analysis

and so have a well developed semantics. The vehicle for this is the definition of

mappings from a graphical language of models (known as Extended Activity

Diagrams) both to a discrete event simulation language (an extended form of

Birtwistle's DEMOS) [13] and to Milner's Calculus of Communicating Systems

(CCS) [58].

A major problem with diagrams for this purpose is that large or complex models are

difficult to express and to understand. Fortunately the structure of process based

models is inherently hierarchical and so this can be used to provide information

grouping and hiding in a natural and consistent manner.

1.2 Overview

This dissertation is structured in the following way. A survey of the main views and

their typical diagram conventions is given in Chapter 2. This chapter also contains a

survey of previous work in formalising simulation models and in establishing

equivalences among them. It concludes with a short description of the Calculus of

Communicating Systems (CCS), its temporal extension TCCS [61, 98] and the

associated process logic, the modal pt-calculus [95]. Since the main work of the thesis

draws on these areas, which are not commonly combined, this initial exposition is

quite extensive.

The use of mathematically based formal notation with rigorously defined semantics

has many advantages when it is necessary to analyse the properties of systems.

Process algebras such as CSP [38] and CCS have evolved for this reason.

Unfortunately this way of defining models is often seen as difficult and opaque when

presented to practising simulation modellers. Chapter 3 presents a definition of the

mechanisms of process based simulation, in particular those in the DEMOS language,

Chapter 1: 	Introduction 	 91

in terms of CCS. This is tested and weaknesses in DEMOS as a vehicle for such

definition are identified and remedied, leading to a number of necessary extensions.

The way that processes can be decomposed and composed is explored and formalised,

leading to a proper understanding of hierarchical, component based modelling which

is exploited in Chapters 4 and 5.

Chapter 4 presents Extended Activity Diagrams and their hierarchical extension,

Configuration Diagrams, as a basis for describing process based simulation models.

The symbols developed match the mechanisms defined in Chapter 3 and so have a

definition in terms of both extended DEMOS and CCS. A two dimensional grammar

for such diagrams is presented, using a slight extension to normal Backus-Naur Form.

This allows a rigorous, but abstract, definition of the graphical language, which is

independent of any particular physical representation. This plays a key role in

simplifying the writing of tools based on graphical input of models.

Chapter 5 presents a tool which supports the ideas in this dissertation. First extended

DEMOS is described as a set of extensions and modifications to Birtwistle's language.

Building on the graphical language defined in Chapter 4, the implementation of a

graphical modelling tool is described. This draws mostly on a version developed for

IBM PC compatible computers, but also to general solutions to such tool construction.

Evidence from a second implementation under X Windows is used to support the

possibility of largely automatic tool building based on graphical attribute grammars.

The tool is shown to be capable of generating extended DEMOS for all models

describable using it. Complete CCS models can be generated for many of these

models and useful outlines for the others.

Chapter 6 contains some model studies which demonstrate the benefits and problems

in combining pre-analysis of functional properties with simulation of dynamic, timed

behaviour. It addresses models simplification without changing behaviour, analysis of

behavioural properties of models and implications of component model re-use. Not all

questions are found to be easily addressed, even with the use of the modal p-calculus,

but some clear benefits are claimed.

Chapter 7 draws together the strands of the earlier chapters and assesses the outcome.

Open issues and areas for further research and development are identified.

Chapter 2

Background and previous work

2.1 Introduction

This chapter introduces the background to the work of the thesis. Since it draws on

some fields which have had little previous contact, it is somewhat detailed. Those

who are familiar with the material of a particular section will perhaps find this

unnecessary for themselves, but will hopefully agree to the need in general.

Section 2.2 looks at discrete event simulation and various approaches used to

express models to be solved by it. The main purpose of this section is to define

clearly the process based view, which is the one which will mostly be addressed

throughout this dissertation. Section 2.3 considers some of the languages which

support the process based view and introduces the DEMOS language [13] as the

most comprehensive of these. Section 2.4 is a survey of various ways of drawing

discrete event simulation models as diagrams and assesses their suitability as the

basis for a formal approach to simulation. Section 2.5 looks at how far hierarchical

modelling has been addressed within discrete event simulation. Sections 2.4 and 2.5

together motivate the work of Chapter 4 in defining a complete and hierarchical

approach to graphical modelling and Chapter 5 in building a tool to demonstrate this.

Section 2.6 considers previous work in formalising discrete event simulation and

identifies a lack of rigorous support for behavioural verification of models. Section

2.7 introduces process algebras as a way of expressing behaviour and reasoning

about it. In particular the Calculus of Communicating Systems (CCS) [58] is

described. Section 2.8 introduces process logics as a means of defining properties of

CCS models and posing queries about them. Together sections 2.6, 2.7 and 2.8

motivate and inform the work of Chapters 3 and 6.

Chapter 2: Background and Previous Work

2.2 Approaches to discrete event simulation

Traditionally, discrete event models are divided into four main world views, event

based, activity based, transaction based and process based. This dissertation will be

mainly concerned with process based models, but a short description of each world

view is presented here. For a more extended discussion see [15] and [65].

2.2.1 Event based

Event scheduling is one of the oldest simulation approaches, dating from the 1950s..

It requires models to be viewed as sequences of events through which entities flow,

according to various criteria. Such models are similar in many ways to queueing

networks. This approach is used in SIMSCRIPT 11.5, which is a very popular

commercial simulation package. The event scheduling approach is often used to

program simple models in general purpose programming languages. It is sometimes

argued that event scheduling is more of an implementation device than a

conceptually distinct view of modelling, but this ignores strongly held prejudices.

To illustrate the event based approach, consider the following representation of an

MJMI1 queue. The model has two types of event, arrivals and departures, both with

Poisson rates and uses a next event mechanism. It is clear and easy to code in any

standard general purpose language, such as Fortran or Pascal.

Z.I: Next event model 01 a simple NIJIVIJI

Figure 1: Next event model of a simple queue

0 = Queue length C = Clock time NET = Next even t time

NAT = Next arrival time 	NDT = 	Next departure time

Chapter 2: Background and Previous Work
	

rel

Unfortunately, as described below, such models rapidly become too complex for

flowchart representation. Coding them becomes a systematic, but error prone task.

Schruben formalised the event scheduling approach [89], providing a graphical

formalism known as event graphs. In his original paper he used analytical

approaches to explore the behaviour of his models and this was extended in a later

paper with Yücesan [109]. This formalisation is considered in more detail below.

Various forms of event graphs have been used to generate discrete event simulation

models [66], [86], [39], [54] and [90]. In the last of these, Schruben presents Sigma,

a graphical tool for modelling with event graphs. Som and Sargent [93] also present

a formalisation of event graphs.

2.2.2 Activity based

Activity based simulation modelling uses a resource centred description of a system,

where entities pass through activities. It is often built around graphical notations,

such as activity wheel diagrams [97] or activity cycle diagrams [21] [34]. Certain

entities are found to pass through cycles of activities, often repeatedly. These cycles

are created by the resources of the system.

Activity scanning models are structured along the lines of the physical arrangement

of the systems they represent. This has made them popular in applications such as

factory simulation. They are similar to Petri nets (see below) in their failure to

distinguish active elements from passive, modelling both resource flow and control

flow identically.

The activity scanning approach is often inefficient as a means of executing models,

since it requires all activities to be checked on each state change to see if there is any

effect on entities at that stage. Although this can be improved, it is arguable that

activity scanning is inherently inefficient.

2.2.3 Transactions based

The transactions based approach is essentially derived from GPSS [88]. It is more

structured than the activity scanning approach and distinguishes between active and

passive model components, introducing resources as an explicit modelling concept.

Chapter 2: Background and Previous Work
	

7

Although GPSS continues to be widely used, it represents a precursor to the process

oriented approach. Much of the analysis of behaviour applied below to process

oriented models can also be applied to transactions based models.

2.2.4 Process based

The process based view takes as its starting point the idea that the world consists of

active and passive components. Although the term was in common use for several

years before the appearance of Franta's book [27], this gives the first complete

description of the approach, using SIMULA as the implementation language.

Active components (processes) are described by their life histories, which often form

cycles. They interact with the world through resources, which are passive, in

competition or co-operation. This division into two classes is acknowledged to be

arbitrary and Franta gives examples where the same object may be seen as active or

passive, according to the perspective of the modeller.

The main benefit claimed for the process based approach is that it expresses the

model in terms of the structures observable in the real world and so makes modelling

more intuitive and interpretation of results easier. It also can have significant

implementation benefits, as shown below in the description of SIMULA.

Recently the needs of parallel simulation have led to restrictions on the process view,

to remove direct pre-emption of one process by another [22]. This modified process

interaction world view actually seems to be an implementation driven one, rather

than an improvement in the descriptive powers of the language proposed, but may

become accepted if the benefits of parallelisation are seen as desirable.

2.2.5 The relationship among these views

As shown by [15], there is no difference in the set of models which can be expressed

in each of these views. Authors have argued with the assertion [27, 13] that the

process view is the most natural. Some have argued for attempting to combine their

benefits [65]. Here the expressiveness of process based models is assumed initially

and then shown to be additionally convenient when using process algebras to

formalise our models. On the other hand, the weakness of the interleaving view

taken by process based simulation is identified by Evans [26] and more explicit

representation of concurrency suggested, using a Petri net based approach.

Chapter 2: Background and Previous Work

2.3 Languages for process based simulation

Many languages and packages claim to be process oriented or to be capable of

representing process oriented models. Rather like the term "object oriented",

process oriented has become a victim of its own success in appealing to ease of

understanding. There are, in fact several genuine languages for this purpose. This

work will refer mainly to the DEMOS package, which is an extension of SIMULA.

2.3.1 SIMULA

SIMULA [12, 74] is a general purpose programming language, defined as a superset

of Algol 60. It was designed to support the efficient implementation of event and

process based discrete event simulation. Descriptions of how it may be used in this

way are given in [12], [27] and [59] amongst others.

In SIMULA the notion of a process is supported by a combination of inheritance and

quasi-parallel sequencing (co-routines or light weight processes) within the class

concept. This provides an efficient implementation of conditional waiting, since

objects suspended as co-routines can wait in heterogeneous lists and can resume

themselves when events in the execution of the model allow them to proceed.

SIMULA supports layers of packages, each refining and extending earlier ones. In

this way, a package for list handling, known as SIMSET, is provided on top of the

basic language. Using SIMSET, a further layer, known as SIMULATION, is

provided. This has a time ordered event list and a class PROCESS, which is the

building block for active components in models. PROCESS adds modelling related

abstractions to co-routine semantics of classes, in co-operation with the event list.

Although SIMULA does not provide the concept of a general wait-until in these

packages, Vaucher showed how this could be efficiently implemented within

SIMULA by using the Algol name mode for procedure parameters [104, 105].

2.3.2 DEMOS

DEMOS [13] is a process oriented discrete event simulation package, written in

SIMULA. It does not use the predefined package SIMULATION, but re-implements

the event list mechanisms in a similar way.

Chapter 2: 	Background and Previous Work

In addition to those features expected in SIMULA it has automatic statistical

collection and reporting and optional output of event traces. In this way, it allows a

wide range of models to be solved to establish their dynamic behaviour, both in

terms of quantitative performance (response time, queue lengths etc.) and event

based behaviour traces.

It offers an efficient version of Vaucher's wait-until mechanism, using an extended

version of PROCESS, named class ENTITY and a conditional queue class, CONDQ.

Also, a number of more specialised building blocks for the passive elements of a

model are provided, all of which report key statistics automatically. These include

RES, for resources, BIN, for unbounded buffers, and WAITQ, for master/slave

interactions.

DEMOS is investigated extensively in the following chapters.

2.3.3 Alternatives to DEMOS

There are a number of packages offering some of the same features as DEMOS.

GPSS [88] is a restricted form of process based modelling and has influenced the

design of DEMOS [15]. In particular it introduced explicit representation of

resources as a means of process interaction.

SLAM II [82] is the most widely used alternative. It supports the modelling of

processes and their interaction through resources. It lacks the inheritance and co-

routine features of SIMULA and DEMOS and so is less extensible, although it offers

a wide range of pre-defined options. SLAM II uses network diagrams [94], which

are described below. It does not support hierarchical modelling.

MODSIM claims to be the most advanced, object oriented simulation language

available. It offers somewhat similar features to SLAM, plus some additional

flexibility. Its environment includes graphical display features, but it is less flexible

than SIMULA in other ways.

Chapter 2: Background and Previous Work 	 10

2.4 A comparison of existing graphical formalisms

The use of diagrams to describe discrete event models is examined next. The range

of approaches in use today is surveyed, with the same simple example given using

several different conventions. Criteria by which we can judge the effectiveness of

such approaches are suggested and the characteristics of a generally useful standard

are developed. In Chapter 4, the core of such a standard is proposed.

2.4.1 General

The use of diagrams to design programs is almost as old as programming itself, pre-

dating high level languages as a means of abstraction, for instance in flowcharts. In

general this approach has suffered from two practical difficulties:

the permanence and, hence, difficulty of correction or extension of drawings

on paper;

the explosion of detail in large programs.

Changing diagrams need no longer be a problem, as graphics workstations can be

used to create and edit diagrams quickly and cleanly. This opens the way for a wide

range of tools to allow visual or graphical programming [83]. The current popularity

of CASE tools shows that this has happened.

The complexity of real models has led to a tendency for diagrams to be used to

specify only the high level structure of a program, not the low level implementation.

More ambitious approaches have introduced the concept of hierarchical structuring,

to allow more detail. This has been easiest where structured programniing techniques

are already in use or, increasingly, where object oriented programming is being

adopted.

The use of diagrams allows a natural expression of parallel activities, actually

showing them side by side. This is generally easier to comprehend than the

sequential laying out of parallel components in conventional, textual programming

languages. Formal notations for the description of concurrent systems, such as

Hoare's Communicating Sequential Processes [38] and Milner's Calculus of

Chapter 2: 	Background and Previous Work
	

11

Communicating Systems [107, 58] are examples of attempts to describe parallel

systems which use diagrams to aid understanding.

Within discrete event simulation the use of diagrams for tutorial purposes and for

program design has long been popular. Until comparatively recently, such diagrams

have usually been translated into programs manually. A survey of some of the most

widely used of these systems is given below. More recently, several simulation

packages have emerged which use graphical input to aid program generation. These

packages are typically:

based on a set of icons for a single application, like Simfactory [103];

based on a low level description, such as queueing networks [52, 43] or

Petri-nets [101, 7, 62,55, 18];

oriented towards a particular modelling tool, like TESS [94], PAWS/GPSM

[44] or its successor SES Workbench and PIT [72, 6].

The main aim in suggesting a standard representation is to avoid divergence among

such tools. This requires a paradigm which is not predicated on one particular solver

or class of solvers, but which can represent models in terms of the systems they are

intended to simulate and allow model generation into as many executable forms as

possible. The feasibility of such an approach in textual dialogue systems was shown

by Mathewson [56]. HIT [8,10] is another example, which now has a graphical

interface.

Desirable properties of these techniques are implementation independence,

abstraction in terms of the system modelled and completeness of description.

2.4.2 A simple system to model

In order to give some idea of the sorts of diagram which have been used or are in

use, it seems best to present a simple model in several of them. Although this is

intended to provide both an historical overview and a representative survey, it should

not be considered exhaustive.

Chapter 2: 	Background and Previous Work
	

12

The model is chosen as typical of the simple, yet realistic, examples given in most

introductory texts and, indeed, a version of this model is included in texts for at least

three of the tools illustrated. It is important that the example be fairly simple as more

complex examples rapidly become too involved to be readable as a diagram. This

problem and its solution by hierarchical decomposition is described in Chapter 4.

Following example 3.5 in "A System for Discrete Event Modelling on SIMULA"

[13], a harbour model is introduced. This is a simpler version of the "African tanker

model" originally presented in GPSS terms [88] and later in Slam II terms [81]. The

model depicts the life history of a series of ships as they enter a harbour, unload and

depart. This is shown as three phases of activity:

docking - which first requires acquisition of a jetty and two tugs and then a

delay of known characteristics; the tugs are released at the end of this phase, but

the jetty is retained;

unloading - which is a delay of known characteristics, retaining the jetty;

leaving - requires acquisition of a tug, then a delay of known characteristics;

once complete, tug and jetty are released and the ship process terminates.

A process oriented model based on this could consist of the instantiation of

resources, to represent the tugs and jetties in the harbour, and of new ship processes,

at intervals matching their arrival times. The numbers of tugs and jetties and the

inter-arrival time distribution of ships would be parameters of this model.

The rest of this section looks at some commonly used diagramming techniques used

on this simple system. This then motivates the need for a more general way of

describing models in a process based form.

2.4.3 Flowcharts

Originally most programmers, including the author, learned to use flowcharts in their

first attempts at programming. For early discrete event simulation modelling,

developed in the context of operations research, they were widely used to describe

simple models. The example in figure 2.1 is a typical example of such a model

presented in that form.

Chapter 2: 	Background and Previous Work
	

13

Figure 2.2: Flowchart of harbour model (style of Tocher)

Advance To

i=1

T=To ct i

b'=B
0

Arriving sub-flow

b AQ'AQi-1

AQ>f' 	M=A(

=Toi-sample

Docking sub-flow

Unloading sub-flow

3 TQTQ+Z

T =TO+sample
Bi4

Leaving sub-flow

4
TQ~: 1

F77777-71

ri'

=T5-fsample

Done sub-flow

5 Print M

Unfortunately, such models rapidly become too complex to retain their clarity,

largely since most general purpose languages offer little support for mechanisms

such as event list manipulation. As a result, the need to include the underlying

scheduling support obscures the function of the model as a representation of a real

Chapter 2: 	Background and Previous Work
	

14

world system. As was pointed out by Tocher early on [97], this scheduling

mechanism is often largely the same between models. Figure 2.2 shows the harbour

model as a flow chart, using the general style presented by Tocher. Subsequent

development of simulation diagramming techniques has generally tried to free

system description from implementation.

2.4.4 Activity cycle or wheel diagrams

To improve the ease of specifying a model, as opposed to the corresponding

program, Tocher [97] introduced activity cycle or wheel diagrams. These focused on

the cycles of activity associated with components of the system to be modelled. In

particular they were used to define all the states which those components could

achieve and to show where these interlocked.

Figure 2.3: Activity cycle diagram of harbour model

wat ing
arrivals

Arrival cycle
Idle arrivals 	 Unloading

0

2
Jetty cycle

Docking
0

Tug 	 Idle jetty
cycle

Leaving

Idle tug 	Tug cycle 	
4

0

Using this approach, the harbour is shown in figure 2.3. Notice how the cycles

represent the sequences of states for what will be termed resources in some later

versions of this model. The ships themselves need not be shown, as they flow

through the system in a rather passive way, although it is possible to add a ship cycle

quite easily. In this style of modelling the ships would usually be termed entities.

Chapter 2: Background and Previous Work
	

15

Tocher saw this style of diagram as a stage in defining a flow chart for the program.

It lacks much detailed information, although that could be added quite easily.

2.4.5 Hocus activity cycle diagrams

Figure 2.4: Hocus representation

a: Hocus diagram of harbour model

Arriving

Docking

Jetty Tug
Unloading

Idle Idle

Leaving

HOCUS queue HOCUS activity table
"track

b: Hocus basic symbols

The activity style of modelling is still very popular and a number of packages to

support it have been produced such as ECSL [21]. An interesting variation on the

activity cycle approach was devised by Hills [34,35] and is marketed by PE

TIME ACTIVITY
ENDS

ACTIVITY 2 OF 3

ACTIVITY NAME

DOCKING

UMBER

3 EST

IF ACTVE 3

2
CTVIT

ASSIVE

SWITCH OURCE

Q -
ENTITY
NAME

DEST

-
ALT
DEST p

SWITCH

-
B+ ARRS SHIP 1 INLOA A-

_IDLE TUG 1.T -IDLE
_IDLE TUG 2 _IDLE

_IDLE ETTY 1 UNLOA

CONST

3

DATA FIELD

5

COEFFICIENT

0.1

oTIME

RECRD

Chapter 2: 	Background and Previous Work
	

16

Consultants. Known as Hocus (Hand Or Computer Simulation System), its diagram

based models can be solved by hand or coded for solution by computer. This is a

rare example of a completely diagram based approach to non-computer simulation. It

is rather like a board game when approached in this way.

Figure 2.4a shows a Hocus version of the harbour model. It is very similar to the

wheel diagrams of Tocher, but now distinguishes two possible states for an entity.

The circles are idle states in the model, which are to be programmed as queues. The

rectangles are busy states, where the entity is engaged in an activity.

In hand simulations, counters or flags are moved to different states to correspond to

the flow of entities. As with the wheel diagrams, some entities remain in the system

and can be regarded as resources or servers, while others flow through the system

and can be regarded as jobs or customers. To support hand simulations an annotated

version of the Hocus symbols is used, where the circles became ovals of cells. Each

cell could hold one entity and the continuous "track" of cells minimised movement

of counters when an entity left the queue. The activity symbols were tables recording

times of events and details of entities engaging in them. These detailed symbols are

shown in figure 2.4b.

2.4.6 GPSS transaction block diagrams

GPSS [88] is one of the best known and longest serving simulation packages. It has

evolved considerably over the years, but the approach embodied in its block

diagrams remains its core. The diagram of the harbour model shown in figure 2.5 is

a simplified version of figure 6A. 1 in Schriber's book. In essence, each block in the

flowchart-like diagram corresponds to one GPSS statement.

Notice that this time the story is told from the point of view of the ships. An

initialisation segment generates the start conditions and a generator pumps new ships

into the model. The main activities are shown as time Advance statements,

representing the delay involved. These are synchronised with other ships through

actions called Seize and Release, which involve the Resources in the model.

Chapter 2: 	Background and Previous Work
	

17

Figure 2.5: GPSS block diagram of harbour model

NER TE

L 7 1

ASSIGN

BV$GOIN

TEST

SEIZE

AN,.
ENTER R

ERT BV$GOO

4

	
UT

IF

E \
4 TEST

I
ADVANCE

4
SEIZE

RELEASE

ADVANCE

2,FN$SPRED

ASSIGN

RELEASE 	TU

ADVANCE
FN$MEAN P2

V
LEAVEERT

GPSS is the first approach which corresponds in a limited way to the process view of

simulation. Although GPSS block diagrams resemble flowcharts, they have a system

based view of the model, rather than the program based view of simple flowcharts

in Figures 2.1 and 2.2 above. Thus they are an abstraction towards the problem

domain. Their main drawbacks are the degree of detail that is shown, or rather the

number of steps required, to achieve simple ends, and the difficulty of showing

interactions between different kinds of process in the same model. Although not

significant in this simple model, which has only one kind of process, this soon

becomes essential. In fact GPSS allows the modeller to specify several processes as

Chapter 2: 	Background and Previous Work
	

ii:

separate diagrams and to associate them through resource names. This is adequate,

but lacks the clear expression of interlocking sequences possible with activity cycle

diagrams.

2.4.7 Simscript diagrams

Along with GPSS and SIMULA, Simscript [50,51] is one of the earliest widely

available languages with specific support for simulation. There seems to be a

shortage of generally published recent documentation on this system, in particular

the references found for version 11.5, which contains the notion of processes, seem

not to be generally publicly available [51,84,85]. The example of a model in

Simscript terms is based on diagrams used in a paper [25] which may not reflect

current usage.

In essence Simscript uses events, sets (queues) and routines. Its original view was

based on events rather than processes or activities. The current version is said to

contain support for both processes and resources, following the pattern set by GPSS.

Various types of link are possible between events and other components. These are

basically

scheduling of one event by another, shown as a dashed line;

insertion and removal of entities in sets, shown as a dotted line;

calling of routines, shown as a full line.

Figure 2.6 shows such a representation of the harbour. In a simple example, where

only one type of process is represented, this looks little different to many process

based diagramming techniques. Note, however, that the dashed lines between events

represent scheduling rather than flow of control. Thus, delays are modelled as

explicit scheduling actions. As will be shown in Chapter 3, this is not inconsistent

with the process based approach, but weakens the modularity of systems, making

component identification more difficult.

Chapter 2: Background and Previous Work 	 19

One aid to clarity in this form of diagram is the use of links to show flows in and out

of sets. These are not just used as resources, however, and in more complex

examples confusion amongst different uses of sets is a problem.

Z.: Simscript event model 01 flarIour model

Next .Time

LiLr
,1

DOCK 	- - - - - - -

Set

Jetty 	 UNLOAD 	 Tug
list 	 list

LEAVE

- - 	
[COMP7LETE1 - 	- -

Symbols used

T __ Set or queue 	______ '- 	Call

Schedule

COMPLETE Activity

- Insert/remove

Next .Time 	Routine

Chapter 2: Background and Previous Work
	

PA

2.4.8 Simulation Nets and Simulation Graphs

Schruben [89] introduced a graphical representation of event based models, which he

called event graphs. This was extended and formalised in work with Yücesan [109],

and called simulation graphs. These were used to explain certain formal rules of the

behaviour of such models and to prove certain conditions for equivalence and for

event reduction within such models. This formal work is contrasted with the use of

process algebras in Chapter 6 of this dissertation.

Each node in the directed graph represents a state change or event. The edges in the

graph represent the triggering (or in the case of a dotted line cancelling) of the

destination event. Each edge is labelled with an optional time, an optional condition

(shown as a roman numeral in parentheses) and an optional edge attribute list. The

edge attributes are associated with vertex parameters in their destination vertices and

represent the passing of parameters on the triggering of an event. This allows, for

instance, an instance of an event to be defined as relating to one particular entity in

the model. In the model below we use it to identify which ship is in which state at

any time.

Figure Z.'/: A simulation net tor the harbour model

0 _ _~O_'Y -0 	_Q tdockfQ tunloadf>O op
[

ml 	t[ial 	[ib] 	[ic] 	[id] 	 [ie]

amve

0 tdepartf>Q

lifl

Event Type Event Description State Changes

Jetties := 2,
0 Initialisation Tugs := 3,

in := 1
1 Ship arrives ia 	ia+1
2 Ship acquires one jetty Jetties := Jetties - 1
3 Ship acquires two tugs Tugs := Tugs - 2
4 Ship ends docking Tugs := Tugs + 2
5 Ship ends unloading
6 Ship acquires one tug Tugs := Tugs - 1

7 Ship has left Tugs 	Tugs + 1,
Jetties 	Jetties + 1

Chapter 2: Background and Previous Work
	

21

Although some states shown here have no state changes, that is because there is no

statistical recording, which would need to be added by showing queues growing and

shrinking and times elapsing for sequences of events being recorded. The conditions

associated with this graph are as follow:

C1 ,2 	 [i] 	 Tugs >= 2
C2,3 	 [ii] 	 Jetties >= 1
C5,6 	 [iii] 	 Tugs >= 1

Analysis of this by Schruben and Yücesan's rules is considered in section 2.6.2.

2.4.9 PAWS queueing networks

The Performance Analyst's Workbench System (PAWS) [43] contains a language for

performance modelling of information processing systems. It uses a version of

queueing network diagrams known as Information Processing Graphs (IPG5) and,

through its Graphical Programming of Simulation Models (GPSM) interface, allows

direct program entry in that form on IBM PC compatible machines. SES Workbench

is a development of PAWS and runs on SUN workstations under X Windows. The

harbour model is shown as an IPG in figure 2.7. Like Simscript 11.5, little generally

published material seems to be available on PAWS and this section is derived from

the user manuals for the system, in particular the GPSM manual [44]. Some

examples of the use of IPGs are given by Smith [92].

Like SLAM II, PAWS has resources as explicit features, which may be Allocated,

Released, Created and Destroyed. In addition it has a class of memory resources, to

model memory in computer systems. The latter allow arbitrary blocks of a resource

to be taken from a pool.

Activities are modelled as either delays (corresponding to infinite server queues in

queueing networks) or servers attached to queues.

As in GPSS, the processes in a system are called transactions and these flow through

the network to represent the model running. At various nodes transactions may be

generated (Source), be destroyed (Sink), change state (Phase Change) or be spawned

by parent transactions (Fork) or by sibling transactions (Split). Probabilistic

branching is also supported as in classic queueing networks. Forked children may

co-alesce into their parent at Join nodes, which violates normal product queueing

Chapter 2: Background and Previous Work
	

22

network assumptions, but can be easily simulated. Nodes are available for

computation, to update state variables.

More interestingly for the purposes of this dissertation, IPGs support the notion of

one activity interrupting another and forcing it to shift to another sequence of

actions, specified by some parameter. This is clearly a result of PAWS orientation

towards modelling computer systems, which typically have a hardware with

interrupts built in. Such a mechanism is also useful for modelling breakdowns, but

will be seen to cause considerable problems in DEMOS, when a formalisation in

CCS is required.

rigure h.: YAVV 	01 naroour mociei

Allocate 	Allocate 	 Release 	Allocate 	 Release Release
Jetty 	 Tugs 	Dock 	Tugs Unload

Tug

1>4:1 :1~1~

Leave

,

Symbols used in PAWS model

Allocate 	 Allocate

V
resource 	TiT1Jç\ memory 	 Delay 	

Sink

Release 'fl7 Release
resource 	 memory 	 Source

Also interesting is the support for some notion of hierarchy in IPGs. This is quite

natural in a queueing network based system, where the notion of flow equivalent

sub-networks is a common technique to make large models more easily tractable. In

PAWS it is more a question of allowing suitably sized models to be generated, both

graphically and for solution. In effect any part of the total IPG network which has a

single entry and exit point is a candidate for collapsing into a single node,

representing a sub-model to be called when it is reached. This notion of

decomposition is more restrictive than that developed in Chapter 4. It allows more

complex models to be supported, but is not tied to any explicit structure of the

system being modelled.

In general PAWS fails to allow abstraction towards the problem domain, except

when suitable sub-models are definable. Instead it provides a way of using a few

higher level abstractions, such as resources, to ease the task of building models

which are solution method oriented. In the case where analytic methods are to be

applied to solve such models this may be necessary, but PAWS is intended as a

Chapter 2: Background and Previous Work
	

23

simulation package and such a representation tends to obscure the model for non-

experts.

2.10 Petri-nets

Petri-nets are among the lowest level representations of a model. It has been

suggested, by Hughes for example, that many of the other forms of representation

described here could be transformed into equivalent Petri-nets. Some incomplete

work on systematically transforming DEMOS style activity diagrams (see 2.4.12

below) into Petri nets was reported in private discussion with Peter Hughes to have

been performed by a masters student at the University of Trondheim. Unfortunately

it has proved impossible to obtain a written report of this work. Several forms of

Petri-net, such as stochastic nets and timed nets, have been devised to allow more

complete description of the information needed by model solvers. The harbour

model is considered using a simple place/transition net.

In general Petri-nets represent models in terms of tokens which flow along the edges

(called arcs) of a directed graph. The nodes are called places (shown as circles) and

transitions (shown as vertical or horizontal bars). Tokens accumulate in places until

the satisfaction of some condition associated with a transition on an output arc of

that place causes it to fire. When a transition fires it sends the tokens from its input

places on along its forward arcs to its output place or places.

The transitions can be used to represent activities, like the links in SLAM II

networks. The nodes represent synchronisations. Timed nets allow durations for

transitions to be specified. Stochastic nets allow probabilities to be attached to

firings.

Figure 2.9 shows the harbour model as a simple place/transition Petri-net. Note that

the scheduling of arrivals must be modelled as a clock loop at the start of the graph

and that the model has no implicit timing information or probabilistic behaviour.

Petri-nets have been widely favoured by some modelling theorists, because of their

universality and their sound theoretical foundations. They are, however, sometimes

quite hard to interpret as system descriptions, as can be seen by the failure to

distinguish tokens which represent resources, tokens which represent active

Chapter 2: Background and Previous Work 	 24

processes and tokens which represent active processes which have acquired

resources.

2.9: Simple Petri net of harbour model

Set ar
tim

Jetty

Tug idle

Symbols used in Petri nets.

Place - represents condition.

Transition - represents activity.

- 	Arc - represents flow of entities;
annotation represents number of tokens
required for transition to fire.

It is, however, straightforward to build interpreters to "execute" or simulate them,

but the results may be hard to relate to the structure of the real system being

modelled. Clearly they are important in advancing the understanding of modelling,

but they are not appropriate, perhaps, as a user interface for non-experts. They can

express genuine concurrency, but do not solve the problem of how to program this

for all cases when producing an executable discrete event simulation model of the

Chapter 2: Background and Previous Work
	

25

system which they describe. This problem of expressing concurrency is a major one

for all the systems described here. An attempt to unify Petri-nets and process based

modelling is made in the engagement strategy [26].

Molloy [63] introduced stochastic timings into his models as delays on the firing of

enabled transitions and Ajmone Marsan and others [2] introduced more general

stochastic modelling mechanisms, most importantly the concept of an immediate

transition, which took no time but could have branching probabilities associated

with output arcs, and inhibiting arcs, which blocked their output places rather than

enabling them. The resulting class of generalised stochastic Petri nets (GSPNs) has

attracted much interest in the performance analysis community, especially since,

where all delays are exponentially distributed, efficient numerical solution

techniques are sometimes possible. In such models, the GSPN can be transformed

into its equivalent Markov chain.

Deterministic timed delays have also been introduced and efficient numerical

methods for solving the resulting deterministic and stochastic Petri nets (DSPNs)

have been developed by Lindemann [55]. More recently Chiola and others have

proposed the use of coloured Petri nets to make modelling easier and help with the

expressiveness of Petri nets. This work is still in its early days but should remove the

problems in distinguishing different uses of tokens flowing through the system.

GreatSPN [18] and Molloy and Riddle's system [62] allow graphical entry of Petri-

net models. GreatSPN uses numerical solution methods as well as simulation. It

provides several forms of structural and behavioural analysis of models, which will

be examined in more detail in section 2.6 below. Lindemann's DSPNExpress [55] is

a re-working of GreatSPN for DSPNs. The graphical description of the harbour

model remains essentially unchanged, except that timed transitions are used, shown

as boxes.

2.4.11 	Slam II network diagrams

There have been several published models using SLAM II and its associated network

diagrams [82]. These seem to combine some aspects of queueing network diagrams

and Petri-nets with GPSS-like resources and activities expressed as delays. Pritsker

also used these ideas to show Q-GERT models [81], which include continuous state

changes.

Chapter 2: Background and Previous Work
	

26

The immediately obvious difference in figure 2.10 is that activities are shown on

links of the diagram, not as nodes. They are rather similar to timed Petri-nets (see

section 2.4.10 above), although in general a SLAM II description is much more

system oriented. The model shown follows what seems to be the normal convention

in network diagrams by showing flow through the model as horizontal, generally left

to right. This may make them seem rather more different from some others shown

here than is really the case.

It can be seen that the resources are shown explicitly, although their use is indicated

by the occurrence of their names in AWAIT nodes and FREE nodes, not by links.

This is very similar to GPSS.

In figure 2.10 ships are being generated at the left and passing through queues,

where they wait for servers, represented by directed edges. Each server has a delay

defined, like the GPSS Advance block. By the mechanism of Files associated with

each queue, different queueing disciplines can be enforced. When resources are

required the ships enter AWAIT nodes until sufficient are available.

In fact the SLAM II diagrams are very similar in this simple use to the GPSS

equivalent. Like them they involve lots of nodes. The full vocabulary of SLAM II

network diagrams is very rich and allows expression of quite complex models. The

explicit representation of resources helps readability, but the lack of graphical links

from them to AWAIT and FREE nodes reduces this benefit. There is a fairly

complete set of statistical collection symbols as well.

In general these diagrams work quite well for modellers who are aiming at SLAM II

as a programming language. The TESS graphical input front end [94] uses the

completeness of the representation to allow model generation directly from them.

The problems are the explosion of detail, the orientation towards SLAM II (although

this may be more apparent than real) and the lack of any convenient means of

modularisation such as hierarchical processes.

Chapter 2: 	Background and Previous Work
	

27

Figure 2.10: Slam network diagram of harbour model

Jetties 2

Tugs 3

Dock
time f

kI
Tugs/2

ff~—~

Unload
I

TU
	Tugs/1_D

C 	 EJetti, j::~~
s

D 	H
Tus

Leave
time

Symbols used

_________ 	Release
Source 	

Jetties

) 	resource

fl 	Acquire
Sink 	 Tugs/i 	

resource

Dock

Define Time 	 Jetties 	12 I
Activity 	 I 	 I I 	resource

The approach is in general process based, but overlaps at times with the activity

style. Thus, there are synchronisations called ACCUMULATE - which blocks

process instances until a required number have reached the same state - and MATCH

- which blocks process instances until attribute values can be matched between them

and other instances. These illustrate an important semantic confusion which

surrounds the word process in such discussions. In the view of Franta [27] and

Birtwistle [13] it seems that a process is an instance of what is called an entity in the

activity style, with all its actions encapsulated. Thus, the process based view starts

from the life cycle of entities and synchronises these through external queues of

various kinds, such as resources and wait until states. SLAM II, like GPSS and most

other supposedly process oriented modelling systems, keeps the distinction between

Chapter 2: Background and Previous Work
	

FW

a process description and the entities flowing through it, which is closer to activity

style descriptions. It is in contradiction to the definition of processes used here that

ACCUMULATE and MATCH are part of the process rather than an interaction with

a mechanism external to it. The approach in Chapters 3 and 4 depends on this

separation of process and environment.

2.4.12 	DEMOS activity diagrams

The diagram in figure 2.11 is based on figure 3.5 of [13]. This includes the standard

symbols of a rectangular box for a delay, annotated with a description of the

associated activity, and a circle for a resource, annotated with a description of the

resource and the initial amount available.

Figure 2.11: DEMOS activity diagram of harbour model

Acquire 2

	

Acquire 1 	

Dock 	

.0

Unload etties

Release 	Tugs

2 	

Release 1 	
Leave 	 elease

Acquire

Symbols used

	

Hold 	 0 Resource

This approach seeks to merge the simplicity of activity cycle diagram with the

descriptive power of a GPSS-like flowchart process description. As used by

Birtwistle it gives an incomplete definition of the model and ignores many more

complex possibilities. It is not even capable of expressing all of the power of the

DEMOS simulation system itself. It has, nevertheless, proved popular and

influential. Birtwistle himself notes that experts in the properties of the system being

modelled have found it relatively easy to understand such descriptions and it has

proved useful in a number of modelling exercises of different types, including

computer hardware, communications protocols and factory systems. Hughes

Chapter 2: Background and Previous Work
	

29

extended the range of symbols to model interrupts and conditional waits [40].

Chapter 4 develops activity diagrams as a standard way of representing process

based models.

2.5 Sub-models and hierarchies

Most modelling tools and languages started with a flat view and offer little support

for sub-models. Thus SLAM's network models are an inherently flat description of a

total system. The notion of hierarchy is essential, however, to the complexity and

scale of many models, as well as sometimes allowing more efficient solution.

Existing approaches to hierarchical modelling for either of these purposes are

considered below.

2.5.1 IPG sub-models

One exception already noted is the use of sub-model nodes in PAWS and SES

Workbench IPGs. These are intended to support information hiding and reuse of

previously defined model sections. There is, however, no attempt to exploit them to

enhance model solution. They are allowed only a single entry and exit point and

leave the underlying model flat. There is no reason that they could not form the basis

of some sort of hierarchical modelling, along the lines of flow equivalent service

centres, which are described next.

2.5.2 Flow equivalent service centres and other aggregated sub-
models

Within queueing networks, the idea of flow equivalent service centres was

introduced to allow pre-solution of sub-networks and the substitution of tables

representing aggregate behaviour into the resulting main model. This notion of

decomposition and aggregation has been generalised to a basis for heterogeneous

modelling by Beilner[9] and Buchholz [17]. Combined modelling using simulations

in DEMOS, generated by the PIT model editor [6], and Petri nets in GreatSPN,

generated by the PNT graphical editor, were shown to be possible, using the

Edinburgh Experimenter within the IMSE framework [17, 36]. PIT added a flow

equivalent server node to standard DEMOS activity diagrams to support this.

Chapter 2: Background and Previous Work

Figure 2.12: Flow equivalent sub-models in queueing networks

Database

Figure 2.12a: ()op
Simple Queueing
Network

CPU SCSI
Do TED-

Figure 2.12b: Decomposed queueing network

Flow equivalent

CPU service centre

1110

Database

SCSI

111ID-'

Disc

2.5.3 Sub-models in DEMOS

DEMOS is based on SIMULA, which is object oriented, and so views ENTITYs and

the synchronisation components in models, such as resources, as objects defined by

classes. This allows processes to be built from collections of other objects, i.e. fully

general component based modelling is possible. This is explored in Chapters 3 and 4

Chapter 2: Background and Previous Work
	

31

in the context of a model of X.25 in [69] using experience from [67] and [108].

Although DEMOS gives the best support to such sub-model structuring of any of the

systems reviewed, it is not formalised within the DEMOS package or the notation of

(extended) activity diagrams. The PIT tool showed the strength of the approach, by

using it to add two new nodes to activity diagrams, the FESC described above and

the server, which was an abstraction of a resource and a process imparting a delay to

form something very like the service centre and associated queue of a queueing

network.

Hierarchies in a modified form of DEMOS and their formalisation, represent one of

the main contributions of this dissertation.

2.5.4 HIT

HIT [8,10] is specifically built to support modelling of computer systems in a

hierarchical manner, based on a layered machine view of such systems. This allows

modularisation, corresponding to components within layers of the real system. Such

a view gives a form of description which is very natural for the types of systems

considered. The user interface uses either a textual language, HI-SLANG, or a

graphical model construction interface, HITGRAPHIC. In either, modules at a

higher level are use services from modules lower down. At the lowest level simple

services are described. Modules, termed COMPONENTS, are described as LOADs

applied to MACHINEs.

Written entirely in SIMULA, HIT can generate automatically models for solution by

discrete event simulation, exact solution as product form networks and approximate

solution for other classes of network, numerical solution of underlying Markov

chains and structured decomposition and aggregation of large models for efficient

solution. HIT runs on most platforms supporting a SIMULA compiler, including

most UNIX workstations and IBM and Siemens mainframes. HITGRAPHIC is

written in C and runs on top of X Windows. It was developed at Universität

Dortmund with initial support from Nixdorf Computer AG and BMFT.

With its combination of solvers and its hierarchical approach, HIT shows the

feasibility of a general approach to description of performance models. It lacks,

however, any formal behavioural semantics.

Chapter 2: Background and Previous Work 	 32

2.13: H1'lGRAPHIC

2.6 Formal representation of discrete event
simulations

There have been a number of attempts at formalising various aspects of discrete

event simulation modelling. Some have been oriented towards the modelling

process, others have concentrated on models themselves.

2.6.1 Formalising the modelling process

The process of modelling is really a branch of experimental method. There are

probably two major attempts which have been made to structure this.

The Conical Methodology

In the Conical Methodology [64], the software engineering lifecyle is modified to

describe the simulation modelling process. In particular, the spiral model of software

engineering is used as the basis of a conical model of simulation modelling.

Chapter 2: Background and Previous Work 	 33

Multifaceted Modelling

The idea that no one model can express all aspects of the system being represented is

well known, but it was first formalised by Zeigler [110,111,112]. Here a systems

theoretic approach is developed for simulation. Essentially Zeigler notes that the

system corresponds to a base model. Such a model is unrealisable, as the level of

detail required is beyond the capability of our modelling techniques. Experimental

frames are introduced to define sets of conditions under which observations are

possible and lumped models are models capable of solution under the conditions of

one experimental frame. Computation is the means of extracting the results from a

lumped model under the conditions of an experimental frame. This approach allows

a hierarchical modelling framework to be developed, with higher level, more abstract

models deriving some of their detailed information from lower level, detailed models

of more restricted parts of the system. This notion of hierarchy is based on

information flow and representation.

Using this framework, Zeigler went on to develop the DEVS formalism, described

below. This framework was also a major influence on the work of he SIMMER

Alvey project [41, 42, 7 1] and the IMSE ESPRIT II project [75].

2.6.2 Formalising simulation models

The use of simulation models poses problems in formal understanding of their

behaviour at all steps in their use. Firstly, during model construction it may be

desirable to use pre-existing component sub-models and to simplify the behaviour of

sub-systems while preserving behavioural properties. Secondly, at the stage of

verification it is important to establish that the model being used reproduces the

expected behaviour of the system being modelled. Then at the stage of validation, it

is important to understand the context within which the model is expected to behave

in the required way and to quantify its behaviour. Finally at the stage of model

solution, it is important to be able to simplify and re-use sub-models without loss of

important aspects of behaviour.

Chapter 2: Background and Previous Work
	

34

DEVS

The Discrete Event System Specification formalism is a framework for describing

simulation models, consistent with Zeigler's multi-faceted modelling approach [96].

Within it a model is defined by the structure:

M = <X, 5, Y, öj,, ext' , >

Where:

X 	is the set of external input event types;

S 	is the sequential state set;

Y 	is the set of output events controlled by M;

dint 	is the internal transition function defining state transitions due to

internal events;

ext 	is the external transition function defining state transitions due to

input events;

is the output function;

is the time advance function.

DEVS recognises two types of model, atomic and coupled. An atomic model is

complete and does not depend on any other models for its execution. A coupled

model is connected to other models via input and output events. Models are defined

to be closed under coupling, so that from an external viewpoint there is no difference

between these two categories. A model is defined through its input and output

interfaces.

Thus DEVS supports an hierarchical modelling concept, based on information flow.

This is rather different from the view of hierarchical modelling that is developed in

this dissertation, since the notion of coupling used will be in terms strictly of process

interactions, which implies the type of the source of inputs. In fact it is possible that

the two approaches may be complementary.

Implementations of DEVS have been made in Scheme [48] and CLOS [91]. Case

studies include [46, 45]. It has been applied to continuous systems modelling in [28].

Chapter 2: Background and Previous Work 	 35

Simulation nets

Simulation nets are, apart from some work with Petri nets discussed below, the most

closely related formalism to that presented in this dissertation and produces some

comparable results in [89] and [109]. Like the present work, the approach is to try to

identify behavioural properties of simulations from the formalism.

In Schruben's original paper the concept of simulation nets is explained using a

diagrammatic representation. Models consist of annotated directed graphs, where the

vertices correspond to events and the edges correspond to the influence of an event

on other possible events. This influence can be to schedule an event after a delay,

subject to a condition, or to cancel an event after a delay, subject to a condition. The

example in figure 2.7 represented the simple harbour model as a simulation net.

Using Schruben's event reduction rules, the events end docking and start

unloading have been combined. This corresponds to the fact that a release of a

resource can never be blocking.

In their later paper Yucesan and Schruben investigate further the use of simulation

nets to express behavioural properties of models. They focus on the structure of the

nets in what they now call Simulation Graph Models. This uses graph isomorphism

and has no idea of observation equivalence or bisimulation.

This later work introduces the notion of parameterised vertices and edges. Each

vertex is allowed to have a set of state variables which are bound to a set of

corresponding expressions associated with an incoming edge. In the usual graph

theoretic notation, simulation graphs are defined. A graph G, as a triple of (V(G),

E(G), TG), where V(G) is the set of vertices, E(G) is the set of edges and TG is the

incidence function associating each edge with an ordered pair of vertices. A

simulation graph is a quadruple of (V(G), E(G), E(G), 'PG), where the edges are

divided into scheduling and cancelling ones.

Chapter 2. 	Background and Previous Work
	

36

The annotation of such nets consists of:

STATES —* STATES I v 	V(G) I,
the set of state transition functions;

C = 	{ Ce : STATES - {O,1} 	I e e E5(G) U Ec(G) },
the set of edge conditions;

T = 	{te 	: STATES > 	 I e E E5(G) },
the set of edge delay times;

F 	{Ye : STATES 	 I e E E(G) },
the set of event execution priorities.

Using results from Schruben's earlier paper, which are formalised and revised,

notions of equivalence under expansion and of equivalence through isomorphism are

developed.

For figure 2.7 above these have the following values:

F =
	

I fi I i=O..7 } 	={ 	Jetties :=2,Tugs =3, in := 1;
ia := ia+l; Jetties := Jetties - 1;
Tugs := Tugs - 2;
Tugs := Tugs + 2;
no change;
Tugs := Tugs - 1;
Tugs := Tugs + 1, Jetties := Jetties + 1

C 	 { CI,; C2,3; C5,6 1 	= { 	Tugs>=2; Jetties>=l; Tugs>=l 	}
1 	= 	{ ti,i; t3,4; t4,5; t6,7 } 	= { 	tai-rive; tdOCk; tunload tdepart
F 	= 	{) i; yi,i; 	,2; 	,3; 	,4; 	,5;),6; 76,7 } = 1 1, 1, 1, 1, 4, 1,2,3 }

In [89] rules 1 and 2 of event graph analysis are of no relevance to the work of this

dissertation. However, in section 3.3, rule 3 states that: Event scheduling priorities

are required when the intersection of the state variable sets of two vertices is non-

empty.

Events 2, 4, 6 and 7 require relative event scheduling priorities since these events

share the state variable Tugs. Events 3 and 7 share variable Jetties. We choose to

give higher priorities based on quantities released to resources and to closeness of

subsequent release after acquires.

Chapter 2: Background and Previous Work
	

37

The model presented in figure 2.7 is fully detailed and can be simplified by the event

reduction rules in section 4 of [109], which formalise and correct those in [89].

Rule 4a: Equivalent SGNs are possible with and without an event vertex k, if vertex

k has no conditional exiting edges and if all edges entering vertex k have zero

delay times. If rule 4a applies vertex k may be combined with the originating

vertices of its entering edges. State variable changes are added to those in these

preceding vertices. k must have a higher scheduling priority than any of these

preceding vertices.

Rule 4b: Equivalent SGNs are possible with and without an event vertex k, if vertex

k has no conditional exiting edges and if there are no state variable changes

associated with it.

Rule 4c: Equivalent SGNs are possible with and without an event vertex k, if vertex

k has no conditional exiting edges and if all edges exiting vertex k have zero

delay times. If rule 4c applies vertex k may be combined with the termination

event vertices of its exiting edges. State variable changes in k are added to those

in the succeeding vertices. k must have a lower scheduling priority than any of

these preceding vertices.

Rule 5: 1ff i< = øfor all interior vertices k of an unconditional event tree, then only

the leaf vertices of the tree need be included in a simulation graph.

Rule 4a allows us to remove vertices 3 and 6 in the harbour model, giving the

revised model in figure 2.14 below.

2.14: Simplified simulation graph of the harbour model

Q tiock 	OA- tunloadf 	tdepartOO
0) (!

[in] 	t[]a] 	 fib] 	 [id] 	 [ie]

Rules 4b, 4c and 5 cannot be applied in this model and so no further event reduction

is possible.

Chapter 2: Background and Previous Work

If the model is modified to allow potential deadlock, by reversing the order of

vertices 1 and 2 in the original, Schruben's rule 3 correctly identifies a possible

problem, but does not show exactly what form it might take. In assigning the event

scheduling priorities the modeller has to be alert to resolving deadlocks along with a

number of other so called simultaneous event problems.

In Chapter 6 the use of Schruben and Yucesan's notions of equivalence is discussed

further and compared with the approach developed in this dissertation. In general

they are less powerful, since they require a stronger notion of equivalence than the

observation equivalence used by CCS.

Petri nets

As discussed above, Petri nets offer a powerful, but verbose, graphical formalism for

the description of systems, especially those with genuine concurrent behaviour. Prior

to their extension for performance modelling, culminating in GSPNs and DSPNs,

they were used for structural analysis of systems, to determine possible deadlocks,

livelocks etc. This is very close to the efforts made in this dissertation with respect to

process algebras. Most tools built for Petri net modelling incorporate algorithms for

detection of deadlocks, traps and invariants.

When the use of Petri nets for describing simulation models was introduced, it was

quickly realised that these properties could be useful. It was also realised that it

might be possible to eliminate redundant states and to ensure coverage of the state

space. This depends on the generation of the reachability graph, which enumerates

all states, as combinations of numbers of tokens in places (markings), and the

possible transitions between pairs of states.

A major weakness of Petri nets is their lack of compositionality, so that it is very

difficult to identify equivalent states or sub-nets. When sub-nets are combined, there

is no guarantee that properties of the sub-nets will be preserved. The reachability

graph depends on both the structure of the net and on the initial marking of the net.

2.7 Process algebras

Process algebras have been developed for similar purposes to Petri nets, i.e. as a

means of representing the behaviour of concurrent systems with communication

between components. The two best known examples are probably Hoare's

Chapter 2: Background and Previous Work
	

39

Communicating Sequential Processes (CSP) [38] and Miler's Calculus of

Communicating Systems (CCS) [58].

Compared to Petri nets, process algebras are algebraic rather than graphical, allow

preservation of properties of components when composing larger models from

components and, often, use an interleaving semantic model rather than a fully

concurrent one. While the first of these may seem to argue against them for the

purposes of this dissertation, the other two make them extremely likely candidates

for representing discrete event simulation models. The lack of a widely used

graphical notation is not seen as important, since it proves relatively straightforward

to generate the algebraic form from the graphical notation for process based

simulation given in Chapter 4.

2.7.1 CCS

The Calculus of Communicating Systems forms the core of the formal semantics for

process based simulation developed in Chapter 3. It was created to model the

behaviour of systems which can be described in terms of communicating agents.

Consider first the basic calculus [58]. This contains the following primitives for

defining agents, which will be used in later chapters:

sequential composition a.B after action a the agent becomes a B

parallel composition A 1B agents A and B proceed in parallel

choice A +B the agent behaves as either A or B,
but not both, depending on which acts

first

restriction A \ M the set of labels M is hidden from
outside agents

relabelling A[a1 /a0 ,..] in this agent label a1 is renamed a0

the null agent 0 this agent cannot act (deadlock)

the divergent agent I this agent can cycle indefinitely and
unobservably

Here identifiers starting with lower case letters denote labels which represent

complementary action pairs, where the use of a label with, E, and without, c, an

Chapter 2. 	Background and Previous Work

overbar distinguishes two halves (output and input) of an action, both of which must

be possible before it can proceed. Identifiers which begin with an upper case letter

define agents. Agents are constructed from the forms given above.

Symbolic names for agents are defined using the infix binding symbol, 	Le f-

In the Concurrency Workbench this operator is replaced by the prefix operator bi.

Thus the equations

A 	def 	b.0

and

bi 	A 	b.0

are equivalent in the two forms.

CCS uses a notion of observation equivalence, which depends on the assumption

that two agents are equivalent if any differences in their behaviours cannot be

distinguished by an observer. Where two agents containing the two sides of a

complementary action are combined in parallel, the resulting agent may hide the

action and regard it as internal. CCS calls such internal actions 'rs. Under many

circumstances such internal actions have no effect on the observable behaviour of

agents and so may be ignored. This is not always so, however, notably when avis the

prefixing action of one half of a choice.

CCS is essentially a labelled transition system, where each combination of agents

can be thought of as one state and each communication action labels the transition

between one state and its successor, in a similar way to markings in Petri net

defining states. The semantics of CCS are defined using Plotkin style operational

semantics expressed as inference rules on labelled transitions.

Chapter 2: Background and Previous Work 	 41

Transitions are of the forms:

A tugAcq2 	 B

A simple transition, where A engages in one side of the action

tugAcq2 and evolves into agent B. Instead of a single action, a

sequence of actions can be used to label such a transition.

A tugAcq2 	 B =

A transition which abstracts from silent actions. Thus, any number of

ts can be allowed to precede and succeed tugAcq2. Where the label is

a sequence this generalises the abstraction accordingly.

By using the notion of bisimulation as its basis of equivalence, CCS is able to detect

equivalence for a wider class of models than the use of isomorphism would permit.

It is also inherently compositional, allowing bisimulation results proved for

components to be preserved by its combinators and so reducing the effort of proving

properties of larger models constructed in this way. This will prove vital in

establishing the semantics of hierarchical models in Chapter 3.

Deadlock occurs if none of the outstanding actions at a certain point is matched by

its complement in another agent with which it is composed in parallel. In strict

terms, this also requires the action to be restricted from outside the system, otherwise

an undefined agent might still activate it.

2.7.2 Temporal CCS

Temporal CCS [98,60] is an extension to Milner's basic CCS, which allows both

explicit delays and wait for synchronisation (asynchronous waiting), in a manner

superficially strikingly similar to DEMOS. It adds the primitives:

fixed time delay 	 (t)

wait for synchronisation 	6

non-temporal deadlock

The deadlock now extends to cover situations where time cannot pass, since all

parallel components must be ready to advance time for it to move on. Put another

way, if there are components composed in parallel where some have as their current

Chapter 2: Background and Previous Work
	

42

action an unsatisfied complementary action, and other agents have a time delay, the

system is in temporal deadlock. Non-temporal deadlock allows indefinite idling, i.e.

all processes are able to wait indefinitely for actions which cannot happen and so

they cannot evolve.

The wait for delay is sometimes written by underlining the next action. In the

Concurrency workbench it is written as a $ symbol preceding the next action.

2.7.3 Synchronous CCS (SCCS)

An earlier variant of CCS is Synchronous CCS (SCCS) [58]. This offers greater

realism in describing synchronisation of genuinely concurrent systems, but is not

really suited to the purposes of this work. In this dissertation the problem is to

represent the interleaving behaviour of a simulation language, not the behaviour of

the systems it models. As will be seen in Chapter 6, there are real problems in using

a sequential language to model truly concurrent behaviour, but this is not addressed

by pretending that the language is genuinely parallel.

2.7.4 Concurrency workbench

The Concurrency Workbench (CWB) [20,61] is a tool that automates the checking

of assertions about CCS models in order to establish properties the systems they

describe. It supports the basic calculus, the temporal extension to this and the

synchronous variant. The CWB allows testing of expressions in the modal ji-

calculus, which is a process logic (see 2.8.2 below).

The CWB is used in Chapters 3 and 6 to evaluate the possibility of automating some

kinds of reasoning about process based models. The possibility of generating CCS

models suitable for use with the CWB automatically from activity diagrams, along

with their DEMOS equivalents, is described in Chapter 5.

2.7.5 Stochastic extensions to CCS

A number of attempts have been made to add stochastic behaviour to CCS, or to

similar algebras, including Jou and Smolka [47], Larsen and Skou [53] and Tofts

[99]. Some of these have been concerned with un-timed behaviour, where choices

have branching probabilities or weights attached to them. This sort of model can be

used to think about reliability and limited notions of timing. In some cases the notion

Chapter 2: 	Background and Previous Work
	

43

of bisimulation is made into a probabilistic concept, such that two systems are

bisimilar if the probability of different behaviour is less than some defined threshold.

TIPP [31] and PEPA [37,30] are examples of CCS influenced process algebras

defined with the express purpose of representing models solvable for performance

measures. Thus they both allow stochastic behaviour in terms of both times and

branching probabilities. These calculi are designed for numerical solution of models,

in the same way that GSPNs and DSPNs have been developed. They are obviously

capable of being simulated and may be of some help in answering some of the open

issues of this dissertation.

2.7.6 Other work using process algebras to express simulation
semantics

Three other pieces of work have been reported where process algebras have been

used to express properties of discrete event simulation models.

Strulo [96] defined a version of CCS whose semantics described Generalised Semi-

Markov Processes. It is known that it is possible to use GSMPs to describe many

simulation models and so the claim was made that this calculus could be used to

formalise real simulation languages. Although Strulo relates some of his results to

systems like DEMOS, the end result is still totally theoretical and he never solves or

executes any models derived from his descriptions. Nor does he show that useful

behavioural properties can be derived.

In an unpublished technical report [100], Tofts used the Synchronous Calculus of

Communicating Systems (SCCS) to explore some of the basic mechanisms of

DEMOS. Although this work duplicates some of that presented here, it post-dates it

and covers a restricted part of the problem, with assumptions about the behaviour of

DEMOS which are not always valid. This and Strulo's work assume that the

problem is to examine the world that simulation models purport to represent, rather

than the capabilities of a simulation language.

Work presented by the author in a joint paper with Tofts and Birtwistle [16] offers a

partial representation of non-hierarchic process based simulation behaviour using

basic CCS. This was published jointly in recognition of the independent realisation

by the three authors of the possibilities of the approach. Again the work covers only

Chapter 2: Background and Previous Work
	

RA I

a part of what is presented here, assuming an idealised sub-set of the facilities in

DEMOS.

2.8 Process logics

If process algebras represent a useful way of describing models, with a formally

defined semantics, it is natural to use a corresponding process logic to frame

properties and queries concerning these models. Although the Concurrency

Workbench, for instance, allows simple properties, such as the presence of deadlock,

to be queried directly, it needs a suitable logic to express more specific properties

and questions. Formally such logics are known as modal logics and express

assertions about changing state. Such logics are not confined to reasoning about

CCS. They apply generally to labelled transition systems.

There is an appealingly simple modal logic, known as Hennesy-Milner logic [32],

for expressing assertions about the immediate possibilities for a model. There is also

an extended modal logic, with fixed point operators allowing the expression of

recursive definitions, known as the modal -calculus. Within the CWB, the modal p-

calculus [95] is used for this purpose.

2.8.1 Hennesy-Milner logic

The description here follows the outline of Miler's presentation in [58].

Consider the simple system

S1 	 a.S2

Lef 	a.S3

S3 	Lef 	b.S3

Using Hennesy-Milner logic it is possible to assert properties of a system's states,

using the following operators:

satisfaction 1= - the agent on the left hand side of the operator satisfies the

formula on its right hand side.

Chapter 2: Background and Previous Work
	

45

possibility <> e.g. it is possible to make an a move both from S1 and from S2.

These are expressed respectively as:

S1 	<a> true

and 	 S2 	<a> true

The state true implies unconditional satisfaction. It is shorthand for the empty

conjunction,

AF.
iø

non-satisfaction It e.g. S3 cannot make an a move, i.e.

S3 	OF 	<a> true

which means 	S3 	1= 	—,<a> true

It is possible to distinguish between S1 and S2 if from S1 if it is possible to make one

a move followed by another, but not to do this from S2. This is expressed as:

Si 	1= <a> <a> true

and 	S2 	1k <a> <a> true

necessity [a] - the dual operator to <a>. If:

Si 	1= 	[a] 17

then by performing the move a, Si must always reach a state where F holds.

<a> requires at least one of its currently possible a moves to reach the following

state; [a] requires all of its currently possible a moves to reach the following state.

Some useful extra notation:

- 	 stands for all actions;

—k,l,m 	stands for all actions except k,l,m;

<a,b,c>S 	is short for 	<a> S v S v<c> S;

and 	[a,b,c]S 	is short for 	[a] S A [b] S A [c] S.

There are also weak forms of the possibility and necessity operators, which disregard

any 'rs:

Chapter 2: Background and Previous Work
	

me

weak possibility <<a>>

Weak possibility can be defined as follows:

E 	 iff 	3FE{E'IEE'}.FI=

I.e. E can silently evolve into a process satisfying 1. Hence:

E <<a>4

weak necessity I[aJJ

Weak necessity can be defined as follows:

E 	1JcI 	iff 	VFE{E'IEE'}.FI=

I.e. E cannot silently evolve into a process failing t. Hence:

E 1= E[a]? 	 [a]I[P1

Here are some common uses of Hennesy-Milner logic:

E [a] F E cannot make an a move

E <a> T E can make an a move

E 	1= [-] F E is deadlocked

E 	1= <-> T E can make a move of some sort

E <-> T A [-a] F B can only make an a move

2.8.2 The modal p-calculus

Hennesy-Milner logic is good for asking questions one or two moves ahead, but

cannot cope with recursive definitions. By adding just one construct - fixed point

operators - to Hennesy-Milner logic, the result is the modal p-calculus. This is in

effect a powerful temporal logic, allowing one to express notions of eventuality and

invariance of states and actions. Although the modal -calculus is much more

general than even a process logic, the discussion here is restricted to its use with

ccS.

More complete, fairly readable accounts of the modal i-calculus can be found in

Stirling [95] and Aldwinckle, Nagarajan and Birtwistle [3]. A useful introduction to

the representation of temporal logics in the modal ji-calculus is given in Dam [24].

A fixed point equation might have the form:

Y 	 <a> Y

Chapter 2: Background and Previous Work
	

47

meaning that each state in Y has the property of being able to perform an a action

followed by a b action and then reaching a state in the original set, Y. Once we have

allowed such recursive definitions we can examine the properties of fixed point

equations and find sets of states which satisfy them, within agents. Not all such

equations have solutions, nor are their solutions guaranteed to be unique. However, a

restriction that there must be an even number of negations prefixing a recursively

defined variable in an equation guarantees that there must be at least one solution.

Formally, this property defines that the equation is monotonic.

It is worth noting that a property with respect to a model defines the set of states

where that property holds, i.e. the property and the set of states are different ways of

expressing the same thing.

There are two very important fixed point operators, defining the maximum and

minimum fixed points of a recursive equation. The maximum fixed point is related to

the fact that the union of any two solutions to a fixed point equation is a subset of a

further solution. This superset is the closure under deduction of the union of the two

initial sets. The maximum fixed point of an equation is the closure under deduction

of the union of all fixed points of that equation, i.e. it contains every state which can

form part of a solution. The minimum fixed point is related to the fact that the

intersection of any pair of solutions contains a solution. Thus the minimum fixed

point of an equation is the smallest solution to that equation and is a subset of the

intersection of all fixed points. It contains only those states guaranteed to be in every

solution. It is often the empty set.

Whilst it is not always obvious how to interpret fixed point modal formulae, the

general idea is that a maximum fixed point expresses some property which always

holds (an invariant), while a minimum fixed point expresses a property which will

eventually hold. When verifying systems maximum fixed points are useful for

expressing safety properties and minimum fixed points for expressing liveness

properties.

Chapter 2: Background and Previous Work 	 48

Some examples yield to intuition. For example, following [3]:

Y 	 (<x>Tv[-]Y)

has a minimum fixed point which can be read as saying that it is possible to perform

an x action or all actions lead to a situation where it is eventually possible to do so.

The maximum fixed point of the same equation denotes the set of all states.

As another example, the equation:

Y 	Lef 	(<x>T v

has a minimum fixed point meaning that it is possible to perform an x or there is a

derivative leading to such a possibility. Its maximum fixed point denotes all states

capable of an x action or of performing some infinite sequence of actions.

Notation for fixed points

The least fixed point is conventionally written in the form:

LLZ.<a>Z

meaning the least fixed point solution of

z 	 <a>Z

Similarly

VZ<a>Z

is the maximum fixed point solution of the same equation.

Within the concurrency workbench, these are expressed as

min(Z.<a>Z) and max(Z.<a>Z), respectively.

Chapter 2: Background and Previous Work 	 49

The workbench also uses & for the logical connective and, A, and I for the logical

connective or, v.

Some useful intuitive interpretations

The modal si-calculus can be used to express many more conventional temporal logic

operations. Since these tend to be more intuitive, Birtwistle has defined some within

the Concurrency Workbench, using macro definition capabilities which support such

definitions. Some examples follow.

Box, Weak Until and Strong Until are taken from the Concurrency Workbench

technical note [61], others are based on examples in [3] and in [95].

Box: S Box cP or 	S

is true if 1 holds in each state reachable from S.

E.g. the test for whether S can deadlock is simply S I= BOX <-> true

(we ask of each state reachable from S "can you make a move?").

max(X.P & [-]X)

is the branching time temporal logic operator which says that P holds of an agent

and continues to hold recursively for all derivations.

WeakUntil: 	S 1= WeakUntil 1 0

is true if ct holds for all derivations until a state is reached where 0 holds. This is

weak, since 0 need never hold for the property to be true.

It can be written in the concurrency workbench as:

max(X.Q I (P & [-]X))

Chapter 2: Background and Previous Work
	

50

StrongUntil: 	S 1= StrongUntil ct e
is true if cP holds for all derivations until a state is reached where e holds. This is

strong, since e must eventually hold for the property to be true.

It can be written in the concurrency workbench as:

min(XQ I (P & [-]X I <->T))

Poss: 	S 1= Poss cP

is true if S or (at least) one state reachable from S satisfies 5.

It can be written in the concurrency workbench as:

min(Y.P I

Event: 	S Event 0

is true if i holds for (at least) one state on each and every

path from S.

It can be written in the concurrency workbench as:

min(Y.P I (<->T & [-]Y))

Can: S I= Can P

is true if ct holds along at least one path from S.

It can be written in the concurrency workbench as:

min(Y.P I

Loop: 	SzLoop

is true if there is an unending path of 1 states from S.

E.g. POSS(LOOP <'r>true) is a test for livelock.

It can be written in the concurrency workbench as:

max(Y.P & (<->Y))

Chapter 2: 	Background and Previous Work
	

51

Must: 	S F= Must

is true if the only move that S can make is a p move.

It can be written in the concurrency workbench as:

[-p]F

Nec: Sl= NEC pq

is true if, however the system evolves, we cannot do a q until

after a

It can be written in the concurrency workbench as:

max(X.(<p>T I [-]X) & [q]F)

This is based on the weak until operator above, substituting the inability to

perform a q for Q and the necessity of performing of a p for P. This could also be

expressed in the corresponding strong form if required.

Cycle,,: 	S 1= Cycle P1 ... Pn

is only true if, however the system evolves from 5, P1 -< P2

- 	p n -< P1 ... 	 where -< reads must come before. This is a

useful test to check that agents 	maintain their integrity and

perform actions in the expected sequence no 	matter what the

rest of the system does.

Chapter 2: 	Background and Previous Work 	 52

Following [3] and using these operators on a system SYS2

Ui n1 .gT.sc1 .ec1 .pT.U1

U2 	def n2.gT.sc2.ec2.pT.U2

Sem gT .pT.Sern

SYS2 def (U 1 IU2 ISem)\{gT,pT}

the Workbench can check such assertions as:

SYS2 	BOX [sc1] (NEC ec1 SC ANEC ec1 sc2)

i.e. after U1 enters its critical section BOX[sc1] (i.e. from every state in which an Scj

action is possible, do it and then) it must exit its critical section cc 1 before re-

entering its critical section via Sc1 or before U2 is permitted access to its own critical

section via sc2.

Chapter 3

Defining simulation behaviour formally

3.1 Introduction

This chapter begins by defining carefully the concept of process interaction based

simulation in English. It then defines it in terms of Miler's Calculus of

Communicating Systems (CCS) [58] and shows that this is helpful in understanding

the true behaviour of simulation packages, of models written using them and of the

components in such models.

It then develops some requirements for modifications to the DEMOS package for

completeness and to make it easier to understand the behaviour of models written

using it. This analysis is used in defining the vocabulary of the graphical notation in

Chapter 4. These are developed further in Chapter 5, where the modified package is

implemented in terms of the graphical formalisms of Chapter 4.

3.2 Process interaction

Although the process view of simulation has a long history, its precise meaning has

remained loosely defined. Even the most complete statement [27] is informal and

based on a particular implementation. This chapter aims at providing a rigorous

definition of such a view. Process interaction models systems at two levels. The

basic level describes autonomous objects in terms of their behaviour. This can be

represented as a finite state machine, a life history, an algorithm etc. Such objects are

sequential processes in CSP [38] or agents in CCS. The higher level defines the

behaviour of a system in terms of instances of such autonomous objects and of their

interactions. The types of interaction allowed vary, but all are of two basic sorts,

scheduling and waiting. Interaction mechanisms will be seen to be pairs of such

interactions, linked by an object such as a resource or a queue.

Chapter 3: 	Defining Simulation Behaviour Formally 	 54

In this dissertation a set of interaction mechanisms is used which relates closely to

those supported in DEMOS [13], but other possibilities exist, such as SLAM

[82,94], which are consistent with it. In this section these are defined from the

perspective of a simulation language.

3.2.1 Interaction of processes

This section discusses the construction of processes and systems from components

and sub-systems. It assumes that basic processes are defined in the general sense

used above. For the purposes of hierarchical modelling all that we need to know is

that in a sequential process the behaviour of an autonomous part of the system has

been defined and that all points at which it interacts with other processes are visible.

An interaction may actually become internal when an instance of a process is

generated, if no other process shares in it, e.g.. a resource may be unshared in a

particular model and can be disregarded.

A process type is the definition from which process instances are generated. It

defines the behaviour, variables and interactions (through defined synchronisation

mechanisms) of any instance. It does not define the current state of a particular

instance of this type. Nor does it specify with which other process types or instances

any particular instance of this type interacts. The state variables in a process type

implicitly include a local sequence counter, which records the point in its execution

that an instance generated from a type has reached.

Any process instance is derived from a process type by giving values for its current

state and the synchronisation objects through which it shares interactions. The state

of a process is the point it has currently reached in its behaviour (as defined by its

local sequence counter) and the values of any explicit internal variables it possesses.

Each interaction within a particular process type is associated, in any instance of that

type:

with one or more potential states which enable that interaction,

with a synchronisation object through which it is shared,

with zero or more processes with which it is shared.

In addition each interaction is of one of the classes defined below. Any particular

interaction may involve one or more formal parameters, whose actual levels can be

Chapter 3: 	Defining Simulation Behaviour Formally 	 55

constant, functions of local or of global state variables, functions of parameters of

the enclosing process or functions of parameters of the environment. In practice it is

sensible to restrict them to being constant or locally defined.

To create an intuitively well defined way of modelling, it seems sensible to make it

match the construction of real systems. In a real world system, each visible

interaction of a particular component is shared with at least one other component

capable of joining in that type of interaction. When combining components to form

complete systems or larger components, all such interactions are matched and, as

appropriate, used to connect components. If a combination forms a new, compound

component (subsystem) there may still be some unmatched or partially matched

interactions. If all required connections have been made, there is a complete system.

This includes its working environment, which can be viewed as a component

matching any internally unsatisfied interactions. The complete system can now begin

operation.

In process based modelling, the composition of sub-models and models from

component instances takes place in the same way. Instances of modelled processes

are combined by matching interactions until no unsatisfied interactions remain,

giving a potentially executable model. At any level, state variables may be

introduced into the model. These include, explicitly or implicitly, references to other

component process instances at that level. Such variables are regarded as enclosed

by the textual scope of the sub-model or model in which they are introduced. Access

to them from outside that scope, other than for monitoring and statistical collection,

is restricted to instantiation via formal parameters of the component where they are

introduced or to internal actions of that component. Every variable must have a

defined initial value which is a constant or a function of the parameters of that

component. Once appropriate arguments and initial values for internal variables are

supplied, both the model and its environment are complete and ready for execution.

If some values are left free, there is a complete, but parameterised, model, suitable

for use in multiple executions within an experiment.

In fact it is not always the case that all process instances are defined in a "complete"

model. Often the number of identical processes entering into an interaction is left

"free" as a parameter of the final model. This may also be the case where chains and

rings of linked components are defined within the structure of the model. Such

Chapter 3: 	Defining Simulation Behaviour Formally 	 56

models are incomplete in the sense used here and the parameterisation of these

models is on two levels; one completes its structural definition and the other defines

the environment for its execution.

3.2.3 Hierarchies of Processes

Leaving aside the definition of internal behaviours for the moment, assume that a

process is a black box with the required properties and only its interactions visible.

The definition of a model introduced above says that all interactions must be

correctly satisfied for it to be complete. What then of a collection of process

instances with some interactions matched and some still unconnected? Such a group

is made into a composite object, hiding the individual processes and any interactions

among them which are completely satisfied, so long as those which are unsatisfied

remain visible. The result can itself be regarded as a process. In Chapter 4 this will

form the basis of the hierarchical extension to activity diagrams, called configuration

diagrams.

The term compound process is introduced for such a composite and the term atomic

process for underlying simple processes. Note that, while compound processes can

be formed from any collection of processes in a model, in practice it is most useful

to reflect some structure of the system being modelled, since it is unhelpful that

disjoint sets of processes be included in one compound process or that closely

coupled sets be split. This views a model as a tree of process instances, with a

complete model as the root and atomic models as the leaves. Since the starting point

in this composition of processes is any collection of processes and the outcome is a

process, it is recursive and, by induction, it works for any number of levels.

Figure 3.1 shows the structure of the X.25 model reported in [69]. This model is

used again as an example of graphical modelling in Chapter 4. The Node process

represents a complete wide area network node, which connects users to the physical

network and maintains virtual circuits. The two components of a Node are a DCE

and a DTE, which are responsible for the interface to the network and to the users.

Each of these contains in turn a PINP (Packet Input Process), a POUTP (Packet

Output Process) and a PAD (Packet As sembler/Dis assembler). Nodes, DCEs and

DTEs are compound processes. PINPs, POUTPs and PADs are atomic processes.

Chapter 3: 	Defining Simulation Behaviour Formally 	 57

3.1: Process hierarchy in an X.25 model

Node

	

DCE 	 DTE

I
PINP / PAD PINP / PAD

	

POUTP 	 POUTP

3.3 Sequential process behaviour

The question remaining is how to define the basic sequential behaviours of atomic

processes. In previous work on DEMOS hierarchies [72,73,78,79] it was assumed

that the lowest level processes were those defined by the flow of control aspects in

activity diagrams (described loosely in Chapter 2). This gives a rule, in terms of that

graphical formalism, that an atomic process is a start/end pair and all nodes

connected to them by flow of control links. As a corollary, a flow of control link

may not leave a process. Here, this definition is preserved, but the decomposition

rules are extended, by noting that any decision to make a process atomic is arbitrary

and involves an abstraction of the real system and an aggregation of underlying real

world processes behaviour. This point is especially important when trying to

simplify models for more efficient solution.

3.3.1 Decomposition and Composition of Processes

A rule is introduced that atomic processes can be further decomposed in two ways:

one of which merely results in finer division of their behaviour, the other in more

detailed modelling. The second is dependent on the first and allows aggregation to

be seen in its correct place in process based simulation. Both are independent of the

particular formalism used to describe models, but here the conventions of activity

diagrams are used for their convenience.

3.3.2 Breaking Down Sequential Behaviour

The introduction of this concept removes the distinction between sequential

behaviour (flow of control) and synchronisation (interaction). Flow of control within

a process can be represented as scheduling between two new processes. To see this

consider two cases.

Chapter 3. 	Defining Simulation Behaviour Formally 	 58

Case one.

The first example in Figure 3.2 is a simple acyclic process, shown as an extended

activity diagram consisting of a start node, a hold and an end node. This can be

decomposed in general terms into two processes of the following pattern:

Process one: this has a start node, followed by a hold, followed by a

schedule synchronisation sent to Process two, followed by an end node.

Process two: this has a start node, which receives the scheduling

synchronisation from Process one, followed by a hold, followed by an end node.

Note that the original delay in the process being decomposed is split amongst the

delay in Process ones hold, the scheduling delay between Process one and Process

two and the delay in the hold in Process two. In theory any of these might be zero

and zero delays can be eliminated. If the times were described by stochastic delay

variables, their division into component delays would require an understanding of

the behaviour of the new components and of probability theory. This problem is not

considered here.

Figure 3.2: Simple sequential decomposition

Process 2

Process 0 	 Process 1

Schedule

Case two.

The second example extends the principle to model loops in the original process.

Now there is a process with a start node, followed by a begin-loop node, followed

by a hold, followed by an end-loop node, followed by an end node. This represents

a simple while loop. Its decomposition into two processes involves the substitution

Chapter 3: 	Defining Simulation Behaviour Formally 	 59

of a second process for the implied return from the end-loop node. This leads to the

following pair of processes:

Process one: this has a start node, followed by an incoming scheduling

synchronisation, followed by a decision node, whose outgoing links are in one

case to an end-branch node and in the other to a hold, followed by a schedule

going to Process two.

Process two: this has a start node, followed by an incoming schedule from

Process one, followed by a hold, followed by an outgoing schedule going to

Process one.

Note that here the original delay is spread across the hold in Process one, the hold in
Process two and the two scheduling delays. Again this split is dependent on the way

the system being described would break up the delay and any resulting zero delays

can be eliminated

Figure 3.3: Simple loop decomposition

Process 0 	 Process 1 	 Process 2

Schedule

Schedule

? _ I 	I 	I 	I 	Schedule

(±

3.3.3 Delays and Aggregation

The discussion so far has concentrated on purely structural and functional

decomposition of process behaviour. What would be interesting now would be to

bring in the notion of aggregation of performance measures. This could lead to

Chapter 3: 	Defining Simulation Behaviour Formally 	 60

integration with hierarchical experimentation and hybrid model use in experiments

and to possible hybrid modelling within a single tool, in a similar manner to HIT

[8,10]. These ideas are not developed further in this dissertation, but it is important

to note the link for future work.

Essentially any model involves aggregation or simplification of time related

behaviour. Wherever we use a simple delay, stochastic variable or formula, we

choose not to model an underlying process dynamically. Thus a hold in DEMOS

replaces a more detailed sub-model. Conversely, in a model one can replace a hold

by a more detailed sub-component, using the sequential composition rules above.

Reversing this process one can also replace a detailed part of a model with an

estimate for its performance by identifying the sub-model as a process which

synchronises in the appropriate way and replacing it with a hold. This is a necessary

condition for aggregation.

For aggregation to be sensible and meaningful, it must also respect the condition of

separability, in the sense that the processes being aggregated into a hold must

interact as little as possible with the rest of the model. Ideally there should be no

synchronisations between the aggregated processes and the rest of the model, apart

from the scheduling ones identified as allowing reduction to a hold, i.e. there should

only be a pair of schedule synchronisations, one in each direction which correspond

to the start and end of the hold.

Formally this takes the work into the problems of stochastic modelling and

specifically of lumpability, which are outside the scope of the present work. In

practice it may be sufficient to believe that any other synchronisations are

sufficiently infrequent or require so little of resources etc. that they can safely be

ignored. Hillston's recent work with PEPA [37] shows that rules for aggregation can

be related to equivalences in the algebraic definition of a model, which offers

considerable promise for the approach developed in the rest of this dissertation.

3.4 Formal semantics for process based simulation

Having examined the concepts of process based simulation, the task is to define such

ideas in a formal manner. The main concerns are to understand the behaviour of

models and to reason about their properties, assuming component based modelling

based on hierarchical composition. This requires the interaction among components

Chapter 3: 	Defining Simulation Behaviour Formally 	 61

to be restricted to parameter passing and those mechanisms enabling synchronisation

among interacting processes. Thus the first task is to find a suitable basis and the

Calculus of Communicating Systems (CCS) [58] is here chosen.

The view of systems as processes is widespread in computer science. Process

algebras form a major technique of concurrency theory and CCS is one of the most

significant process algebras to have emerged. Previous work, for instance by Hughes

and students at the University of Trondheim [Hughes, personal communication],

suggested that Petri nets provided a low level formalism for flat process interaction

models. Unfortunately Petri nets are not easily used in hierarchical, compositional

modelling and so they are rejected here. In the end CCS was found to offer

straightforward mappings for some of the mechanisms and, since better local

expertise was available for it, it was chosen for further work. This was reinforced by

the extension of CCS in Temporal CCS (TCCS) [98,60], which opened the

possibility of including time explicitly, at least in a restricted way.

3.4.1 Modelling process interaction simulation primitives in CCS

The benefits of defining a mapping between a simulation model and a process

algebra are twofold. First, it allows proper semantics to be given for the language

used in simulation models and so is a step in answering the question, "How far is the

simulation model actually equivalent to the system it models?" This would be

especially useful if the both simulation and process algebra models could be defined

using the same formalism.

Second, it is then possible to use the same notation for quantitative (performance or

reliability) properties and functional (liveness, fairness etc.) properties. The

desirability of this has been noted by several authors [26]. There may be limitations

to the functional results that might be obtained through a given formalism, but the

use of a higher level means of expressing them should encourage at least an effort in

that direction. If such analysis can be mechanised, it becomes extremely attractive.

Thus, the rest of this chapter adopts a process algebra approach to the problem of

defining a proper semantics for process based discrete event simulation. A common

framework based on the process view of models is constructed to represent

hierarchical modelling as described above. This is developed into a graphical

language in Chapter 4. A tool based on such a framework allows models to be built

Chapter 3: 	Defining Simulation Behaviour Formally 	 62

as a single graphical description, which can then use various combinations of

simulation and functional techniques to answer both performance questions (What is

the throughput under a certain load?) and functional questions (Will the system

deadlock under certain assumptions?). In chapter 5 such a tool is described, building

on the work in the rest of this chapter and in Chapter 4. It is used for a number of

case studies in Chapter 6. In particular this tool supports discrete event simulation of

such models using a language based on DEMOS [13] and functional analysis based

on CCS and its timed extension (TCCS) [98], exploiting where possible the

automatic reasoning support of the Concurrency Workbench [20,61].

The existing DEMOS primitives are explored initially using CCS. It is, of course,

not possible to prove any formal equivalence between DEMOS models and CCS

ones generated from the same activity diagrams, as DEMOS has no formal

semantics. In fact such a semantics is being defined in expressing these

equivalences. It can be argued that this is reasonable with an appeal to intuition, but

it is also possible to show whether execution of DEMOS models reproduces

behaviour predicted by CCS equivalent models, such as deadlocking.'

3.4.2 Active processes

Representations of processes map directly onto Entity declarations in DEMOS and

agent definitions in CCS. By using parallel composition of agents in CCS, it is

possible to instantiate co-operating and competing processes within a model in the

same way as use of new statements in DEMOS. Interactions must be modelled in

CCS by complementary actions, shared with the active or passive object involved in

the interaction. In DEMOS they are calls to procedures (methods) which are

attributes of those objects. In CCS internal actions are either disregarded (in un-

timed models) or represented by delays matching DEMOS hold statements(in timed

versions). Simple DEMOS sequences of actions are matched by the normal CCS

prefixing of an agent with an action or a time delay. Termination, shown in DEMOS

by the end of an Entity, is indicated in CCS by the non-temporal deadlock agent, 0,

which performs no further actions but does not stop time passing. Figure 3.4 shows a

simple example.

1 Unfortunately, DEMOS itself is not entirely suited to our purposes, as we shall see, and we redefine it
slightly to produce a new simulation package based more explicitly on processes for all interacting
objects. The end result is a language known as modified DEMOS, which is described in more detail in
Chapter 5.

Chapter 3: 	Defining Simulation Behaviour Formally 	 63

Figure 3.4: A DEMOS sequential Entity and a corresponding TCCS agent

Entity class Seq;
begin

Hammer.Acquire(l);
Hold (3
Harmner.Release(l);

end;

Seq 	harnmerAcq1 (3) hammerRel1 .Q

Loops are represented by recursive agent definitions. Figure 3.5 shows a simple

example of this.

3.: 	A DEMOS repeatin2 Entity and a corresuondin 1CCS

Entity class Seq;
begin

while True do
begin

Hammer.Acquire (1);
Hold (3
Harnmer.Release(1);

end;
end;

I 	Seq 	hammerAcq 1 (3) hammerRel1 .Seq 	 I

There is a slight difficulty in defining variables. These must be modelled as agents

which evolve to states where they can provide a complementary action

corresponding to their current value. It is clumsy, for instance, to provide a

completely general agent which performs all the actions of an integer, but it is quite

straightforward to define an assignment and a value return action, which can support

those functions needed in a particular case. Figure 3.6 shows a local variable in an

Entity which is updated by assignment, by addition and by multiplication. Note that

the definition of Seq, the complete entity, forbids access to the assignment action,

valAssk, to within Seq, by using the restriction operator (\). This enforces the scoping

rules required for entities. Clearly the number of values, and so the number of states

for Val, corresponds to the range of integer values and would require a huge and

cumbersome expression unless the value passing version of CCS was used. For real

numbers this would be worse. Thus only cases where the number of values which a

Chapter 3: 	Defining Simulation Behaviour Formally 	 64

variable could take is fairly small could be handled by the Concurrency Workbench

or a similar tool which generates the full state space for a model.

Figure 3.6: DEMOS Entity using a local variable and corresponding TCCS
agent

Entity class Seq;
begin

integer Val;
Val := 4;
while True do
begin

Val 	Val + 2;
Hold (3
Val 	Val * 2;

end;
end;

Seq1 	valAss4 .Seq2

Seq2 	valGet. valAss 2 .Seq3

Seq3 Lef 	(3)valGet. valAss2xm .Seq2

Vali 	Lef 	8. valGet1 .Va11 	+ 	valAss.Val

Seq 	(Seq1 I ValO)\{valAssk, valGetk : Minlnt <= k <= Maxlnt}

With a way of modelling variables, it is now easy to model conditional execution,

using choices guarded by value reading actions. There are other situations in which a

condition may be testable, but the principle is always the same - find out some

current state value and make a choice based on it. Figure 3.7 shows a simple case

involving an integer variable.

Chapter 3: 	Defining Simulation Behaviour Formally
	

65

i.I: A DEMOS Entity using a local variable in a conditional choice

Entity class Seq;
begin integer Val;

Val := 4;
while True do begin

Val := Val + 2;
Hold(3)
if Val<lO then Val 	Val * 2 else Val 	4;

end;
end;

Seq1 	vaiAss4 .Seq2

Seq2 	valGet. valAss 2

9 	 Maxlnt

Seq3 	(3)valGetm.1 	
valAss 	+ 	valAss ' Seq2

lm=MinInt 	 m=10)

Va11 	aef 	8. valGet1 .Va11 	+ 	valAss.Vai

Seq 	(Seq1 I Val0) \{ valAssk, valGetk : Minlnt <= k <= Maxlnt}

Conditional looping

J.5: A DEMOS 	 a local variable in a conditional

Entity class Seq;
begin integer Val;

Val 	4;
while Val<lO do begin

Val 	Val + 2;
Hold(3)

end;
end;

Seq1 	va/Ass4 .Seq2

/ Maxlnt
Seq2 	valGetm. 	

9

 valAss2+m (3)Seq2 + 10
m=1O m=MinInt

Va11 def . valGet1 .Va11 	+ 	valAss.Val

Seq 	(Seq1 I Va!0) \{ valAssk, valGetk : Minlnt <= k <= Maxlnt}

Conditional loops are formed as a combination of conditionals and loops, as one

would expect. Figure 3.8 shows this.

Chapter 3: 	Defining Simulation Behaviour Formally

Scheduling

Initial scheduling of another process is parallel composition within the scheduling

agent of the remainder of its activity with an agent representing the scheduled

process, prefixed in TCCS by a fixed delay. Figure 3.9 shows this.

and schedulin2 a new 3.9: A DEMOS

Entity class Station;
begin

while True do
begin

new Packet Schedule (3 . 0)
Hold(2.0)

end;
end;

Entity class Packet;
begin
end;

Station 	 ((3)Packet I (2)Station)

Packet

Scheduling of a passivated process is in general modelled as a complementary

action, whose receipt unblocks the passivated process. In some contexts this will

form part of a larger mechanism, particularly in the context of a Wait Queue. Figure

3.10 shows the straightforward case of one process re-awakening another. Note that

the scheduling is shown as a parallel composition of a_terminating process consisting
of the delay as a prefix and an outgoing action (pSched here) with the remaining

actions of the scheduling process. This allows the delays to be interpreted correctly.

Note also that receipt of a scheduling message is prefixed by 8, but sending is not, as

a passivated process may wait indefinitely long before being scheduled, but a

scheduling process may only act on a currently passivated process.

Chapter 3: 	Defining Simulation Behaviour Formally 	 67

Figure 3.10: A DEMOS Entity scheduling a passivated Entity

Entity class Station;
begin

while True do
begin

P1. Schedule(3 .0);
Hold (2 . 0)

end;
end;

Entity class Packet;
begin

Pass ivate;
end;

ref (Packet) P1;
P1:- new Packet("Pl");

Station 	 ((3) pSched . I (2)Station)

Packet 	 .pSched . Q

3.4.2 Passive objects

Resources and other passive objects, which seem to correspond directly to those in

DEMOS, are also modelled as agents, since CCS views all objects as active. (In

Chapter 5 passive objects from DEMOS are shown re-implemented as subclasses of

Entity to establish that this works.) By modelling resources as agents, blocking can

be implemented for them. We now examine in turn the representation of the

repertoire of process interaction synchronisation mechanisms.

Shared resource pool 	- 	Res

One obvious correspondence that holds in all the following mechanisms is that

synchronisations which can block are formed by a communication, preceded by the

indefinite wait () in TCCS. Figure 3.11 shows this in terms of elements of the

example 3.5 of Birtwistle, which was used in Chapter 2 to compare graphical

formalisms.

Chapter 3: 	Defining Simulation Behaviour Formally
	

W.

i.1I: 2 Demos Res obiects used by 1
	

and
	

TCCS

entity class Ship_C;
begin

new Ship.Schedule(4);
grab 2 tugs;

Tugs.Acquire(2);
and a jetty;

Jetties .Acquire (1)
Hold (3

let the tugs go;
Tugs.Release(2);
Hold(l0)
ready to leave;

Tugs.Acquire(l);
Hold (3

clear of jetty;
Jetties .Release (1)
gone away;

Tugs . Release (1)
end-of-Ship;

ref(Res) Jetties, Tugs;

Ship :- new Ship_c(Shiph1);
Tugs :- new Res("Tugs", 3);
Jetties :- new Res("Jetties", 2);

Boat

. jAcqi .. tugAcq2 (Tdk). tugRel2 (Tud). tugAcq1 (Tdt). tugReli .& jReli .

I (TAni valssamp le)Boat

Tugs3 Lef 	6.((tugAcqi.Tugs2) + (tugAcq2.Tugs1) + (tugAcq3.Tugs0))

Tugs2 ö.((tugAcqi.Tugsi) + (tugAcq2.Tugso) + (tugReliTugs3))

Tugs1 Lef 	8.((tugAcq I .TugsO) + (tugReli .Tugs2) + (tugRel2.Tugs3))

Tugso ö. ((tugReli) + (tugRel2. Tugs2) + (tugRel3 Tugs3))

Jetties2 ö.((jAcqi .Jetties 1) + (jAcq2.Jettieso))

Jetties .((jAcqi.Jettieso) + (jReli.Jetties2))

Jetties0 def 	&((iReli.Jettiesi) + (jRel2.Jetties2))

Note that in the temporal calculus it is necessary to decide whether an action is

allowed to block indefinitely or to have the effect of killing the process if it cannot

Chapter 3: 	Defining Simulation Behaviour Formally 	 69

be satisfied immediately. All acquire actions by processes can lead to a process

being blocked, awaiting freeing of a resource and so such actions are prefixed with

the indefinite waiting action 5. On the other hand, releases should only be permitted

in cases where there has already been a matching acquire, leaving the matching

resource always ready to accept it. Therefore releases are not prefixed with 8.

Resources must be able to wait indefinitely in all states and so all their actions are

prefixed with 5. Thus Figure 3.12 defines a general model of a resource in TCCS. In

the basic calculus, where all actions are instantaneous, no 6s are needed.

3.12: General definition of a DEMOS Res in TCCS

Limit

Res0 	 6.resRelease1.Res
i=1

Limit-n 	 n

Resn 	 resRelease .Res + + 	resAcquire .Resni
i=I 	 i=1

Limit

ResL jmit 	 6. resA cquire i
i=1

Chapter 3: 	Defining Simulation Behaviour Formally 	 70

Unbounded producer/consumer - 	Bin

All texts on DEMOS use the Bin primitive to model producer/consumer

relationships. The Bin relaxes the enforcement of a maximum amount that can be

held in a shared pool and also removes the need for releases and acquires to match.

An integer parameter now designates the initial amount of Widgets or whatever in

the Bin when the model starts execution. This value determines the initial Bin agent

to be composed in parallel with Model in the CCS version, i.e. a parameter value of

n would mean using Widgets. Figure 3.13 uses an example from Birtwistle, p. 66.

Figure 3.13: Demos Bin object used by two Entitys and their corresponding
TCCS appnts

Entity class Producer;
begin

while True do
begin

Hold (Make Time)
Wid.Give(l);

end;
end;

Entity class Consumer;
begin

while True do
begin

Wid.Take(l);
Hold (Finish_Time)

end;
end;
ref(Bin) 	Wid;
Wid 	:- new Bin("Widgets" , 0)

Producer (T ç) widGive1 .Producer

Consumer de f widTake 1 (TFIflISh) Consumer

Wid0 def
	ö.widGiveMIfl .WidMJfl 	+ 	 +... +

.widGive 1 .Wid1

Wid, ö.widGiveMIfll .WidMJfl 	+ 	... 	+

8.widTake 1 .Wid0

WidMX/nl 5.widTakeMIfl .WidO 	+ 	... 	+

6.widTake 1 . Wjdmaxirti

Chapter 3: 	Defining Simulation Behaviour Formally 	 71

3.14: (ienerat form ota IMn represented in 1CCS

Maxint
Widgetso 	Lef 	16.widGivei.Widgetsi

i= 1
Maxint-n 	 n

Widgets 	def
n 	 5. widGive. Widgets +1 + 	.widTake. Widgets =

1=1 	 i=1
Maxint

WidgetsMaxint =def 	 .widTake1. Widgets x jj

As a bin is unbounded, there is a different problem to that for representing a

resource. The general form of the Widget bin would have to be given as a set of

agents, one for each value from 1 to the practical upper limit to the capacity of a Bin,

here written as Maxlnt. In theory it should be infinity. Whatever the effective upper

limit of a Bin, there is an extremely large state space to represent. What is more, in

every current level of occupation n, i is free to range over 1..n. It is, therefore,

necessary to use the value passing calculus and great difficulties arise if it is

desirable to resort to the Concurrency Workbench.

In most cases it will actually be possible to limit the capacity of the Bin, making it

into a bounded buffer, as described below. In nearly all cases, it will be possible to

limit the set of possible values for i, at least removing transitions and, often, states.

These possibilities are discussed in Chapter 6. It is probably unwise to use the

DEMOS Bin, except when unavoidable.

Bounded buffer 	- 	Store

As mentioned above, the unbounded Bin is problematical as a modelling device in

simulation. It is generally better to use a bounded buffer. In practice this is usually

more accurate, anyway, as all physical systems have limited buffer space and it is

often the purpose of simulation modelling to optimise the use of such buffering.

Birtwistle's DEMOS does not have finite capacity buffers, but they are added to

modified DEMOS, which is fully described in Chapter 5, where they are known as

class Store. Using this construct, the producer/consumer interaction can be re-

modelled as shown in Figure 3.15.

Chapter 3: 	Defining Simulation Behaviour Formally 	 72

Figure 3.15: Demos Store object used by two Entitys and their corresponding
TCCS agents

Entity class Producer;
begin

Hold (Make_Time);
Widgets.Add(l);
repeat;

end;

Entity class Consumer;
begin

Widgets . Remove (1);
Hold(Finish_Time);
repeat;

end;

ref (Store) 	Widgets;

Widgets 	new Store(uTWidgetst,4, 0)

Prod (TMake) widAdd1 .Producer

Cons L 	widReml(TFIflSh)Consumer

Wid4 def 8.widReM4-WidO 	+ 	.widRem3.Wid1 	+ 6.widRem2.Wid2 	+

.widRem1 . Wid3

Wid3 def 	6.widAdd1 .Wid4 	+ 8.widReM 3.Wido 	+ 6.widRem2.Wid1 	+

8.widRem 1 .Wid2

Wid2 . widA dd2. Wid4 	+ 	. widA dd . Wid3 	+ . widRem2. Wid0 	+

.widRem 1 .Wid1

Wid1 8.widAdd3.Wid4 	+ 8.widAdd2.Wid3 	+ 6.widAdd1 .Wid2 	+

8.widRem 1 .Wid0

Wid0 def8.widAdd4.Wid4 	+ 8.widAdd3.Wid3 	+ .widAdd2.Wid2 	+

8widAdd1 .Wid1

As a Store is bounded, it is a similar problem to representing a resource. The general

form of a Widget Store is a finite summation of choices, shown in Figure 3.16. This

can be simplified in many models, including our example, as shown in Chapter 6.

Limit is the physical upper limit to the capacity of a Store. It is the value of the

second parameter of the Store instantiation. The third parameter is the initial number

of items in the Store.

Chapter 3: 	Defining Simulation Behaviour Formally 	 73

i.Th: tieneral form of a Store obiect represented in ICUS

Limit
Widgetso 	 .widAdd.Widgets

i=1
Limit-n 	 n

Widgetsn 	def
= 	 ö. widA dd . Widgets + 15. widR em . Widgetsn .j

i=1 	 i=1
Limit

WidgetsLimit L—'-
e=f 	 .widRemi.Widgetsimij

i=1

First In First Out (FIFO) Queue

A number of explicit queueing mechanisms are defined for a DEMOS Entity. In

modified DEMOS another queue, for passive objects holding values, known as

Messages, is added. In DEMOS all Entitys are removed from queues in the order of

highest priority. In the time ordered event list, the next event time acts as the

reciprocal of the priority. Those with the same priority are removed in the same

order that they were added. This is in effect an implementation of multiple FIFO

queues, with higher priority queues polled first. In modified DEMOS, Messages are

also removed in FIFO order. The importance of such an implementation of waiting is

that reproducibility is guaranteed. In the class hierarchy of DEMOS it is possible to

define a parent class for all queues which implements a FIFO discipline.' Thus CCS

must be able to represent a FIFO queue mechanism.

Milner [Milner 1990] gives the following specification for a FIFO queue (Chapter 6,

p135):

Queue(E) 	 in(x).Queue(x) + empty.Queue(E)

Queue(s:v) 	 in(x). Queue (x:s:v) + out (v).Queue(s)

Defining Milner's linking operator, n, by:

pflQ = (P[i'/i,e'/e,o'/o] IQ[i'/ out, e'/ empty, o'/in])\{i'e'o'}

a FIFO queue can be implemented as:

'This is actually a fiction. For various implementation reasons, DEMOS implements some queues
independently of the inheritance structure.

Chapter 3. 	Defining Simulation Behaviour Formally 	 74

FIF0<v1,...,v>

where v1 is the last item to enter the queue and v is the first and

B 	LeL in(x).(C(x)B) + empty.B

C(x) LeL in(y). o (y).C(x) + out (x).D

D 	I e.B+i(x).C(x)

This uses the value passing calculus and so allows x and y to have an infinite range

of values. In a simulation model, the potential values of x and y would be

constrained to the set of identifying tags, one of which would be associated uniquely

with each process in a model. This might in many cases be provably finite a priori,

but could not be guaranteed to be so for all models.

Master/slave - 	WaitO/Coopt

The most general mechanisms in DEMOS are the WaitUntil and the master/slave

coopt/schedule mechanisms. Here the master/slave mechanism is considered. This

requires a double queue in DEMOS, one for slave processes, which become passive

and wait in a queue until coopted and re-scheduled by a master process, and one for

master processes, which wait implicitly until they can coopt a slave and may then re-

schedule it whenever they are finished with it.

The example shown in Figure 3.17 is a simple ferry model, where cars are the slaves

and ferries the masters. Cars are independent until they reach the harbour, when they

wait in a ferry queue until a ferry coopts them and eventually re-schedules them to

continue after their voyage. Ferries are always independent, loading (coopting) cars

and transporting them to their destination, and unloading (scheduling) them.

Chapter 3: 	Defining Simulation Behaviour Formally 	 75

Figure 3.17: Master and slave Entitys with a WaitQ and their CCS
representation

Entity class Car;
begin

new Car("Car') .Schedule(ArrivalTime);
Hold(TripTimel);
FerryQueue . Wait;

end;

Entity class Ferry;
begin

ref(Car) Cargo;
while True do
begin

Cargo 	FerryQueue.Coopt;
Hold (VoyageTimel);
Cargo. Schedule (0);
Hold (VoyageTime2);

end;
end;

ref (WaitQ) FerryQueue;

FerryQueue:- new WaitQ("Ferries")

Maxlnt

Ferry 	 cooptFQn(Ti) schedn (T 2)Ferry

Car p 	 (T1) waitFQn .schedn.O I (TArr)carGetk.Cark

CarNo 	 carGet1 .CarNo11

FQ<> 	 def 	waitFQn.FQn>

FQ<n,L> 	 waitFQk.FQn,L,k> + 	cooptFQ .FQ<L> L is any

list of integers

The WaitQ is the first explicit use of a queue in any of the mechanisms modelled. It

is shown using a convenient shorthand form of CCS, where agents are subscripted

with ordered lists of integers. This allows queueing disciplines, such as the First

Come First Served (FCFS) (more often known as First In First Out (FIFO)) one

assumed for the ferry, to be represented concisely. The underlying implementation of

a FIFO queue was presented above.

Chapter 3: 	Defining Simulation Behaviour Formally 	 76

The model shown also defines a unique numbering for each car and shows it being

generated explicitly. This corresponds to the ability within DEMOS to locate each

instance of an Entity class through a reference variable, which holds its location

within the SIMULA heap. For convenience, this numbering will sometimes be

assumed without being generated explicitly.

Figure 3.18 general CCS representation of a WaitQ

Wq<> 	 wait.Wqzn> 	+ 	empty. Wq<>

Wq<n,L> 	wait.Wqn,L,k> 	+ 	coopt .Wq<L> 	L is any

list of integers

	

Signalling changes in conditions - 	CondQ/Signal

DEMOS implements the concept of a conditional wait, which can be thought of as a

generalisation of waiting for a resource. An Entity can perform a WaitUntil, which is

a procedure requiring a particular condition to be true. This will block the Entity in a

nominated CondQ until that condition holds. Some simulation packages, such as

SIMON [33], use the general notion of WaitUntil for all blocking and

synchronisation. This general mechanism requires that all conditions be re-tested by

a central monitor process every time a state change occurs. This is extremely

inefficient, as only those conditions affected by the change need be re-tested.

DEMOS instead requires that an Entity which causes a state change relevant to a

blocked Entity in a CondQ, performs a Signal on that queue. This makes it the

responsibility of the modeller to ensure that all state changes are understood in

relation to any conditional waiting and to insert appropriate Signal calls.

The wait for a condition can be easily implemented as half of a complementary

action, which will be matched by some agent when the condition is satisfied. This is

similar to the implementation of an if condition in section 3.3.2, but does not involve

a choice. Figure 3.19 shows a simple example of such waiting.

Chapter 3. 	Defining Simulation Behaviour Formally 	 77

Figure 3.19: An Entity waiting on a condition and an Entity signalling a
chan2e through a CondO

Entity class Waiter;
begin

CQ.WaitUntil (Val=3);
end;

Entity class Signaller;
begin

while True do
begin

Val := Val + 1;
CQ. Signal;

end;
end;

integer Val;

ref (CondQ) CQ;
CQ :- new CondQ(T'CQ");

Waiter 	def

2 	 Maxlnt
8.waitCQ.(valGet3.0 + Y,valGet1 .Waiter + 	valGet .Waiter)

i=Minlnt 	 i=4

Val1 	 valGet1 .Va11 	+ 	valAss.Val

Signaller 	Lef 	valGet. valAss 1 . waitCQ .Signaller

Model 	def

(Waiter I Signaller I Val0) \{valGetMfl1fl , ..,valGetMIfl,valAssMflIflb .. ,valAssMaxlnt }

This naïve implementation has certain limitations. In particular it only allows one

Entity to proceed when a state change occurs. The DEMOS CondQ has two modes

of operation, controlled by a Boolean called All. If All is set to False (the default),

triggering of Entitys continues after a Signal until the first one in the CondQ fails its

condition. If All is set to True, triggering always continues to the end of the list. All

those which pass the test are scheduled immediately after the signalling Entity.

Those which fail return to the same place in the CondQ.

Chapter 3: 	Defining Simulation Behaviour Formally 	 78

3.20: The version of the simple model with All set to False

Waiter def

valGet3 .0 +

2 	 Maxlnt

IwaitCQ . Waiting+ 	waitCQ . Waiting
i=Minlnt 1=4

Waiting def

2 	 Maxlnt
try 	valGet3. goGo 	.0+ 	Y,valGet j.Faiiedn + 	ivalGeti.Failedn

1=Minlnt 	 14

Failedn noGo .Waiting

Va11 	Lef valGet1 .Va11 	+ 	valAss.Val

Signaller 	Lef valGet. valAss 1 . signalCQ .done.Signaller

CQ< E > 	Le empty .CQ< c> + signalCQ.CQ< E> + waitCQ.CQ< n>

CQ< s:V> signalCQ.Try< s:V, c> + waitCQ.CQ< s:V:n>

Try< s:V, W> try .(noGo. done .CQ< W: s :V> + goGo.Try< V, W>)

Try <E, W> done .CQ<W>

Angle brackets denote lists of lists in which lower case letters are singletons, upper
case letters are lists, ":" is concatenation and E is the empty list.

Chapter 3: 	Defining Simulation Behaviour Formally 	 79

Fjure 3.21: The version of the simDle model with All set to true

Waiter valGet3.0 +

2 	 Maxlnt

waitCQ .Waiting+ 	waitCQ .Waiting
i=Minlnt 	 i=4

Waiting

2 	 Maxlnt
try.[valGet3 . goGo 	.0+ 	Y,valGet.Failed + 	valGet j.Failedn

lMinInt 	 14

Failed noGo 1 .Waiting11

Va!1 valGet .Va11 	+ 	valAss.Val

Signaller valGet. valAssn+i . signalCQ .done.Signaller

CQ< E> 	Lef empty .CQ< 	> + signalCQ.CQ< 	> + waitCQn.CQ< fl2

CQ< s:V> 	Le signalCQ.Try< s:V, E> 	+ 	waitCQn.CQ< s:V:n>

Try< s:V, W> try, .(noGo.Try< V, W:s> + goGo.Try <V, W>)

Try <E, W> 	Le done .CQ<W>

Angle brackets denote lists of lists in which lower case letters are singletons, upper
case letters are lists, ":" is concatenation and c is the empty list.

This looks quite complicated and its implementation in the basic calculus would be

long winded, but it can be built relatively simply from a pair of FIFO queues,

corresponding to the two lists which parameterise Try.

Interrupt

DEMOS allows one Entity to break into a hold in another. Once interrupted by a call

of Interrupt with an integer parameter, the interrupted Entity can choose how to

proceed based on this value. This mechanism is not straightforward to represent in

CCS, as it relies on one Entity remaining in an interruptable state for an interval of

time and, having reached the end of this, proceeding. Figure 3.22 shows a simple

example in DEMOS and CCS, using a small grain of time (eps) between each check

for the interrupt. This could be argued to be what a simulation effectively does, since

reals are held as discrete values in a digital computer, but is essentially a costly and

coarse approximation.

Chapter 3: 	Defining Simulation Behaviour Formally 	 80

Figure 3.22: One Entity interrupting another

Entity class Interrupted;
begin

Hold(TDo);
if Interrupt=3 then new

Interrupted("Ited") .Schedule(0);
end;

Entity class Interrupter;
begin

Ited. Interrupt (3)
end;

Ited :- new Interrupted("Ited");
Iter : - new Interrupter("Iter");

Ited 	 Checker3 -eps

((2 	Maxlnt
Checker 	 (eps) iGet3.Ited +

	
iGet1 + 	iGet Checker.1

t>0
	 1Min1nt 	1=4)

Checker0 	0

Iter 	 (eps) iGet0 (eps). . .(eps) iGet3 .0

Message queues

For modelling convenience and efficiency of model execution, modified DEMOS

includes a FIFO queue of passive objects which carry information. This presents no

problems for CCS, as the FIFO and the local attribute have both been dealt with

above. To save space, the message queue is not shown in any detail here.

3.4.4 Building complete models

There remains the question of how to represent models and sub-models within this

formal framework. This turns out to be very straightforward.

Overall model definition

In general a model in CCS can be defined as the parallel composition of the model

environment (ENV) with the agents making up the model (MODEL). ENV will

behave differently depending on the type of execution chosen, e.g. replications or

single run. Here it is treated as a simple passage of time.

Chapter 3: 	Defining Simulation Behaviour Formally 	 81

The complete CCS model must also restrict the visibility of those actions which are

fully defined by the processes and resources present. This means all actions for a

complete model. Such restriction corresponds to the notion of satisfaction of visible

links when matching synchronisations in section 3.2. Figure 3.23 shows a model

built of the Boat, Jetties and Tugs agents from the harbour model. The convention is

adopted, used throughout this dissertation, that restriction of all remaining visible

labels be denoted by \L(MODEL)

Figure 3.23: Defining a complete model in CCS

DEMOS 	Le f 	(Tsim) . 0

MODEL 	qef 	TUGS3 I JETTIES2 I BOAT

PROG 	sLe f (DEMOS I MODEL) \L(MODEL)

Building hierarchies

The use of hierarchically defined sub-models in DEMOS corresponds to parallel

composition and label restriction in CCS. The principal difference between their use

now to define sub-model processes and above to define a complete model is that

only those labels which correspond to actions contained within the component

process are now restricted. These hidden actions become either 'rs or, as described in

Chapter 6, can be eliminated by applying the expansion law. This is the equivalent of

the graphical convention of drawing a box round the hidden parts of the compound

process in the graphical conventions of Extended Activity Diagrams.

The question of satisfied but accessible actions, where the compound process

provides matches for synchronisations which are still open to outside processes, is

simply resolved. Their labels are not hidden. Note, however, that CCS does not

allow us to define the maximum or minimum arity of such communication groups. It

only deals in the possibility or prohibition of engaging in actions on a one to one

basis.

In a corresponding DEMOS source program, visible CCS labels correspond to

DEMOS parameters propagating out to higher textual levels. When binding

particular instances of agents together, re-labelling is used, creating matching private

names for those actions which provide the linking. To show these features, consider

Chapter 3: 	Defining Simulation Behaviour Formally 	 82

the Dining Philosophers model as a simple example. This model consists of identical

Philosopher processes linked in a ring by shared Fork resources. This means in

DEMOS that two resources are parameters (type ref(Res)) of each Entity, which bind

the Entity to instantiated resource objects in the complete model.

i.Z4: I lie fllerarclucal model or the

EXTERNAL class DEMOS;
DEMOS class E_DEMOS;
begin

Entity class Philosopher(Right Fork, Left_Fork,T_Feed, T_Think);
ref(Res) Right_Fork, Left_Fork; REAL T_Feed, T_Think;

begin
while True do
begin

Right_Fork. acquire (1);
Hold (0 . 2)
Left_Fork.acquire(l);
Hold(T_Feed);
Right_Fork. release (1)
Left_Fork.release(l);
Hold(T_Think);

end;
end of Philosopher;

end of E_DEMOS;

begin
EXTERNAL class E_DEMOS;
E_DEMOS
begin

ref(Res) Forkl, Fork2, Fork3;
real I_T_Feed, I_T_Think;

I_T_Feed := InReal; I_T_Think 	InReal;

Forkl :- new Res(Fork,l);
Fork2 :- new Res(Fork,l);
Fork3 	new Res(Fork',l);
new Philosopher(p ,Forkl, Fork2, I_T_Feed, I_T_Think) .Schedule(0.0);
new Philosopher(P',Fork2, Fork3, I_T_Feed,I_T_Think) .Schedule(0.0);
new Philosopher(P" ,Fork3, Forkl, I_T_Feed, I_T_Think) .Schedule(0 .0);
Hold(100.0)

end;
end

The CCS model restricts for the Philosopher agents anything except the

communication actions with the Fork resources, which is the same as making the

Fork a parameter. It then uses re-labelling to bind the Philosopher agents to the

correct Fork agents. Finally all these labels are restricted in the complete model.

Since the forks are shared by philosophers their actions are not restricted, merely

used in renaming. Restriction would make the forks private to a philosopher.

Chapter 3. 	Defining Simulation Behaviour Formally

Figure 3.25: CCS hierarchical model of the dining nhilosonhtrc

Philosopher dof

ifAcqi (2) lfAcqi (Tfeed) rfReli 	ifRei1 (Tth)Philosopher

In fact there are no synchronisations to be hidden at this level.

Fork Lef fAcqi .NoFork

NoFork def 	fRel1.Fork

P1 Philosopher [a]/rfAcq1 , a2/lfAcq 1 , r]/rfRel1, r2/lfReli]

Philosopher [a2/ifAcq 1 , a3/lfAcq 1 , r2/rfRel1 , r3/lfReli]

P3 Philosopher[a3/ifAcq 1 , alIlfAcq1 , r3IrfRel1 , rJ/lfReliJ

Fork1 Fork[a]/fAcq1 ,rl/fRel1]

Fork2 Fork[a2IfAcq1 ,r2/fRel1]

Fork3 Fork[a3/fAcq1 , r3/JReli]

Model def 	(Fork 1 I Fork2 I Fork3 I P1 I P2 I P) 	\{a]a2a3rJr2r3}

3.5 Validating the CCS definition of DEMOS
primitives

The definitions in section 3.4 have presented a CCS description of all the

mechanisms present in DEMOS and added some new ones which seem useful and

which will be implemented in the graphical formalism and packages described in

Chapters 4 and 5. The formalisation of the semantics of process based models,

including hierarchical models, is thus apparently complete. There remains the

important question of whether the actual behaviour of DEMOS matches that

predicted by the CCS definitions. If it does, the semantics given can be applied to

reasoning about existing DEMOS models. If not, the extent of its applicability must

be defined and the possibility of re-implementing some parts of DEMOS, in addition

to the extensions already made, must be considered.

The approach taken to validate the definitions given in section 3.4 was to consider a

number of representative models expressed in both ways and to compare their

behaviour. The CCS model was used to predict the required behaviour of the

Chapter 3: 	Defining Simulation Behaviour Formally 	 84

DEMOS version. In most cases the definitions given proved accurate. Evidence from

these is given in Appendices B (DEMOS models) and C (CCS models). Only the

principal anomaly is discussed here, but it exemplifies the general approach.

3.5.1 Validating resource contention for DEMOS

To investigate mapping of anonymous resource contention, as defined in section

3.4.2, into both DEMOS and CCS, the harbour model given in [13] is used. For this

example the DEMOS source code and the Concurrency Workbench compatible CCS

were generated by the graphical modelling tool described in Chapter 5. For this the

whole of PROG, as in section 3.4.4, is developed. It reverses the initial acquires of

jetties and tugs by the boat compared to the version in Birtwistle. This is claimed to

deadlock, while the original does not. This should be shown by the TCCS version.

Concurrency Workbench Model

To evaluate the initial representation in the two languages, the encoded TCCS

model, with the supposed deadlock potential, was fed into the Edinburgh

Concurrency Workbench and a trace of the simulation of that model produced. The

source and trace are given below. The sequence of actions in the CWB was not the

same as in DEMOS . Importantly, the DEMOS model did deadlock after ship 3 had

seized two tugs at 8.00, while the CCS model still allowed ships to dock and depart.

Iigure i.2t: Demos source code for the 'deadlocking" harbour model
begin external class demos; DEMOS begin

entity class Ship—C;
begin new Ship.Schedule(4);

grab 2 tugs; Tugs.Acquire(2);
and a jetty; Jetties.Acquire(l);

Hold (3
let the tugs go; Tugs.Release(2);

Hold(l0)
ready to leave; Tugs.Acquire(l);

Hold (3
clear of jetty; Jetties.Release(l);
gone away; Tugs.Release(l);

end-of-Ship;
ref (Ship_C) Ship; ref(Res) Jetties; ref(Res) Tugs;
Ship :- new Ship_c("Ship");
Tugs :- new Res('Tugs", 3);
Jetties :- new Res(hlJettiesT, 2);
Ship.Schedule(O.0) ; Hold(l00)

end
end

Chapter 3: 	Defining Simulation Behaviour Formally

3.27: 'IJeadlockin2" harbour modelled in 'lCCS.

BOAT 	def

6. jAcqi .6. tugAcq2 (3) tugRel2 (10)6. tugAcq1 (3) tugReli . jReli

1(4)BOAT

TUGS3 	 6.tugAcqi.TUGS2) + (tugAcq2.TUGS1) + (tugAcq3 .TUGS0))

TUGS2 	def 	6.((tugAcqi .TUGS1) + (tugAcq2.TUGS0) + (tugReli .TUGS3))

TUGS, 	Le L 	6.((tugAcq1 .TUGS0) + (tugReli .TUGS2) + (tugRel2.TUGS3))

TUGS0 	 6.((tugRel1 .TUGS1) + (tugRel2.TUGS2) + (tugRel3.TUGS3))

JE7-TIES2 ö.((jAcq1 .JETTIES1) + (jAcq2.JETTIES0))

JE7-TIES1 ö.((jAcqi .JE1TIES0) + (jReli .JETJ'IES2))

JETTIES0 	1L 6.((jReli .JETI'IES1) + (jRel2.JETTIES2))

Note that the agent $0 (non-temporal deadlock) is introduced to prevent premature

deadlock by allowing terminated processes to idle, in CCS terms. Note also that the

Obs agent and the action n are introduced to allow us to observe ships being created

in the CCS trace.

3.28: (oncurrency workbench model 01 harbour

bi Boat $ tugacq2 .$ jacqi. (WorkiNewBoat)
bi Work 3. 'tugrel2.1O .$ tugacql.3. tugrell. jrell. $0
bi NewBoat 4. n.Boat

bi Tugs3 ($tugacql.Tugs2)+($tugacq2 .Tugsl)+($tugacq3 .Tugso)
bi Tugs2 ($tugacql.Tugsl)+($tugacq2.TugsO)+($tugrell.Tugs3)
bi Tugsl ($tugacql.Tugs0)+($tugrell.Tugs2)+($tugrel2.Tugs3)
bi TugsO ($tugrell .Tugsl) +($tugrel2 .Tugs2)+($tugrel3 .Tugs3)

bi Jetty2 ($jacql.Jettyl) + ($jacq2.Jettyo)
bi Jettyl ($jacql.Jettyo) + ($jrell.Jetty2)
bi Jetty0 ($jrell.Jettyl) + ($jrel2.Jetty2)

bi ohs $n.Obs
bi DEMOS Obsj100.0
bi Model (Tugs3 I Jetty2 I Boat)
\ftugacql, tugacq2, tugacq3 , tugrell, tugrel2, tugrel3, \
jacql, jacq2, jrell, jrel2}
bi Prog (DEMOS I Model)\(n}

Chapter 3: 	Defining Simulation Behaviour Formally

Figure 3.29: Traces from CWB and DEMOS for harbour model

Output from Concurrency Workbench

The Edinburgh Concurrency Workbench
(Version 6.12, April 15, 1993)

Sim> 	--- t<tugacq2> --->
1 --->
t<jacql> --->
1 --->
1 ---->
1 --->
t<tugrel2> --->
1 --->
t<n> --->
t<tugacq2> --->
t<jacql> --->
1 --->
1 --->
1 --->
t<tugrel2> --->
1
t<n> --->
t<tugacq2> --->
1 --->
1 --->
1 --->
1 --->
1 --->
t<tuqacal> --->

Trace using DEMOS

IME/ CURRENT AND ITS ACTION(S)

.00 DEMOS HOLDS FOR 100.00, UNTIL 10 0
Ship 1 	SCHEDULES Ship 2 AT 4.000

SEIZES 2 OF Tugs
SEIZES 1 OF Jetties
HOLDS FOR 3.000, UNTIL 3.000

.000 	RELEASES 2 TO Tugs
HOLDS FOR 10.000, UNTIL 13.000

.000 Ship 2 	SCHEDULES Ship 3 AT 8.
SEIZES 2 OF Tugs
SEIZES 1 OF Jetties
HOLDS FOR 3.000, UNTIL 7.000

.000 	RELEASES 2 TO Tugs
HOLDS FOR 10.000, UNTIL 17.000

.000 Ship 3 SCHEDULES Ship 4 AT 12.
SEIZES 2 OF Tugs
AWAITS 1 OF Jetties

2.000 Ship 4 SCHEDULES Ship 5 AT 16.
AWAITS 2 OF Tugs

The traces are clearly different. This brings into question the whole approach

proposed. The question is whether the behaviour of the system has been incorrectly

modelled when generating the CCS model or whether DEMOS fails to implement

the required semantics.

The CCS model shows two major differences. First, it allows a unit of time to pass

between the tugacq2 and jacq 1 actions at the start of the CWB trace. This shows that

time passing is treated as an action of equal priority with "real" actions prefixed with

&. Although this does not affect the outcome of the present model, it must be

carefully monitored in cases where time is explicitly used. Second, the DEMOS

model becomes deadlocked, as claimed, after time 8.00, when ship 3 has seized two

tugs. The CCS model instead allows a further tugacqi, which release the jetty and

removes the potential for deadlock.

These problems concern the non-determinism of CCS choices. Thus, although agents

may have been generated in a certain sequence during the evolution of a model, there

Chapter 3: 	Defining Simulation Behaviour Formally 	 87

is nothing in CCS to guarantee which ones will act first. This will be a problem

wherever an event triggers a state change which could non-deterministically enable

several pending processes. In fact even the non-deadlocking version of this model

shows different behaviour in the two descriptions.

What must really be done in CCS to model the behaviour of the DEMOS model? On

close examination of its definition, DEMOS implements Acquire as operating on a

first come first served basis, even if some processes, requiring smaller amounts of a

resource but arriving later, are thereby blocked unnecessarily. This alters the

sequence of events in the model significantly. To support the DEMOS view of

Acquire, any such action might be seen as taking as much resource as is available at

the time and waiting for more to become available. This is not the same as making

CCS acquires into a sequence of unit acquires, unfortunately, since this does not

block other processes from subsequently jumping the queue when a release occurs.

Thus, a FIFO queueing mechanism, described below, would be needed.

The alternative is to redefine Acquire in the discrete event simulation package as

operating in line with the CCS semantics of section 3.4.2 and leave a greedy option

for the cases where the current implementation is useful. This seems more likely to

avoid confusion. Indeed in most cases it appears unreasonable to prevent processes

requiring smaller amounts of a resource from proceeding, unless there is an explicit

resource management mechanism designed to achieve this in the actual system being

modelled. From the Chapter 4 onwards with a rewritten version including both

options, with non-queueing as the default, is assumed not just for resources, but for

Bins and Stores. This forms part of modified DEMOS as presented in chapter 5.

First In First Out (FIFO) Resource

To model the actual behaviour of a DEMOS Res requires a much more complex

version of resources, using the FIFO mechanism described in section 3.4.2 to control

access. The importance of such an implementation of waiting is that greater

reproducibility is guaranteed in the CCS model, as was noted for WaitQs. It also has

the side effect of enforcing fairness in models, both DEMOS and CCS, which might

otherwise produce starvation.

Modelling the harbour system using a FIFO queue for resources can reproduce the

behaviour of the original DEMOS model, except for the non-deterministic passing of

Chapter 3: 	Defining Simulation Behaviour Formally

time. The principal difference is that all Acquire requests are now tagged with a

unique identifier for the process which is trying to acquire the resource. This is

inserted into the resource's FIFO queue and the resource only carries out its side of

Acquire requests tagged with that identifier. The harbour model now looks as shown

in Figure 3.30.

3.3U: 1110 resource version of harbour model in CCS

IBoat

jAcq,i .jGot,1 . tugAcq,2 .tGot,2. tugRel 2 . tugAcq,1 .tGot 1 . tugRel,1 . jRel

NTugs
Tugs< >NTugs 	Le 	tAcq. tGot, .Tugs< >NTugsn)

n=1

I Tugs< >k 	 clef

k
tAcq. tGotj,n Tugs< >k n +

I n=I

+

NTugs
>jAcq .Tugs< ü,fl]>k

n=k+1
NTugs-k

tugRel. Tugs< >(k+m)
m=I

0<k<NTugs
NTugs

>'jugRelm.Tugs< >m
M= I

NTugs
tAcq. tGot, .Tugs< [a,b] : L>NTUgSn)

n=1
NTugs

tAcq.Tugs< [a,b] : L :[j,n]>

Tugs<>o 	 Lef

Tugs< [a,b] : L>NTugs

Tugs< [a,b] : L>k
	def

+ 	tReib. t&Ota b .Tugs<L>

b-I
+ 	>JtRelm.(Tugs< [a,b] L>k+m)

M=1
NTugs-k

+

	

	tRelm.(Tugs< [a,b] : L>k+m)
m=b+1

Tugs< [a,b] L>0

0<k<NTugs

tReib. tGOta b .TUgS<L>

b-I
+ 	>jRelm.Tugs< [a,b] : L>k

M=1
NTugs

+ 	>jRelm.Tugs< [a,b] : L>k
m=b+1

Chapter 3: 	Defining Simulation Behaviour Formally 	 89

NJetts
Lef Jettys< >Njetts 	 JjAcqjGotj, .Jettys< >NJettsn

Jetlys<>k def

k 	 NJetts

	

jAcq. jGot .Jettys< >kfl 	+ 	JjAcq.Jettys< [j,n]>k
n=1

NJetts-k
+ 	jugRel.Jettys< >(k+m)

M=1

O<k<NJetts
NJetts

Jettys< >0 	
Lef >jugRelm.Jettys< >m

M=1

NJetts
Jettys< [a,b] : L>NJetts 	jAcq. jGot, .Jettys< [a,b] L>Njettsn

NJetts
Jettys< [a,b] : L>k 	 ,jAcq.Jetlys< [a,b] : L :[j,n]>

n=1

	

+ 	jRelb. J(ta,b .Jetlys<L>
b-i

	

+ 	jRelm.(Jettys< [a,b] : L>k+m)
M=1
NJetts-k

	

+ 	jRelm.(Jettys< [a,b] : L>k+m)
m=b+i

O<k<NJetts
Jettys< [a,b] : L>0 	jRel. IGOtab .Jettys<L>

b-i

	

+ 	>JRelm.Jettys< [a,b] : L>k
M=1
NJetts

	

+ 	YjRelm.Jetlys< [a,b] : L>k
m=b+i

Model 	 (Tugs2 I Jettys2 I Boat I Boat I Boat) \ L(Model)

Angle brackets denote lists of integer pairs, each consisting of a process tag and an
amount required. Within lists capital letters denote sub-lists and square brackets
contain one pair. ":" is the concatenation operator.

This result applies equally to the other blocking synchronisations, in particular to

Bin and Store. Bin follows a similar, but unbounded, pattern to Res. Store requires a

pair of lists, combining the double list structure of a CondQ with the pair list of the

FIFO resource. In Chapter 6 some examples of CondQ and WaitQ models are

shown, using this FIFO approach and experiments on these are given in Appendix C.

Chapter 3: 	Defining Simulation Behaviour Formally 	 90

3.6 Further work

There are still a number of problems still to be resolved before a complete definition

of simulation behaviour is reached. Most importantly, the analysis must be extended

to consider stochastic models with continuous time. This is most obvious in the case

of the definition of Interrupt. It requires considerable work, but Hillston's work with

PEPA [37] and Strulo's CCS extensions [96] offer directions to consider. It may also

be sensible to revisit the Synchronous Calculus and see if it offer solutions.

Whatever solution is found needs to address the difficulties of generalising

functional properties over ranges of timing and branching probabilities, which

represent the environment and data dependent aspects of models.

Ell

Chapter 4

Graphical formalism for simulation

4.1 Introduction

This chapter defines the graphical formalism which formed the starting point of the

work of this dissertation. The thesis being tested throughout this work is that it is

possible to define formally a means of describing discrete event simulation models,

to represent these as diagrams and to generate from these versions which can be

solved for their quantitative properties, initially by simulation, and which can be

used to prove useful results about their behaviour without resorting to simulation. In

Chapter 2 a survey of typical graphical description approaches was presented. Here,

a version suitable for the purposes of this dissertation is defined. This is built from

those elements which were given formally defined semantics (in terms of CCS) in

Chapter 3 and will be shown, in Chapter 5, to be capable of automatic translation

into both a discrete event simulation language (modified DEMOS) and CCS, by

constructing a tool which performs the task.

The starting point for the graphical formalism developed here is the activity diagram

notation, introduced by Birtwistle [13] and extended slightly by Hughes [40]. The

initial reason for this choice was familiarity with it and the availability of the

DEMOS discrete event simulation package, for which it was developed. Indeed, the

original purpose of the work leading to this dissertation was the production of a

comprehensive graphical interface for DEMOS, but this was eventually relegated to

a sub-task. As well as familiarity, activity diagrams were attractive because

experience had shown them to be powerful as a description tool and intuitively

simple to grasp.

As well as Birtwistle's and Hughes' work, a number of attempts have been made to

produce activity diagram based graphical tools for DEMOS. The Process Interaction

Tool developed at Edinburgh within the SIMMER Alvey project [72] led directly to

Chapter 4: 	Graphical Formalism for Simulation
	

92

the work of this dissertation. Work in the SIMMER project also led to a first attempt

to define a complete notion of activity diagrams [73]. The Process Interaction Tool

also formed the basis of the PIT [6] work of the IMSE ESPRIT II project [75], where

a number of concepts expressible in the vocabulary of activity diagrams, such as

servers and sources of entities, were added by Uppal and Barber for perceived

modelling convenience.

The contribution made here is to define carefully a minimum set of mechanisms

which retain the generality of process based simulation modelling and, most

importantly, a proper notion of hierarchical modelling, which is consistent with

general rules for data abstraction and which is able to be mapped directly onto an

underlying simulation language. In defining this set of mechanisms, first Birtwistle's

activity diagrams are extended in line with Chapter 3 and then hierarchical

modelling is considered, in search of completeness of description. A formal notation

for describing such diagrams is created, using Extended Backus-Naur Form as its

basis.

4.2 Extending activity diagrams for flat models

A set of diagrams to specify process based discrete event models is presented below.

The approach developed is based on the informal conventions of activity diagrams

first used to describe models for the DEMOS package, but here extended to allow

complete descriptions of a much wider range of models. The set of mechanisms is

that defined formally in Chapter 3. It forms basis of the concept of an atomic process

in section 3.2. Descriptions at this level give the behaviour of a process in

algorithmic terms, as a life cycle script.

Graphical description of a process type requires both a way of showing the flow of

control through such a process type and a way of representing interactions and

synchronisations engaged in by instances of it. Construction of a model or sub-

model defines the linkages between instances of processes, by mapping their

required interactions onto instances of those objects which support such interactions.

Many synchronisations among processes can be mapped onto queues, which is the

only mechanism in queueing network based formalisms such as PAWS. However,

the use of higher level abstractions, such as resources in GPSS, adds to the ease of

description and widens the range of mechanisms which can conveniently be

represented. Activity diagrams were defined to provide a convenient flow of control

Chapter 4: 	Graphical Formalism for Simulation 	 93

description, based on flow charts, and to allow easy description of a wide range of

useful synchronisation mechanisms, based on activity cycle diagrams. This makes

them a good starting point for building a complete diagramming convention for

process interaction.

4.2.1 The model from chapter 2 again

A simple example of an atomic process description is shown in Figure 4.1. The

model is the harbour from Chapter 2, which was examined in CCS in section 3.5.1.

It includes Birtwistle's standard symbols of a rectangular box for a delay, annotated

with a description of the associated activity, and a circle for a resource, annotated

with a description of the resource and the initial amount available. New symbols are

needed to complete even this simple example. Hughes added a lower semi-circle,

annotated with the process name, which marks the start of the process life cycle, and

an inverted form of the start symbol, with no annotation, to mark the termination of

the process. In the Simmer Process Interaction Tool synchronisation nodes were also

added, to show where resources are acquired and released. This last extension is a

significant change from Birtwistle's convention of attaching synchronisations to hold

boxes and allows the exact order of all such synchronisations to be specified.

Figure 4.1: Simple activity diagram of harbour model

Boat

Acquire 1

Acquire

Dock

Release 2 	Tugs

€es

3
Acquire

Release 1 	
Leave 	 Release 1

Chapter 4: 	Graphical Formalism for Simulation

Various forms of arrowed line could be used to represent the type of a link, but the

actual type is fully determined by the types of the nodes which it joins. Thus the

lines joining delay to delay, delay to start or delay to termination represent control

flow in the process, in the same manner as in conventional flow charts. On the other

hand, the lines joining resources to synchronisation nodes represent acquisition or

release of amounts of those resources.

Acquisition and release constitute, respectively, a potential blocking of the flow of

control in the process due to contention with other processes and a potential freeing

of another process currently blocked by this process. The amount to be acquired or

released is shown as an annotation to the link, while the direction of the arrow on the

line determines which action is intended. All external interactions are shown by

synchronisation nodes. In this sort of process type description the objects to which

synchronisation nodes are linked are there purely to show the type of

synchronisation by which any instance of this type will be linked to other process

instances. As it happens, this example does not use other process types, simply a

stream of Boat processes. In such simple cases the model can be completely

described by suitable annotation of the process type description, with amounts of

resources and inter-arrival times added in this case. This is analogous to very simple

computer programs, where procedural abstraction is not needed

4.2.2 The complete menu of symbols

Figure 4.2 shows the complete set of symbols used in extended activity diagrams to

describe atomic processes. These are divided into flow of control symbols and

synchronisation symbols, involving resource and queue blocking.

4.2.3 Flow of control symbols

The flow of control symbols are similar to those used in conventional flow charts,

with decision nodes, loop-start nodes, branch/loop-end nodes, start and terminate

nodes. There are also hold nodes, which represent activities whose durations are

defined by expressions containing constants, visible state variables and stochastic

variables. Holds are usually regarded as part of the flow of control, but this is

considered in more detail in section 4.2.5 below. Synchronisation nodes indicate

points at which the flow of control requires an interaction with another process

instance. These nodes are linked by directed edges indicating flow of control. There

must be a connected path from the start node to all other nodes and from each other

+ End ofif
or loop

4,
Delay, associated
with an activity 4,

Interruptable
hold

Interrupt

Signal
Condition
queue

Until

4IJJII Receive 	

Message
queue

Send

Send or receive attributed message

Chapter 4: 	Graphical Formalism for Simulation

node to the end node. The algorithmic description of an atomic process type is

contained in the directed graph made up from these symbols.

4.Z: tomulete menu oi extended

	

S 7 	cheduI 	
Stan of process

	

generator 	under command
from another process

Acquire 	Resource - fixed
Termination of amount available
process 	

Release

Take
Branch according 	

Give

	

T 	

capaci _______ 	

Bin - no limit on
ty

to a condition

Store - limit on Add 	

capacity

Loop while
a condition

Release slave process

Schedule

Resume active existence,
no longer a passive resource

Enter wart queue as a 	 Enter wait queue to be co-opted
master to co-opt a slave 	 as a passive resource

Co-opt

\til Wait

Chapter 4: 	Graphical Formalism for Simulation

The presence of the loop-start/end nodes removes the need for cycles in these

graphs. A decision or loop-start node is associated with the next succeeding

branch/loop-end node.

4.2.4 Synchronisation and communication primitives

The second set is of symbols which describe interactions between process instances.

Two forms are used; links direct from one process to another and links to passive

objects.

Direct scheduling of one process by another is shown as an arrow from one

synchronisation node to another or, where creation as well as scheduling is

implied, to a start node. Interruption of an activity by another process as an

arrow from a synchronisation node in one process into a hold in another.

Communication through a passive object, such as a resource or a condition

queue, is shown by an outgoing arrow to the passive object from a

synchronisation node in the output process and an incoming arrow from the

passive object to a synchronisation node in the input process.

The distinction is actually more a descriptive convenience than a necessity, as

discussed in section 4.2.5 below. From a syntactic point of view, these conventions

allow unambiguous identification of any synchronisation node/directed edge/second

node triple. Semantically synchronisation nodes are ambiguous, as are edges, but

their meaning is always established by the syntactic triples in which they must be

found.

The wait queue is a double queue. One, slave, process signals that it wants to

become a passive, attributed object. Another, master, process requests from this

queue a coopted slave process which remains passive until it is rescheduled, by a

subsequent direct scheduling.

Several communications are attributed or parameterised. A resource, store or bin

request has an amount, a condition queue request has a Boolean expression and a

message queue request has an object. Wait queue communications have processes as

attributes.

Chapter 4: 	Graphical Formalism for Simulation 	 97

4.2.5 A digression on holds and schedules

This section picks up certain loose ends concerning the representation of the passage

of time in process based simulation models. In section 3.3.2 it was noted that

sequential behaviour of processes can be broken into sub-processes which schedule

each other. In the description of flow of control above it was noted that direct

scheduling of one process by another has a slightly different representation to other

interactions between processes. It is possible to resolve these points in the context of

extended activity diagrams, but the result is slightly more cumbersome.

The first point is that the instantiation and scheduling of a new process, currently

represented by an arrow from a synchronisation node into the start node of another

process could, for consistency, but at the expense of more nodes, be represented as

shown in Figure 4.3. This implies that any newly created process is initially passive,

until explicitly scheduled. This is in fact what happens in the equivalent DEMOS

code.

Figure 4.3: Elaboration of explicit initial scheduling of a process

Process 0 	Process 1 	 Process 0 	Process 1'

Schedule Y 	Creat

Schedule

A second elaboration is to force an explicit representation of the scheduling of a

stream of process instances, often modelled in DEMOS as each instance first

creating and scheduling a successor before beginning its own activities. Figure 4.4

shows the extended activity diagram view of this. In STC's version of PIT this was

handled by defining a special process, called a Source, which cycled endlessly

scheduling a new instance of the process in the stream and then holding for the inter-

arrival time.

Chapter 4: 	Graphical Formalism for Simulation 	 98

Figure 4.4: Elaboration of a process stream

Process 1 	 Process 1'

Create

Schedule

Thirdly, it is possible to remove the special structure of one process scheduling

another, by introducing a time delay node between the scheduler and the scheduled.

This treats time as a state variable like any other and its advance as potentially

unblocking a delayed process. Although this is a realistic approximation to the

underlying event list mechanism, it requires a rather low level view of the model

from the modeller's point of view. However, it does promote consistency in the

representation of state change. Figure 4.5 shows the effect on a diagram.

Figure 4.5: Explicit representation of a scheduling delay

Process 0 	Process 1 	 Process 0 	
Process 1

kduI

Finally, the discussion of section 3.3.2 can be applied, either using the explicit delay

in scheduling or not, to remove Hold as a flow of control symbol and unify the

Chapter 4: 	Graphical Formalism for Simulation

notion of time delay and the other forms of blocking in a model. Essentially this

results in a hold becoming two synchronisation nodes, from the first of which an

arrow goes to a scheduling delay node and into the second of which an arrow returns

from that node. Figure 4.6 shows this effect, in a similar manner to Figure 3.3.

Figure 4.6: Hold represented as scheduling delay

Process 1 Process 1'

T ==> 4 uIe

The result could be thought of as a canonical set of symbols for the representation of

process based simulation models. In the notation actually used in this dissertation the

time advance aspects are abstracted from the general state change concept and holds

are used, along with direct scheduling between processes.

4.2.6 A formal grammar for extended activity diagrams

The diagrams presented are in fact a formal language. Like any textual language it is

desirable to be able to express the syntactic structure of extended activity diagrams

through a suitable grammar. Unlike textual languages, diagrams are two

dimensional. This requires a slightly extended form of the Backus-Naur type meta-

languages normally used for expressing context free programming languages.

Chapter 4. 	Graphical Formalism for Simulation 	 100

i igure 4.,: Iirammar 01 hat level or extended activity diagrams

graph = 	object *

object = 	res 	I 	bin I 	store 	I 	condq
I 	waitq I 	messageq 	I process

process = 	start 	thread end

thread = 	flowcom *

owcom = 	syntriple 	I cond 	I 	loop 	I hold

cond 	= if < thread II ((llink thread rlink) I (rlink thread llink)) > end

loop = 	while thread end

syntriple = 	acquire 	I take 	I 	remove
I receive 	I 	waituntil I 	coopt 	I newsched
I release 	I 	give I 	add 	I send
I signal 	I 	wait I 	schedule 	I interrupt

acquire = 	synch inlink res

take = 	synch inlink bin

remove = 	synch inlink store

receive = 	synch inlink messageq

waituntil = 	synch inlink condq

coopt = 	synch inlink waitq

newsched = 	synch outlink start

release = 	synch outlink res

give = 	synch outlink bin

add = 	synch outlink store

send = 	synch outlink messageq

signal = 	synch outlink condq

wait = 	synch outlink waitq

schedule = 	synch outlink synch

interrupt = 	synch outlink hold

Chapter 4: 	Graphical Formalism for Simulation
	

101

The structure of extended activity diagrams is almost that vertical connection implies

flow of control and horizontal connection implies communication/synchronisation.

In fact, apart from horizontal branching to distinguish false from true outcomes in

decisions, this is always true. If it is examined more closely, the brief horizontal

divergence after a decision can be taken as an elided instantaneous scheduling or

more simply as a splitting into two vertical continuations. In either interpretation it

can be ignored. The top to bottom dimension is more complex than the horizontal,

since it contains nested structures - loops and conditional branches - enclosed in

bracketing symbol pairs. The horizontal dimension of communication

synchronisation is expressible in a very simple regular expression grammar, while

the vertical dimension of flow of control requires a more general context free

grammar. By treating these two dimensions as distinct, as if links in one have a

different significance to those in the other, and by distinguishing two types of

horizontal link - incoming and outgoing - and two types of vertical link - downward

and branching, a complete meta-language and grammar can be defined.

In this grammar, normal extended BNF conventions are followed quite closely. Bold

face is used for terminal symbols, italics for non-terminals, Times Roman for meta-

symbols. The normal BNF meta symbols used are vertical bar ("I") for alternatives in

a production, equals ("=") for production, asterisk ("*") for repetition of symbols

("one or more"), parentheses to delineate sub-expressions. In an extension of BNF

additional symbols are used; angle brackets to delineate forking ("<") and joining

('5.") of parallel vertical sequences and double vertical bar ("II") to separate such

sequences.

Unlike normal BNF grammars, this produces diagrams composed of linked nodes,

rather than strings of characters. This requires a modified understanding of

juxtaposition of symbols. Unless modified explicitly, wherever one symbol follows

another it should be taken as meaning that the first symbol either occurs directly

above the second or is linked to it by an arrow which leaves the bottom of the first

and enters the top of the second. The angle bracket / double bar notation is an

explicit indication that the parallel sequences defined share a common preceding and

succeeding node. The other explicit modifiers are ilink (rlink), which says the first

symbol is linked to its successor by an arrow leaving its left (right) side and entering

the right (left) side of its successor, and inlink (outlink), which says that the first

symbol is linked to its successor by an arrow into (from) the first, from (into) the

Chapter 4: 	Graphical Formalism for Simulation 	 102

second. The route taken by these links and the exact position of the nodes is not

fixed, allowing them to be drawn in an infinite number of ways, but guaranteeing the

connectivity of the resulting graph.

4.3 Typical examples of extended activity diagrams

There follow two further examples of practical, flat models, represented as extended

activity diagrams. They show that a single level of description can be sufficient for

modelling, but also approach the limit of what can be described without resort to

some form of hiding of detail.

4.3.1 A simple example

To see the use of a selection of these symbols, consider Figure 4.8, which is a

practical example, described more fully in [68]. This contains all the typical

elements in a single level activity diagram representation of a model.

The model represents a lineprinter connected to several host computers on a

network. Each host process has a life cycle in terms of the lineprinter. The other

activities of the Host are ignored in this model, but they could quite easily be

reflected stochastically in the inter-polling time. A Host tries to gain access to the

lineprinter whenever it has a file in its print queue. If it is unsuccessful, it will back

off for some inter-poll time and then try again. If it is successful, it seizes the

lineprinter until it has printed its file. It is then required to back off for a longer time,

before trying again. This is designed to allow other machines to achieve access more

easily.

The practicality of the scheme being modelled is not really important, although it

matches a genuine design. What is useful is that the model demonstrates many of the

symbols in the vocabulary above. Two important additions to the set used in the first

model are to be seen:

loop-start and end nodes, annotated with a condition and showing forking and

joining;

master/slave processes; allowing one process to act as a passive resource to

another for part of its life cycle.

Chapter 4: 	Graphical Formalism for Simulation 	 103

Note that the host process never terminates. Files start as active processes, allowing

each to schedule its successor and thus determining the inter-arrival rate of files.

They then enter the Host's printer queue, becoming passive objects. They are finally

reawakened by the Host after printing and terminate after reporting.

Figure 4.8: Network printer model

Print
queue

CO-Opt 	

'V'ssJl4A Wait

Printer
not

available

Hold and

f:i_
poll again

Release

t 	

Schedule 	

Reporti

Wait poll tim1
and repeat

4.3.2 A further practical example

Figure 4.9 illustrates the use of the condition queue, by means of an apparently

simple model of an ethernet like protocol. The CSMA property of ethernets is that

no station may attempt to transmit while the channel is busy, i.e. another station is

Chapter 4: 	Graphical Formalism for Simulation
	

104

broadcasting. This is represented in the diagram by a conditional wait following the

attempt transmission phase of the transmitter's life cycle. This delays the process

until the condition is satisfied. The use of such a device in the diagram makes the

model rather simple to describe. Unfortunately such a feature is notoriously difficult

to program. The required effect is that once the channel is freed by its current user all

the transmitters waiting for it try to transmit simultaneously. This effect of

simultaneity is not natural to the interleaved execution of most process based

simulation systems. A solution to this problem is considered in depth in Chapter 6.

In this example the packets are passive, but possess attributes, such as length, and so

are drawn as arriving in message queues. The diagram is clearly incomplete as a

description of a model, since there is no indication of how packets arrive or are

disposed of. In fact it is a useful working sketch of the behaviour of one part of a

model, but is not sufficient as a description of that model. The complete model

would be too complex to fit easily as an activity diagram. Having reached roughly

the limits of activity diagrams, a more extensive approach is required to continue.

rigure 	tLnerLieL moaei

Receive
Packet

Elh
free ?

-*~E?

Atler,pt

Acquire 	 oIIuio

Ether 	

M=:Send

t Andon

Th

Chapter 4. 	Graphical Formalism for Simulation 	 105

4.4 Hierarchy - Configuration Diagrams

In a further refinement to activity diagrams, hierarchical modelling of compound

processes in terms of their constituent sub-processes or components is now allowed.

This is expressed in the form of configuration diagrams, which are introduced here.

The use of a diagramming technique has the beneficial effects of:

natural expression of parallelism;

encouragement of high level thinking;

easier interchange of ideas with non-programmers.

The use of diagrams leads to the formulation of small models, which is generally a

good thing. Too often the tendency is to over-model. However, in some cases there

is a need to model quite complex systems in more detail than can be represented in a

single diagram. Figures 4.8 and 4.9 are probably as complicated as is sensible for the

paradigm of activity diagrams.

As defined in Chapter 3, a compound process consists of a number of instances of

interacting sub-processes and their synchronisation mechanisms. This approach

allows partitioning of a model into sub-models hierarchically, since a non-atomic

sub-process at one level can itself be decomposed into further sub-processes. An

important benefit arises from the fact that many real world systems are structured in

an analogous way and so this approach allows the structure of the real world system

to be retained in the simulation model. This overall approach is equivalent to object

oriented programming, with each process description equivalent to a class and each

process instance equivalent to an object. Thus the realisation of such models in an

object oriented language proves very straightforward. SIMULA [12,74] is almost

ideal in this sense.

4.4.1 A simple hierarchical model

Figure 4.10 is taken from example 4.1 of [13] and shows a model where two

processes co-exist. Each is sufficiently simple that no confusion or crowding results

from combining them. However, it is easy to imagine that more detailed modelling

Chapter 4: 	Graphical Formalism for Simulation
	

106

of the individual processes, essentially expanding the hold boxes 'read data' and

'write data' into full algorithmic descriptions, could make the diagram unreadable.

Then some means of hiding detail becomes necessary. Ideally this should match

some real property of modularity in the system represented by the model. The

technique suggested is to use configuration diagrams, as shown in figure 4.11.

Figure 4.10: Flat version of Reader/Writer model

Reader 	 Writer

Acquire 1 	Acquire 3

uffers 	I
Read dat 	 pdate fil

Release 1 	Release 3

The algorithmic detail of the atomic process descriptions, contained in the activity

diagrams for reader and writer processes, is suppressed, leaving only the external

links to the processes visible (figures 4.1 la and 4.1 lb). Module level description

allows more complex systems to be described, without overcrowding the diagram. It

also has other advantages, as example 4.12 will show.

Chapter 4. 	Graphical Formalism for Simulation 	 107

4.11: II

Acquire 3

Ers

Release 3

a conli

Writer)

Update
file

of the Header/ writer model

a) Writer as a compound
process

Acquire 3

Wr

Release 3

ite
Bu

r

Reade

9
Reader as a compound

process

Acquire 1

LI

Buffers

3 Release 1

Final configuration diagram.

Acquire 1 	Acquire 3

Buffers

Release 1 	Release 3

By combining the two modularised atomic processes, a compound process

description or model description (Figure 4.11 c) is produced, depending on the level

in the model. Both are represented by configuration diagrams. Here diagrams only

use a simple box and appropriate link symbols from activity diagrams, such as the

resource, bin and queue symbols. Only those links which can be used to attach this

Chapter 4: 	Graphical Formalism for Simulation
	 IM

component to others are represented here, but in fact there is no reason not to mix

atomic and modularised processes. In the tool described in Chapter 5 more restricted

conventions are needed, as outlined below.

4.4.2 A practical example using hierarchy

Figure 4.12 shows a very complex activity diagram, containing two processes, the

PINP (packet input process) and the POUTP (packet output process) of an X.25 type

protocol, level 3. For details of models of the full protocol see Pooley and

Birtwistle[69] and Beisnes and Bringrud [11]. This simplified version is actually

very similar in structure to the example of figure 4. 10, but the description is far more

detailed. This makes it a candidate for the use of configuration diagrams to allow

further modelling without sacrificing readability.

Chapter 4: 	Graphical Formalism for Simulation
	 Wt

Figure 4.13 shows the process of turning the model into a configuration diagram,

which is a process of abstraction. Note that the modularisation of the lower level

description matches the logical and physical structure of the system modelled. This

is a natural and good use of abstraction.

rigule 'i.13; iviuuuie UUSLfCUUH UI 2k.h3 !CVCI 3

a: Module abstraction of PINP

FramelnQ

PINP 	I 	 I Buffers

U...

...
StateQs

b: Module abstraction of POUTP

Pac

Frame

Figure 4.14 shows the use of the resulting process descriptions, along with a module

level description of the PAD (packet assembler/dis-assembler) process to describe a

Chapter 4: 	Graphical Formalism for Simulation 	 110

compound DTE (data terminating equipment) process. Each compound process

description or process module description preserves its external links, but hides

internal detail. This is an object oriented modelling view, where only the external

interface to an object is accessible to other objects.

Figure 4.14: Further levels of X.25 - DTE

Finally, figure 4.15 shows the recursive application of configuration diagrams, with

the DTE process being reduced to a single compound process and then combined to

form a node compound process description. Such abstractions are applicable in

theory to arbitrary depths of description, allowing correspondingly complex systems

to be described.

Chapter 4: 	Graphical Formalism for Simulation 	 111

Figure 4.15: Top level X.25 view - a node

TerminalOutQs naIInQs

DTE

FramelnQ 	
FrameOutQ

DCE

NetworkOutQs 	

NetworklnQs

4.4.4 Grammar and types for configuration diagrams

Certain safeguards must be applied when combining modules in this way.

Conceptually, it is merely necessary to overlay equivalent links. For this to have true

meaning, however, the links must be of equivalent type. The convention demands

the notion of strong typing for all components and links. The type of a

communication/synchronisation link is defined by the object at the other end of it,

which is expressed syntactically in the grammar of extended activity diagrams in

section 4.2.7. For configuration diagrams, this grammar is further extended by

adding a new alternative for object, called submodel and allowing this, followed by

a number of synch nodes corresponding to the number of external links (parameters)

and schedule points for this modularised process and a number of hold nodes,

corresponding to interruptable holds visible within this modularised process, to form

a subprocess. Only one link is needed from a subprocess to an object, even if there

would be more than one in its atomic level description, since it is merely a reference

Chapter 4: 	Graphical Formalism for Simulation 	 112

to the object which is the actual parameter to match a formal parameter in the

DEMOS Entity. In the CCS model it is the name by which an internal action is re-

labelled. In principle the link could be in either direction, but here it is assumed to be

from the subprocess to the other object. This may seem to lose information which

might be important, but the tool in Chapter 5 demonstrates that it is sufficient. Links

to submodel nodes are assumed to be newsched triples. Links to the synch nodes of

a subprocess are assumed to be schedule triples. Links to a hold node of a

subprocess are assumed to be interrupt triples. The last two are problematic, as they

require knowledge of the internal behaviour of the subprocess to be used correctly.

They are included for completeness, but are not expected to be widely used.

ure 4.16: Full grammar of extended activit

graph 	=

object 	=
condq

subprocess

process

thread 	=

cond 	=
end

loop 	=

syntriple 	=
receive

send

interrupt

acquire 	=

take 	=

remove 	=

receive 	=

waituntil 	=

object *

res 	I 	bin 	I 	store

waitq I 	messageq 	I 	process

start thread end

flowcom *

syntriple 	I 	cond I 	loop I 	hold

if < thread II ((llink thread rlink) I (rlink thread ilink))>

while thread end

acquire 	I take 	I

waituntil 	I coopt 	I
release 	I give 	I

signal 	I wait 	I

synch inlink res

synch inlink bin

synch inlink store

synch inlink messageq

synch inlink condq

remove

newsched
add

schedule

Chapter 4:

coopt

newsched

release

give

add

send

signal

wait

schedule

interrupt

subprocess

parbind
mqbind

resbind

binbind

storebind

inqbind

cqbind

wqbind

entbind

synch outlink res

= 	synch outlink bin

= 	synch outlink store

= 	synch outlink messageq

= 	synch outlink condq

synch outlink waitq

= 	synch outlink synch

= 	synch outlink hold

= 	submodel 	(parbind)*

= 	resbind 	I binbind

I 	cqbind I wqbind

= 	synch outlink res

= 	synch outlink bin

= 	synch outlink store

= 	synch outlink messageq

= 	synch outlink condq

= 	synch outlink waitq

= 	synch outlink start

Graphical Formalism for Simulation
	

113

= 	synch inlink waitq

synch outlink 	(start I 	submodel)

I 	storebind

I 	entbind

Chapter 4: 	Graphical Formalism for Simulation
	

114

Figure 4.17: Example of actual symbols in configuration diagrams

Submodel node

4.4.5 Application specific description

In most models such abstractions will correspond to actual components. In many

case studies only a small number of modules will need to be redefined, as many

lower level ones will have remained unchanged from earlier work. This leads

towards the notion of reusable module definitions. This applies both to the diagrams

and to any other form of representation, including separately compiled object

modules. In practice, most modelling of complex systems is probably able to work in

terms of libraries of standard component models, with only a few additional or

changed algorithmic descriptions. Thus, most modelling in a particular field will be

able to proceed in terms of configuration diagrams alone. As this involves no

knowledge of component implementation, it is expected to be a much more natural

and attractive level for non-specialist modellers to use.

It is also possible to define meaningful graphical representations for process

modules, resources and queues in diagrams, to enhance their readability for users

from particular backgrounds. Thus, it might be claimed that the configuration

diagramming technique is extensible towards particular application areas. In subjects

such as modelling of flexible manufacturing systems (FMS), existing conventions

can be incorporated removing the need to master a new set of symbols.

Chapter 4: 	Graphical Formalism for Simulation
	 115

4.4.6 Top-down and bottom-up

The examples shown all proceed bottom-up, i.e. building from simple, low level

components towards complex systems. This is merely for ease of explanation,

starting by constructing single level, algorithmic descriptions. In fact model design

may proceed top-down just as easily. Thus, it is possible to sketch the top level of a

system as a configuration diagram and decompose this to give lower level

component descriptions. The only requirement is that, for a complete system

description, the higher level descriptions must all lead ultimately to an algorithmic

description.

4.5 Conclusions

The technique of extended activity diagrams, including configuration diagrams

offers a flexible way of describing models in process oriented terms. Such

descriptions are very useful for communicating models both amongst modellers and

to laymen. The set of symbols suggested here is believed to form the basis of a

standard for such descriptions.

By supplying appropriate information about each symbol's attributes, it is also

possible to provide sufficient information to make the coding of actual programs

from these diagrams completely mechanical. This allows the use of direct graphical

entry of simulation models on graphical workstations, thereby extending the concept

of dialogues [14] to include graphics as input. In Chapter 5, a new version of such a

tool is built for the purposes of this dissertation, using the concepts developed in this

and the preceding chapter. It adds the important new capability of generating CCS

equivalent models directly from the same representation.

Activity and configuration diagrams are, it is contended, an important step away

from the need to view the mastery of programming as a key part of effective

simulation, by allowing the modeller to concentrate on understanding the modelling

process and so removing a major barrier to more widespread use of simulation.

Chapter 5

A tool to demonstrate and simplify combined
modelling

5.1 Introduction

In Chapter 3 the possibility of defining a mapping between CCS descriptions of

behaviour and an extended version of the DEMOS simulation language, modified

DEMOS, was explored. In Chapter 4 a graphical formalism for expressing modified

DEMOS models was elaborated. In this chapter the practicality of combining

discrete event simulation with a behavioural analysis tool based on a process

algebra, generating both from a shared graphical description is demonstrated.

Several tools have appeared which combine simulation and exact quantitative

solvers using a common input format [106] [8,10]. A series of tools, beginning with

the SIMMER Process Interaction Tool [72], have shown the potential for generating

DEMOS models from graphical input. The translation of a subset of unmodified

DEMOS syntax into workbench code for either CCS or SCCS given by Tofts in

[100] was implemented by him as two SML programs. These permit the conversion

of DEMOS programs into either process algebra and the use of the Concurrency

Workbench to prove properties of the systems. GreatSPN and DSPNExpress,

graphically based stochastic Petri net tools, allows both simulation and structural

analysis of their underlying place transition net models.

Here, a new tool called Demographer allows both modified DEMOS discrete event

simulation models and CCS process algebra models to be generated from a common

graphical description. The former can be solved by the DEMOS discrete event

solver, while the latter can be analysed by the Concurrency Workbench.

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	117

5.2 Demographer

Demographer is a simple graphical editor for creating both modified DEMOS

discrete event simulation models and Calculus of Communicating Systems (CCS)

[58] models directly from extended activity diagrams as described in Chapter 4. The

current version runs under MS/DOS and is written entirely in SIMULA. An earlier

version, using less well defined definitions of extended activity diagrams exists for

X Windows under UNIX. Compilation and execution of modified DEMOS models is

currently done separately, but it is intended that they should be integrated into the

graphical front end.

CCS is generated in the syntax of the Concurrency Workbench for most parts of the

language. Both the basic calculus and its temporal extension can be generated. The

Concurrency Workbench (CWB) remains a separate tool, but it is trivial to load the

output of Demographer into it. By integrating the two types of modelling in a pair of

compatible tools, the benefits of both approaches are more easily obtained. At the

same time the process of modelling is simplified and consistency between the two

solvable forms of the model is ensured.

5.2.1 The basic tool

Demographer allows the user to draw enhanced activity diagrams, by selecting

symbols from a menu and placing them on a canvas, which is divided into a grid of

squares. Each symbol occupies one square in the grid. Symbols are connected by

drawing linking symbols in the squares between them. The types of the symbols

joined and the direction of the links determine their meaning, in line with the formal

grammar for extended activity diagrams developed in Chapter 4.

Many symbols require additional information to be supplied to complete the

description of the model. For instance, the Hold symbol requires a description of the

duration of the delay it represents. Additionally many symbols can usefully be

annotated by a short comment or description. This is possible by selecting a symbol

and invoking an open form operation. This will cause an input form menu

appropriate to that symbol to be displayed. The user may then enter the required

information by typing into this form.

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	118

Figure 5.1: Demographer user interface

When a model's description is believed to be correct and complete the user may

request that a DEMOS program be generated from it. This is done by activating the

Generate button. The user will then be asked for the name of a file into which the

DEMOS source is to be written.

As well as saving the DEMOS source, the user may save and load the graphical

representation and annotation. This is stored in a standard format called DIA format,

which is common to both versions of Demographer. Thus models created under

MS/DOS may be used by the X Windows version by transferring the files, which are

in ASCII format. The current MS/DOS version is complete, while the X Windows

version may not be able to recognise some symbols. CCS generation is currently a

separate program, reading the DIA representation of the model and writing CCS to a

new file.

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	119

5.3 modified DEMOS

Here the redefined version of DEMOS, known as modified DEMOS, is outlined.

This builds all synchronisation objects, such as resources, with an option for FIFO

priority queueing, as in unmodified DEMOS, and an option for releasing blocked

Entitys as soon as they are able to proceed. This implements the versions of Acquire,

Remove and Take needed to allow equivalence between DEMOS simulation

behaviour and that expected by CCS without using FIFO resources etc.

5.3.1 Supporting non-FIFO blocking

The changes to the DEMOS package include a global flag which can be set and reset

to force all new synchronisation objects subsequently created to be FIFO or non-

FIFO. Within these objects, their behaviour can be modified after creation by calling

a setting or a resetting procedure to modify their internal FIFO flag.

5.3.2 Introduction of Store object

The problems with unbounded buffer objects, represented by Bin in unmodified

DEMOS, are dealt with by introducing a Store object, as defined in Chapter 3. This

has two queues, rather like a WaitQ, one for Entitys blocked trying to Remove part of

the contents of the Store and one for those blocked trying to Add to it. As with Res

and Bin, Store objects in modified DEMOS may use strict FIFO queueing or allow

those with smaller requests to proceed if those in front are still blocked.

5.4 Active versus passive objects - a digression

The process view of simulation is built on a distinction between active objects

(processes) and passive ones (resources etc.). In Chapter 3 it was necessary to view

all objects in the CCS world as active. It is therefore worth considering whether re-

implementing DEMOS in this way would lead to any real differences. If so, it would

be sensible to do so to ensure consistency with the CCS definition of DEMOS

semantics.

To investigate this question, a version of DEMOS was built using only Entity, to

model active objects, and CondQ, to model communication. These correspond

directly to the CCS primitives of agents and complementary actions. To illustrate the

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	120

results of this, the effects on Res are considered. It is typical of the other

mechanisms.

5.4.1 Res as an Entity

A Res maintains a count of how much of a resource is unused. This amount is set

initially and may never exceed its initial value. It supports two interactions with

Entitys - Acquire and Release.

Acquire is a request from an Entity process for an amount of the resource being

modelled. This request blocks the requesting process and can be modelled by its

passivation after entering a request queue. In this way it is identical to an Entity

which enters a DEMOS WAITQ and becomes a slave or which enters a CondQ and

performs a WaitUntil sufficient resource is available. In the former case, the Res is

very similar to the master process, Coopting the requesting process by using Find to

express the condition that its required amount of the resource be less than or equal

to that available. In the latter case the Res would Signal the CondQ on receiving a

Release message from an Entity. Release increments the amount of resource

available and activates the Res process either to look for slaves which can now be

Coopted or to Signal its CondQ.

The choice of which way to represent a Res as an Entity is therefore unclear. The

form which gives the simplest representation and is closest to a CCS model is

chosen, i.e. in terms of a CondQ.

Figure 5.2: Res as an Entity/CondQ pair - M_Res

ENTITY class MRES(RAmount); integer RAmount;
begin ref(CONDQ) WQ;

procedure ACQtJIRE(Amount); integer Amount;
begin

WQ.WaitUntil(Amount<=RAmount and Current==WQ.First);
RAmount 	RAmount - Amount;

end;

procedure RELEASE(Amount); integer Amount;
begin

RAmount 	RAmount + Amount;
WQ. Signal;

end;
WQ 	new CONDQ(Title&s Queue');

end;

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	121

Figure 5.3: Comparison of Res and M_Res traces

Trace using DEMOS RES 	 Trace using M_RES

TIME/ CURRENT 	AND ITS ACTION(S) 	TIME/ CURRENT 	AND ITS ACTION(S)

0.000 DEMOS 	SCHEDULES BOAT 1 NOW 	0.000 DEMOS 	SCHEDULES TUGS 1 NOW
HOLDS FOR 100.00,UNTIL 	 SCHEDULES JETTIES 1 NOW

100.000 	 SCHEDULES BOAT 1 NOW
BOAT 1 SCHEDULES BOAT 2 AT 5.00 	 HOLDS FOR 100.00,UNTIL

SEIZES 2 OF TUGS 	100.000
SEIZES 1 OF JETTIES 	 TUGS 1 `TERMINATES
HOLDS FOR 3.000, UNTIL 	 JETTIES 1 	̀TERMINATES

3.000 	 BOAT 1 SCHEDULES BOAT 2 AT 5.00
3.000 RELEASES 2 TO TUGS 	 HOLDS FOR 3.000, UNTIL

HOLDS FOR 10.000, UNTIL 3.000
13.000 	 3.000 SIGNALS TUGS is Que
5.000 BOAT 2 SCHEDULES BOAT 3 AT 10.0 0 	 HOLDS FOR 10.000, UNTIL

SEIZES 2 OF TUGS 	13.000
SEIZES 1 OF JETTIES 	5.000 BOAT 2 SCHEDULES BOAT 3 AT 10.0(0
HOLDS FOR 3.000, UNTIL 	 HOLDS FOR 3.000, UNTIL

8.000 	 8.000
8.000 RELEASES 2 TO TUGS 	 8.000 SIGNALS TUGS is Que

HOLDS FOR 10.000, UNTIL 	 HOLDS FOR 10.000, UNTIL
18.000 	 18.000
10.000 BOAT 3 SCHEDULES BOAT 4 AT 15.0 1)0.000 BOAT 3 SCHEDULES BOAT 4 AT 15.0 C 0

SEIZES 2 OF TUGS 	 W'UNTIL IN JETTIES l's
AWAITS 1 OF JETTIES 	13.000 BOAT 1HOLDS FOR 3.000, UNTIL

13.000 BOAT 1SEIZES 1 OF TUGS 	16.000
HOLDS FOR 3.000, UNTIL 	15.000 BOAT 4 SCHEDULES BOAT 5 AT 20.0(0

16.000 	 W'UNTIL IN TUGS l's Que
15.000 BOAT 4 SCHEDULES BOAT 5 AT 20.0 1)6.000 BOAT 1SIGNALS TUGS is Que

AWAITS 2 OF TUGS 	 SIGNALS JETTIES l's
16.000 BOAT 1RELEASES 1 TO TUGS 	 ***TERMINATES

RELEASES 1 TO JETTIES 	 BOAT 3 LEAVES JETTIES l's
***TERMINATES 	 HOLDS FOR 3.000, UNTIL

BOAT 3 SEIZES 1 OF JETTIES 	19.000
HOLDS FOR 3.000, UNTIL 18.000 BOAT 2WUNTIL IN TUGS is Que

19.000 	 19.000 BOAT 3 SIGNALS TUGS i's Que
18.000 BOAT 2AWAITS 1 OF TUGS 	 HOLDS FOR 10.000, UNTIL
19.000 BOAT 3RELEASES 2 TO TUGS 	29.000

HOLDS FOR 10.000, UNTIL 	BOAT 4 LEAVES TUGS i's Que
29.000 	 W'UNTIL IN JETTIES l's

BOAT 4 SEIZES 2 OF TUGS 	 BOAT 2 LEAVES TUGS is Que
AWAITS 1 OF JETTIES 	 HOLDS FOR 3.000, UNTIL 22.000

BOAT 2 SEIZES 1 OF TUGS 	20.000 BOAT 5SCHEDULES BOAT 6 AT 25.0
HOLDS FOR 3.000, UNTIL 	 W'UNTIL IN TUGS l's Que

22.000 	 22.000 BOAT 2 SIGNALS TUGS l's Que
20.000 BOAT 5 SCHEDULES BOAT 6 AT 25.0 0 	 SIGNALS JETTIES is

AWAITS 2 OF TUGS 	 ***TERMINATES
22.000 BOAT 2 RELEASES 1 TO TUGS 	 BOAT 4 LEAVES JETTIES l's

RELEASES 1 TO JETTIES 	HOLDS FOR 3.000, UNTIL 25.000
***TERMINATES

BOAT 4 SEIZES 1 OF JETTIES
HOLDS FOR 3.000, UNTIL

25.000

5.4.2 Testing M_Res

To verify the behaviour of M_Res, the harbour model from Birtwistle was modified

to use M_Res rather than Res and the traces compared. These are given above. A

Chapter 5. 	A Tool to Demonstrate and Simplify Combined Modelling 	122

similar approach was used to verify the other re-writings. Despite certain differences

in the trace messages, the sequence of actions is identical.

5.5 The current set of symbols
The set of symbols described here is essentially the same as that described in
Chapter 4. Their connection into a graph has to match the grammar in Figure 4.16.

0
C

ligure 5.4: Symbols used in

Start of process
Resource

End of process 	 Bin

Choice
	

Store

While
	 Message

queue

Delay

Condition
- 	 queue

+

+

End branch

Synchronisation

Wait
queue

Sub-model

4 	Linking

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	123

5.5.1 Linking

The extended activity diagram grammar specifies only a general topological notion

of placing and linking of symbols. The precise mapping onto a display medium is

left to the implementor. In particular, linking is likely to depend on the format of the

canvas used. In Demographer a grid of squares is assumed, with one node per non-

empty square. Links are composed of directed link nodes, joining the objects nodes,

which is rather restrictive in terms of the number of paths possible between exit side

and entrance side of the nodes being joined, but seems adequate in most cases. This

works for the linking definitions in the grammar, since no node is required to have

more than one link attached to any side. As well as upwards, downwards, leftwards

and rightwards, link nodes can indicate changing direction by ninety degrees and

crossing of links.

Placing two flow of control nodes in adjacent squares is interpreted as linking them

if that makes sense in terms of the grammar.

A sub-model node may have several links to it. This is supported in the grammar by

requiring synchronisation and hold nodes to be attached beneath the sub-model so

that links may be made to them. The synchronisation nodes which match parameters

must be attached to objects in a top to bottom order which matches the order of the

parameters of that sub-model (see below).

5.6 Attributes of symbols

As was remarked at the end of Chapter 4, by suitable definition of attributes for the

nodes in an extended activity diagram, a complete model or sub-model can be

generated automatically, either in DEMOS or in (T)CCS. This section describes

those attributes required in Demographer at present. Most are concerned with

DEMOS code generation. Demographer allows up to six attributes per node,

presenting a menu with a line, starting with a prompt, for text to be entered for each

attribute that is required for that node type.

5.6.1 Attribute grammars for activity diagrams

A similar approach was used successfully in the earliest versions of the Process

Interaction Tool [72]. In this and subsequent PIT tools [6] an elaborate language for

the definition of annotated graphs was developed, known as Graph Definition

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	124

Language (GDL). GDL led to a generic graph editing tool [70,72], which was

customised by reading in a GDL file when starting up. This file defined node types,

their appearance, how they could be linked and what attributes they should have in

their form menus. It was necessary, however, to write from scratch a backend

processor for the data structures produced for any given graph type. In later versions,

GDL was extended to be the language in which models were stored as well.

Having produced in this dissertation a formal grammar for extended activity

diagrams, it is now clear that GDL was acting as an attribute grammar meta-

language. Unfortunately this insight was not available at that time and it is very

clumsy when viewed in this light. Perhaps as a result of this, the true power of

attribute grammars, as used in compiler compilers, was not exploited, namely the

ability automatically to generate required output from the attribute definitions.

Although the MS/DOS version of Demographer uses no GDL form of input to drive

it, the partial X Windows version has shown that this is possible for at least a subset

of the symbols. No further claims are made at the present, but it seems likely that

such an approach will lead to a truly general graphical editing and synthesising tool

5.6.2 Attributes and properties of symbols in Demographer

Although up to six attributes are allowed, most symbols use fewer. In the following

list, those with an asterisk are optional, i.e. may be left blank and still allow a model

to be generated. As well as the attributes, some idea of the corresponding DEMOS

code is given. The CCS follows the correspondences to DEMOS worked out in

Chapter 3, as far as could be achieved before work halted.

5.6.3 Flow of control symbols

Start symbol

A process starts with a start symbol. If several start symbols are drawn above each

other, a corresponding number of instances of that type of process is to be generated.

The start symbol requires the user to specify:

a name, 	used to define the entity class and a reference to an instance of

it. The class name has the suffix "_C" appended. Currently each instance of

the same process has a separate (identical) class definition.

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	125

an initial scheduling delay used literally as given as a parameter to

Schedule for the instance after its creation.

an inter-arrival time * 	if empty, this field is ignored, if used, the type

of a distribution (such as NegExp) and its parameters, as required by

DEMOS, should be given. A suitable unique distribution is generated, whose

name is a combination of the name in this start node and a suffix meaning

arrivals. The first action of the process will now be to schedule its successor

according to this distribution, generating a stream of arrivals.

three lines for declaration of local variables. These will be inserted exactly as

typed at the start of the class for this process. Although intended to support

conditional expressions, any legal SIMULA declarations or statements are

accepted here.

End symbol

This indicates the end of a sequence of symbols intended to represent one process.

No annotation is required.

Hold symbol

This indicates a delay for some activity.

It requires

a reason 	which will be enclosed in comment delimiters ('!' and ';) and

inserted into the process actions before the Hold.

a delay 	currently taken literally as the text of the parameter to the

corresponding Hold statement in the DEMOS program.

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	126

Choice symbol

This allows the model to choose to follow one of two paths until some future joining,

which is marked by an end-branch symbol. The second of these branches may be

omitted. This corresponds to the if-then-else and the simple if-then in a

programming language.

It requires

a reason 	which is inserted into a comment in the same manner as for

hold.

a condition which will be used to generate a value of True or False.

Currently this is inserted exactly as typed between the words if and then in

the DEMOS program.

The path followed when the condition is True is that leading from the bottom of the

choice symbol. When the condition is false, the path to the left or right is followed.

Testing for the existence of the else branch is done in that order. If no path in either

direction is found, the program simply skips the true branch if the condition is False

and carries on from the end branch symbol.

While symbol

This is rather like the choice symbol and has the same annotations.

Instead of performing the true branch once only, it continues to repeat it as long as

the condition remains True. If condition is given as the literal "true" or is never

altered, the loop will continue indefinitely. There is no else branch to a while and

none is checked for. Again the extent of the loop is marked by an end-branch

symbol.

End-branch symbol

This marks the end of a sub-part of the process' behaviour, currently the branches of

a condition or the body of a while loop. It has no attributes.

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	127

Synchronisation symbol

This indicates that an action defined by a link to or from an external synchronisation

mechanism is to take place before continuing. Currently an incoming (outgoing) link

has the following meanings for synchronisationnodes within process graphs:

External node type Incoming link Outgoing link Parameter required

Resource Acquire Release Amount - integer

Bin Take Give Amount - integer

Store Remove Add Amount - integer

Message Queue Receive Send Object - ref (Message)

Condition Queue Wait Until Signal Condition - Boolean by name

Wait Queue Coopt Wait None

Synchronisation Node Schedule Delay - real

Start or Submodel Node Schedule Delay - real

Hold Interrupt Signal - integer

It requires

a reason 	which is used as a comment.

a parameter value 	which will be of the type shown in column 3 above.

Synchronisation nodes are also used below submodel nodes, to define parameters to

and scheduling of submodel entities. Again the meaning of a link is determined by

the type of node to which a link is made. There is no code generated for the

scheduling and interrupting links, as this has already been generated within the

submodel's code. The outgoing links all bind actual objects to the formal parameters

of the submodel. Incoming links are only significant for the node on the other end,

which cannot be a passive object.

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	128

External node type Incoming link Outgoing link Parameter required

Resource Not used. ref(Res) param Not used

Bin No used ref(Bin) param Not used

Store Not used ref(Store) param Not used

Message Queue Not used ref(MessageQ)

param

Not used

Condition Queue Not used ref(CondQ) param Not used

Wait Queue Not used ref(WaitQ) param Not used

Synchronisation Node ref(Entity) param Not used

Start Node ref(Entity) param 	INot used

Hold ref(Entity) param 	I Not used

5.6.4 Passive object symbols

The following symbols represent objects outside process descriptions, passive

objects. The meaning of a link is fixed by the type of node to which a link is made.

Resource

This corresponds to a DEMOS Res. It requires:

a name 	- used to build a ref (Res) declaration, a new Res statement

and to tag any Acquire and Release calls in processes linked to this resource.

an amount 	- used in new Res statement as initial amount & limit of res.

Bin

This corresponds to a DEMOS Bin. It requires:

a name 	- used to build a ref (Bin) declaration, a new Bin statement

and to tag any Take and Give calls in processes linked to this bin.

an amount 	- used in the new Bin statement as the initial amount held.

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	129

Store

This corresponds to a DEMOS Store. It requires:

a name 	- used to build a ref (Store) declaration, a new Store statement

and to tag any Remove and Add calls in processes linked to this store.

an amount 	- used in the new Store statement as the initial amount held.

a limit 	- used in the new Store statement as the limit of capacity.

Message Queue

This corresponds to a DEMOS MessageQ. It requires:

a name 	- used to build a ref (MessageQ) declaration, a new

MessageQstatement and to tag any Send and Receive calls in processes

linked to this message queue.

Condition Queue

This corresponds to a DEMOS CondQ. It requires:

a name 	- used to build a ref (CondQ) declaration, a new CondQ

statement and to tag any Signal and WaitUntil calls in processes linked to

this condition queue.

a Boolean flag all 	- used to control the extent of searching when a Signal

is received.

Wait Queue

This corresponds to a DEMOS WaitQ. It requires:

a name 	- used to build a ref (WaitQ) declaration, a new WaitQ

statement and to tag any Wait and Coopt calls in processes linked to this wait

queue.

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	130

Sub-model

This corresponds to a separately defined process. See section 5.7.4 for details. It

requires:

a name 	- used to build a ref (Name) declaration, a new Name

statement and to tag any schedules or interrupts to this submodel.

A parameter name and type list 	- used to identify the types of objects to

which this node's dependent synchronisation nodes should be attached.

5.7 Implementation

The general operation of Demographer is described in this section. Although much is

independent of a particular version, some aspects refer to either the MS/DOS or the

X Windows version. Various formats and representations are used at different stages,

stored in ASCII files. Figures 5.5 and 5.6 show the structure of the two current

versions.

Figure 5.5: Structure of files in the MS/DOS version of Demographer

Stored diagramSave Demographer 	 DEMOS 	I

DIA format 	 source

Load

Concurrency
CGEN 	 Workbench

backend 	 style
CCS or TCCS

Figure 5.6: Structure of files in the X Windows version of Demographer

Graph
definition

and output

I
control file

Load

Stored diagram Save DEMOS Demographer
DIA format

source

Load

Concurrency
CGEN Workbench

style
backend

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	131

5.7.1 Loading and saving models

Demographer begins by asking for the name of an input file. If given, this should be

in the DIA format used by all versions of Demographer. If no name is given, an

empty canvas is created. If a valid file name is given, the canvas will appear with the

corresponding diagram displayed and the underlying annotations will also have been

loaded.

The format of stored diagrams is a simple minded representation of the grid, its

nodes and their attributes. For each non-empty square in the grid the following is

output in a fixed format:

X and Y co-ordinates in the grid,

type of node as an integer,

the text entered into each of the six possible fields holding attributes.

Although this is not very compact, it is simple and complete. Links are represented

as chains of appropriately directed and overlaid directed link nodes for the squares

they cross. The essence of the DIA representation is that the complete description of

the grid is enough to define the model.

5.7.2 Interpreting the diagram

Demographer works at three levels when interpreting an activity diagram.

It begins by making a complete scan of the grid, locating all nodes

corresponding to objects in the grammar. A linked list of records is created

for these.

When generating output, processes are parsed in a simple recursive descent

manner, by following flow of control links from each start node and sub-

models are parsed by interpreting the chain of synchronisation nodes linked

beneath them.

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	132

When a synchronisation node is found during the parsing of a process or sub-

model, its type and partner are established by following, forwards or

backwards, the link to the other node in its node-link-node triple. Where a

synchronisation node has links attached to both sides, this is treated as two

synchronisation nodes, the first with the left link , the second with the right

link attached.

5.7.3 Generating flat models

The generation of models is done in three passes through the data gained by

scanning the grid.

First the start nodes on the object list are used to identify the processes described and

to output an Entity, in DEMOS, or a binding of an agent to an identifier, in CCS, for

each of these. In model generation, the mapping of processes is quite simple, the

only outside information being found in objects at the other end of links to or from

synchronisation nodes. Any inter-arrival time distributions found in the start node

are added to the object list at this time.

A second pass down the object list is then used to generate declarations of ref

variables for all objects in a DEMOS model. This is again straightforward, involving

the use of the name field to create an identifier of appropriate type. For an entity the

type will be the name with the suffix "_c", as for the identifier in the corresponding

Entity declaration. This pass produces no output in a CCS model.

The third pass generates instances of objects. In DEMOS this means new statements,

with identifier, class name and title all generated from the name field. Other

parameters to the objects are found from other attribute fields as defined above. In

CCS, instances are bound by parallel composition with a DEMOS agent and

appropriate restriction of label visibility. Passive objects are generated according to

their templates defined in Chapter 3, in some cases, such as resources, having their

extent defined by a parameter attribute.

5.7.4 Generating hierarchical models

There are two stages in the construction of a hierarchical model using Demographer,

building of components and assembly of models. The first of these is further sub-

divided into building of atomic processes and assembly of compound processes. At

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	133

the moment they are assumed to work bottom up, but this constraint should be

relaxed in future versions.

Building an atomic component process

In Chapter 3 the general notion of component based process oriented modelling was

introduced. Demographer follows this view quite closely. Thus the initial task is to

construct the lowest level, atomic processes to be used. Since these are intended to

be re-usable, they must retain all information necessary for their incorporation in

higher level, compound components or complete models. An atomic process

description in Demographer consists of a single process described by a start/end

node pair and their linking flow of control nodes. All communications and

interactions with other objects are shown by including those objects. In the case of a

Schedule call to another process a submodel node is used, with no dependent

synchronisation nodes. No attributes, other than their Name fields are used in these

object nodes. These names are used as the identifiers of the formal parameters of the

Entity sub-class generated.

Generation of DEMOS code proceeds in the same way as for a complete model,

except that the ref variable declarations in the full model are replaced with the

building of a formal parameter list in the header of the Entity sub-class. A list of the

identifiers and types of all parameters id also generated, automatically, in the Params

field of the form of the Start node. This will be used when importing the sub-model

at higher levels.

CCS generation is fairly straightforward for atomic processes, except for nested

structures, i.e. loops, where dummy sub-agent names are created to help with

recursion, and conditions, where only a representative sub-range of possibilities are

tested, for simple comparisons or a place marker is generated for anything more

complicated. Again, where Bins and certain queue structures are required, only a

subset of possible values are generated.

Assembly of compound processes

A compound process description can contain all the elements of a full model. This

means that some means of distinguishing objects local to the generated compound

process (those inside the shaded areas in Chapter 4) and objects to be left external. In

the generated DEMOS, those locally defined will have to be treated in the same way

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	134

as processes in a full model, with ref declarations and new statements being included

in the body of the Entity sub-class, while those left external will be added to the

formal parameter list. One and only one full process description is required and

allowed in a compound process description. This will control the scheduling by the

generated Entity body of the locally defined sub-processes.

Sub-model nodes are used to introduced predefined sub-processes. These require a

name, which is used to locate files describing their external interface. Once this is

supplied, they can construct a parameter identifier/type list, from information output

when their underlying code was generated. It is currently left to the user to add a

corresponding number of synchronisation and hold nodes below the sub-model.

These must be linked in the order of the parameter list to the objects intended as the

actual parameters. This may sound cumbersome, but works reasonably effortlessly.

Future version of the tool will generate the synchronisation nodes automatically.

Thus DEMOS code generation proceeds as a combination of full model and atomic

process code generation, with any unsatisfied parameters (unmatched links) being

propagated out by adding them to this Entity's formal parameter list. Satisfied

parameters are supplied with appropriate ref variable identifiers in the actual

parameter list within Entity new statements. Unsatisfied parameters get the formal

parameter name used to pass them out.

CCS generation is more complicated for this level, since parameter matching in

DEMOS corresponds to renaming and hiding in CCS. Thus an analogous phase of

link matching is performed.

Hierarchical model assembly

At the top level model assembly proceeds as a combination of flat model generation

and compound process generation. No outward parameter propagation is possible at

this level, of course. No detailed process description is needed for the main program.

Any process descriptions at this level are treated as new Entity definitions.

5.8 Conclusions and further work

The current version of Demographer is as complete as was needed to produce this

dissertation. It demonstrates that all the features defined in the graphical language of

extended activity diagrams can be automatically converted into DEMOS and that

Chapter 5: A Tool to Demonstrate and Simplify Combined Modelling 	135

many of them can be automatically converted into CCS. The limitations on the latter

stem from the lack of support in either CCS or TCCS for stochastic and continuous

values. This makes it impossible to deal with time in the manner required in

quantitative modelling. It can be argued that DEMOS only supports the usual digital

computer's discrete approximation to continuous values, but this can only be

modelled realistically in CCS or TCCS for very restricted ranges of value, with any

kind of accuracy.

The problems of stochastic variables is less important, as noted elsewhere, since a

range of important properties can be shown to hold for any branching probabilities

or rates. Such models are conservative in what they predict as safe, but are often still

of use. More hopefully, a number of new probabilistic and stochastic process

algebras, such as TIPP [31] and PEPA [37,30], are emerging which include the

desired features. It is an important continuation of this work to investigate the use of

mappings from extended activity diagrams into these algebras.

Chapter 6

Exploiting CCS for Simulation Models

6.1 What modellers need to know

The use of functional properties is fuelled by a number of questions in the minds of

modellers. In this chapter some of the most important are examined in the context of

CCS and the modal ji-calculus as a means for reasoning about them. Among the

questions that might be tackled are the following.

1 	Does a simplification change behaviour?

In order to make execution of simulation models tractable, it is often desirable to

simplify areas of detail. This leads to questions such as: "Can the detailed

modelling of this sub-model be replaced by a stochastically determined hold?"

and "Does it change the behaviour of the model if I replace a sub-model with a

formula?"

There are two approaches to dealing with this sort of question. The first is to

formulate rules for simplifications which are guaranteed to leave behaviour

unaltered. Since models are expected, at least in part, to be generated by

composing predefined instances of components, it would be unsurprising if this

did not cause redundant states to be included. The second approach is to make

some simplification and to have a means of testing whether important properties

are unaltered.

2 	Does the model's implementation mask a problem?

Since discrete event models are actually executed in an interleaved manner,

rather than in an asynchronously concurrent one, it is difficult to guarantee that

Chapter 6: 	Exploiting CCSfor Simulation Models 	 137

the modeller's intentions are reflected by the behaviour of the system. Examples

include conditional waiting intended to model genuinely concurrent enabling of

blocked processes, as in the CSMAICD protocol of Ethernet, and implementation

of acquire which hides starvation, as in the standard DEMOS version of

reader/writer locking.

3 	Are there implications of structuring the model hierarchically?

For ease of expression and reuse of sub-models modellers may need to know if a

hierarchical model corresponds to its flat equivalent or behaves as expected

overall. This requires ways of testing that important properties are or remain true

in a hierarchical model.

Having identified the sorts of questions that modellers might want to ask, it is now

possible to examine how successfully they are addressed by testing their CCS

equivalents. In the rest of this chapter the problems identified above are considered

in turn by the use of typical examples. It is clear that CCS offers considerable

potential, but it is not clear yet where its limits lie.

6.2 Simplification of models

In this section the two approaches to simplification described above are considered

in turn. First the possibility of identifying, from the CCS model, simplifications

which leave the simulation model's behaviour unaltered is considered. Then ways of

identifying equivalence of models simplified by intuition are considered.

6.2.1 Identification of redundancy in models

Some conditions for eliminating actions and states are identifiable in terms of the

CCS representation of a model. In some cases these may in themselves identify

useful information about the system being modelled.

Elimination of transitions

To show how elimination of potential transitions is possible, irrespective of timings,

the example in figure 6.1 uses the basic Calculus, as it would be generated

automatically by Demographer, to model a simpler version of the harbour model

from section 3.5.1, creating only three, terminating boats and reducing the initial

number of tugs to two. This simplifies any analysis, and it will be used again to

investigate deadlock.

Chapter 6: 	Exploiting CCSfor Simulation Models
	

138

Figure 6.1: CCS of a simnie harbour model

BOAT Le jAcqi . tugAcq2 . tugRel2 . tugAcqi 	tugReli 	jRel1

TUGS2 (tugAcqi .TUGS i) + (tugAcq2.TUGS0)

TUGS1 (tugAcqi .TUGS0) + (tugReli .TUGS2)

TUGS0 (tugReli .TUGS1) + (tugRel2.TUGS2)

JETTIES2 (jAcqi .JETTIES1) + (jAcq2.JETI'IESo)

JETTIES1 Lef (jAcqi .JETTIES0) + (iRe/i .JETTIES2)

JETTIES0 (jRel .JETTIES1) + (jRel2.JETTIES2)

MODEL (TUGS2 I JETTIES2 I BOAT I BOAT I BOAT) \L(MODEL)

Restricting MODEL by the sort of its unrestricted self, L, allows its components to

be simplified, since they can no longer engage in any outside communications, only

in zs. By applying the results of the CCS Expansion Law [58], any choices in agents

within MODEL which begin with a label in N, where fl contains those labels not

matched by a complementary action within the same scope, i.e. which are not

partners in 'rs, may be eliminated. In other words, if the model is prevented from

engaging in any outside activity, any branches guarded by actions which cannot be

satisfied internally can be pruned without changing the overall behaviour of the

model.

This significantly reduces the complexity of the Jetties resource, as shown in Figure

6.2, allowing edges in the resulting transition graph to be removed. In the current

example it does not lead to a simpler simulation model, but in some models it would

have an even greater effect, eliminating states in the transition graph not just

transitions. State elimination is examined in the next section.

Figure 6.2: Simplified CCS of Jetties resource from Harbour model

JETTIES2 	 (jAcqi .JETTIES1)

JETTIES1 	
Lef 	(jAcq .JETTIES0) + (jReli .JETTIES2)

JETTIES0 	(jReli.JETTIES1)

Chapter 6: 	Exploiting CCS for Simulation Models
	

139

In fact such simplifications are possible at any point where restriction is applied.

This means that each sub-model definition is a potential point for elimination of

transitions. Taking the reader/writer model from section 4.4.1, as it would appear if

the two processes were first modelled separately and then combined, the resulting

CCS model is as given in Figure 6.3.

Fi2ure 6.3: Hierarchically constructed Reader/Writer model in CCS

Reader buffRAcq1 	buffRRel l Reader

Writer buffWA cq3 	buffWReI1 Writer

SharedBuff3 Le I buffSAcq1 SharedBuff2+buffSAcq2.SharedBuff1+buffSAcq3 SharedBuff

SharedBuff2 de f buff3'Acq1 .SharedBuff1+buffSAcq2 SharedBuff0+buffSRel1 .SharedBuff3

SharedBuff1 buffSAcq1 .SharedBuffo+buffSRel2.SharedBuff3+buffSRel1 .SharedBuff2

SharedBuff0 buffSReI3 SharedBuff3+buffSRel2. SharedBuff2+buffSRel1 SharedBuff

Reader [buff sAcq 1 /buffRAcq 1 ,buffSReIjbuffRRel1] I

df
Writer [buffSAcq3/buffWAcq3,buffSRel3/buffivRel 3] I

Model - Writer [buffSAcq3/buffwAcq3,buffsRel3/bufflvRel 3] I 	buffSRel, buffSRe13

SharedBuff3)

As in the harbour model, not all of the possible actions in the resource are matched

by complementary ones in Reader or Writer. They cannot be removed until they are

restricted, but can then form a simplification. The Buffers resource no longer needs

those actions using buftSAcq2 or buffSRel2 and these are eliminated below.

Figure 6.4: Reduced form of Buffers resource

SharedBuff3 	buffSAcq 1.SharedBuff2 	+ 	buffSAcq3.SharedBuff0

SharedBuff2 	buffSAcqi.SharedBuffi 	+ 	buffSRel1 .SharedBuff3

SharedBuffi 	buffSAcqi.SharedBuffo 	+ 	buffSRel1 .SharedBuff2

SharedBuffo Lef buffSRel3.SharedBuff3 	+ 	buffSReli.SharedBuffi

Eliminating complete states

One major claim for Petri net models as a formalism for simulations has been their

ability to identify redundant states, in the context of a particular marking, and so

Chapter 6: 	Exploiting CCSfor Simulation Models
	

140

allow simplification of the model at run time. Yucesan and Schruben also show how

to eliminate states in their event based simulation formalism. In very simple models,

such as the previous two examples, CCS can help to reduce the number of paths

between states in a model. This in turn can simplify the analysis of the behaviour of

the model. The question remains as to whether it is ever possible in the CCS model

to eliminate states completely.

In terms of a state transition diagram, elimination of a potential state in a sub-model

is possible if there are no edges entering it in the combined model where it is used.

In CCS terms, this means that no agent corresponding to a certain state in the sub-

model agent is ever activated as the result of an action in the overall model agent. In

terms of the reader/writer example, this could mean that, for instance, the agent

SharedBuff2 could be shown never to follow any of the actions possible in Model.

By re-formulating that model with both readers and writers working in units of two

buffers, such a condition is easily created.

Following the reasoning above, a simple example of a model where certain levels of

resource are unreachable is now created. In such a simple case this may seem trivial,

but in more complex models, such possibilities may be far from obvious. Consider a

simple factory model, where there are two machines, a Mill and a Polisher. The Mill

shapes pieces and then passes them to the Polisher. Since the pieces are long, the

Mill cannot begin work on a new piece until the Polisher has half finished its current

piece. Pieces are transferred on dollies. The Mill loads its ingots from two Dollies,

while four are needed by the Polisher to move milled pieces for polishing. At the

halfway point the Polisher can release two Dollies.

: 	A simnie model for unused resource states

Mill 	Lef 	dollyAcq2 . dollyRel2 haljDone.Mill

Polisher 	Lef 	dollyAcq4 . dollyRel2 . haljDone . dollyRe12 .Polisher

Chapter 6: 	Exploiting CCSfor Simulation Models
	

141

5
Dollies5 	 dol1yAcq1 .Dollies5.

i=1
ii 	 5-n

Dollies 	 >dollyAcq .Dollies + IdollyReli.Dolliesi,
i=1 	 j=1

where O<n<5

Dollies0 	Lef>dollyRel .Dollies1

Factory 	 (Mill I Polished Dolliess)\L(Factory)

Intuitively it seems that the number of Dollies can never reach an even number. This

can be verified easily in this simple example. This fact, together with the earlier rule,

reduces the resource Dollies5 as shown in Figure 6.6.

1 IgUU U U.U. 	IlUIII I U3VU1L LIU, VV 	I UUUIIU all L LaLU3 UIIIII IIIauU

Dollies5 	 dollyAcq2 .Dollies +dollyAcq4.Dolliesi

Dollies3 	 dollyRel2.Dollies5

Dollies 	 dollyRel2.Dollies3

This is clearly simpler to reason about, although its usefulness in simplifying a

simulation may be small unless it is being very carefully coded. Since it is hoped that

resources will be built-in primitives in any simulation package, it would be

necessary to have ways of recognising useful simplifications. One such case would

be where the upper limit of the amount of resource in use was unreachable. This is

clearly true in the example, as no state with the resource, Dollies0, is ever reached.

Thus the resource can be further modified as shown in Figure 6.7.

.'/: Dollies resource normaliseci to zero lower bound

Dollies4 	 dollyAcq2 .Dollies2+dollyAcq4.Dollieso

Dollies2 	 dollyRel2.Dollies4

Dollies0 	Lef 	dollyRel2 .Dollies2+dollyRel4 .Dollies4

Chapter 6: 	Exploiting CCSfor Simulation Models
	

142

The failure of the original resource to reach zero implies that there is more resource

available than the model can make use of. This can be used to establish a tuning of

the system being modelled and can also allow the simulation to normalise the

amount of resource at a lower level. For full generality, it should be noted that:

there is a surplus n of resource Res when for all i in the range O..n-1, Res1 is

unreachable.

In the case given, a further simplification can be made, since those resource states

involving odd numbers of dollies are unreachable. This permits the use of a resource

with a unit representing two dollies, which can be reflected in the DEMOS model as

well as reducing complexity in reasoning about the model. An alternative use of the

same kind of analysis is found where the amount of a Bin or a Store can be shown

never to exceed a certain limit. This is useful in providing a bound for the Bin

(making it into a Store) or reducing the bound on a Store.

Unreachable states in processes

The examples so far have shown simplification of passive objects, such as resources.

It is also interesting to investigate state elimination in processes. The simplest case is

again the elimination of alternatives in choices which are prefixed by unmatched

actions. This is quite likely to happen in reusing components within models. A more

complex situation occurs where the actions appear to be matched, but the unwinding

of earlier actions absorbs their complement. Put simply, an action and its

complement must appear together in at least one state for an agent prefixed by that

action to be reachable. The simple example in Figure 6.8 shows both of these in

terms of an office services bureau and a messenger service, where the messenger

service only accepts one delivery per day.

t.S: 1-'rocesses with redundant states in UCS

Bureau 	 typing .C1 + copying .C2 + printing .C3

Messenger 	typing.D1 + copying.D2

Model 	 (Messenger I Bureau)\{ typing,copying,printing

In the agent Model, the Bureau cannot evolve into C3, but can evolve into C1 or C2,

because the Messenger service will not accept printing from it. It is important to note

Chapter 6: 	Exploiting CCS for Simulation Models
	

143

that this occurs as far as CCS is concerned because of the restriction of the label

printing, which prevents any outside agent combining further to provide the
complement to printing , which represents the absence of an alternative transport

service. This is a simple case. Now consider the agent in Figure 6.9. In Problem,

Emergency cannot become C3 or C1 .

ON: 	Pre-emntive action removing successor states

Emergency 	typing .Bureau

Problem 	Lef 	(Emergency I Messenger)\{ typing,copying,printing

To test for such cases, the modal t-calculus at first seems likely to be useful. It can

provide the answer to the question, "In all successor states is there any where further

progress is impossible?" and thus one possibility of eliminating redundant paths is

established. This can be written, using the Box operator defined in Chapter 2, as:

Box <->T

which is the same as establishing deadlock freedom. It asks whether a dead-end can

be reached, but not how many dead ends there are nor which states they are. If such a

dead-end does exist and can be located it may reveal unnecessary dead states which

were included on the assumption that deadlock could not happen. It does reveal that

the model is not well behaved in reaching a steady state, since a dead-end is an

absorbing state, killing the model. In general this is a sign of an error in the model's

formulation. It is shown in section 6.3.3 below that the Concurrency Workbench

provides a way of testing for deadlock which allows all states to be fully identified.

Unfortunately it does not provide an answer to the original question. In fact there is

no obvious way of exploiting a transition or reachability graph view, which starts

from an initial state and generates successor states, to find unreachable states in

some general graph of states.

A more useful question is to establish whether any sub-states in the component

processes do not lie on the paths reachable from the start state of the combined

model. At first sight this seems impossible to answer for the general case. Special

conditions were identified above which may be used when dealing with resources

and buffers to establish whether they can be simplified. A similar method, removing

Chapter 6. 	Exploiting CCSfor Simulation Models
	

144

agents from the definition of components and establishing that combined behaviour

is unchanged, can be applied more generally, but is rather a brute force approach

without some insight into likely cases. If such insight is available, the approach of

section 6.2.2 is applicable.

Returning to built-in Concurrency Workbench functions, the min command binds to

an identifier the smallest model which is observationally equivalent to a given

model. This is an interesting possibility for simplifications, but may lead to re-

formulations which no longer have recognisable DEMOS equivalents. Also, the

reduced model is defined by the Workbench in terms of meaningless names and

there seems no easy way of relating these back to the original.

The Workbench also allows the complete set of reachable agents (states) to be

generated for an agent (model). This offers another approach. The existence of

unreachable agents results from the restriction of certain labels when the model is

composed. Otherwise the workbench assumes that externally generated actions are

always possible. By generating the reachable states both with and without such

restriction, comparisons may be made to establish which states are redundant. This is

shown to be successful in the testing of these examples in Appendix C.

6.2.2 Comparing models simplified by hand

The danger with such sophisticated approaches to understanding behaviour is that

they will not be attempted by those who see themselves primarily as simulation

modellers and not as concurrency experts or formal modellers. In most cases the

simplification is carried out in an informal manner and modellers are unable to

establish whether such modifications are dangerous, except by running the resulting

simulation models and examining their traces. It is therefore worth considering how

far it is possible for a simulation modeller to ask whether an informally justified

simplification, performed in order to speed up execution of a model, preserves its

original behaviour. A suitable small example seems the best way to examine this.

Consider a simple communications system, shown in Figure 6. 10, where a terminal

inputs data to create a Stream of frames and sends these to a Transmitter, where

packets are built out of frames before being passed to an output stage which sends

them down a channel.

	

Chapter 6: 	Exploiting CCSfor Simulation Models
	

145

Figure 6.10: Activity diagrams of network model

a: Before simplification by hand

rans

Input

Initialise 	 Memory
Write

	

Link 	 Build

Buffers
Transmit

This example contains two processes which might reasonably be modelled

separately. For the purposes of simplification they will be considered one at a time.

Since the only communication between them is through a schedule call from the

Stream process to the Trans process this is reasonable.

The first simplification replaces the internal logic of the Stream process with a

simple hold. This is justified intuitively by noting that it was originally made up of

two sequential holds, with one bracketed by an acquire/release of a resource. As long

as this resource is not already in use this should have no effect.

Chapter 6. 	Exploiting CCSfor Simulation Models
	

146

b: After first simplification by hand

Trans)

Input

and

Initialise

Link 	 Build

Buffers
Transmit

The second simplification applies the same sort of thinking to the Stream process.

Since this releases the Link resource only to re-acquire it immediately after the Build

phase of its operation, it might be safe to assume that it merely keeps the Link

throughout.

To decide which if any of these simplifications is valid, from a behavioural point of

view, corresponding CCS models were constructed and tested with the Concurrency

Workbench. In writing these models the question of which resources were to be

considered local and which global had to be answered and the decision was taken

that the Memory resource would be considered as local to the Stream process, while

the Link and Buffers resources would be global. This is reflected in the fact that

Chapter 6: 	Exploiting CCSfor Simulation Models
	

147

memAcq4 and meinRel4 are restricted when the agent input is defined, to represent a

single Stream process and its Memory, in Figure 6.1 la, while linkAcq1 , linkRel1 ,

C: After alternative simplification by hand

\Tran

lnut I

I

and
Wte

IfliS

Link 	 Build

and
Transmit

Buffer

buffAcq2 and buffRel2 are only restricted when two Trans processes are combined in
Modeib.

Chapter 6: 	Exploiting CCSfor Simulation Models 	 148

Figure 6.11: CCS versions of models in figure 6.10

a: Full model

Stream (T) memAcq4 (Tw it,) memRel4 	tSched .Stream

Mem4 Lef 	mem4cq4.Mem0

Memo memRel4.Mem4

Input (Stream I Mem4)\ { memAcq4,memRel41

Modela Llf 	(Input I Input)

Trans tSched. linkAcq 1 .Starter

Starter (T 11) buffAcq2 	linkRell Builder

Builder (T Ud) linkAcq 1 .Transmitter

Transmitter (TTransmi t) buffRel2 . linkRel 1 .Trans

Link1 Lef 	linkAcq 1 .Link0

Link0 linkRel .Link1

Buffs2 buffAcq2.Buffs0

Buffs0 buffRel2.Buffs2

Modeib def

(Trans I Trans I Link1 I Buffs2)\ { linkAcq 1 ,linkRel ,buffAcq2,bufJRel2}

Model (Models IMOdelb)\{ tSched}

b: First simplification by hand

Stream 	Lef 	(Tjnput iT nte) tSched .Stream

Input 	Lef 	Stream

The effect of this simplification is to leave the externally observable behaviour of the

overall model unchanged. Since the Memory resource was totally private and only

used sequentially, it could never lead to alternatives within the Stream agent. Since it

cannot engage in external actions, it can be safely removed.

Chapter 6: 	Exploiting CCSfor Simulation Models
	

149

c: Alternative simplification by hand

Trans 	 tSched. linkAcq 1 .Starter

Starter 	 (T1) buffAcq2 .Builder

Builder 	 (TBuild+TTrsmit)TranSmitter

Transmitter 	buffRel2 . linkRel1 .Trans

The second modification is less successful. Since the Trans processes compete for

the Link and Buffs resources, the removal of the releasing of the Link means that

there is one less point where the other Trans process could acquire it. Where it does

acquire it the contention leads to potential deadlock, which is lost in the simplified

version. This is clearly a dangerous simplification. Testing with the Concurrency

Workbench, as shown in Appendix C, makes this quite apparent.

6.3 Phenomena which cause problems

As well as wanting to obtain the simplest model with the desired behaviour, it is

often important to know whether a model avoids certain problems. If not, knowing

before executing the model may help in two ways. Firstly, the behaviour may be a

correct representation of the behaviour of the system being modelled. In this case

either it will help in setting up appropriate experiments using this model or, in cases

where the simulation is being conducted to establish behavioural properties, will

save costly simulation, which might not have revealed the problem anyway.

Secondly, the behaviour of the model may not match that of the system and the pre-

analysis then indicates a need to re-code the model to produce the correct behaviour.

In both cases, a lot of unnecessary time can be saved and potentially misleading

results avoided.

6.3.1 Simultaneous events

In Chapter 2 Schruben and Yucesan's rules for analysis of the structure of simulation

nets were described. Schruben offers in his Rule 3 a way of identifying possibly

simultaneous events. Such situations are at the heart of a number of problems with

execution of interleaving actions in discrete event simulations. When two events

occur together, the simulation must decide to let one proceed first, even though no

Chapter 6: 	Exploiting CCSfor Simulation Models
	

150

simulation time elapses, i.e. though the simulation clock does not advance. This is

typically resolved by branching probabilities, by establishing priorities or by

treating the situation as a race condition. Probabilities allow a choice of which action

is allowed to be made according to some random drawing and an associated

probability function, preventing any others. Priorities may be decided by the

programmer or pre-defined, i.e. in Petri net simulators it is normal to allow timeless

(Instantaneous) transitions to fire first. Race conditions allow the activity which

would finish first to proceed and kill any others starting at the same time. Where the

time to complete an activity is defined stochastically, this is effectively a

probabilistic choice based on the relative rates of completion of the activities. It is

easy enough to handle probabilistic choices in a simulation, once they are identified.

The same is true of priorities. Most problems arise from events which are expected

to be genuinely concurrent.

Genuinely simultaneous events

To see this problem in one manifestation, consider modelling the CSMAICD level of

an Ethernet. Simplifying this to one of its aspects, each station on an Ethernet is

allowed to try to transmit as long as the net is free. The stations have the capability

of sensing when this changes, by detecting the presence or absence of the carrier

signal (carrier sense medium access or CSMA). If one station starts to transmit,

others which subsequently wish to do so are forced to wait until the current

transmission is complete. Thus there may be several stations blocked at the end of a

transmission. Once the Ether is free they will all sense this and try to transmit,

effectively, simultaneously. This results in their packets colliding, which they are

also able to detect (collision detect or CD). When a collision occurs, all transmitting

stations back off by an individually determined random interval, to minimise the

chances of a further collision. Collisions can also occur where one station begins

transmitting and is followed by a second before the first carrier has reached it. This

cause of collision is not considered in what follows, for simplicity.

A system with this form of backoff seems simple enough to model, given the Res,

CondQ and WaitUntil constructs in the process interaction paradigm. In Figure 4.9

an activity diagram for a suggested model was given. (In fact that also included a test

for a maximum number of re-tries after collision before abandoning the packet,

which is also not considered here for simplicity.) Unfortunately, the accurate

representation of such a protocol is not as straightforward as it seems. Some

Chapter 6: 	Exploiting CCSfor Simulation Models
	

151

alternative models, all of which are based on genuine attempts by modellers, for this

situation are considered below in an attempt to isolate the potential causes of

confusion. Then, using the CCS equivalents of these models, the contribution that

could be made by behavioural analysis prior to simulation is assessed.

A naïve model using just Res

Many modellers have fallen into the obvious trap of treating Ethernet as a simple

resource contention problem. Thus they model the channel as a Res with amount 1

and have stations competing to acquire it, as shown in the activity diagram in Figure

6.12. This model has the advantage of simplicity, but inevitably causes a problem,

since the first station in the queue for the Res will always get to transmit, without the

others getting to try.'

1 The DEMOS versions and corresponding traces of these models are found in Appendix B.

Chapter 6: 	Exploiting CCS for Simulation Models 	 152

Figure 6.12: Activity diagram and CCS of naïve Ethernet as Res model

a:

b: the CCS model

Station inQTake1 .-e-A—cql Sending

Sending Lef (TTraflsm jt) eRel 1 .Station

Source Lef (T.jVj) inQGive 1 .Source

InQ0 inQGive 1.InQ1

JnQ inQGive 1 .InQ 1 + inQTake1.InQ 1 O<n<Maxint

'QMaXint
Lef inQTakel.InQMfll

Transmitter (Station I Source I InQ0)\{ inQTake1 , inQGive1 }

Ether1 Lef eAcq1.Ether0

Ether0 eRel1 .Ether1

Model
NStations

(Ether, I 	fJTransmitter 	\{ eAcq1 , eRel I
} 1=1)

Chapter 6: 	Exploiting CCSfor Simulation Models
	

153

Running the DEMOS model, the trace reveals that one of the stations continues with

its transmission and the others are blocked, rather than them all backing off. This is

as one might expect from an analysis of the DEMOS Res mechanisms. It is also

important to notice that this is not dependent on the queueing version in unmodified

DEMOS, but still applies to modified DEMOS.

Simplifying the model to its key elements, by focusing on the Station and Channel

processes and assuming that there is always a packet to transmit, and assuming two

Stations, a transition graph can be derived which helps to show what is restricting

the behaviour of the system in undesirable ways. Transmission is only possible when

a Station has reached Station2 . This is never the case for both Stations at the same

time.

1iure t. 1i: Iransiflon 2ranfi tor naive itnernet monet

(Station I Station I Channel I)
pTake1

(Station I Station1 I Channel1)
	— 	 (Station1 I Station1 I Channel1)

cAcq1 	 pTake1 	 cAcq1

(Station I Station2 I Channel0)
	

—> 	 (Station2 I Station1 I Channel0)

cRel1 	 pTake1 	 L cRel1

'I,

(Station I Station I Channel1)
	 — 	 (Station I Station1 I

Channel1)
pTake1

Introducing a CondQ to model concurrent behaviour

Instead of simply using a resource, a CondQ could be used, as shown in Figure 6.13,

to hold Station processes until the Ether becomes free1 . Once a transmitting Station

has finished, it is responsible for signalling that the Ether is free. Then, before

acquiring the Ether Res, each Station in turn can check if the length of the queue for

the Ether is greater than one. If so, a collision has occurred and the Station should

back off. Unfortunately this still depends on a queue (this time a CondQ), each of

I Only those parts of the CCS models which are new or have changed are shown in Figures 6.15 and 6.16.

Chapter 6: 	Exploiting CCS for Simulation Models
	

154

whose members is scheduled in turn, thereby removing itself from that queue, before

testing for collision. The CondQ's length decreases each time a Station leaves it,

until the last Station finds the number remaining has reached zero and proceeds to

transmit. Collision, shown by a backoff, now happens for all but one of the Stations,

which is still not quite what is wanted. This has a similar restriction, shown by its

transition graph, to the model using just the resource.

Figure 6.14: CondQ used to model Ethernet

a: Activity diagram

our 1

Take

Give

Packet

4IPacket

Ether
free?

Signal 	 Someone
still

waiting?

Backoff

Acquire

Transmit

Ether

Release

Chapter 6: 	Exploiting CCS for Simulation Models
	

155

b: The CCS

Stationd inQTake1 . eWaitUntil Jd .Waiting

Waiting sched1 .Trying1

Trying1

NStations

+ (eLen0. eAcq 1 .Sending1)

i=1

Sending1 (TTransmit) eRel 1 .Doned

Done1d eQSignal .Stationld

Source (Ti,) inQGive 1 .Source

InQ0 inQGive 1 .InQ1

InQ inQGive 1 .InQ 1 	+ 	inQTakei.InQn i

O<n<Maxint

"QMaxint
Lef inQTakel.InQMaxint l

Transmitter3d (Station1 	I Source I InQ0)\{ inQTa ke 	inQGive i I

Ether1 Lef eAcq1.Ether0

Ether0 Lef eRel1.Ether1

EtherQ<L>len Le f - e Wait Until .EtherQ<L,n>ien+i + 	eQSignal.Signal<L>1

Signal< >len def= EtherQ< >len

- Signal<h,L> len sched 	.Signal<L>11 	+ 	eLenien .Signal<h,L>1

Model
NStats

Ether I EtherQ< >0 	fJStation1 }L(Model)

The transition graph in Figure 6.15 shows the relevant part of this model's behaviour

for a three Station model. It starts from the state where one Station has just finished

transmission and released the Ether resource, while the other two are waiting for this

to happen. The first to go backs off and the second proceeds. There are two side

branches, marked etc., which are ignored. The first is the case where the Station

which has just finished tries immediately to transmit another packet and enters the

CondQ, taking its length to three. It is easy to show that the same possibilities result,

except that now the original two waiting Stations back off, while the one that has just

finished sends again. The other branch shows both the waiting Stations being

Chapter 6: 	Exploiting CCSfor Simulation Models 	 156

scheduled before either tests the CondQ's length. This is not the behaviour of the

DEMOS model, since the effect of one process scheduling another is to place it in

the event list behind the current one, not to preempt the current one. It was not felt

worth the extra complexity of preventing this in the current model.
6.15: transition 	for CondO Lthernet model

(Trans1 I Wait.2 I Wait3 I EQ<2,3>2 I E1)

.J- eQSignal
(Stat1 I Wait2 I Wait3 I EQ<2,3>2 I E1)

	- 	(Wait1 I Wait2 I Wait3 I EQ<2,3,1>3 I E1)

eWaitUntil1 	 l- etc.

.1- sched2
(Stat1 I Try2 I Wait I EQ<3>1 I E1)

	
(Stat1 I Try2 I Try3 I EQ< >0 E1)

sched3
.1. eLen 	 etc.

(Stat1 I (TB,,)Try2 l Wait3 I EQ<3>1 I E1)

L sched3

(Stat1 I (TBO)Try2 ITry3 I EQ< >0 E1)

-.1' eLen0.eAcq1
(Stat1 I (TBO)Try2 I Send3 I EQ< >0 E0)

Schruben's rules and this model

If this mechanism is modelled using Schruben's simulation nets, described in

Chapter 2, the same problem re-asserts itself. Schruben's Rule 3 is: Event scheduling

priorities are required when the intersection of the state variable sets of two vertices

is non-empty. This fails to distinguish the possibility of multiple competing instances

of the same event, which is allowed in the extended Simulation Graph formalism

through parameterised edges carrying process identifiers, from simple contention. If

the graphs are unrolled, so that each process instance is separately represented, Rule

3 identifies that there is a possible problem, but does not identify what it is.

Schruben's rules are really concerned with tie-breaking rather than concurrent

events.

A "correct" model of CSMA/CD behaviour

To allow true concurrency to be represented in this case, the model needs to be

reformulated so that the Ethernet is an active process, which can co-opt the waiting

stations and set them to backoff if more than one wishes to proceed. This involves a

flag within the Station process, which records when a transmission has been

successful, and a means of indicating to a re-scheduled Station whether a collision

Chapter 6: 	Exploiting CCSfor Simulation Models
	

157

has occurred. In the model in Figure 6.16 a Res and a Store are used for this, but

these are strictly used as a Boolean and an integer, respectively.

Figure 6.16: A correctly behaving Ethernet model

a: The activity diagram

ourc) 7 	IT,
Receive
Packet

P
Give
acket 	

EQ

QLen>O

1 	 CAvaiI>1
Sendin

Cols

Transmit 	
Back 	

I

therR

Chapter 6: 	Exploiting CCSfor Simulation Models 	 158

b: The CCS model

Stationd iQTake 	sAcq j Trying1

Trying sAvail. eQWait1d .Waiting 	+ 	sAvail 1 .Station d

NStats

Waiting eSchedd.1cA vail0. etAcq 1 (TTrsmjt)Donejd+ cA vail1 .BackOff1d
i=1

Donel d sRel 	etRel1 Trying1

BackOffld cRem 	(TBackoff) Trying1

Ethernet eQCoopt1d. etAcq1 .Used1d

Usedd

NStats

eQLen0.Next+ Y
,
eQLen. cAdd11).Next1d

Next1d etRel 	eSchedld .ReSched

ReSched

NStats

eQLen0.Ethernet 	+
I

eQLeni.eQCOOPtid. eSched d .ReSched

Sending sAcq1.Sending0 	+ 	sAvail1 .Sending1

Sending0 sRel 1 .Sending1 	+ 	sAvail0 .Sending0

NStats
Cols0 cAdd.Cols 	 + 	cAvail0 .Cols0

i= I

Cols
NStats-n

+ cRem1.Cols 1 + 	cAvail .Cols

NStats ~! n >0

COlSNStats
Lef cRem 1 .COlSNStatsl + 	CAVailNStats .COlSNStats

EQ< >o Lef eQWait.EQzn>1 + 	eQLen0 .EQ< >o

EQ.<n,L> eQ Waitm.EQ<n,L,m>j+i + eQCoopt .EQ<L>11

+ 	eQLen .EQ<n,L>1

L is any list of unique integers in 0. .NStats, n not in L, k not in L, NStats~!n >0, NStats~k >0

1Q0 iQGive 1 .InQ1

JQ iQGive1 .InQ 1 	+ 	iQTake1 .InQ 1 	0 < n:5 Maxint

IQ Maxint
def = I aice1 . n 	Maxint-1

Sender Lef (T) iQGive 1 .Sender

EtherR1 etA cq1.etRei1.EtherR1

Chapter 6: 	Exploiting CCSfor Simulation Models
	

159

Transmitterd Le = 	(Station d I Sender I 1Q0 I Sending1)

\ { sAcq ,sRel , ,iQGive ,iQTake ,sAvail ,sAvail

NStats 	 \

Model 	Ethernet flTransmitterj I EtherR I Colso I EQ< >0 \L(Model)
)

This model is much more complicated than its unsuccessful predecessors. Although

it still reduces to a fairly compact DEMOS model, as shown in Appendix B, its logic

requires some careful analysis. From this it is possible to find some general

characteristics which are necessary for a process based discrete event model to show

genuine concurrency. Unfortunately the current version of the Concurrency

Workbench could not analyse the complete model, but it did provide useful feedback

in the form of the reachable states of the components and in simulating the outcomes

for the model in the relevant regions of its transition graph.

As with the simpler models, the Source is irrelevant to the behaviour in which we are

interested, simply imposing an occasional delay at the start of a Station process.

Internally the Station uses the Sending resource to keep track of whether it has just

transmitted or not, i.e. as a Boolean flag. This sets the stopping condition of the inner

loop in the Station. As long as it is trying to transmit, the Station first waits for the

Ethernet process to set up the correct conditions and then follows either a transmit

branch or a backoff branch, depending on the state of the Cols store. The EtherR

resource controls whether a Station or the Ethernet proceeds, i.e. prevents the

Ethernet scheduling further Stations while one is transmitting. It has no effect if the

Stations have to back off.

The Ethernet is only active when there are Stations in the EQ, i.e. waiting to

transmit, and when the EtherR resource is free. This is essentially the carrier sense

aspect of CSMAICD. Once it becomes active, the Ethernet enacts the collision detect

aspect of the protocol, checking how many Stations are currently waiting in the EQ,

setting a flag for each of them accordingly, by adding that number to Cols, and

scheduling all of them. Once it has done this the Ethernet gives away control by

releasing the EtherR resource and waiting in the EtherQ for new Stations to arrive

for transmission and then for the EtherR resource to be free.

Chapter 6: 	Exploiting CCSfor Simulation Models
	

160

This intricate mechanism seems at first sight too specific to the CSMAICD protocol

to be capable of generalisation. On closer examination, however, it reveals some

essential requirements for a general mechanism, which are:

The model must be able to reach a state where more than one process could

perform the same next action.

The case where only one such process currently exists must be differentiated

from the case where many are ready, by a test which gives the same, correct

answer to every ready process, in a manner which will not be altered when others

begin to act.

Each process must now act according to the test result, allowing the others to do

the same for as long as their independent, concurrent activities last.

While there may be many special cases where this could be done differently, the

central scheduling process shown here is a general solution. The Wait Queue (EQ)

performs the task of blocking potential actors until the scheduler is free to proceed.

The Res (EtherR) blocks and releases the scheduling agent according to the

conditions for the action of interest being allowed. The Store (Cols) provides a flag

for each agent awoken by the scheduler as well as a flag to differentiate the single

agent case. Indeed it is tempting to add such a primitive to modified DEMOS. It is

important to note that no new arrivals can be allowed in the Wait Queue once the

scheduler has gained control and made the test of the concurrency level. This is

easily enforced, since the scheduler does not cause time to advance or in any other

way yield control until it returns to the co-opting side of the Wait Queue itself.

But this depends on general reasoning about the model. CCS has provided no direct

answers so far, except to show why the simple resource model and the CondQ model

failed. However, those cases showed an important test that can be applied to

determine whether a model can mimic concurrency. If there are no states reachable

in the model where all those agents which should be able to perform an action

simultaneously have that action as their next one, the model is not adequate. Figure

6.17 shows parts of the transition diagram for the successful model, where all (both

in this case) agents can proceed to backoff (6.17a), but transmission takes place

when only one is initially waiting (6.17b). A further possibility is that at the start of

6.17a the third Station agent reaches the Waiting state before the Ethernet agent

Chapter 6. 	Exploiting CCSfor Simulation Models 	 161

checks the EQ. This would happen where the third Station had a packet waiting

before it ended its previous transmission (6.17c).

All of the checking of the logic of this model was greatly assisted by the use of CCS.

Simply producing a consistent model clarified many problems. Getting the model

accepted by the Concurrency Workbench provided further checking of the model's

consistency. Once entered, the use of the States command, to find the total state set,

and the sim command, to follow the paths shown in Figure 6.17, allowed detailed

debugging.

Figure 6.17: Transition diagram for modelling of true concurrency

a: Collision and backoff

(Done1 I Waitin92 I Waitin93 I etAcq I Used2 I EQ<3>1 I Colso I EtherR0)

sRel1 .etRel1 .sAvail1 etAcq1

'I,
(Station1 I Waitin92 I Waitin93 I Used2 I EQ<3>1 I Cols I EtherR0)

eQLen1 .cAdd2.etRel1 .eSched2 cAvail2

1/
(Station1 I BackOff2 I Waitin93 I ReSched I EQ<3>1 I ColS2 I EtherR0)

eQLen1 .eCoopt3.eSched3 	cAvai12

(Station1 I BackOff2 I BackOff3 I ReSched I EQ< >0 I Cols2 I EtherR1)
eQLen0 cAvail2

(Station1 I BackOff2 I BackOff3 I Ethernet I EQ< >0 Cols2 I EtherR1)
cRem1 cRem1

(Station1 I (T 02)Trying2 I (T 02)Trying3 I Ether I EQ< >0 Cols0 I EtherR1)

Chapter 6. 	Exploiting CCS for Simulation Models 	 162

b: Successful transmission

(Done1 I Station2 I Waitin93 I etAcq1 .Used3 I EQ< >0 I Cols0 I EtherR0)

sRel1 .etRel1 .sAvail1 etAcq1

1

(Station1 I Station2 I Waitin93 I Used3 I EQ< >0 Cols0 I EtherR0)
eQLen0.etRel1 .eSched3 cAvail0.etAcq1

'I,

(Station1 I Station2 I (TTrans3)D01 3 I ReSched I EQ< >0 I Cols0 I EtherR0)
eQLen0

(Station1 I BackOff2 I (TTrafls3)Done3 I Ethernet I EQ< >0 I Cols0 I EtherR0)

C: Immediate re-transmission, collision and backoll

(Done1 I Waiting2 I Waitin93 I etAcq1 .Used2 I EQ<3>1 I Cols0 I EtherR0)

sRel1 .etRel1 .sAvail1 .iQTake1 .sAcq1 etAcq1

(Trying1 I Waitin92 I Waiting3 I Used2 I EQ<3>1 I CoIs0 I EtherR0)
sAvail0.eQ Wait3

(Waiting1 I Waiting2 I Waitin93 I Used2 I EQ<3,1>2 I Cols0 I EtherR0)
eQLen2.cAdd3.etRel1 .eSched2 cAvail3

1

(Waiting1 I BackOff2 I Wa1ting3 I ReSched I EQ<3,1>2 I Cols2 I EtherR0)
eQLen2.eCoopt3 .eSched3 	cAvai13

'I,

(Waiting1 I BackOff2 I BackOff3 I ReSched I EQ<l>1 I Cols2 I EtherR1)
eQLen1.eCoopt1 .eSched1 	cAvai13

(BackOff1 I BackOff2 I BackOff3 I ReSched I EQ< >0 I Cols2 I EtherR1)
eQLen0 cAvail3

1
(Station1 I BackOff2 I BackOff3 I Ethernet I EQ< >0 Cols2 I EtherR1)

cRem1 cRem1 cRem1

1

((T 01)Trying1 I (T 02)Trying2 I (T 02)Trying3 I Ether I EQ< >0 I Cols I EtherR1)

It had been anticipated that the modal j.t-calculus could be employed to answer some

of these questions, but in practice it seemed poorly adapted to making general

queries such as:

Chapter 6. 	Exploiting CCSfor Simulation Models 	 163

if a state is reached where two or more agents are in the Wait Queue, is it

possible for an agent to reach the broadcasting state before all of those in the

queue have backed off.

This may be due to poor understanding of the capabilities of modal logics and

remains an open question.

Races

A race occurs where more than one activity can be under way at the same time, but

where only the first to complete will actually be deemed to have succeeded. An

example might be where several packets enter a packet switched network, but where

only the first one to reach the destination node will be accepted, the others being

lost. This is different from the idea of simultaneously acting events, since the time of

completion determines which is deemed to have occurred. It seems unlikely that

CCS or any discrete time variant will answer many meaningful questions, apart from

cases where a deterministic delay is involved for all racing processes. In all cases,

the same condition for a race being able to happen applies as for concurrent activities

above. A test on the duration of each event could then determine which one proceeds

and which ones die, but this requires an extension to the semantics of CCS. It would

be more appropriate to consider PEPA or a similar stochastic process algebra for

such cases.

6.3.2 Starvation

The reader/writer model of Chapter 4 shows an example of a resource used to

enforce mutual exclusion. This can also be used to implement a semaphore. Under

appropriate timings this model can produce starvation. Figure 6.18 shows the

mapping into TCCS for that model.

Chapter 6: 	Exploiting CCSfor Simulation Models
	

164

Figure 6.18: Reader writer model as an example of potential starvation

a: The activity diagram

Reader 	 Writer

Acquire 1 	Acquire 3

uffers 	I
Read dat 	 pdate fil

Release 1 	Release 3

b: The CCS

Reader . buffAcqi (Tread)Thinker

Thinker def 	bufjRel 1 (T hflk)Reader

Writer ö. buffAcq3 (Tupdate)Updater

Updater Lef buffRel3 (Tsearch) Writer

Buffs3 8.buffAcqi.Buffs2+ 8.buffAcq3.Buffso

Buffs2 .buffAcqi.Buffsi+ 8.buffReli.Buffs3

Buffs .buffRel1 .Buffs2

Buffso Lei 6.buffRel3.BUffS3

Model (Reader I Reader I Writer I

Buffs3)\{buffAcq1,buffAcq3,buffRel1,buffRel3}

Chapter 6: 	Exploiting CCS for Simulation Models 	 165

Consider the Reader process. This is a simple cyclical process, defined in CCS by a

right recursion. It requires only one buffer to proceed. The Writer process is

structurally similar, but needs to acquire all the buffers before it can update them.

This simple mutual exclusion example is interesting since it may induce starvation of

the Writer by the Reader processes if the timings of the Readers are unfavourable.

The resource is modelled as usual and is simplified as before. Finally the model is a

parallel composition of all processes

Since there are only two Reader processes and only in them can a buffAcqi take

place, and the only way to reach a Buffso state is following a buffAcq3, the only

possible action of a Buffso agent is a buffRel3. Thus the graph of Model has two sub-

graphs, which are only joined by the start state.

The problem of starvation may be summarised as the situation where, although it is

theoretically possible to reach an agent (or sub-graph of the transition graph) within

a model, under certain timing and priority or resource conditions, created when the

other has proceeded, this cannot happen. Unlike the more general notion of

unfairness, without timing information the best that can be said is that the possibility

does or does not exist, i.e. that there is a choice from which two or more disjoint sub-

agents start and at least one of them contains a cycle which can prevent return to the

choice.

In the model above, this is clearly the start agent, Model. The two sub-agents Reader

and Writer both cycle back to this choice, but Reader may remain within an internal

cycle of activity. This is not strictly the same as livelock, since progress may be

made by the overall system, even though part of it is starved. Working without

timings the reachability graph of Figure 6.19 is produced.

It would be comparatively simple to phrase a question in the modal m-calculus of the

form, "Is it possible for the model to reach a state (or perform an action) in the

Writer cycle once it has reached (performed) one in the Reader inner cycle?" One

such question is written in the Workbench syntax as:

hi X (Thinkerl Thinkerl Writerl Buffsl)\(buffAcql,buffAcq3,buffRell,buffRel3}

cp X mm (X.<buffAcq3>T

Chapter 6: 	Exploiting CCSfor Simulation Models
	

166

Thus, once the structure of the model is apparent, an answer can be expected. It is

still perhaps reasonable to expect a modeller to be able to do this.

0.19: Keader/%Vriter reacflatnhity graph without

(Reader I Reader I Writer I Buffs3)

I 	I 	 I 	I
buffRel1 	buffAcq j 	buffAcq3 	buffRe13

I 	I 	 I 	I
(Thinker I Reader I Writer I Buffs2) 	(Reader I Reader I Updater I Buffs0)

I 	 I
bufJRel j 	buffAcq j

I 	 '1'
(Thinker I Thinker I Writer I Buffs1)

It is the secondary cycle between the two reader processes that prevents the writer

from engaging in any activity. If timings are added which force the model into bad

behaviour, the temporal version of CCS can be used to show this, as shown in Figure

6.21. The timings in the Writer agent are unimportant, as it will never be allowed to

start as long as both Readers do not release their buffers simultaneously. The Reader

agent is extended into a series of sub-agents corresponding to time advancing. The

overall model uses time prefixes to schedule the various Readers and Writers out of

time with each other. The transition graph is now as shown in Figure 6.22.

Figure 6.21: Reader/Writer TCCS with timings forcing starvation

Reader0 	 . buffAcqi . Thinker0

Thinker0 	Lef 	(3)Thinker1

Thinker1 	def 	buffRel . Reader1

Reader1 	 (1)Reader0

Model 	 (Reader 0 I (2)Reader 0 I (1) Writer I Buffers3)\L (Model)

Chapter 6: 	Exploiting CCS for Simulation Models 	 167

6.22: The Reader/Writer transition graph snowing starvation

(Reader0 I (2)Reader0 I (1)Writer I Buffers3)

buffAcqi
1

(Thinker0 I (2)Reader0 I (1)Writer I Buffers2)

(2)
1

((1)Thinker1 I Reader0 I Writer I Buffers2)

buffAcqi
'I,

((1)Thinker1 I Thinker0 I Writer I Buffers1)

(1)
17

(Thinker1 1(2)Thinker, I Writer I Buffers1)

buffReli
'I,

(Reader1 I (2)Thinker 1 I Writer I Buffers2)

(1)

(Reader0 I (1)Thinker1 I Writer I Buffers2)

buffAcqi

(Thinker0 I (1)Thinker1 I Writer I Buffers1)

The last state is identical, when re-ordered, to an earlier state and so the model will

cycle indefinitely without Writer ever acting.

Expressing starvation

The property that starvation may be possible can be given in English as follows.

Given a choice state, generated by applying the expansion theorem to the parallel

composition of two agents, there is, from that state of the model, a path which

may revisit that choice, but need not do so. If timing information or priorities are

Chapter 6. 	Exploiting CCSfor Simulation Models 	 168

added, it is possible to show cases where such a system will definitely behave

badly.

6.3.4 Deadlock

The most widely known liveness property is probably deadlock. It is clearly capable

of being represented in CCS, as noted in Chapter 2. Here the use of modified

DEMOS and of CCS is shown to detect deadlock correctly in the harbour model.

Formalising the proof for the harbour model

To show whether deadlock is possible, irrespective of timings, and to explore why

the Workbench gives different results to DEMOS, we initially use the simplified

model used to show transition elimination above. This simplifies the analysis and is

also important to an understanding of why DEMOS fails to behave in the way

predicted. Together these changes give the model in Figure 6.22.

Figure 6.22: Harbour CCS model to show deadlock

BOAT jAcqi . tugAcq2 . tugRel2 . tugAcqi . tugReli . jReli

TUGS2 (tugAcqi.TUGS1) + (tugAcq2.TUGS0)

TUGS1 (tugAcqi .TUGS0) + (tugReli .TUGS2)

TUGSO Le IL (tugRel 1 .TUGS1) + (tugRel2.TUGS2)

JETTIES2 (jAcqj.JE]TIES1)

JE7-TIES1 (jAcq .JE1TIES0) + (/Reli .JE]TIES2)

JETTIES0 (/Reli.JETTIES1)

MODEL (TUGS2 I JE77IES2 I BOAT I BOAT I BOA]) \ L(MODEL)

This model simplifies the original model by allowing only three boats. That is

sufficient, since it produces the deadlock. A simple proof then shows that this result

generalises to larger numbers of boats. In other models it might be necessary to have

more instances, depending on the number of interlocking resource acquisitions

involved. The question of how many instances of each process type may be needed

is examined in more detail below. Now there is a simple enough model to analyse by

hand. The following transition diagrams are shown in Figure 6.23.

Chapter 6: 	Exploiting CCSfor Simulation Models

Figure 6.23: Transition diagram for deadlocking harbour model

a: a boat

b tugAcq2 	JA 1 	tugRe12 	tugAcql 	jRell 	tugRell
0 - 	1 	2 .- 	3 -4 	4 -5 - 	6

b: a 'tugs resource

tugqj to
tugq] 1 tugelj 2

t2 	 tug4el2 t2
14q2 to tug,,eli t1

C: a Jetties resource.

(fRetj
I—*J2

jRelj
- ii

d: the overall transition

(bO I bO I bO I t2 I j2)
tugAcq2
jAcqi

tugRell

(b3 IbOIbOIt2Ijl)
tugAcq 1 '1- 	 'I' tugAcq2

(b4IbOIbOItlIjl) 	(b3IbiIbOItOIj1)
tugRell 'J' 	 L jAcqi

(b5IbOIbOItiIjl) 	(b3b2IbOItOIjO)
jRell 't' 	 '1' tugRe12

(bO lbOitliji) 	(b3!b3IbOIt2IjO)
tugAcq 1 '1' 	L tugAcq2

(b4 I b3 I bO I t2 I jO) 	(b3 I b3 I hi I tO I jO)

Note in order to simplify the proof that follows, that any acquisition of a resource

creates an agent capable of accepting its release and that this effect is cumulative

over acquisitions. This means that releases are never capable of blocking the actions

Chapter 6: 	Exploiting CCSfor Simulation Models
	

170

of an agent. Thus it is safe to assume that a BOAT will never be blocked once it has

reached b4. In analysing the overall model's transition diagram we can take

advantage of this to ignore paths reaching a combination containing this point, since

the corresponding boat will be guaranteed to be able to complete and so leave at

most two others, which can easily be shown to be deadlock free for the amounts of

resource specified. Using these building blocks produces the overall state transition

diagram for the model. The state (b3 I b3 I bi I tO IjO) is a deadlock. This shows that

this model is capable, under certain timings or choices of action, of deadlocking.

A Concurrency Workbench experiment

With these insights a concurrency Workbench experiment was conducted, which

demonstrated the expected behaviour. The full experiment is given in Appendix C.

In figure 6.24, only part of the output from the Workbench's f dabs command is

given, showing just the sequence of states leading to deadlock. The deadlock state is

marked with a double asterisk.' Thus, the workbench agrees with the expected

behaviour.

Figure 6.24: Concurrency workbench experiment

a: 	mouei ior me concurrency vvoruencn

bi 31 'jal.B2
bi 32 'tr2.B3
bi 33 'tal.34
bi 34 'trl.35
bi 35 'jrl.O

bi Tugs2 (tal .Tugsl) + (ta2 .Tugso)
bi Tugsl (ta1.Tugso)+(tr1.Tugs2)
bi TugsO (tr1.Tugs1)+(tr2.Tugs2)

bi Jetty2 (jal.Jettyl)
bi Jettyl (jal.JettyO) + (jrl.Jetty2)
bi JettyO (jrl.Jettyl)

bi Model (Tugs2 I Jetty2 I 30 I BO
30) \{tal,ta2, trl,tr2,jal,jrl}

The concurrency workbench regards any state where no further actions are possible as a deadlock. Thus
it shows two deadlock states in the complete output, the true deadlock and the state where all processes
have reached 0, the CCS passive state.

Chapter 6. 	Exploiting CCSfor Simulation Models 	 171

b: Selected results from fdobs command

===> Model *

===> (TugsO I 	Jetty2 EQ BO j 	B1)\(jal,jr1,tal,ta2,trl,tr2}
===> (TugsO I 	Jettyl BO BO E2)\(jal,jrl,tal.ta2,trl,tr2)
===> (Tugs2 I 	Jetyl EQ BO B3)\{jal,jrl,tal.ta2,trl,tr2)
===> (TugsO I 	Jettyl BO Bl B3)\(jalJrl,tal,ta2,tr1,tr2)
===> (TugsO JettyO I 	BO B2 B3)\(jal,jrl,tal,ta2,trl,tr2}
===> (Tugs2 JettyO BO B3 B3)\{jal,jrl,tal,ta2,trl,tr2}
===> (TugsO I 	JettyO Bi B3 B3)\(jal,jrl,tal,ta2,trl,tr2)**

Generalising the result to larger numbers of boats

It is straightforward to prove that a model which has the potential to deadlock with n

processes of a certain type retains this potential with n+l processes, so long as one of

the processes can proceed to termination on its own and releases all the resources it

has used in doing so. If it does so, the model reduces to its equivalent with one less

process of this type. Since what remains is known to potentially deadlock, the

original model could do so under the correct choices or timings. Thus for open

models, i.e. models where certain process types are both generated and terminate, a

proof of potential deadlock for n of one of these process types is a proof for the same

model with n+ 1.

Probability of deadlock in the model

The probability of deadlock in such a model can be seen to be the probability of it

choosing any of the paths leading to a deadlock state. Since this can only happen if a

minimum number of processes of each type is present concurrently, the probability

of deadlock has an upper bound given by the probability that this number of

processes is reached. What is more, in the harbour model the deadlock state occurs

only when two boats are tied up unloading and a third one acquires two tugs. Thus

the probability of deadlock is the probability of this transition happening conditioned

on the probability of two boats being tied up. This informal reasoning about

probabilities would require considerable further work to produce a general approach

to posing questions about stochastic models, but it is interesting to speculate how the

modal ji-calculus or a similar logic might be used in this way.

Comparison with the DEMOS model

To return to the original DEMOS model of Birtwistle, it is necessary to extend the

TUGS agent to include a TUGS3 state and re-introduce the corresponding actions.

Chapter 6: 	Exploiting CCSfor Simulation Models
	

172

This gives a simplified 3 tug resource and new transition graph shown in Figure

6.25.

Figure 6.25: CCS and transition graph changes for three tug harbour

a: CCS model

TUGS3 	 (tugAcqi.TUGS2) + (tugAcq2.TUGS1)

TUGS2 	 (tugAcqi .TUGS1) + (tugAcq2.TUGS0) + (tugReli .TUGS3)

TUGS] 	 (tugAcqi .TUGS0) + (tugReli .TUGS2) + (tugRel2.TUGS3)

TUGS0 	 (tugReli .TUGS1) + (tugRel2.TUGS2)

b: transition

t3

Itu&c12 t3

tugq2 t1 tugel1 2 tugelj ti
tugqj o {tu4el2 t2

1tu&eli t3

tu$qj t1 tuqj 2

tug4q2 to

In a similar way to the two tug model overall state transition diagram can be

generated and examined for deadlock states. Since the resulting graph is rather

complex, it is given in Appendix C. It shows no such states. This is reasonable, since

the maximum number of un-terminated boats that can ever be past bO at any one

time is bounded by:

the number of jetties available (2), which limits the number at stages b2..b5;

the number of boats that have acquired the tugs they need to be at stage b 1,

b4orb5;

Chapter 6. 	Exploiting CCS for Simulation Models 	 173

the fact that boats at b4 or beyond are bound to terminate and so may be

discounted.

Taking these facts together, the worst case, of boats beyond bO and not guaranteed

termination, is two boats at b3 (unloading) and one at bi (waiting for one of the b3

boats to leave). Only if the b3 boats are both blocked as a result can deadlock occur.

In the two tug model, this worst case led to deadlock as no tugs or jetties were then

free. However, in the three tug model, at most one boat can be in state b and if this

is so at least one boat can always leave state b3 and so terminate, freeing a jetty and

a tug. Thus the three tug model is guaranteed deadlock free. In fact no model with an

odd number of tugs can ever deadlock.

This leads to the conclusion that the DEMOS model must be incorrect or that the

DEMOS solver executes it incorrectly in terms of the CCS definition of its

semantics, since it demonstrably does deadlock. In fact, recalling that unmodified

DEMOS defines Acquire as always operating on a first come first served basis, some

processes, requiring smaller numbers of a resource but arriving later, are thereby

blocked unnecessarily. This ensures that many starvation conditions cannot arise, but

introduces more cases of seeming deadlock.

Testing with the Concurrency Workbench

Figure 6.26: Testing three tug model with Concurrency Workbench

a: CCS model

bi BO 'ta2.B1
bi BI jal.B2
bi B2 'tr2.33
bi B3 tal.B4
bi B4 trl.B5
bi B5 jrl.O

bi Tugs3 (ta1.Tugs2)+(ta2.Tugs1)
bi Tugs2 (tal.Tugsl)+(ta2 .TugsO)+(trl.Tugs3)
bi Tugsl (tal.TugsO)+(trl.Tugs2)+(tr2 .Tugs3)
bi TugsO (tr1.Tugs1)+(tr2.Tugs2)

bi Jetty2 (jal.Jettyl)
bi Jettyl (jal.JettyO) + (jrl.Jetty2)
bi JettyO (jrl.Jettyl)

bi Model (Tugs3 I Jetty2 I BO 1 130 1 B0)\{ta1,ta2,trl,tr2,ja1,jr1}

Chapter 6. 	Exploiting CCSfor Simulation Models
	

174

n: eiecteci

===> Model
===> (Tugsl Jetty2
===> (Tugsl I Jettyl
===> (Tugs3 	I Jettyl
===> (Tugsl Jettyl
===> (Tugsl 	I JettyO
===> (Tugsl 	I JettyO
===> (Tugs0 	I JettyO

BO I BO I B1)\(ja1,jr1,tal,ta2,tr1,tr2)
30 	BO 	B2)\{jal,jr1,ta1,ta2,tr1,tr2)
BO 	BO 	B3)\(ja1,jr1,ta1,ta2,tr1,tr2)
BO 	Bi 	B3)\(ja1,jr1,ta1,ta2,tr1,tr2)
BO 	B2 	B3)\{ja1,jr1,tal,ta2,tr1,tr2}
Bi 	33 	B3)\(ja1,jr1,ta1,ta2,tr1,tr2)*
Bi 	B3 	B4)\ja1,jr1,ta1,ta2,tr1,tr2)

Again the key states have been selected. The previous deadlock state, marked with

an asterisk, is passed to reach a path to completion.

6.3.4 Backward propagation of blocking

An extremely common problem in analysing the effects of a simulation model is

establishing where the root of a phenomenon lies. This is most often due to

backward propagation of a problem due to blocking. Thus a slow process emptying

a finite buffer may cause a process which is filling that buffer to appear too slow. To

consider whether CCS can help us to analyse this sort of problem, consider a small

case study reported by a consultant.

Kiteck [49] reported on the use of a discrete event simulation package with animated

output of state changes in a warehouse simulation. An extended activity diagram of

the core of this model is shown in Figure 6.27. The execution of the model revealed

that a Wrap Machine was unable to empty its input conveyor belt fast enough to

keep up with the incoming stream of pallets. The graphical animation showed very

clearly pallets clogging the conveyor and led to the, erroneous, initial conclusion that

the wrap machine was too slow.

Chapter 6: 	Exploiting CCSfor Simulation Models
	

175

Figure 6.27: Activity diagram of Kiteck's model

Pallet 	 Wrap 	 AGV
Arrival 	 Machine 	 Shuffle

Carry
Unwrapped

Post-wrap
I 	 buffer

Conveyor 	Wrap

Closer analysis of the arrivals showed that, in fact, the Wrap Machine did not have

to do anything with most of the pallets and was merely acting as buffer space for

them. The true problem was that there was a one place buffer beyond the Wrap

Machine, where pallets waited for an automatic guided vehicle (AGV) shuttle to

carry them into the warehouse. Since it was not always able to remove pallets fast

enough, the wrap machine often sat idle, acting as a passive buffer, rather than

getting on with its job of wrapping. The problem was propagated backwards and the

use of animation obscured the true cause of the problem.

In essence the question that needed answering was, "If the Wrap stage appears

blocked, is there some later stage which could be causing this?" More formally, it is

necessary to determine whether the inability of the Wrap Machine to perform its

input action might be due to an output action being unable to proceed and, if so for

which process that action was waiting. This must then be repeated for the blocking

process and so on, until no further blocking can be identified.

Chapter 6: 	Exploiting CCS for Simulation Models
	

176

The CCS model for Kiteck' s warehouse is straightforward and is given in outline in

Figure 6.28. In this un-timed version no distinction is made between pallets needing

wrapping and those not. An alternative model is given in appendix C, showing how a

mixture of the two sorts could be modelled.

Fi2ure 6.28: CCS version of Kiteck's model

Arrival cbAdd .Arrival

WrapMC Lef cbRem . Wrapping

Wrapping oBuffAdd1 .WrapMC

AGVShuttle led oBuffRem 1 .AGVShuttle

OBuff 1 oBuffRem 1 .OBuff0

OBuff0 oBufAdd1 .OBuff 1

CBelt0 Lef cbAddj .CBelt1

CBelt cbAddi .CBelt +1 + cbRem1.CBelt 1 	O<n<Limit

CBeltLjmjt cbRem .CBeltLjm jt l

Model (Arrival I WrapMC I AGVShuttle I OBuff, I CBelt0)\L(Model)

It is simple to discover potential blocking in most cases, by removing the process

under consideration from the model and seeing which other processes become

blocked. Thus, if the AGV Shuttle is removed, it is clearly possible for the Wrap

Machine to be unable to proceed once the Post-wrap Buffer is full. This is

unsurprising, even from the original extended activity diagram, in such a simple

case, but might not be obvious from more complex models. Thus it is possible to

claim a double benefit of the approach being developed. Firstly, the clarity of the

graphical notation may help in the identification of possible problems. Secondly, the

ability to perform rigorous examinations of questions, allows their unambiguous

resolution.

There is a possibility of using the modal 1.1-calculus for examining this sort of

question, but it seems to require that the blocked state be fully developed. Again this

may be due to lack of full understanding of the possibilities and should remain an

open issue.

Chapter 6. 	Exploiting CCS for Simulation Models 	 177

6.4 Using hierarchies and sub-models

Most of the basic concepts of hierarchy in process based simulation were discussed

in chapter 4 and in section 6.2. In order to make effective use of sub-models in a

formally defined simulation language, it is necessary either to store the CCS model

along with the modified DEMOS one or to be able to generate it at need. In fact the

most economical way of storing libraries of sub-models would be as the internal

representation of an Extended Activity Diagram (DIA format), from which all

versions can more or less be generated automatically.

The potential for problems resulting from the use of externally defined sub-models

can be illustrated by returning to the example developed in Figure 6.10. There it was

shown that simplification of the Stream process would not modify the functional

behaviour of the overall model. This might seem an innocuous example, but by a

simple change to the interpretation of this process, a very dangerous change is

produced. If the Memory resource is not made local to the Stream process, the effect

of introducing it into a model is totally different, since it could then compete for this

resource with other processes. Fortunately this sort of thing, which may be

ambiguous in the sort of activity diagram used in Figure 6.10, is very clear in the

CCS model, since the actions to acquire and release the resource are no longer

restricted to the Stream process. As with many of the problems discussed here, this

seems obvious once it is pointed out, but in the context of re-using predefined sub-

models it represents a very real danger.

6.5 Conclusions

This chapter has examined the usefulness of the ideas developed earlier in this

dissertation in the light of a number of problems and examples. It has attempted to

demonstrate that the basic thesis, that it is possible to formalise process based

discrete event simulation models in terms of CCS, should be strengthened to say that

it is useful to simulation modellers to be able to do so.

A number of issues have been raised or left unresolved by this chapter, which

suggest that there is scope for further work on this topic.

6.5.1 Successes using CCS

Chapter 6: 	Exploiting CCS for Simulation Models
	

178

From the examples considered in this chapter, it seems reasonable to claim that the

use of CCS is a clear aid to a simulation modeller. The presence of a formal

alternative to the activity diagram and DEMOS representations offers another view

of a model. Since it is structured and testable, many simple errors can be eliminated.

In particular, interfaces and hiding assumptions can be examined, preventing

accidental scope errors and highlighting the effects of sub-model combination.

Assumptions about independence and concurrency can be carefully checked.

6.5.2 Successes with the modal j.i-calculus

Deadlock detection and potential starvation checking with the aid of the modal i-

calculus are made possible. This provides an important step in verifying models.

Other questions can be posed for specific models.

6.5.3 Failures using CCS

The interleaving semantics of CCS and TCCS, while built on similar assumptions to

the execution of discrete event simulation models on single processor machines,

cannot deal with either stochastic or continuous states. This is a limit to their

precision when dealing with models, since the results are inevitably conservative

with respect to a model operating under specific assumptions. The need to express if-

then-else as a guard on one branch and a guard testing the complement on the other

often leads to unwieldy summations to test the complement of a single integer. Tests

of this sort are impractical and force the use of simplified CCS models with reduced

ranges when applying the Concurrency Workbench.

Attempts to incorporate time into these models were frustrating. The TCCS view of

time is inadequate to express the really interesting problems and explicit

synchronisation actions were often necessary to force actions to occur before time

advanced. It seems that a review of alternative forms of time advance and

synchronisation is needed to improve on this.

6.5.4 Failures with the modal j.t-calculus

Identification of redundant states with CCS is not helped by the calculus, since it

does not deal in unreachable states. The learning curve for the calculus is very steep

and makes it unlikely that modellers will choose to use it. It does not offer a means

to ask probabilistic questions at the moment and much further work is necessary to

Chapter 6: 	Exploiting CCSfor Simulation Models
	

179

develop an equivalently powerful level of interrogation of simulation models. It was

of limited general use for questions of genuine concurrency and of blocking

propagation. It cannot deal effectively with general questions of fairness.

This area was tackled very late in the work described and should be the subject of

further, careful research.

6.5.5 Limits of the Concurrency Workbench

The Concurrency Workbench, in the form available when the work of this

dissertation was carried out, proved useful, but unwieldy and less helpful than might

have been the case. It is also limited by the rapid increase in the memory demands it

makes as the number of states in a model increases. Checking for redundant states is

quite cumbersome, even with the help of the Workbench.

The lack of a fully integrated value passing syntax is a serious omission in the

current version. A converter from value passing to basic calculus and this should be

included in the working system. The lack of an if-else construct in the Workbench

syntax is particularly regrettable.

More thought needs to be given to ease of understanding when presenting output.

Commands such as min and fdobs would be much easier to use if their output was

related more closely to the structure of the models on which they operate. It appears

that some of these issues are being addressed in version 7 of the Workbench, but this

was not available at the time of this work.

6.5.4 Further work

This chapter has shown that the application of process algebra techniques provides

both an aid to writing good simulation models and a complement to them in terms of

the range of questions that can be answered. The major challenges are in closer

coupling of the two approaches. In particular the following areas seem obvious

targets for further research:

integration of the tools involved to allow Concurrency Workbench functions to

be available more directly and in forms more closely related to the activity

diagram description of models;

Chapter 6: 	Exploiting CCS for Simulation Models 	 180

development of new process algebra querying functions targeted at the questions

asked by simulation modellers, such as redundant state detection and concurrent

action analysis;

extension to stochastic and real valued models, possibly using PEPA or a similar

algebra;

development of an applicable process logic for use with the above, expressed at

an appropriate level for simulation modellers.

Chapter 7

Conclusions

7.1 General

The results of this dissertation can be summarised as follows.

The semantics of discrete event simulation languages are at present poorly

described, but can be investigated using a process algebra, such as CCS to formalise

the description of the interactions involved.

It is possible to design a graphical formalism which is sufficiently powerful to

express the most widely used features of process oriented discrete event simulation

and to generate executable models directly from these when suitably annotated.

It is possible to extend this to express the hierarchical construction and

decomposition of such models and to generate executable models and re-usable

component sub-models from these diagrams, when suitably annotated.

Using a suitably revised version of a discrete event simulation language, in this

case DEMOS, it is possible to show important properties such as equivalence,

liveness and starvation without resorting to execution of the models, by means of

analysis of an equivalent process algebra model.

A tool based on a graphical interface can be constructed to support automatic

generation of both executable simulation models and equivalent process algebra

models.

7.2 Semantics of discrete event simulation

Existing simulation languages are defined informally and precise definitions are often

Chapter 7: 	Conclusions 	 182

buried in manuals. Since discrete event simulation usually proceeds on a monoprocessor

system, some sort of event interleaving is always required and genuinely simultaneous

events have to be scheduled in a deterministic order to allow reproducibility of results.

Chapter 3 demonstrated that the use of a process algebra, such as CCS, helps the designer

of such a language avoid ambiguities. It can also allow users of the language to test their

understanding of the semantics of constructs in the language.

7.3 Deciding properties of discrete event models

The difficulty of knowing whether a model accurately represents the behaviour of the

system it is intended to model is central to the credibility of discrete event simulation.

Since any given run of a model is a random walk throught the event space of the model,

execution is not an adequate means of establishing such behaviourial properties. It has

been shown, however, that the use of CCS to represent a model can allow us to analyse

some important properties in advance of quantitative simulation.

Furthermore, the preservation of important properties under simplification and

restructuring is important when trying to formulate an efficiently solvable model. Again,

the use of CCS has been shown to be of help in locating and exploiting simplifications and

component based re-use of sub-models.

7.4 Automating the analysis of simulation models

While many tools for graphical generation of simulation models have appeared in the last

few years, none have any formal underpinning. It has been shown here that such a tool

can be built to incorporate both discrete event simulation and process algebra behaviourial

analysis from a common representation.

Furthermore, the notion of hierarchical modelling has been developed in terms of the

graphical, simulation and process algebra representation of models. This greatly aids the

use of graphical techniques for large and complex models. The system developed here is

likely to be very useful in situations where large models are being built and component

models are being re-used from libraries.

7.5 Further work

The work of this dissertation has been developed in terms of the basic Calculus of

Chapter 7: 	Conclusions 	 183

Communicating Systems. While this has been shown to be powerful, general and useful,

it does not allow for the use of additional information available to the modeller. In

particular, it does not deal with stochastic measures of time and non-determinism. Nor

does it have useful ways of handling sequential execution of moedis of concurrent

systems. The alternatives of stochastic and synchronous process algebras need to be

explored in some detail to assess their contribution.

Closer integration of the graphical interface and the functional analysis software is very

desirable. Even if the Concurrency Workbench could be tailored to ask the questions

requiring answers in simulation modelling, it presents its results in an opaque manner.

Reimplementation of these features within the context of Activity Diagrams seems a

fruitful approach. At the same time some new forms of analysis might be added, to deal in

more specific ways with questions such as concurrent event modelling. The modal i-

calculus is too obscure to be used directly.

Finally a considerable amount of work remains in evaluating the approaches developed

here on real modelling problems. This is much more possible as a result of the tools

developed in this work.

7.6 Assessment

The results of this work are not all positive, but in a number of areas the usefulness of

combining functional analysis of systems with simulation modelling has been clearly

shown. The avenues still open suggest that some at least of the open issues can be

resolved. The overall assessment is, therefore, that the work reported has been

worthwhile and has potential for exploitation.

References
Agerwala T. 1979. "Putting Petri Nets to Work", IEEE Computer, December,
85-94.

Ajmone Marsan M, G. Conte and G. Balbo..1984. "A Class of Generalised
Stochastic Petri Nets for the Performance Evaluation of Multiprocessor
Systems", ACM Transactions on Computer Systems, 2 (2) (May) 93-122.

Aldwinckle John, Rajagopal Nagarajan and Graham Birtwistle 1992 "An
Introduction to Modal Logic and its Applications on the Concurrency
Workbench", University of Calgary, Department of Computer Science
Technical Report

Auyong L.S. 1991. A Graphical Editor and Checker for Stochastic Petri Nets,
MSc Dissertation, University of Edinburgh, Department of Computer Science.

Auyong L. S. and R. Pooley 1992 "An Editing and Checking Tool for
Stochastic Petri Nets - esp", in J. Stephenson Ed. Proceedings of the European
Simulation Multi-conference, York, July 1992, SCS Europe

Barber E.O. and P.H. Hughes August 1990, "Evolution of the Process
Interaction Tool, A Graphical Editor for DEMOS", in Proceedings of the
Seventeenth SIMULA Users Conference, Pilsen, pp 171-180, Association of
SIMULA Users

Bauman R. and T.A. Turano November 1986, "Production language
simulation of Petri nets", Simulation Vol 47 No 5, pp 191-198

Beilner H. and F.J. Stewing 1987. "Concepts and Techniques of the
Performance Modelling Tool HIT", in Proceedings of the European Simulation
Multiconference, Vienna, SCS Europe

Beilner H. June 1989. "Structured Modelling - Hierarchical Modelling", in
Proceedings of the European Simulation Multiconference, Rome, SCS
International

Beilner H., J. Mater and C. Wysocki 1994. "The Hierarchical Evaluation Tool
HIT", in Proceedings of the 7th International Conference on Techniques and
Tools for Computer performance Evaluation, Vienna pp 3-6

Beisnes D. and K.A. Bringsrud May 1978. "X.25 Implemented in SIMULA",
in Eurocomp 78, London

Birtwistle G.M., O.J.Dahl, B.Myhrhaug and K.Nygaard 1973 SIMULA
BEGIN, Studentlitteratur, Lund.

Birtwistle G.M. 1979. Discrete Event Modelling On SIMULA, Macmillan,
London

Birtwistle G.M. and P. Luker February 1984. "Dialogs for Simulation", in
Birtwistle and Luker Ed. Proceedings of the conference on Simulation in
Strongly Typed Languages, San Diego, pp90-95, Society for Computer
Simulation, La Jolla, California

References 	 185

Birtwistle G.M., P. Luker, G. Lomow and B. Unger 1985. "Process Style
Packages for Discrete Event Modelling: Experience from the Transaction,
Activity and Event Approaches", Transactions of the SCS 2(1), pp25-56

Birtwistle G.M., C. Tofts and R.J. Pooley October 1993, "Characterising the
Structure of Simulation Models in CCS", Transactions of the SCS Vol 10 No
3, pp 205-237

Buchholz P. March 1989 "Definitions of Submodels and Classification of
Aggregates, ESPRIT II IMSE Project Report, Universität Dortmund

Chiola G. March 1987. "A Graphical Petri Net Tool for Performance
Analysis", in D. Potier Ed. Proceedings of the International Workshop on
Modelling Techniques and Performance Evaluation, pp 297-307, AFCET,
Paris

Chiola G., C. Dutheillet, G. Franceschinis and S. Haddad 1991 "On Well
Formed Coloured Nets and their Symbolic Reachability Graph", in K. Jensen
and G. Rozenburg, editors, High Level Petri Nets: Theory and Application,
Springer Verlag

Cleaveland R., J. Parrow and B. Steffen "The Concurrency Workbench: A
Semantics Based Tool for the Verification of Concurrent Systems", ACM
TOPLAS, Vol 15 No 1, 1993

Clementson A. 1973. Extended Control and Simulation Language Manual,
Birmingham University, England

Cota B.A. and R.G. Sargent 1992 "A Modification of the Process Interaction
World View", ACM Transactions on Modelling and Computer Simulation, Vol
2 No 2, April 1992, pp 109-129

Dahl O.J. and K. Nygaard 1970 Simula 67 Common Base Language,
Norwegian Computing Centre, Oslo, Norway, 2nd Edition.

Dam Mads June 1992 CTL* and ECTL* as fragments of the modal m-
calculus, Edinburgh University, Dept of Computer Science, Report ECS-
LFCS-92-2 17.

Dumas M.B. August 1984 "Simulation Modeling for Hospital Bed Planning",
Simulation Vol 43 No 2, pp 69-78

Evans J.B. 1988, Structures of Discrete Event Simulation, Ellis Horwood,
Chichester

Franta W.R. 1978. The Process View of Simulation, North-Holland,
Amsterdam

Fayek A.M., D. van Welden and G. Vansteenkiste 1990 "Applying DEVS
Methodology to Continuous Systems Modelling", Simulation Digest, Vol 21
No 1, pp 39-45, ACM SIGSIMJIEEE TC SIM

References 	 186

Garcia M.R. 1990 "Discrete Event Simulation Methododlogies and
Formalisms", Simulation Digest, Vol 21 No 1, pp 3-13, ACM SIGSIMIIEEE
TC SIM

Gilmore S. and J. Hillston May 1994. "The PEPA Workbench: A Tool to
Support a Process Algebra-Based Approach to Performance Modelling", in
Günter Haring and Gabriele Kotsis (Eds) Computer Performance Evaluation,
Modelling Techniques and Tools, Springer-Verlag LNCS-794, pp353-368

N. Götz, U. Herzog and M. Rettelbach "Multiprocessor and Distributed
System Design: the Integration of Functional Specification and Performance
Analysis using Stochastic Process Algebras", in Proceedings of Performance
'93, 1993

Hennessy, M.C. and A.J.R.G. Milner 1985. "Algebraic Laews for Non-
determinism and Concurrency", Journal of ACM, Vol 32 No 1, pp137-161

Hills P.R. 1965 	"SIMON a Simulation Language in Algol", in S.M.
hollingdale Ed. Simulation in OR, English Universities Press, London

Hills P.R. 1966. Hand or Computer Simulation System (Hocus), Management
Engineering Report 66/4, Imperial College, University of London, England

Hills P.R. 1968. "Hocus a simple approach to simulation", Data Processing,
May 1968

Hillston J. September 1992. "A Tool to Enhance Model Exploitation", in R.J.
Pooley and J.E. Hillston Eds. Computer Performance Evaluation, Modelling
Techniques and Tools, Edinburgh University Press Edits 10, pp131-142

Hillston J.E. April 1994. A Compositional Approach to Performance
Modelling, PhD Dissertation CST-107-94, University of Edinburgh,
Department of Computer Science

Hoare, C.A.R. 1985. Communicating Sequential Processes, Prentice Hall,
London.

Hoover S.V. and R.F. Perry 1989 Simulation: A Problem Solving Approach,
Addison-Wesley

Hughes P.H. 1984. DEMOS activity Diagrams, Notat nr 1, FAG 45080
Simulering, HØst 1984, Norges Tekniske Høgskole, Institutt for
Databehandling, 7034 Trondheim-NTH, Norway

Hughes P.H., R.J. Pooley, T.K. Rylance and J.F. Smith June 1986. Simmer
Pilot Capability, SIMMER Document SAG/001/4, STL, Copthall House,
Newcastle-under-Lyme, England

Hughes P.H. 1986. "The Design of a Performance Modelling Environment",
in Proceedings of the 14th SIMULA Users Conference, Stockholm, ppl23-
135, Association of SIMULA Users, Postbox 4403 Torshov, N-0402 Oslo 4,
Norway

References 	 187

Information Systems Research Associates 1986. PAWS Users Guide

Information Systems Research Associates 1985. GPSM Manual

Jang, H. and T.G. Kim 1990 "Performance Modelling of Relational Database
Systems on Multicomputers", Simulation Digest, Vol 21 No 1, pp 29-38, ACM
SIGSIMIIEEE TC SIM

Jankowski P.L. and J.W. Rozenblit 1990 "DEVS-Scheme Simulation of
Stream Water Quality", Simulation Digest, Vol 21 No 1, pp 20-28, ACM
SIGSIMJIEEE TC SIM

Jou C-C and S. Smolka August 1990 "Equivalences, Congruences and
Complete Axiomatisations of Probabilistic Processes" in J.C.M. Baeten and
J.W. Klop Eds. CONCUR '90, Springer LNCS 458, pp 367-383

Kim, T.G. and B.P. Zeigler 1990 "The DEVS Scheme Simulation and
Modelling Environment" in P.A. Fishwick and R.B. Modejeski Eds.
Knowledge Based Simulation: Methodology and Applications, Springer Verlag

Kiteck P. September 1991 "Analysis of Component Interaction in a
Distribution Facility Using Simulation", Proceedings of the First EUROSIM
Congress, Capri, EUROSIM

Kiviat P.J., R. Villanueva and H.M. Markovitz 1968. The Simscript II
Programming Language, Prentice Hall, Eaglewood Cliffs, New Jersey

Kiviat P.J., R. Villanueva and H.M. Markovitz 1983. The Simscript 11.5
Programming Language (edited by A. Mularney), CACI, Los Angeles

Kurose J.F., J.G. Kurtiss, R.F. Gordon, E.A. McNair and P.D. Welch
March 1986. A graphics-oriented modeller's workstation environment for the
RESearch Queueing Package (RESQ), IBM Research Report RC1 1803, IBM
Hawthorne Laboratories, Yorktown Heights, NY 10596

Larsen K. and A. Skou September 1991 "Bisimulation through Probabilistic
testing", Information and Computation, 94(1), pp1-28

Law A.M. and W.D. Kelton 1991 Simulation Modelling and Analysis, 2nd
Ed. McGraw-Hill

Lindemann C. September 1992. "DSPNExpress: a Software Package for the
Efficient Solution of Deterministic and Stochastic Petri Nets", in R. Pooley and
J. Hillston Eds. Computer Performance Evaluation - Modelling Techniques and
Tools, 6th International Conference on Modelling Techniques and Tools for
Computer Performance Evaluation, Edinburgh, Edits 10, Edinburgh University
Press,

Mathewson S.C. December 1974. "Simulation program generators",
Simulation Vol 23 No 6, pp 181-189

Melamed B. and R.J.T. Morris 1985. "Visual Simulation: the Performance
Analysis Workstation", IEEE Computer, Vol 18 No 8, pp 87-94, August 1985

References 	 188

Milner, R. 1990. Communication and Concurrency, Prentice Hall, London.

Mitrani, I. 1982. Simulation Techniques for Discrete Event Systems,
Cambridge Computer Science Texts 14, Cambridge University Press

Moller, F. and C. Tofts. 1989. A Temporal Calculus of Communicating
Systems, Edinburgh University, Department of Computer Science, Report
ECS-LFCS-89- 104.

Moller F. October 1992. The Edinburgh Concurrency Workbench (Version
6. 1), Edinburgh University, Department of Computer Science, LFCS Technical
Note, TN34

Molloy M.K. and P. Riddle April 1986. The stochastic Petrinet analyser
system design tool for bit-mapped workstations, Technical Report, Department
of Computer Science, University of Texas at Austin

Molloy M.K. Sept 1982 "Performance Analysis Using Stochastic Petri Nets",
IEEE Trans. Computers, C-31 9, pp 913-917

Nance R. "The Conical Methodology for Simulation", Technical Report,
Virginia Technical University

Peck S. 1992 "Modelling Discrete-Event Systems Using Co-opting
Processes", in P. Luker Ed. Proceedings of Summer Computer Simulation
Conference, Reno, Nevada, SCS, La Jolla, California

Pegden C.D. 1985 Introduction to SIMAN, Systems Modeling Corp., State
College, Penn.

Pooley R.J. 1979 A Model of the CCITT X.25 Protocol, Level 3, MSc
dissertation, Computer Science, University of Bradford, October 1979

Pooley R.J. August 1984. "You don't have to be big to be beautiful", in
Proceedings of 12th SIMULA Users Conference, Budapest, pp 69-81,
Association of SIMULA Users, Postbox 4403 Torshov, N-0402 Oslo 4,
Norway

Pooley R.J. and G.M. Birtwistle 1986. "Process based modelling of
communications protocols", in S. Schoemaker Ed. Computer Networks and
Simulation III, pp 81-101, North Holland, Amsterdam

Pooley R.J. 25th-26th September 1986. "Graphics and Modelling", in
Proceedings of 2nd Computer and Telecommunications Performance
Engineering Workshop, Department of Computer Science, University of
Edinburgh

Pooley R.J. and G.M. Birtwistle January 1987. "Design of a flexible,
extensible modelling environment", in Proceedings of conference on Computer
Integrated Manufacturing Systems and Robotics, San Diego, pp 14-17, Society
for Computer Simulation, La Jolla, California

References 	 189

Pooley R.J. and M.W. Brown June 1988. "Automated modelling with the
General Attributed (Directed) Graph Editing Tool - GA(D)GET", Proceedings
of the ESM, Nice, pp 410-415

Pooley R.J. September 1987. "Towards a standard for discrete event
simulation diagrams", Proceedings of 15th SIMULA Users Conference, pp
141-152, Simula a.s., Postbox 4403 Torshov, N-0402 Oslo 4, Norway

Pooley R.J. 1987. An Introduction to programming in SIMULA, Blackwells

Pooley R.J. 1991. "The Integrated Modelling Support Environment", in G.
Balbo and G. Serazzi ed. Proceedings of the 6th International Conference on
Techniques and Tools for Computer Performance Prediction, Torino, February
1991, Springer Verlag, pp 1-16.

Pooley, R.J. 1991a. "Towards a Standard for Hierarchical Process Oriented
Discrete Event Simulation Diagrams - Part 1, A Comparison of Existing
Approaches", Transactions of the Society for Computer Simulation, Vol 8 No
1 (March), 1-20.

Pooley, R.J. 1991b. "Towards a Standard for Hierarchical Process Oriented
Discrete Event Simulation Diagrams - Part 2, The Suggested Flat Approach",
Transactions of the Society for Computer Simulation, Vol 8 No 1 (March), 21-
32.

Pooley, R.J. 1991c. "Towards a Standard for Hierarchical Process Oriented
Discrete Event Simulation Diagrams - Part 3, Aggregation and Hierarchical
Modelling", Transactions of the Society for Computer Simulation, Vol 8 No 1
(March), 33-42.

Pooley, R.J. 1991d. Generalised representation, decomposition and
aggregation of process interaction models, IMSE Project Deliverable D4.4-2
Version 1, University of Edinburgh

Pooley R.J. 1993c. "Demographer: A Graphical Tool for Combined
Simulation and Functional Modelling", in R.Pooley and R. Zobel Eds, UKSS
'93: Proceedings of the First Conference of the UK Simulation Society,
September 1993, pp 91-95

Pritsker A.A.B. 1979. Modelling and analysis using Q-GERT Networks,
Systems Publishing Corporation, Lafayette, Indiana

Pritsker A.A.B. 1984. Introduction to simulation and SLAM II, John Wiley
and Sons, New York

Raeder G. August 1985. "A survey of current graphical programming
techniques", IEEE Computer, Vol 18 No 8, pp 11-25

Russell E.C. 1983. Simulation with Processes and Resources in Simscript 11.5,
CACI Inc., Los Angeles

Russell E.C. and J.S. Anino 1983. A Quick Look at Simscript 11.5, CACI
Inc., Los Angeles

References 	 190

Sargent R.G. October 1988 "Event-graph modeling for Simulation with an
Application to Flexible Manufacturing Systems", Management Science 34(10),
pp 1231-1251

Schiffner G. and H. Godbersen May 1986. "Function Nets: A comfortable
tool for simulating database system architectures", Simulation Vol 46 No 5, pp
20 1-2 10

Schriber T.J. 1974. Simulation Using GPSS, Wiley, New York

Schruben L. 1983. "Simulation Modelling with Event Graphs", CACM Vol 26
No 11, November 1983, pp 957-963

Schruben L. 1991 Sigma: A Graphical Simulation System, The Scientific
Press, San Francisco

Sevine S. 1990. "DEVS-CLOS: Implementing DBVS Concepts in Common
Lisp Object System", Simulation Digest, Vol 21 No 1, pp 14-19, ACM
SIGSIMIIEEE TC SIM

Smith C.U. 1990. Performance Engineering of Software Systems, Addison-
Wesley

Som T.K. and R.G. Sargent 1989 "A Formal Development of Event Graphs
as an Aid to Structured and Efficient Simulation of Programs", ORSA Journal
of Computing, i(2), pp 107-125

Standridge, C.R. 1985. "Performing Simulation Projects with The Extended
Simulation System (TESS)", Simulation Vol 45 No 6 (Dec), 283-291.

Stirling C. 1992. Modal and Temporal Logics for Processes, Technical Report
ECS-LFCS-92-221, Laboratory for the Foundations of Computer Science,
Department of Computer Science, University of Edinburgh

Strulo B. 1993. Process Algebra for Discrete Event Simulation, PhD
Dissertation, Imperial College London

Tocher K.D. 1963. The Art of Simulation, The English Universities Press,
London

Tofts, C. 1989. Timing Concurrent Processes, Report ECS-LFCS-89-104,
Edinburgh University, Department of Computer Science.

Tofts C.N.M. December 1992 "Describing Social Insect Behaviour Using
Process Algebra', Transactions of the Society for Computer Simulation, 9(4),
pp 227-283

Tofts C. 1993. Process Semantics for Simulation, Technical Report,
Department of Mathematics and Computer Science, University of Swansea

Torn A.A. 1985 "Simulation nets, a simulation modeling and validation tool",
Simulation Vol 45 No 2, August 1985, pp 71-75

References 	 191

Trivedi K.S.; G. Ciardo and J.G. Muppala 1991. Manual for the SPNP
Package Version 3.0, Duke University, Durham.

Tumay K. 1987 "Manufacturing Simulation with Simfactory", in Proceedings
Of conference on Computer Integrated Manufacturing Systems and Robotics,
San Diego, January 1987 pp 36-38, Society for Computer Simulation, La Jolla,
California

Vaucher J. 1971 "Simulation Data Structures using SIMULA 67", in
Proceedings of the Winter Simulation Conference, pp 255-260

Vaucher J. 1973 "A Generalised Wait-Until Algorithm for General Purpose
Simulation Languages", Proceedings of the Winter Simulation Conference, pp
177-183

M. Veran and D. Potier "QNAP 2: a Portable Environment for Queueing
System Modelling" in D. Potier Ed. Proceedings of Modelling Techniques and
Tools for Computer Performance Evaluation, North Holland, 1985, pp 25-63

Walker D.J. 1987. Introduction to a Calculus of Communicating Systems,
Report ECS-LFCS-87-22, Department of Computer Science, University of
Edinburgh

Williams A.N. 1979 A Model of the CCITT X.25 Protocol, Level 2, MSc
dissertation, Computer Science, University of Bradford, October 1979

Yücesan E. and L. Schruben 1992 "Structural an Behavioural Equivalence of
Simulation Models", ACM Transactions on Modelling and Computer
Simulation, Vol 2 No 1, January 1992, pp 82-103

Zeigler B.P. 1976 Theory of Modeling and Simulation, Wiley, New York

Zeigler B.P. 1984 Multi-facetted Modeling and Discrete Event Simulation,
Academic Press, New York

Zeigler B.P. 1990 Object Oriented Simulation with Hierarchical Modular
Models, Academic Press, New York

Appendix A

Source of Demographer

This Appendix contains the source of the PC version of Demographer used in Cahpter 5
of this dissertation.

DOS graphical editor for DEMOS;

begin
short integer grin;

integer Left = 127, Middle = 26, Right = 31; 	Delete,d,PageDn;

integer Movet = 5, MoveR = 4, MoveU = 28, MoveD = 14; 	Cursor keys;

Node types are defined here as

integer Hold_Sym = 1, Start_Sym = 2, End_Sym = 3, Decision_Sym = 4,
Synch_Sym = 5 Link_Sym = 6, Res_Sym = 7, Mlii le_Sym = 8
Bin_Sym = 9, Store_Sym = 10, Sub_Sym = 11, Max_Sym = Sub_Sym;

Link symbols indicating direction are

integer LR = -1, ML = -2, DU = -3, liD = -4,
RU = -5, RD = -6, LU = -7, LD = -8,
UR = -9, DR "-10, UL 	-ll, DL =-12, Del = -13;

Powers of two used to store current links in Diag table;

integer L_R = -1, R_L = -2, D_U = -4, U_D = -8,
R_U =-16, R_D =-32, L_U =-64, LD =-128,
U_R =-256,D_R =-512,UL=-1024,DL=-2048;

Direction of current move when linking is one of

integer lip=l, Dn=-1, Lf=2, Rt=-2, NW=0;

Colours used are

integer Black = 0, White = 15, Red = 4, Blue = 1, LGrey = 7, Green = 2,
Yellow = 14, LGreen = 10;

Size of grid in squares;

integer XSquares = 25, YSquares = 15;

integer button, x, y, ox, oy, ob, d, CurrSymb, PrevSymb, I, J;
character Current_Char, Prey_Char;
Boolean Exited, No_Move, Linking, First Link;
text String, F_Name;
text array Titles(DL :Max_Sym,1:6);
text array Form(0:XSquares,0:YSquares,1:6,l:2);
integer array Diag(0 :XSquares, 0 :YSquares);
integer array Lnk(Rt:Lf,DL:0);
integer array SynibMap(DL:LR);

ref (InFile) InF;
ref (outfile) OF;

external class drawing = '.. \drawing\drawing';

drawing(16)
begin

This is the prefixed block that does the graphics;

procedure gen;
begin

DEMOS generating backend for graphical input programs;

integer Iden = 1;
integer 	 Sched = 2, Successor = 3, Locals = 4; 	Start node;
integer 	 Amount = 2; 	 Res or Bin;
integer 	 Period = 2; 	 Mold;
integer 	 Condition =2; 	 Condition;

integer Downwards = 1, Upwards = 2, Leftwards = 3, Rightwards = 4;
ref (outfile) model;

Appendix A: Source of Demographer
	

193

text F_Name;

SetColour(LGreen);
FillSquare)260, 0, 85, 500)
J 	TextLine(280);

SetPos)J,1)
OutText)'Name of DEMOS output file);
F_Name 	InText(40) Strip;
model 	new OutFile(F_Name);

inspect model do
begin

procedure OutLine)T,D); text T; integer D;
begin

Print out the text with 0 spaces of indentation and a newline;
OutText(Blanks)D)&T);
Out Image;

end;

text procedure GetNext)T); name T; text T;
begin

text Res;
character Ch;
T 	T.Strip;
if T==NoText then GetNext - NoText else
begin

Res :- Blanks)80);
while T.GetChar=' ' do;
T.SetPos)T.Pos-1)
Ch ;= T.GetChar;
while Ch<>' 	and then T.More do
begin

Res.PutChar)Ch(;
Ch := T.GetChar;

end;
if not TMOre then Res.Putchar)Ch);
T 	T.Sub)T.Pos,T.Length-T.Pos+l);
GetNext 	Res.Strip;

end;
end;

class Global_Item)X,Y,Ident); integer X,Y; text Ident;
begin

ref)Global_Item) Next;
end;

Global _item class Dist_Item(Sort, P1, P2); text Sort, P1, P2;
begin
end;

class Global List;
begin

ref (Global_Item) First;
procedure Into (New_Item); ref (Global_Item) New item;
begin

New _Item.Next 	First;
First 	New Item;

end;
ref)Global_Item) procedure Get;
begin

Get ;- First;
First ;- First.Next;

end;
Boolean procedure Empty; Empty 	First==none;

end;

ref (Global_List) Entity_List, Entity_List2,
Res_List, Res_List2,
Bin List, Bin_List2,
Store List, Store_List2,
Sub List, Sub_List2,
Dist List, Dist_List2;

procedure Read—Table;
begin

integer X, Y, I;
while not Lastltem do
begin

X 	Inlnt; Y 	mInt;
Diag)X,Y) := Inlnt;
Inlmage;
for 	=1 step luntil 6 do
begin

Form)X,Y,I,2) 	Copy)Image.Strip);
Inlmage;

end;
end;

end;

procedure Prologue;
begin

outline) "begin' , 0)

Appendix A. Source of Demographer
	

194

outline('extemal class demos;",3);
outline('DEMOS",3);
outline('begin",3);

end;

procedure Epilogue;
begin

Outlmage;
OutLine("Hold)InReal);",6);
OutLine('end",3);
OutLine('end',O);

end;

procedure Find_Globals;
begin

Locate all entities, Reses, Bins etc.;
integer X, Y;
for X := 0 step 1 until XSquares do

for Y := 0 step 1 until YSquares do
begin

if Diag(X,Y) = Start_Sym then
Entity_List.Into(new Global_Item)X,Y,Form(X,Y,Iden,2))) else

if Diag(X,Y) = Res_Sym then
Res_List.Into)new Global_Item)X,Y,Form(X,Y,Iden,2))) else

if Diag(X,Y) = Bin_Sym then
Bin_List.Into)new Global Item(X,Y,Form)X,Y, Iden,2))) else

if Diag(X,Y) = Store _Sym then
Store_List.Into(new Global_Item)X,Y,Form)X,Y,Iden,2))) else

if Diag(X,Y) = Sub_Sym then
Sub_List.Into(new Global_Item(X,Y,Form(X,Y,Iden,2)));

end;
end;

procedure Build—Entities;
begin

Output the class declarations of the entities;
text T, Dist;
integer Xl,Yl;

procedure Follow(X, Y, Heading); name X, Y;
integer X, Y, Heading;

begin
Follow a link to its end;

switch Coming := Down—W, Up—W, Left—W, Right_H;
integer Link—Type;

Link_Type : -Diag(X,Y);
GoTo Coming)Heading);

Down—W:
if Lin]c_Type//)512*2)*2<>Link_Type//512 then
begin

X := X + 1;
Heading := Rightwards;

end else
if Link_Type//)2048*2)*2<>Link_Type//2048 then
begin

X := X - 1;
Heading := Leftwards;

end else
if Link_Type//)8*2)*2<>Link_Type//8 then
begin

Y := Y + 1;
Heading := Downwards;

end else GoTo Skip;
GoTo Done;

Up-M:
if Link _Type//)256*2)*2<>Link_Type//256 then
begin

X := X + 1;
Heading := Rightwards;

end else
if Link _Type// (1024*2) *2<>LinkType//1o24 then
begin

X := X - 1;
Heading := Leftwards;

end else
if Link _Type//)4*2)*2<>Link_Type//4 then
begin

Y 	Y - 1;
Heading := Upwards;

end else GoTo Skip;
GoTo Done;

Left—W:
if Link_Type//)2*2)*2<>Link_Type//2 then
begin

X = X - 1;
Heading := Leftwards;

end else
if Link _Type//)128*2) *2.<>Linkpype//128 then
begin

Appendix A: Source of Demographer
	

195

Y Y + 1;
Heading := Downwards;

end else
if Link_Type//(64*2)*2<>Link_Type//64 then
begin
YY - 1;
Heading : Upwards;

end else G0T0 Skip;
GoTo Done;

Right-W:
if Link_Typel/(1*2)*2<>Link_Type//l then
begin

X 1= X + 1;
Heading := Rightwards;

end else
if Link..Type//)32*2)*2<>Link_Typel/32 then
begin

Y := Y + 1;
Heading := Downwards;

end else
if Link_Type//(16*2)*2*>Link_Typel/16 then
begin

Y := Y - 1;
Heading 	Upwards;

end else GoTo Skip;
GoTo Done;

Done:
if Diag(X,Y)<O then Follow(X,Y,Heading);

Skip:
end;

procedure Follow_Back(X, Y, Heading); name X, Y;
integer X, Y, Heading;

begin
Follow a link to its origin;

switch Coming := Down-W, Up-W, Left-W, Right-W;
integer Link_Type;

Link-Type := -Diag(X,Y);
GoTo Coming(Heading);

Down-W:
if Link_Type//(64*2)*2,z>Link_Type//64 then
begin

X := X -I- 1;
Heading := Rightwards;

end else
if Link_Type//(16*2)*2<>Link_Type//16 then
begin

X := X - 1;
Heading := Leftwards;

end else
if Link _Type//(4*2)*2<>Link_Type//4 then
begin

Y := Y + 1;
Heading := Downwards;

end else GoTo Skip;
GoTo Done;

Up-W:
if Link _Type/I (128*2) *2<>LjnkType//128 then
begin

X := X + 1;
Heading := Rightwards;

end else
if Link _Type//(32*2)*2<>Link_Typel/32 then
begin

X := X - 1;
Heading := Leftwards;

end else
if Link _Type//(8*2)*2<>Link_Type//8 then
begin

Y := Y - 1;
Heading := Upwards;

end else GoTo Skip;
GoTo Done;

Left-W:
if Link_Type//(1*2)*2nLink_Type//l then
begin

X := X - 1;
Heading 	Leftwards;

end else
if Link _Type// (256*2) 2<>LinkType//2S6 then
begin

Y := Y + 1;
Heading := Downwards;

end else
if Link_Typel/ (512*2) *2<>LinkType//5l2 then
begin

Y := Y - 1;

196 Appendix A. Source of Demographer

Heading 	Upwards;
end else GoTo Skip;
GoTo Done;

Right—W:
if Link_Type//(2*2)*2<>Link_Type//2 then
begin

X 	X + 1;
Heading 	Rightwards;

end else
if Link_Typeu/(1024*2)*2<>Link_Tpe//1024 then
begin

Y := Y + 1;
Heading 	Downwards;

end else
if Link_Type//(2048*2)*2<>Link_Type//2048 then
begin

Y 	Y - 1;
Heading 	Upwards;

end else GoTo Skip;
GoTo Done;

Done
if Diag(X,Y)<O then Follow_Back(X,Y,Heading);

Skip
end;

procedure Next_Sym(X,Y); name X,Y; integer X,Y;
begin

integer OldX OldYW;
Boolean Failed;
if Y<>ll then
begin

OldX 	X; OldY := Y; Y := Y+l;W:Downwards;
if Diag(XY)zO then Follow(X,Y,W);
if X=OldX and Y=OldY+l and X<>24 then 	Went nowhere;
begin

X 	X+l; Y := OldY;W:Rightwards;
if Diag(X,Y) <0 then Follow(X,Y,W);
if X=OldX+l and Y=OldY and OldX<>0 then
	

Still nowhere;
begin

X 	X-2;W:teftwards;
if Diag(X,Y)<0 then Follow(X,Y,W);
if X=OldX-1 and Y=OldY and Y<>0 then
	

Check Upwards;
begin

X OldX; Y 	Y-l;W:Upwards;
if Diag(X,Y)<0 then Follow(X,Y,W)
Failed 	X=OldX and Y=OldY-l;

end;
end;

end;
end;
if Failed then
begin

Y 	Y+l;
if Diag(X,Y+1)>0 then Y 	Y+1 else
if Diag(X+1,Y)>0 then X := X+1 else
if Diag(X-1,Y)>0 then X 	X-1 else
if Diag(XY-1)>0 then Y 	Y-1 else
begin

OutLine(***Missing link from***,1);
Outlnt(X,4) ;OutInt(Y,4) ;Outlmage;

end;
end;

end;

procedure Diagram(Xl,Yl,X,YGoing); name Xl,Yl;
integer Xl,Yl,X,YGoing;

begin
Boolean Ended;
integer OldX, OldY, W;
switch Sym_Action := H_Sym, S_Sym, E_Sym, D_Sym, Sy_Sym, L_Sym, R_Sym,

W_Sym, 5_Sym, St_Sym, Su_Sym;

if Diag(Xl,Yl)<O then Follow(Xl,Yl,Going);

while not Ended do
begin

GoTo Sym_Action(Diag(Xl,Yl));

H_Sym:
OutLine('Hold("&Form(Xl,Yl,Period,2)&);,9);
Next_Sym(Xl,Yl)
GoTo Done;

S_Sym:
GoTo Done;

E_Sym:
Ended True;
GoTo Done;

D_Sym:

Appendix A: Source of Demographer
	

197

if Foriu(Xl,Y1,Iden,2)<>NoText then
OutLine(("&Form(X1,YlIden,2)&";,9);

Outtine(if &Form(Xl,Yl,Condition,2)&" then9);
OutLine) "begin", 9)
OldX := XI; OldY := Yl+l;
Diagram(OldX,OldYXl,Yl,Downwards);
if Diag(Xl+l,Yl)<>O or Diag(Xl-1,Yl(<>O then
begin

OutLine("end else begin",9);
if Diag(Xl+l,Yl)<>O then
begin

Xl 	Xl+l;
H : Rightwards;

end else
begin

Xl : Xl-l;
W := Leftwards;

end;
Diagram(Xl,Yl,Xl,Yl,W);

end;
OutLine(end;',9);
Next_Sym(Xl,Yl);
GoTo Done;

Sy_Sym:
begin

procedure Handle_Drop;
begin

if Form(Xl,Yl,Iden,2)<>Notext then
OutLine)! "&Form(Xl,Yl,Iden,2)&";",9);

if Diag(OldX,OldY)=Res_Sym then
OutLine(Form(OldX, OldY, Iden, 2)&
'Release('&Form(Xl,Yl,Iueount,2)&);,9)

else if Diag(OldXOldY)=Bin_Sym then
OutLine(Form(OldX,OldY, Iden, 2) &
".Give(&Form(Xl,Yl,Zenount,2)&');',9)

else
OutLine (Form)OldX, OldY, Iden, 2) &
".Add(&Form(Xl,Yl,Axnount,2)&');',9);

end;

procedure Handle_Grab;
begin

if Form)Xl,Yl,Iden,2)<>Notext then
OutLine)"! "&Form)Xl,Yl,Iden,2)&";",9);

if Diag(OldX,OldY(=Res_Sym then
OutLine(Form(OldX,OldY, Iden,2)&

'.Acquire)'&Form(Xl,Yl,Amount,2(&"(;',9)
else if Diag(OldX,OldY(= Bin _Sym then

OutLine (Form)OldX, OldY, Iden, 2) &
".Take)"&Form(Xl,Yl,Amount,2)&');',9(

else
OutLine (Form)OldX, OldY, Iden, 2) &

".Remove('&Form(Xl,Yl,lanount,2)&');",9);
end;

if Diag(Xl-1,Yl('zO then
begin

OldX "'Xl-1 ; OldY: 'Yl ;W: =Lef twards;
Follow(OldX,OldY,W(;
if OldX<>Xl-1 or OldY<>Yl then Handle_Drop else
begin

Follow _Back(OldX, OldY,W)
if OldX'z>Xl-1 or OldY<>Yl then Handle Grab;

end;
end;
if Diag(Xl+l,Yl(<O then
begin

OldX: =X14-1 ;OldY: =Yl ;W:Rightwards;
Follow(OldX,OldY,Rightwards);
if OldX<>Xl+l or OldY<>Yl then Handle_Drop else
begin

Follow _Back(OldX, OldY,Rightwards);
if OldX<>Xl+l or DldY<>Yl then Handle Grab

end;
end;
Yl ""Yl+l;
if Diag)Xl,Yl(<O then Next_Sym(Xl,Yl(;

end;
GoTo Done;

L_Sym
Ended := True;
GoTo Done;

R_Sym
GoTo Done;

W_Sym:
if Form(Xl,Yl,Iden,2)<>NoText then

OutLine)"! "&Form)Xl,Yl,Iden,2)&";",9);
OutLine)'while "&Form)Xl,Yl,Condition,2)&" do",9);
OutLine)'begin', 9);

Appendix A: Source of Demographer

Yl 	Yl+l;
Diagram(XlYlXl,Yl,Downwards);
Outtine(end;",9);
Next_Sym(Xl,Yl(;
GoTo Done;

B._Sym:
GoTo Done;

St_Sym;
Go To Done;

Su_Synu 	Go To Done;

Done;
end;

end;

inspect Sub_List do
begin

while not empty do inspect first do
begin

OutLine(%include &Ident.Strip& .sim", 6);
Sub_List2 . Into(Get);

end;
end;

inspect Entity_List do
begin

while not empty do inspect first do
begin

integer Count;
Outlmage;
OutLine)entity class &Ident.Strip&_C; 6);
OutLine('begin 6);
for Count 	0 step 1 until 2 do
begin

T ;- Form(X,Y,Locals+Count,2) .Strip;
if T<>NoText then OutLine(&T,9);

end;
T ;- Form(X,Y,Successor,2) Strip;
if T<>NoText then
begin

Dist 	copy(Ident&'_A);
OutLine)new '&Ident&_C (&Ident&

.Schedule(&Dist&.Sample);,9);
Dist_List.Into(new Dist_Item(X,YDist,

GetNext(T) GetNext(T) ,GetNext(T)fl;
end;

Process the activity diagram;

Allow for several heads;
XI := X; Yl := Y;
while Diag(XlYl+l)=Start_Sym do Yl 	Yl+l;
Yl := Yl + 1;

This does the real work and is used recursively for nested branches;

Diagram(Xl,Yl,X,Y,Downwards);

OutLine(end-of-&First.Ident&;,6);
Out Image;
Entity_List2 .Into)Get)

end;
end;

end;

procedure Print_Decls;
begin

inspect Entity_List2 do while not Empty do
begin

OutLine)ref(&First.Ident&_C) &First.Ident&; 6);
Entity_List. Into (Get);

end;
inspect Sub_List2 do while not Empty do
begin

OutLine(ref(&First.Ident&_C) "&First.Ident&; 6);
Sub_List. Into (Get);

end;
inspect Res—List do while not Empty do
begin

OutLine) ref (Res) &First . Ident&'; 6);
Res _List2 . Into(Get(

end;
inspect Bin List do while not Empty do
begin

OutLine(ref(Bin) &First.Ident&; ,6(;
Bin _List2 . Into (Get);

end;
inspect Store_List do while not Empty do
begin

OutLine(ref(Store(&First.Ident&';,6(;

Appendix A: Source of Demographer
	

199

Store _List2 .Into(Get)
end;
inspect Dist List do while not Empty do
inspect First when Dist—Item do
begin

OutLine)"ref)"&Sort&") "&Ident&";",6);
Dist_List2 Into (Get)

end;
end;

procedure Print News;
begin

Print Out the object generation statements;
inspect Entity—List do while not Empty do
begin

	

OutLine)First.Ident&" 	new "&First.Ident&"_c)"""
&First.Ident&"""

Entity_List2 Into (Get)
end;
inspect Res_List2 do while not Empty do
begin

inspect First do
OutLine)Ident&" 	new Res ("""

&Ident&""" "&Form)X,Y,I'aiount,2)&");",6);
Res _List . Into (Get);

end;
inspect Bin_List2 do while not Empty do
begin

inspect First do
OutLine(Ident&" 	new Bin)""'

&Ident&""", "&Form)X,Y,Amount,2)&") ; ", 6);
Bin _List. Into (Get);

end;
inspect Store_List2 do while not Empty do
begin

inspect First do
OutLine)Ident&" :- new Store)"'"

&Ident&""", "&Form(X,Y,Amount,2)&") ; ", 6);
Store_List. Into (Get);

end;
inspect Dist_List2 do while not Empty do
begin

inspect First when Dist—Item do
begin

OutText)" 	"&Ident&" :- new "&Sort&")"""
&Ident&""",

if P2c>NoText then OutText(","&P2);
OutLine(");",O(;

end;
Gist_List. Into (Get)

end;
end;

procedure Print Schedules;
begin

Schedule the initial entities;
inspect Entity_List2 do while not Empty do
begin

inspect First do
OutLine)Ident&".Schedule)"&Form)X,Y,Sched,2(&");",6);

Entity_List. Into (Get)
end;
inspect Sub_List2 do while not Empty do
begin

inspect First do
Outtine(Ident&".Schedule)"&Forrn)X,Y,Sched,2)&");",6);

Sub _List.Into (Get);
end;

end;

Open(Blanks)80))
Entity—List 	new Global_List;
Entity_List2 :- new Global_List;
Sub List :- new Global_List;
Sub_List2 	new Global_List;
Res—List 	new Global_List;
Res_List2 	new Global_List;

Bin _List 	new Global_List;
Bin _List2 	new Global_List;
Store_ List 	new Global_List;
Store _List2 	new Global_List;
Dist—List 	new Global_List;
Dist_List2 	new Global_List;

Prologue;
Find _Globals;
Build_ Entities;
Print _Dads;
Print _News;
Print _Schedules;
Epilogue;
Close;

end+inspect+model;

Appendix A: Source of Demographer
	 we

end-procedure--Gen;

procedure Read_Diag(F); ref (InFile) F;
begin

integer X, Y, I;
inspect F do
while not Lastltexn do
begin

X:= mInt; Y 	mInt;
Diag(X,Y) 	mInt;
Inlmage;
for I := 1 step 1 until S do
begin

Form(X,Y,I,2) ;- Copy(Image.Strip);
Inlmage;

end;
end;

end;

procedure Draw_Diag;
begin

integer X,Y;
for X := 0 step 1 until XSquares-1 do

for Y 	0 step 1 until 11 do
begin

Display_Square(Diag(X,Y) Y*20 ,X*20, Y*20,X*20);
SetColour(White);
DrawSquare(Y*20±15,X*20,20,20)

end;
end;

Define the basic symbols for the diagrams;

procedure Print_Sym(Syrnbol,Y,X,Colour); integer Symbol, Y, X, Colour;
begin

switch PSYM 	HoldSym, StartSym, EndSym, DecisionSym, SynchSym, LinkSym,
ResSym, Whi leSym, BinSym, StoreSym SubSym,

LRLink, RLLink, DtJLink, tjDLink, RULink, RDLink,
LULink, LDLink, URLInk, DRLInk, ULLink, DLLink;

integer Old-Colour;
if Symbol<> 0 and then Symbol>= DL and then Symbol<=Max_Sym then
begin

if Symbol<0 then Symbol ;= Max _Sym - Symbol;
Old _Colour 	SetColour(Colour)
GoTo PSYM(Symbol(;

HoidSym: DrawSquare(Y+17,X+2,16,16)
goto Done;

StartSym; DrawLine(Y+21,X+3,0,14);
Draw5ector(Y+21,X+10,7, 500, 500, 0);
goto Done;

RndSym: 	DrawLine(Y+29,X+5,0,14);
DrawSector(Y+29,X+10,7,0,500,0);
goto Done;

DecisionSym: Drawtine(Y+18,X+10,7,-8);
Drawtine(Y+18,X+10,7,8);
DrawLine(Y+25,X+2,7,8);
DrawLine(Y+25,X+18,7,-8);
goto Done;

SynchSym: DrawLine)Y+25,X+3,0,14);
Drawtine)Y+15,X+10, 20, 0)
DrawCircle)Y+25,X+10,3);
goto Done;

LinkSym; DrawLine(Yi-25,X+3,0,14);
Orawtine)Y+15,X+10,20,0)
goto Done;

ResSym: DrawCircle)Y+25,X+10,7);
goto Done;

WhileSym; DrawSector)Y+25,X+10,7,750,750,0);
SetColour(if X>480 then Green else LGreen);
DrawLine)Y+25,X+3, 0,7);
DrawLine(Y+25,X+10,7,0);
SetColour(Colour);
DrawLine)Y+32,X+10,3,3);
DrawLine(Y+32, X+10, -3,3);
goto Done;

SinSym: DrawLine(Y+18,X+3,15,3);
DrawLine)Y+18 , X+17,l5, -3);
DrawLine)Y+33,X+6,0,8);
goto Done;

StoreSym: DrawSquare)Y+19,X+4,16,12);
DrawLine)Y+23,X+4,0,12);
DrawLine(Y+27,X+4, 0,12);

Appendix A: Source of Demographer
	

201

DrawLine(Y+32,X+4,0,12);
goto Done;

SubSym: 	DrawSquare(Y+23,X+6,8,8);
goto Done;

LRLink: 	DrawLine(Y+25,X,0,20);
DrawLine(Y+21,X+16, 4,4);
GoTo Done;

RLLink: DrawLine(Y+25,X,0,20);
DrawLine)Y+29,X+4,-4,-4);
goto Done;

DtiLink: DrawLine)Y+15,X+10,20,0);
DrawLine)Y+18,X+13, -3, -3);
goto Done;

UDLink: DrawLine)Y+15,X+10,20,0);
DrawLine)Y+32,X+7,3,3);
goto Done;

RULink: DrawSector(Y-'-15,X,10,750,250,0);
goto Done2;

RDLink: 	DrawSector(Y+35,X,10,0,250,0);
goto Done2;

LULink: 	DrawSector)Y*15,X+20,10,500,250,0);
goto Done2;

LDLink: 	DrawSector)Y+35,X+20,10,250,250,0);
goto Done2;

JJRLink: 	DrawSector)Y-1-35,X+20,10,250,250,0);
goto Done2;

DRLink: 	DrawSector(Y+15,X+20,10,500,250,0);
goto Done2;

ULLink: DrawSector(Y+35,X,10,0,250,0);
goto Done2;

DLLink: 	DrawSector(Y+15,X, 10,750, 250,0);
goto Done2;

Done2: 	SetColour)White);
DrawSquare) Y+ 15 , X, 20, 20)

Done: 	SetColour(Old_Colour);
end;

end-Print_Sym;

procedure Set Forms;
begin

Titles)Hold_Sym,1) :- "Reason:
Titles(Hold_Sym,2) :- "Delay:

Titles (Start_Sym, 1) :- "Name:
Titles(Start_Sym,2) :- "Scheduling:
Titles(Start_Sym,3) :- "Successor:
Titles)Start_Sym,4) :- "Locals:
Titles(Start_Sym,5) :- "Locals:
Titles(Start_Sym,6) :- "Locals:

Titles(Res_Sym,l) :- "Name:
Titles)Res_Sym,2) :- "Amount:

Titles(Decision_Sym,l) :- "Reason:
Titles(Decision_Sym,2) :- "Condition:

Titles)Synch_Sym,l) :- "Notes:
Titles(Synch_Sym,2) :- "Amount:

Titles(While_Sym,l) :- "Reason:
Titles(While_Sym,2) :- "Condition:

Titles)Bin_Sym, 1) :-)"Name:
Titles(Hin_Sym, 2) :-)"Amount:

Titles(Store_Sym,1) :- "Name:
Titles)Store_Sym,2) :- "Amount:

Titles)Sub_Sym,l) :- "Name:
Titles(Sub_Sym,2) :- "Source file:
Titles)Start_Sym,3) - "Parameters:

end;

procedure Draw_Button(Y,Colour,Action);
integer Y,Colour; text Action;

begin

Appendix A: Source of Demographer
	

202

SetColour)Colour);
FillSquare)Y, 575, 55, 55)
Setpos(TextLine)Y+35) ,TextPos(580));
OutText (Action);

end;

procedure Display_Square(Symbol,NewY,NewX,OldY,OldX);
integer Symbol, NewY,NewX,OldY,OldX;

begin
integer D, 5;

if OldX<500 then
begin 	; Started on the canvas;

SetColour (LGreen);
if not No—Move then
begin 	 Restore the square moved from;

S 	Diag(OldX//20,OldY//20);
FillSquare(OldY+15,OldX, 20, 20)
if S<>0 then
begin

if S>0 then Frint_Sym)S,OldY,OldX,Blue) else
begin

D 	-1; S : -5;
while S<>0 do
begin

if ((S//2)*2)<>S then Print_Sym)D,OldY,OldX,Blue(;
S 	S//2;
D 	D - 1;

end;
end;

end;
end else FillSquare(NewY+15,NewX,20,20);
SetColour)White);
DrawSquare)OldY+15,OldX,20,20);
if NewX<500 then
begin

if Symbol>0 then Print_Sym)Symbol,NewY,NewX,Blue(else
begin

D := -1; Symbol 	-Symbol;
while Symbol<>0 do
begin

if)(Sylsbol//2)*2)<>Symbol then Print_Sym(D,NewY,NewX,Blue);
Symbol 	Symbol//2;
D 	D - 1;

end;
end;

end;
end else
if)OldX>=500 and then OldX<560) then
begin 	 Started on the menu area;

if OldY>=40 then
begin

SetColour)White);
DrawSquare(OldY+15,OldX,20,20(;

end;
if NewX<560 then

begin 	 Moved to the canvas or menu area;
SetColour)Red);
DrawSquare(NewY+15,NewX,20,20);

end else
begin 	; Movedto the button area;

if NewY<120 then Draw_Button)55,Red, 'Exit')
else Draw_Button)120,Red, 'Generate');

end
end else
begin 	 ; Started on the button area;

if OldY<120 then Draw _Button)55,Green, 'Exit')
else Draw_Button)120,Green, "Generate");

if NewX<560 then
begin 	 Moved to the menu area;

SetColour)Red);
DrawSquare)NewY-f15,NewX, 20,20);

end else
begin 	Movedto the button area;

if NewY<120 then Draw _Hutton)55,Red, 'Exit')
else Draw _Button)120,Red, "Generate");

end
end;

end;

procedure Draw_Link(OldY,OldX,NewY,NewX,PrevSymb(;
name PrevSymb; integer OldY,OldX,NewY,NewX, FrevSymb;

begin
Draw a link from one square to another. Must be adjacent;

integer NewDirection;
NewOirection OldYNewY+2*)OldXNewX);
PrevSymb 	Lnk)NewDirection//20,PrevSymb);
if First Link then
begin

First Link 	False;
Display_Square)Diag)OldX//20,OldY//20(,OldY,OldX,OldY,OldX(;
SetColour)OJhite);
DrawSguare)OldY+15,OldX,20,20)

Appendix A: Source of Demographer 	 203

end;
Diag)OldX//20,OldY//20) 	Diag(OldX//20,OldY//20) + SymbMap)PrevSymb);
Print_Sym)PrevSymb,OldY,OldX, Blue);

end;

Initialise the links table;

Lnk)tip,0) :=DU; Lnk)Dn,0) :=UD; Lnk)Lf,0) :=RL; Lnk)Rt,0) :=LR; Lnk)NW,0) =0;
Lnk(tip,LR):=RtJ; Lnk)Dn,LR):RD; Lnk)Lf,LR):*Del;Lnk)Rt,LR)LR; Lnk)NW,LR):0;
Lnk)Up,RL):=LU; Lnk(Dn,RL):=LD; Lnk)Lf,RL):*RL; Lnk)Et,RL):=Del;Lnk)NW,RL):=0;
Lnk(tip,DU):=DU; Lnk(Dn,DU):Del;Lnk(Lf,DU):=tJL; Lnk(Rt,DU):UR; Lnk)NW,DU);"O;
Lnk)Up,UD):=Del;Lnk(Dn,tJD);=tJD; Lnk)Lf,UD):*DL; Lnk(Rt,UD):DR; Lnk)NW,tJD):=0;
Lnk(Up,RtJ):=DU; Lnk(Dn,RU):=De1;Lnk)Lf,RU):=UL; Lnk(Rt,RU):UR; Lnk)NW,RtJ)0;
Lnk)Up,RD):=Del;Lnk)Dn,RD):=tJD; Lnk)Lf,RD):*DL; Lnk(Rt,RD)DR; Lnk)NW,RD):=0;
Lnk)tJp,LU):=DU; Lnk)Dn,LtJ):=Del;Lnk(Lf,LU):=UL; Lnk)Rt,LU):=UR; Lnk)NW,L,tJ):*0;
Lk)Up,LD):=Del;Lnk(Dn,LD):=UD; Lnk)Lf,LD):=DL; Lnk(Rt,LD):DR; Lnk)NW,LD):'0;
Lnk)Up,tJR):=RU; Lnk)Dn,UR):=RD; Lnk)Lf,JR):=Del;Lnk(Rt,UR):=LR; Lnk)NW,UR):=0;
Lnk)Up,DR):=RtJ; Lnk(Dn,DR):=RD; Lnk)Lf,DR):=Del;Lnk)Rt,DR):=LR; Lnk)NW,DR):=0;
Lnk)tJp,UL)=W; Lnk)Dn,tJL):*LD; Lnk)Lf,UL);RL; Lnk)Rt,tJL)=Del;Lnk)NW,UL):=0;
Lnk)Up,DL)=LU; Lnk)Dn,DL):=LD; Lnk)Lf,DL):=RL; L,nk)Rt,DL):Del;Lnk)NW,DL):=0;

Create a map from symbols to stored symbols;

SymbMap)LR):=L_R; SymbMap)RL):=R_L; SymbMap)DtJ):=D_tJ; SymbMap)1JD):U_D;
SymbMap(RtJ):=R_U; SymbMap(RD):=R_D; SymbMap)LU):=L_U; SymbMap)LD):=L_D;
SymbMap(UP)=TJ_R; SymbMap)DR):=D_R; SymbMap)UL):=D_L; SymbMap(DL):=D_L;

Create the main canvas window;

Set_Forms;
SetColour)LGreen);
FillSquare)0,0,255,500); SetPos)1,TextPos)100));
OutText("Demos graphical input);

Create the menu window;

SetColour)Green);
FillSquare)0, 500, 255, 60)
SetPos)l,TextPos)515)
OutText)'Menu');

Add the symbols to the menu window;

for I ;= Hold _Sym step 1 until Store _Sym do
Print_Sym)I, 1*20+20, 500,Yellow)

Add the links to the menu window;

Print_Sym)LR, 20+20, 520,Yellow)

Add sub-models to the menu window;

Print_Sym)Sub_Sym, 40+20, 520,Yellow)

SetColour(White);
for I = 55 step 20 until 255 do Drawline)I,500,0,60);
Drawtine)0, 500,255, 0)
DrawLine) 55, 520, 200, 0)
DrawLine)55,540,200,0)
DrawLine)0, 560,255, 0)

Set up the control panel;

SetPos(l,TextPos)570));
OutText) "Controls");

Draw _Button(55,Green,"Exit"); 	Make the Exit button;
Draw B_utton)l20,Green, "Generate"); 	Make the Generate button;

Draw the grid;

SetColour(White);
for I 	0 step 20 until 500 do DrawLine)15,I,240,0);
for I := 15 step 20 until 255 do DrawLine)I, 0, 0, 500);

Check for a file to load;

SetPos)TextPos)280) 1)
OutText)"Give input file name)Type 'Cr' for no)");
F_Name :- InText)40);
if F_Name <> NoText then
begin

InF :- new InFile)F_Name);
InF.Open(Blanks)80))
Read_Diag)InF);
No Move 	True;
Draw_Diag;
No_Move = False;

end;

X 	500; Y := 40;
SetColour)Red);
DrawSquare)Y+15,X,20,20);

Appendix A. Source of Demographer
	

204

CurrSymb 	Hold_Sym;
Linking 	False;

The main input loop;

while not Exited do
begin

First check for cursor key presses;
Current—Char 	Inchar;
if Current_Char= 1 then Exited=Txi.ie else
if Current_Char=Char(MoveR) then Move right;
begin

X := if X<540 then X + 20 else 580;
if Linking then Draw _Link(Y,X-20Y,X, PrevSymb)

else Display_Square(CurrSymb,Y,XY,if X=580 then 540 else X-20);
No_Move := False;

end else
if Current_Char=Char(MoveL) then Move left;
begin

X 	if X>540 then 540 else if X>20 then X-20 else 0;
if Linking then Draw_Link(YX+20,Y,X,PrevSyTtth)

else Display_Square(CurrSymb,Y,XY,X+20);
No_Move False;

end else
if Current_Char=Char(MoveD) then Move down;
begin

Y := if Y<200 then Y+20 else 220;
if Linking then Draw_Link)Y-20X,Y,XPrevSymb)

else Display_Square(CurrSymbY,X,Y-20,X)
No_Move False;

end else
if Current_Char=Char(MoveIJ) then Move up;
begin

if X>=500 then Y 	if Y>60 then Y-20 else 40

	

else Y 	if Y>20 then Y-20 else 0;
if Linking then Draw_Link(Y+20,XY,XPrevSymb)

else Display_Square(CurrSymb,Y,X,Y+20,X);
No_Move False;

end else
if Current_Char=char(Left) then Change the current symbol or insert it;
begin

if X>500 and then X<560 and then Y<240 then
begin

if X<520 then
begin

CurrSymb 	Y//20 - 1
end else if Y>40 then CurrSymb 	Sub_Sym else
begin

CurrSymb 	-Y//20 + 1;
Linking 	False;

end
end else

Add or delete a symbol;

if Y<240 and then X<500 then 	Set the symbol at the current position;
begin

if CurrSymb<0 then
begin

Linking 	not Linking;
First_Link Linking;
PrevSyinb 	0;

end else
begin

SetColour (Black)
Diag(X//20, '1/120) := CurrSymb;
Display_Sojiare)CurrSymb,Y,X,Y,X);

No_Move := True;
end

end else

Control panel button pressed;
if X>=560 then) Quit;
begin

if Y<120 then Exited 	True else Den;
end

end else
if Current_Char=Char)Middle) then 	Delete current symbol;
begin

if X<500 and then Y<240 then
begin

Diag)X//20, '11/20) 	0;
SetColour)LGreen);

FillSquare)Y--15,X,20,20)
SetColour)Red);
DrawSquare)Y+15,X,20,20)
Print_Sym)CurrSymb, Y, X, Blue);

end
end else
if current_char=Char(Right) then 	; Enter form attributes;
begin

SetColour(LGreen);

Appendix A: Source of Demographer
	

205

FillSquare(260,0,85, 500);
J 	Texttine(280);
if Diag(X//20Y//20)<>0 then for I 	0 step 1 until 5 do
begin

if Titles(Diag(X//20,Y//20),I+l)=/= notext then
begin

SetPos(J+I,l)
Form)X//20,Y//20,I+1,1) 	Titles(Diag(X//20Y//20)Ii-1);
OutText(Titles(Diag(X//20,Y//20),I+1));
SetPos(J+I,20)
OutText)Form(X//20,Y//20,I+12)&" ')
String 	InText(40) Strip;
if String<>NoText then Form(X//20,Y//20,I+1,2) 	String;

end;
end;

end;
ox := x; oy 	y; ob 	Button; Prey_Char 	Current_Char;

end;

end;

Write out the matrix;
OutText(Which file for saving the model?); BreakOutlmage;
Inlmage;
F_Name 	copy)Sysln.Image.Strip);
if F_Name<>NoText then OF - new OutFile (F_Name);
inspect OF do
begin

Open(blanks(80)
for I 	0 step 1 until YSquares do
begin

for J := 0 step 1 until XSquares do if Diag)j,i) ne 0 then
begin

outint)j,8) ;outint)i,8)
outint)Diag)j,i),14) ; outimage;
for d 	1 step 1 until 6 do
begin

outtext)Form)j,i,d2))
outimage

end; 	of one form;
outimage;

end; 	of one symbol;
outimage;

end; 	of the grid;
Close;

end;
if Inf=/=None then InF.Close;

end

Appendix B

Demos Models and Traces

This Appendix contains the DEMOS source and, where appropriate, output of some
of the models used in Chapters 3, 4, 5 and 6 of this dissertation.

Appendix B: DEMOS models and traces
	

207

Chapter 3

Figure 3.4

Entity class Seq;
begin

Harnrner.Acquire(l);
Hold (3
Harnmer.Release(l);

end;

Figure 3.5

Entity class Seq;
begin

while True do
begin

Hammer.Acquire(l);
Hold (3
Harniner.Release(l);

end;
end;

Figure 3.6

Entity class Seq;
begin

integer Val;
Val := 4;
while True do
begin

Val := Val + 2;
Hold (3
Val 	Val * 2;

end;
end;

Figure 3.7

Entity class Seq;
begin

integer Val;
Val := 4;
while True do
begin

Val := Val + 2;
Hold(3)
if Val<lO then Val := Val * 2 else Val := 4;

end;
end;

Appendix B: DEMOS models and traces

Figure 3.8

Entity class Seq;
begin

integer Val;
Val := 4;
while Val<10 do
begin

Val := Val + 2;
Hold (3

end;
end;

Figure 3.9

Entity class Station;
begin

while True do
begin

new Packet.Schedule(3.0);
Hold(2.0)

end;
end;

Entity class Packet;
begin
end;

Figure 3.10

Entity class Station;
begin

while True do
begin

Pl.Schedule(3 .0);
Hold(2.0)

end;
end;

Entity class Packet;
begin

Pass ivate;
end;

ref (Packet) P1;
P1:- new Packet(P1);

Appendix B: DEMOS models and traces 	 209

Figure 3.11

entity class Ship—C;
begin

new Ship.Schedule(4);
grab 2 tugs;

Tugs .Acquire (2)
and a jetty;

Jetties.Acquire(l);
Hold (3
let the tugs go;

Tugs . Release (2)
Hold(l0)
ready to leave;

Tugs.Acquire(l);
Hold (3
clear of jetty;

Jetties.Release(l);
gone away;

Tugs.Release(l);
end-of-Ship;

ref(Res) Jetties, Tugs;

Ship :- new Ship_c("Ship);
Tugs :- new Res("Tugs", 3);
Jetties :- new Res("Jetties", 2);

Figure 3.13

Entity class Producer;
begin

while True do
begin

Hold (Make_Time)
Wid.Give(l);

end;
end;

Entity class Consumer;
begin

while True do
begin

Wid.Take(l);
Hold (Finish_Time)

end;
end;

ref(Bin) Wid;

Wid :- new Bin("Widgets',O)

Appendix B: DEMOS models and traces 	 210

Figure 3.15

Entity class Producer;
begin

Hold (Make_Time)
Widgets.Add(l);
repeat;

end;

Entity class Consumer;
begin

Widgets . Remove (1)
Hold (Finish_Time)
repeat;

end;

ref (Store) Widgets;

Widgets :- new Store(hlWidgetshl 4 0)

Figure 3.17

Entity class Car;
begin

new Car('Car") .Schedule(ArrivalTime);
Hold(TripTimel);
FerryQueue . Wait;

end;

Entity class Ferry;
begin

ref(Car) Cargo;
while True do
begin

Cargo :- FerryQueue.Coopt;
Hold (VoyageTimel);
Cargo . Schedule (0)
Hold (VoyageTime2);

end;
end;

ref (WaitQ) FerryQueue;

FerryQueue:- new WaitQ('Ferries")

Appendix B. DEMOS models and traces
	

211

Figure 3.19

Entity class Waiter;
begin

CQ.Waituntil (Val>3);
end;

Entity class Signaller;
begin

while True do
begin

Val := Val + 1;
CQ. Signal;

end;
end;

integer Val;

ref (CondQ) CQ;
CQ :- new CondQ("CQ");
Figure 3.22
Entity class Interrupted;
begin

Hold(TDo);
if Interrupt=3 then new

Interrupted("Ited") .Schedule(0);
end;

Entity class Interrupter;
begin

Ited.Interrupt(3);
end;

Ited :- new Interrupted("Ited");
Iter :- new Interrupter("Iter");

Appendix B: DEMOS models and traces 	 212

Figure 3.24

EXTERNAL class DEMOS;
DEMOS class E_DEMOS;
begin

Entity class Philosopher(R±ght_Fork, Left_Fork, T_Feed, T_Think);
ref(Res) Right_Fork, Left_Fork; REAL T_Feed,T_Think;

begin
while True do
begin

Right_Fork. acquire (1);
Hold.(O.2)
Left_Fork. acquire (1);
Hold(T_Feed);
Right_Fork . release (1)
Left_Fork. release (1);
Hold(T_Think);

end;
end of Philosopher;

end of E_DEMOS;

begin
EXTERNAL class E_DEMOS;
E_DEMOS
begin

ref(Res) Forkl, Fork2, Fork3;
real I_T_Feed, I_T_Think;

I_T_Feed 	InReal; I_T_Think := InReal;

Forkl :- new Res("Fork',l);
Fork2 :- new Res(Fork" ,l);
Fork3 :- new Res(Fork',l)

new Philosopher("P" , Forkl, Fork2, I_T_Feed, I_T_Think) .Schedule(0);
new Philosopher(P , Fork2 , Fork3, I_T_Feed, I_T_Think) . Schedule(0);
new Philosopher(P , Fork3, Forkl, I_T_Feed, I_T_Think) . Schedule(0);

Hold(lOO.0)
end;

end

Appendix B: DEMOS models and traces
	

213

Figure 3.26

begin
external class demos;
DEMOS
begin

entity class Ship_C;
begin

new Ship.Schedule(4);
grab 2 tugs;

Tugs.Acquire(2);
and a jetty;

Jetties.Acquire(l);
Hold (3
let the tugs go;

Tugs . Release (2)
Hold (10)
ready to leave;

Tugs.Acquire(l);
Hold (3

clear of jetty;
Jetties.Release(l);
gone away;

Tugs . Release (1)
end-of-Ship;

ref(Ship_C) Ship;
ref(Res) Jetties;
ref(Res) Tugs;
Ship :- new Ship_c("Ship");
Tugs :- new Res("Tugs", 3);
Jetties :- new Res('Jetties", 2);
Ship.Schedule(0 .0);

Hold(l00)
end

end

Appendix B: DEMOS models and traces
	

214

Chapter 4

Appendix B: DEMOS models and traces
	

215

Chapter 5

Figure 4.1

begin
external class demos;
DEMOS
begin

entity class ShipC;
begin

new Ship.Schedule(4);
grab a jetty;

Jetties.Acquire(l);
grab 2 tugs;

Tugs.Acquire(2);
Hold (3
let the tugs go;

Tugs.Release(2);
Hold(l0)
ready to leave;

Tugs.Acguire(l);
Hold (3
clear of jetty;

Jetties . Release (1)
gone away;

Tugs.Release(l);
end-of-Ship;

ref(Ship_C) Ship;
ref(Res) Jetties;
ref(Res) Tugs;
Ship :- new Ship_c(Ship);
Tugs 	new Res(Tugs", 3);
Jetties :- new Res("Jetties", 2);
Ship.Schedule(0 .0);

Hold(l00)
end

end

Appendix B: DEMOS models and traces 	 216

Figure 4.8

begin
external class DEMOS;
DEMOS
begin

Entity class Host_c(PQ); ref (WaitQ) PQ;
begin

ref(File_c) Fl;
new File _c.Into(PQ);
while True do
begin

Fl :- PQ.coopt;
while Printer.Avail=0 do Hold(0.01);
Printer.Acquire(l);
Hold (4 0)
Printer - Release (1);
Hold(l.0)

end;
end;

Entity class File_c(PQ); ref(WaitQ) PQ;
begin

new File_c('File') .Schedule(2.0);
PQ.Wait;

end;

ref(Res) Printer;

Printer :- new Res("Printer" ,l)

for I 	1 step 1 until mInt do
new Host_c ("Host", new WaitQ) . Schedule (0.0);

Hold(InReal);
end;

end

Appendix B: DEMOS models and traces 	 217

Figure 4.9

external class DEMOS;
DEMOS
begin

character Ch;
Boolean Refresh,

TraceOn,
ReportOn,
Contention;

integer I,
Small, Medlum,
Threhold,
NumberofXmit;

ref (Count) NumberofAttempt,
NumofContention,
NumberofFailures,
NumberofSuccess;

long real SimTime
Arrivaload,
RefreshTime,
BackOffScale;

ref(WaitQ) EtherQ; !For transmitter waiting for ether to clear;
ref(CondQ) Packet6;
ref(Channel) Ether;

Reporting and tracing;

procedure Tracelmage(T,N); text T; real N;
begin
if TraceOn then

begin
OutText(T);
OutFix(N, 2, 12);
Out Image;

end
end. .of. .Tracelmage;

Grocedure ReportEvent(Mess, Num); text Mess; integer Num;
begin
if TraceOn then

OutText('Time ");OutFix(Time,2,10); OutText(');
OutText(Mess); if Num>O then OutText(, b XMitter);
Outlnt (Abs (Num) , 12);
Out Image;
end. .of. .ReportEvent;

Ethernet itself - state variables etc.

entity class Channel;
begin
long real LastTime;
Boolean Busy;

Loop:
Cancel;
Numberofxmits := 0;

Appendix B: DEMOS models and traces

Allow them to try;
while EtherQ.Length>O do EtherQ.Coopt . Schedule(O.0);

Hold(O.0); 	 Go to back of event list;
Contention := NurnberofXmits>l;
if Contention then
begin

reportEvent (Contention level , -NurnberofXMits);
NumofContentions . Update (1);

end;
end. .of. .Channel;

entity class Transmitter(InQ,N); ref(Queue) InQ; integer N;
begin
ref(Packet) Pkt;
ref(IDist) Dell De12;
integer NTries ,Mask;
Dell :- new Randlnt(Edit(Delay,N) ,l,255)

Loop:
if InQ.Length=O then PacketQ.WaitUntil(InQ.Length>O);

Loop2:
if Ether.Busy then EtherQ.Wait;
NumberofAttempts . Update (1);
NumberofXmits :- NumberofXmits + 1; 	Attempts at this

time;
Ether.Busy := True;
Hold (1. 8)
if Contention then
begin

if NTries<16 then
begin
inspect Ether do
begin

Busy := False
if Idle then Schedule(O.0);

end;
Mask := Mask*2 + 1 	Right shifted, one filled;
Hold (mod(Dell.Sample,Mask+l));
NTries := NTries + 1;
goto Loop2

end else begin
Abandon;

NTries := 1;
Mask := 0;
inspect InQ.First when Packet do
begin

NumberofFailures . Update (1)
ReportEvent(Packet abandoned);
Failed := True;
Schedule (0 . 0)
end;
inspect Ether do
begin
Busy := False;
if Idle then Schedule(0.0);
end;

end;
end else begin

	

Appendix B: DEMOS models and traces
	

219

Transmit
inspect InQ.First when Packet do if Size>1 then

Hold(Size-i)
NTries 	1;
Mask 	0;
inspect InQ.First when Packet do
begin

Out;
Failed 	False;

Schedule (0 . 0);
NumberofSuccesses .Update(l);
ReportEvent(Packet transmitted' ,N);

end;
inspect Ether do
begin

Busy := False;
if idle then Schedule(0.0)

end;
Hold (0 . 0)

end;
repeat;

end. . of. .Transmitter;

Packet generation, one per transmitter;

entity class Source(N); integer N;
begin
integer Size;
real Choice;
ref(RDist) Uni, Sizesl,Sizes2,Sizes3;

ref (Queue) MyQ;
ref(Packet) Pkt;
ref (RDist) MyDelay;
MyQ : - new Queue(Edit('Input ,N));
MyDelay : - new NegExp(Edit('ArrTime" ,N) , i/ArrivalLoad);
Uni :- new Uniform("Uni",O 180)
Sizesl :- new NegExp("Sizl",l/168);
Sizes2 :- new NegExp("Siz2",l/1000);
Sizes3 	new NegExp(Siz3',l/80000);
new Tranmitter(Edit('XMitter",N),MyQ,N).schedule(0);

Hold(MyDelay.Sarnple);
Choice := Uni.Sample;
Size 	if Choice<Small then Sizel.Sample

else if Choice<Medium then Sizes2.Sample
else Sizes3.Sample;

Pkt new Packet(Edit("Packet,N),MyQ.Size);
ReportEvent ("Packet for transmision' ,A)
Tracelmage("Packet size is ,Size)
Pkt . Schedule (0. 0);

end. .of. .source;

entity class Packet(Q,Size); ref (Queue) Q; integer Size;
begin

real ArrTime;
Boolean Failed;
ArrTime := Time;
PacketQ. Signal;

end. .of. .Packet;

Appendix B. DEMOS models and traces
	

220

OutText("Howlong for this run?'); Outlmage;
SimTime 	InReal;
OutText(Tracing? In"); Outlmage;
Inlmage;
Ch := InChar;
if Ch-'T' then Trace else TraceOn := Ch=y' or Ch='Y';
OutText("Percentages for Small and Medium?");Outlmage;
Small := mInt; Medium := mInt;
OutText("Threshold for initiating transmission?') ;outimage;
Threshold 	mInt;
OutText('Arrival rate of packets?") ;Outlmage;
ArrivalLoad 	InReal;
OutText("Data arrives at rate -
OutReal((Small*l80+(Medium_Small*l000+

(100_Medium)*80000)/ArrivalLoad/100, 4,12);
Out Image;
OutText("Refresh time?");
Outlmage;
RefreshTime := InReal
OutText("Back off scale?); Outlmage;
EackOffScale := InReal;

OutF :- new PrintFile("ether.tra");
OutF.Open(Blanks(80));

PacketQ :- new CondQ('PacketQ");
PacketQ .All =True;
NuntherofAttempts : - new Count("Attempts");
NumofContentions : - new Count ('Contentions');
NumberofFailures : - new Count ("Failures")
NumberofSuccesses :- new Count("Successes");
EtherQ :- new WaitQ("EtherQ")
for 	=1 step luntil 10 do
new Source(Edit("Source",I),I).Schedule(O.0);

Ether Schedule (0 0);
if Time<SimTime then

Hold(if SimTime<RefreshTime then SimTime else RefreshTime);
while Time<SimTime do
begin

QueueQ Report;
CondQQ Report;
CountQ Report;
Outf qua printfile .eject(l);
Hold(RefreshTime);

end;
end--of--DEMOS--block
end++of++program

Appendix B: DEMOS models and traces 	 221

Figure 4.10

BEGIN EXTERNAL CLASS DEMOS;
DEMOS

Begin
Ref(Res)Buffers;

Entity Class Reader;
Begin

Read;
Buffers.Acquire(l);
Hold(2.0)
Buffers.Release(l);
Use;
Hold (5 . 0)
Repeat;

End* * *Reader* *

Entity Class Writer;
Begin
Gather;
Hold (5 . 0)
Write;
Buffers.Acquire(3);
Hold (3 . 0)
Buffers .Release(3);
Repeat;

End* * *Writer* *

Trace;
Buffers 	New Res(Buffers', 3);
New Reader(R) .Schedule(0.0);
New Reader(R).Schedule(2.0);
New Writer('W).Schedule(l.0);
Hold(25.0)

End;
End;

Appendix B: DEMOS models and traces
	

222

Chapter 5

The impimentation of M_SIM

simset class msim;
begin

text procedure Join(T,F); text T; real F;
begin

text FT;
FT 	Blanks(8);
FT. PutFix (F, 2)
Join 	T&" "&:FT;

end;

procedure Dump_Event_List;
begin

ref(Proc) P;
P :- Event_List.First;
while P=/= none do
begin

OutText(P.Title);
OutFix(P.Ev_Time,2,8);
Out Image;
P :- P.Suc;

end;
end;

Boolean Trace_Flag,
Dump—Flag;

ref(Head) Event_List;
ref (Proc) Main;

procedure Dump—On; Dump_Flag 	True;
procedure Dump—Off; Dump—Flag := False;
procedure Trace—On; Trace_Flag 	True;
procedure Trace—Off; Trace_Flag := False;

long real procedure Sim—Time;

	

Sim—Time 	Current.Ev_Time;

procedure Trace (Message); text Message;
begin

if Trace_Flag then
begin

OutText(Message&' at');
OutFix(Sim_Time,2, 8);
Out Image;

end;
end;

ref (proc) procedure Current; Current 	Event_List.First;

Appendix B: DEMOS models and traces 	 223

link class proc(Title); text Title;
begin

long real Ev_Time;
Boolean Terminated, Failed, Priority;

procedure Place_in_Event_List(In_Front);
Boolean In_Front;

begin
ref (proc) p;
if In—Front then Precede(Current) else
begin

P :- Event_List.Last;
while P.Ev_Time>Ev_Time do P:- P.Pred;
if In—Front then while P.Ev_Time=Ev_Time do P 	P.Pred;
follow(P)

end;
if Dump_Flag then dump_event_list;

end;

procedure Wait _Until (Cond, WaitQueue);
name Cond; Boolean Cond; ref(CondQ) WaitQueue;

begin
long real StartTime;
if not Cond then
begin

Failed := True;
Trace(Title&" waits until");
Wait (WaitQueue);
while not Cond do Wait(WaitQueue);
Trace(Title&" leaves "&WaitQueue.Title);

end;
Failed := False;

end;

procedure Waken(Delayed); long real Delayed;
begin

Trace(Title&" is woken"&Join(" to start at ",Sim_Time+Delayed));
Out;

	

Ev_Time 	Sim_Time+Delayed;
Place_in_Event_List (Priority);
Resume(Current)

end;
Trace(Title&" is created");
detach;
inner;
Trace(Title&" terminates");

	

Terminated 	True;
if suc=/= none then Sleep;

end;

procedure Sleep;
begin

Current Out;
if Current =7= none then
begin

Trace(Current.Title&" restarts");
Resume (Current)

end else Error("Passivate leaves Event List empty");
end;

Appendix B: DEMOS models and traces 	 224

procedure Wait(Q); ref(Head) Q;
begin

Current.Into(Q);
Trace(Current.Title&" restarts);
Resuine(Current);

end;

procedure Hold(Delayed); long real Delayed;
begin

ref(proc) C;
C :- Current;
inspect C do
begin
Trace(Title&' holds&Join(to restart at ,Sim_Time+Delayed));

Ev_Time := Sim—Time + Delayed;
if suc=/=none and then suc qua Proc.Ev_Time<=Ev_Time then
begin

Out;
Place_in_Event_List (False);
Trace(Current.Title&" is restarted);
resume(Current);

end;
end;

end;

proc class main_proc;
begin

while true do detach;
end;

head class CondQ(Title); text Title;
begin

procedure Signal(Sender); text Sender;
begin

Boolean Failed;
ref(Proc) Next;
Trace(Title& is signalled by "&Sender);
Next :- First;
Failed := True;
while Next =7= none and then Failed do
begin

Next.Priority 	True;
Next . Waken (0 . 0);
Next.Priority 	False;
Failed := Next.Failed;
Next :- Next.Suc;

end;
end;

end;

Trace("Simulation starts');
Event—List :- new Head;
Main 	new Main_Proc("My Sum");
Main. Into (Event_List);
inner;
Trace ("Simulation ends);

end;

Appendix B: DEMOS models and traces
	

225

Chapter 6

EWrap.sim

external class DEMOS;
DEMOS class EWRAP;
begin

Entity class Source(InQ, Rate); ref(Bin)InQ; real Rate;
begin

ref (RDist) Arr_T;
Arr_T :- new NegExp("Arrs",Rate)
while True do
begin

Hold(Arr_T.Sample);
InQ.Give(l);

end;
end;

ref(RDist) T_Time, BackOff;
ref (Res) Ether;
integer I, N_Stations;

BackOff - new Uniform("Backoff" ,0.00l, 0.5);
T_Time - new Uniform("Trans", 0.01,3);
Ether :- new Res("Ether,l)
Sysout .OutText('How many stations?'); BreakOutlmage;
N_Stations 	Sysin.Inlnt;
inner;
Sysout .OutText("Tracing yin?"); BreakOutlmage;
Inlmage; if Sysin.InCharzy' then Trace;
Sysout.OutText("How long for this run?"); BreakOutlmage;
Hold(Sysin.InReal);

end;

Appendix B: DEMOS models and traces
	

226

Figure 6.12

begin
external class EWrap;
EWrap
begin

entity class Station(InQ); ref(Bin) InQ;
begin

while True do
begin

InQ . Take (1);
Ether . AcQuire (1)
Transmit;

Hold(T_Time. Sample);
Ether. Release (1);

end;
end. .of. .Transmitter;

for I := 1 step 1 until N_Stations do
begin

ref(Bin) InQ;
InQ 	new Bin(Edit('InQ,I) ,O)
new Source('Source",InQ,0.3).Schedule(O.0);
new Station(Station,InQ) .Schedule(0);

end;
end--of--EtherWrap--block;

end++of++program

Appendix B: DEMOS models and 	traces
	

227

Trace of Figure 6.12

TIME/ CURRENT AND ITS ACTION(S)
0.000 DEMOS 	HOLDS FOR 10.000, UNTIL 10.000

Source 1 HOLDS FOR 2.044, UNTIL 2.044
Station 1 	AWAITS 1 OF InQ 1
Source 2 HOLDS FOR 1.538, UNTIL 1.538
Station 2 	AWAITS 1 OF InQ 2
Source 3 HOLDS FOR 1.084, UNTIL 1.084
Station 3 	AWAITS 1 OF InQ 3

1.084 Source 3 GIVES 1 TO InQ 3
HOLDS FOR 2.584, UNTIL 3.668

Station 3 	SEIZES 1 OF InQ 3
SEIZES 1 OF Ether
HOLDS FOR 2.127, UNTIL 3.211

1.538 Source 2 GIVES 1 TO InQ 2
HOLDS FOR 0.077, UNTIL 1.615

Station 2 	SEIZES 1 OF InQ 2
AWAITS 1 OF Ether

1.615 Source 2 GIVES 1 TO InQ 2
HOLDS FOR 4.258, UNTIL 5.873

2.044 Source 1 GIVES 1 TO InQ 1
HOLDS FOR 22.592, UNTIL 24.636

Station 1 	SEIZES 1 OF InQ 1
AWAITS 1 OF Ether

3.211 Station 3 	RELEASES 1 TO 	Ether
AWAITS 1 OF InQ 3

Station 2 	SEIZES 1 OF Ether
HOLDS FOR 0.617, UNTIL 3.828

3.668 Source 3 GIVES 1 TO InQ 3
HOLDS FOR 4.792, UNTIL 8.460

Station 3 	SEIZES 1 OF InQ 3
AWAITS 1 OF Ether

3.828 Station 2 	RELEASES 1 TO 	Ether
SEIZES 1 OF InQ 2
AWAITS 1 OF Ether

Station 1 	SEIZES 1 OF Ether
HOLDS FOR 2.222, UNTIL 6.050

5.873 Source 2 GIVES 1 TO InQ 2
HOLDS FOR 2.316, UNTIL 8.189

6.050 Station 1 	RELEASES 1 TO 	Ether
AWAITS 1 OF InQ 1

Station 3 	SEIZES 1 OF Ether
HOLDS FOR 0.667, UNTIL 6.717

6.717 	RELEASES 1 TO Ether
AWAITS 1 OF InQ 3

Station 2 	SEIZES 1 OF Ether
HOLDS FOR 1.398, UNTIL 8.115

8.115 	RELEASES 1 TO Ether
SEIZES 1 OF InQ 2
SEIZES 1 OF Ether
HOLDS FOR 1.753, UNTIL 9.868

8.189 Source 2 GIVES 1 TO InQ 2
HOLDS FOR 8.025, UNTIL 16.214

8.460 Source 3 GIVES 1 TO InQ 3
HOLDS FOR 2.949, UNTIL 11.409

Station 3 	SEIZES 1 OF InQ 3
AWAITS 1 OF Ether

9.868 Station 2 	RELEASES 1 TO 	Ether
SEIZES 1 OF InQ 2
AWAITS 1 OF Ether

Station 3 	SEIZES 1 OF Ether
HOLDS FOR 2.367, UNTIL 12.235

Appendix B: DEMOS models and traces
	

228

Figure 6.14

begin
external class EWRAP;
EWRAP
begin

Entity class Station(InQ); ref(Bin) InQ;
begin

while True do
begin

InQ.Take(l);
EtherQ.WaitUntil (Ether.Avail>O);
while EtherQ.Length>O do
begin

Hold(BackOff .Sarnple);
end;
Ether Acquire (1)
Hold(T_Time.Sample);
Ether.Release(l);
EtherQ Signal;

end;
end--of--Station;

ref (CondQ) EtherQ;

EtherQ 	new CondQ(EtherQ);
for I 	1 step 1 until N_Stations do
begin

ref (Bin) InQ;
InQ 	new Ein(Edit(InQ,I),O);
new Source(Source,InQ,0.3).Schedule(0);
new Station(Station,InQ).Schedule(0);

end;

end;
end;

Appendix B. DEMOS models and traces
	

229

Trace from Figure 6.14
Source 1 HOLDS FOR 2.044, UNTIL 2.044
Station 1 	AWAITS 1 OF InQ 1
Source 2 HOLDS FOR 1.538, UNTIL 1.538
Station 2 	AWAITS 1 OF InQ 2
Source 3 HOLDS FOR 1.084, UNTIL 1.084
Station 3 	AWAITS 1 OF InQ 3

1.084 Source 3 GIVES 1 TO InQ 3
HOLDS FOR 2.584, UNTIL 3.668

Station 3 	SEIZES 1 OF InQ 3
SEIZES 1 OF Ether
HOLDS FOR 2.127, UNTIL 3.211

1.538 Source 2 GIVES 1 TO InQ 2
HOLDS FOR 0.077, UNTIL 1.615

Station 2 	SEIZES 1 OF InQ 2
W'UNTIL IN EtherQ

1.615 Source 2 GIVES 1 TO InQ 2
HOLDS FOR 4.258, UNTIL 5.873

2.044 Source 1 GIVES 1 TO InQ 1
HOLDS FOR 22.592, UNTIL 24.636

Station 1 	SEIZES 1 OF InQ 1
W'UNTIL IN EtherQ

3.211 Station 3 	RELEASES 1 TO Ether
SIGNALS EtherQ
AWAITS 1 OF InQ 3

Station 2 	LEAVES EtherQ
HOLDS FOR 0.036, UNTIL 3.247

Station 1 	LEAVES EtherQ
SEIZES 1 OF Ether
HOLDS FOR 0.617, UNTIL 3.828

3.247 Station 2 	AWAITS 1 OF Ether
3.668 Source 3 GIVES 1 TO InQ 3

HOLDS FOR 4.792, UNTIL 8.460
Station 3 	SEIZES 1 OF InQ 3

WUNTIL IN EtherQ
3.828 Station 1 	RELEASES 1 TO Ether

SIGNALS EtherQ
AWAITS 1 OF InQ 1

Station 2 	SEIZES 1 OF Ether
HOLDS FOR 2.222, UNTIL 6.050

5.873 Source 2 GIVES 1 TO InQ 2
HOLDS FOR 2.316, UNTIL 8.189

6.050 Station 2 	RELEASES 1 TO Ether
SIGNALS EtherQ
SEIZES 1 OF InQ 2
HOLDS FOR 0.260, UNTIL 6.310

Station 3 	LEAVES EtherQ
SEIZES 1 OF Ether
HOLDS FOR 0.667, UNTIL 6.717

6.310 Station 2 	AWAITS 1 OF Ether
6.717 Station 3 	RELEASES 1 TO Ether

SIGNALS EtherQ
AWAITS 1 OF InQ 3

Station 2 	SEIZES 1 OF Ether
HOLDS FOR 1.398, UNTIL 8.115

8.115 	RELEASES 1 TO Ether
SIGNALS EtherQ
SEIZES 1 OF InQ 2
SEIZES 1 OF Ether
HOLDS FOR 1.753, UNTIL 9.868

8.189 Source 2 GIVES 1 TO InQ 2
HOLDS FOR 8.025, UNTIL 16.214

8.460 Source 3 GIVES 1 TO InQ 3
HOLDS FOR 2.949, UNTIL 11.409

Station 3 	SEIZES 1 OF InQ 3
W'UNTIL IN EtherQ
9.868 Station 2 	RELEASES 1 TO Ether

Appendix B: DEMOS models and traces
	

230

Figure 6.16

begin external class EWEAP;
EWRAP begin

Entity class Station(InQ); ref(Bin) InQ;
begin ref (Res) GotOne;

GotOne :- new Res(Gl,l);
while True do
begin

LnQ.Take(l);
GotOne.Acquire(l);
while GotOne.Avail=O do
begin

EtherQ .Wait;
if Collided.Avail=O then begin

Ether.Acquire(l);
Hold(T_Tirne.Sample);
GotOne.Release(l);
Ether.Release (1);

end else begin
Collided. Take (1)
Hold(BackOff.Sample);

end;
end;

end;
end--of--Station;
Entity class Ether_c;
begin ref (Entity) Curr_S;

while True do
begin

Ether. Acquire (1);
Curr_S :- EtherQ.Coopt;
if EtherQ.Length>O then begin

Collided. Give (1)
end;
Ether. Release (1);
Curr_S . Schedule (0. 0);
if EtherQ.Length=0 then Hold(0);
while EtherQ.Length>0 do
begin

Curr_S :- EtherQ.Coopt;
Collided . Give (1)
Curr_S . Schedule (0 . 0);

end;
end;

end--of--Ether—c;
ref(Bin) Collided; ref(WaitQ) EtherQ;
for I:= 1 step 1 until N_Stations do begin ref(Bin) InQ;

InQ :- new Bin(InQ,0)
new Source('Source,InQ,0.3).Schedule(0);
new Station('Station,InQ) .Schedule(0);

end;
new Ether_c(Ethernet') .schedule(0.0);
Collided :- new Bin(Collisions,0);
EtherQ :- new WaitQ(EtherQ');

end;
end;

Appendix B. DEMOS models and traces 	 231

Trace from Figure 6.16

TIME/ CURRENT AND ITS ACTION(S) Station 3 	SEIZES 1 OF Collisions
FOR 0.112, HOLDS UNTIL 3.976

Station 2 	SEIZES 1 OF Collisions
.000 DEMOS 	HOLDS FOR 10.000, UNTIL 10.000 HOLDS FOR 0.303, UNTIL 4.167
Ethernet 1 	SEIZES 1 OF Ether 3.976 Station 3 	WAITS IN EtherQ

WAITS IN EtherQ Ethernet 1 	COOPTS Station 3 FROM EtherQ
Source 1 HOLDS FOR 2.044, UNTIL 2.044 RELEASES 1 TO Ether
Station 1 	AWAITS 1 OF mO SCHEDULES Station 3 NOW
Source 2 HOLDS FOR 1.538, UNTIL 1.538 HOLDS FOR 0.000, UNTIL 3.976
Station 2 	AWAITS 1 OF InQ Station 3 	SEIZES 1 OF Ether
Source 3 HOLDS FOR 1.084 	UNTIL 1.084 HOLDS FOR 2.222, UNTIL 6.198
Station 3 	AWAITS 1 OF InQ Ethernet 1 	AWAITS 1 OF Ether

1.084 Source 3 GIVES 1 TO InQ 4.074 Station 1 	WAITS IN EtherQ
HOLDS FOR 2.584, UNTIL 3.668 4.167 Station 2 	WAITS IN EtherQ

Station 3 	SEIZES 1 OF mO 5.873 Source 2 GIVES 1 TO InQ
SEIZES 1 OF Gl HOLDS FOR 2.316, UNTIL 8.189
WAITS IN EtherQ 6.198 Station 3 	RELEASES 1 TO Gl

Ethernet 1 	COOPTS Station 3 FROM EtherQ RELEASES 1 TO Ether
RELEASES 1 TO Ether AWAITS 1 OF InQ
SCHEDULES Station 3 NOW Ethernet 1 	SEIZES 1 OF Ether
HOLDS FOR 0.000, UNTIL 1.084 COOPTS Station 1 FROM EtherQ

Station 3 	SEIZES 1 OF Ether GIVES 1 TO Collisions
HOLDS FOR 2.127, UNTIL 3.211 RELEASES 1 TO Ether

Ethernet 1 	AWAITS 1 OF Ether SCHEDULES Station 1 NOW
1.538 Source 2 GIVES 1 TO InQ COOPTS Station 2 FROM EtherQ

HOLDS FOR 0.077, UNTIL 1.615 GIVES 1 TO Collisions
Station 2 	SEIZES 1 OF InQ SCHEDULES Station 2 NOW

SEIZES 1 OF Dl SEIZES 1 OF Ether
WAITS IN EtherQ WAITS IN EtherQ

1.615 Source 2 GIVES 1 TO InQ Station 1 	SEIZES 1 OF Collisions
HOLDS FOR 4.258, UNTIL 5.873 HOLDS FOR 0.158, 	UNTIL 6.356

2.044 Source 1 GIVES 1 TO InQ Station 2 	SEIZES 1 OF Collisions
HOLDS FOR 22.592, UNTIL 24.636 MOLDS FOR 0.324, UNTIL 6.522

Station 1 	SEIZES 1 OF InQ 6.356 Station 1 	WAITS IN EtherQ
SEIZES 1 OF Gl Ethernet 1 	COOPTS Station 1 FROM EtherQ
WAITS IN EtherQ RELEASES 1 TO Ether

3.211 Station 3 	RELEASES 1 TO Gl SCHEDULES Station 1 NOW
RELEASES 1 TO Ether HOLDS FOR 0.000, UNTIL 6.356
AWAITS 1 OF InQ Station 1 	SEIZES 1 OF Ether

Ethernet 1 	SEIZES 1 OF Ether HOLDS FOR 0.667, 	UNTIL 7.023
COOPTS Station 2 FROM EtherQ Ethernet 1 	AWAITS 1 OF Ether
GIVES 1 TO Collisions 6.522 Station 2 	WAITS IN EtherQ
RELEASES 1 TO Ether 7.023 Station 1 	RELEASES 1 TO Cl
SCHEDULES Station 2 NOW RELEASES 1 TO Ether
COOPTS Station 1 FROM EtherQ AWAITS 1 OF InQ
GIVES 1 TO Collisions Ethernet 1 	SEIZES 1 OF Ether
SCHEDULES Station 1 NOW COOPTS Station 2 FROM EtherQ
SEIZES 1 OF Ether RELEASES 1 TO Ether
WAITS IN EtherQ SCHEDULES Station 2 NOW

Station 2 	SEIZES 1 OF Collisions HOLDS FOR 0.000, UNTIL 7.023
HOLDS FOR 0.036, UNTIL 3.247 Station 2 	SEIZES 1 OF Ether

Station 1 	SEIZES 1 OF Collisions HOLDS FOR 1.398, 	UNTIL 8.421
HOLDS FOR 0.260, UNTIL 3.471 Ethernet 1 	AWAITS 1 OF Ether

3.247 Station 2 	WAITS IN EtherQ 8.189 Source 2 GIVES 1 TO InQ
Ethernet 1 	COOPTS Station 2 FROM EtherQ HOLDS FOR 8.025, UNTIL 16.214

RELEASES 1 TO Ether 8.421 Station 2 	RELEASES 1 TO Gl
SCHEDULES Station 2 NOW RELEASES 1 TO Ether
HOLDS FOR 0.000, UNTIL 3.247 SEIZES 1 OF InQ

Station 2 	SEIZES 1 OF Ether SEIZES 1 OF Gl
HOLDS FOR 0.617, UNTIL 3.864 WAITS IN EtherQ

Ethernet 1 	AWAITS 1 OF Ether Ethernet 1 	SEIZES 1 OF Ether
3.471 Station 1 	WAITS IN EtherQ COOPTS Station 2 FROM EtherQ
3.668 Source 3 GIVES 1 TO InQ RELEASES 1 TO Ether

HOLDS FOR 4.792, UNTIL 8.460 SCHEDULES Station 2 NOW
Station 3 	SEIZES 1 OF InQ HOLDS FOR 0.000, UNTIL 8.421

SEIZES 1 OF Gl Station 2 	SEIZES 1 OF Ether
WAITS IN EtherQ HOLDS FOR 1.753, UNTIL 10.174

3.864 Station 2 	RELEASES 1 TO Gl Ethernet 1 	AWAITS 1 OF Ether
RELEASES 1 TO Ether 8.460 Source 3 GIVES 1 TO InQ
SEIZES 1 OF InQ HOLDS FOR 2.949, UNTIL 11.409
SEIZES 1 OF Dl Station 3 	SEIZES 1 OF InQ
WAITS IN EtherQ SEIZES 1 OF Cl

Ethernet 1 	SEIZES 1 OF Ether WAITS IN EtherQ
COOPTS Station 1 FROM EtherQ
GIVES 1 TO Collisions
RELEASES 1 TO Ether
SCHEDULES Station 1 NOW
COOPTS Station 3 FROM EtherQ
GIVES 1 TO Collisions
SCHEDULES Station 3 NOW
COOPTS Station 2 FROM EtherQ
GIVES 1 TO Collisions
SCHEDULES Station 2 NOW
SEIZES 1 OF Ether
WAITS IN EtherQ

Station 1 	SEIZES 1 OF Collisions
HOLDS FOR 0.210, UNTIL 4.074

Appendix B: DEMOS models and traces
	

232

Figure 6.18

Begin
External Class Demos;
Demos

Begin
Ref(Res) Buffers;
Real T—read, T_update, T_gather, T_use, T_sim;

Entity Class Reader;
Begin

Buffers.Acquire(l);
Hold(T_read); 	 Read;
Buffers.Release(l);
Hold(T_use); 	 Use;

End Of Reader;

Entity Class Writer;
Begin

Buffers .Acquire (3);
Hold(T_update); 	 I Update;
Buffers . Release (3)
Hold(T_gather); 	 I Gather;

End Of Writer;

T_read: =Inreal; T_use =Inreal;
T_update: =Inreal ; T_gather: =Inreal;
T_sim 	Inreal;

Buffers :- New Res('Buffers", 	3);
New Reader(Reader) .Schedule(O.0);
New Reader(Reader') .Schedule(O.0);
New Writer(Writer°) .Schedule(O.0);
Hold(T_sim);

End;
End

232

Appendix C

This Appendix contains the CCS models of all models in Chapters 3 and 6 of this dissertation and,
where appropriate, the corresponding Concurrency Workbench experiments using them.

Appendix C: CCS Models and Experiments for CWB 	 241

Chapter 3

Figure 3.2

Model

bi P0 3.0

bi P1 2. esched.$0
bi P2 $esched.1.0

bi P3 (P1 I P2(\(esched)

Output

Command: states PO
0
1.0
2.0
P0

Command: states P3
($0 0)\esched
($0 1.0)\esched
(esched.$0 I $esched.1.0)\esched
(1. esched.$0 I $esched.1.0(\esched
P3

Command: statesobs P3
1 1 1 ===> ($0 I 0(\esched
1 1 ===> ($0 1 1.0)\esched
1 1 ===> (esched.$0 	$esched.1.0)\esched
1 ===> (1. esched.$0 	$esched.1.0(\esched
===> P3

Command: statesobs PO
1 1 1 ===> 0
1 1 ===> 1.0
1===> 2.0
===> PO

Command: cong
Agent: PO
Agent: P3
true
Command: eq
Agent: PO
Agent: P3
true

Appendix C: CCS Models and Experiments for CWB 	 242

Figure 3.3

Model

hi PO 3.P0

hi P1 $eschedl.2. esched2.P1
hi P2 $esched2.1. eschedl.P2

hi P3 (P1 	eschedl.P2)\(eschedl,esched2)

Output
Command: if m303.cwb
done.
Command: states P0

1.P0
2.P0
P0

Command: states P3
($eschedl .2. esched2 P1 I eschedl .P2(\{eschedl, esched2)
(P1 I 1. 'eschedl.P2(\(eschedlesched2)
(esched2 . P1 I $esched2 .1. eschedl .P2(\(eschedl, esched2)
(1. esched2 P1 	$esched2 .1. eschedl .P2(\{aschedl, esched2}
(2.esched2.P1 P2)\(eschedl,esched2)
P3

Command: eq
Agent: P0
Agent: P3
true
Command: Cong
Agent: P0
Agent: P3
false
Command: statesobs P0

1 1 ===> 1 P0
1 ==> 2.P0
==> P0

Command: statesobs P3
1 1 1 ===> ($esChedl.2. esched2.Pl J eschedl.P2(\esched1,esched2}
1 1===> (P1 I 1. esohedl.P2)\{eschedl,esched2}
1 1 ===> (esched2.P1 	$esched2.1. eschedl.P2(\{eschedl,esched2)
1 ===> (1. esched2.P1 	$esched2.1. eschedl.P2(\tesohedl,esched2}
===> (2. esched2.P1 	P2(\{eschedl,esched2}
===> P3

Appendix C: CCS Models and Experiments for CWB 	 243

Figure 3.4

Model

bi Seq $hammerAcql.3. hammerRell.$0

bi Hammerl $hammerAcql .Hananer0
bi HammerO $hammerRell.1-lammerl

bi Model (SeqHammerl) \{hammerAcqlhammerRell}

Output

Command: reduce

Command: states Model
Model

= ($ 'hammerAcqi .3 'hammerRell . $0 I ShammerAcqi .Hammer0) \ ChammerAcql hammerRell)
(3. 'hammerRell $0 	HammerO) \(hammerAcql,hammerRell)
(2. 'hammerRell $0 	$hammerRell .Hammerl(\(hammerAcql,hammerRell}
(1. 'hammerRell $0 	$hammerRell .Hammerl(\(hamxnerAcql,hammerRell}
('hammerRell . $0 I $hammerRell .Hammerl) \{hammerAcql,hammerRell)
($0 I Hammerl(\{hammerAcql,hammerRell}

= ($0 I $hammerAcql .Hammer0(\thammerAcql,hammerRell)

Figure 3.5

Model

bi Seq $'hammerAcq1.3. 'hammerRell.Seq

bi Hammerl $hammerAcql.Hammer0
bi HammerO $hammerRell.Hammerl

bi Model (SeqlHammerl(\ChammerAcql,hammerRell}

Output

Command: states Model
Model

= ($ 'harmserAcql .3. 'hamrnerRell Seq I $hammerAcql .Hammer0(\{hammerAcql,hammerRell}
= (Seq I Hammerl(\thammerAcql,hammerRell)

(3. 'hammerRell .Seq 	Hammer0(\(hammerAcql,hammerRell)
(2. 'hammerRell .Seq 	$hammerRell .Hammerl(\(hamrnerAcql,hammerRell}
(1. 'hammerRell Seq 	$hammerRell .Hammerl(\(hammerAcql,hammerRell}
(hammerRell .Seq I $hammerRell .Hammerl(\{hammerAcql,hammerRell}

Appendix C: CCS Models and Experiments for CWB 	 244

Figure 3.6

Model
hi Seql va1Ass4.Seq2
hi Seq2 (vaiGet4. valAss6.Seq3+valcet5. valAss7.Seq3+vaiGet6. 'valAss8.Seq3\
+vaiGet7.valAss9.Seq3*vaicets. vaiAsslO.Seq3+valGet9. valAssll.Seq3\
+vaiGetlO. valAssl2.Seq3)
hi Seq3 3.(valGet4. valAss8.Seq2+valGet5. vaiAsslO.Seq2+valGet6. valAssi2.Seq2\
+valGet7 .valAssl4 .Seq2+valGet8. valAssl6 .Seq2+valGet9. valAssl8.Seq2\
+valGetiO. valAss2O Seq2)

bi ValO valAssi .Vall+valAss2 .Vai2+valAss3 .Va13+valAss4 .Val4\
+valAss5 .Va15+valAss6 .VaiS+vaiAss7 .Va17+valAss8 .Va18\
+va1Ass9.Va19+valAss1O.Va11O+ $valGetO.ValO
hi Vail vaiAssl.Vaii+vaiAss2.Va12+vaiAss3.Va13+valAss4.Va14\
+valAss5 .Va15+valAss6 .Va16+valAss7 .Vai7+vaiAss8 .Va18\
+va1Ass9 .Va19-i-vaiAsslO .VallO+ $ vaiGetl Vail
bi Va12 valAssi .Vall+valAss2 .Va12+vaiAss3 .Vai3+valAss4 .Va14\
+valAss5 .Va15+valAss6 .Va16+vaiAss7 .Va17+valAss8 .ValS\
+va1Ass9 .Va19+valAsslO .VallO+ $ valGet2 .Va12
bi Va13 vaiAssi.Vaii+vaiAss2.Val2+vaiAgs3.Va13+valAss4.Val4\
+valAss5 .Va15+valAss6 .Va16+valAss7 .Vai7i-vaiAss8 .Va18\
+va1Ass9 .Va19+vaiAsslO .VallO+ $ valGet3 .Va13
hi Va14 valAssi .Vall+valAss2 .Vai2+vaiAss3 .Va13+valAss4 .Va14\
+valAss5 .Vai5+vaiAss6 .Vai6+vaiAss7 .Va17+valAss8 .Va18\
+valAss9 .Va19+valAsslO .VailO+ $ valGet4 .Va14
hi Va15 vaiAssl.Vail+valAss2.Va12+vaiAss3.Va13+valAss4.Vai4\
+vaiAss5 .Va15+valAss6 .Va16+valAss7 .Vai7+vaiAss8 .ValS\
+valAss9 .Va19+valAsslO .VaiiO+ $ valGet5 .Vai5
bi Va16 valAssi .Vall+valAss2 .Vai2+valAss3 .Va13+valAss4 .Va14\
+valAss5 .VaiS+vaiAss6 .Vai6+vaiAss7 .Va17+valAss8 .Va18\
+va1Ass9 .Va19+valAssiO .VallO+ $ valGet6 Va16
hi Va17 valAssl.Vail+vaiAss2.Vai2+vaiAss3.vai3+valAss4.Vai4\
+valAss5 .Va15+valAssi .Va16+valAss7 .Va17+valAss8 .Va18\
+valAss9 .Va19+valAsslO.VailO+ $ valGet7 .Va17
hi Va18 valAssi .Vall+valAss2 .Vai2+valAss3 .Va13+valAss4 .Vai4\
+valAss5 .Va15+valAss6 .Va16+vaiAss7 .Va17+valAss8 .Va18\
4-va1Ass9.Va19+va1AsslQVa11O+ $va1Get8.Va18
bi Va19 valAsslVali+vaiAss2.Va12+vaiAss3.Val3+valAss4.Val4\
+valAss5 .ValS+vaiAss6 .VaiE+valAss7 .Va17+valAss8 .Va18\
+va1Ass9 .Va19+valAsslO .VallO+ $ vaiGet9 .Va19
bi ValiO vaiAssl .Vall+valAss2 .Va12+valAss3 .Va13+valAss4 .Va14\
+vaiAss5 .Va15+valAss6 .Va16+vaiAss7 .Vai7+valAss8 .Va18\
+valAss9 .Va19+valAsslC .VailO+ $ valGeilO .ValiO

bi Seq (Seql I ValO)\
\(vaiAsslvalAss2,valAss3valAss4,vaiAss5,valAss6,valAss7,\
valAss8,valAss9,vaiAssiOvaiAssllvaiAssl2, \
valGetO valGetl valGet2 valGet3 valGet4 valGet5 valGet6 valGet7,
valGetS valGet9 valGetlO)

Appendix C: CCS Models and Experiments for CWB 	 245

Output

Command: States Seq
(valAssl2.Seq2 I

Va16) \{valAssl,valAsslOvalAssll,valAssl2,valAss2,valAss3 ,valAss4,valAss5valAss6,valAss7 valAss8
,valAss9,valGetOvalGetl,valGetlO,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,valGet8,valGet9

((va1Get4. valAss8.Seq2 + va1Get5. valAsslO.Seq2 + valGet6. valAssl2.Seq2 +
valGet7.valAssl4.Seq2 + valGet8. valAssl6.Seq2 + valqet9. 'valAsslB.Seq2 +
valGetlO. valAss2O.Seq2) I
$valGet6.Va16)\(valAssl,valAsslO,valAssll,valAssl2,valAss2valAss3,valAss4,valAss5valAss6,valAs
s7valAss8,valAss9,valGetO,valGetl,valGetlO,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,valGe
t8, valGet9)

(1.(valGet4. valAss8.Seq2 + va1Get5.va1Ass1O.Seq2 + valGet6.valAssl2.Seq2 +
valGet7.valAssl4.Seq2 + valGet8. valAssl6.Seq2 + valGet9. valAssl8.Seq2 +
valGetlO. valAss2O.Seq2)
$valGet6.Va16)\(valAssl,valAsslO,valAssll,valAssl2valAss2,valAss3valAss4valAss5,valAss6,valAs
s7,valAss8valAss9valGetO,valGetl,valGetlQ,valGet2,valGet3 valGet4,valGet5,valGet6,valGet7,valGe
t8 valGet9)

(2.(valGet4. valAss8.Seq2 + va1Get5. valAsslO.Seq2 + valqet6. valAssl2.Seq2 +
valGet7.valAssl4.Seq2 + valGet8. valAssl6.Seq2 + va1Get9. valAsslS.Seq2 +
valGetlO. valAss2O.Seq2) I
$valGet6.Va16)\(valAsslvalAsslO,valAssll,valAssl2,valAss2,valAss3,valAss4,valAss5,valAss6,valAs
s7,valAss8,valAss9,valGetO,valGetivalGetlO,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7valGe
t8 ,valGet9)

(Seq3 I
Va16)\(valAssl,valAsslOvalAssll,valAssl2,valAss2,valAss3,valAss4,valAss5,valAss6valAss7,valAss8
,va1Ass9,va1GetO,va1Get1,va1Get1Ova1Get2,va1Get3,va1Get4,va1Get5,va1Get6,va1Get7,va1Get8,va1Get9

(valAss6.Seq3 I
Va14) \{valAssl,valAsslO,valAssll,valAssl2,valAss2,valAss3 ,valAss4,valAss5,valAss6 ,valAss7 ,valAss8
,valAss9,valGetO,valGetl,valGetlQ,valGet2,valGet3,valGet4valGet5,valGet6,valGet7valqet8vajqet9

(Seq2
Va14)\{valAssl,valAsslO,valAssll,valAssl2,valAss2valAss3,valAss4valAss5,valAss6,valAss7,valAss8
,valAss9,valGetOvalGetl,valGetlO,valGet2,valGet3,valGet4valGet5,valGet6,valGet7,valqet8,valGet9

Seq

Command: statesobs Seq
1 1 1 ===> (valAssl2.Seq2 I

Va16)\{valAssl,valAsslO,valAssll,valAssl2,valAss2,valAss3,valAss4,valAss5valAss6,valAss7,valAsa8
,valAss9,valGetO,valGetl,valGetlOvalGet2 ,valGet3,valGet4,valGet5,valGet6,velGet7,valGet8,valGet9

1 1 1 ===> ((valGet4. valAss8.Seq2 + va1Get5. valAsslO.Seq2 + valGet6. valAssl2.Seq2 +
va1Get7.valAss14.Seq2 + valGetS. valAsslG.Seq2 + valGet9. valAssl8.Seq2 +
valGetlO. 'valAss2O.Seq2) I
$va1Get6.Va16)\va1Ass1,va1Ass1O,va1Ass11,va1Ass12va1Ass2,va1Ass3,va1Ass4,va1Ass5,va1Ass6,va1As
57, valAss8 , valAss9 , valGetO valGeti , valGetlO, valGet2 , valGet3 , valGet4 valGet5 valGet6 valGet7 , valGe
t8 , valGet9 }

1 1 ===> (1.(va1Get4. 'valAss8.Seq2 + va1Get5.'va1Ass1O.Seq2 + valGet6. 'valAssl2.Seq2 4-

valGet7.valAssl4.Seq2 + valGet8. valAssl6.Seq2 + valGet9. valAssl8.Seq2 +
valGetlO. 'valAss2O.Seq2)
$'va1Get6.Va16)\va1Ass1,va1Ass1O,va1Ass11,va1Ass12,va1Ass2,va1Ass3,va1Ass4,va1Ass5,va1Ass5,va1As
s7,valAsa8,valAss9,valGetO,valGetl,valGetlO,valGet2,valGet3,valGet4,valGet5,valGet6,valqet7,valqe
tS ,valGet9)

1 ===> (2.(valGet4. 'valAss8.Seq2 + va1Get5.'va1Ass1O.Seq2 + valGet6.'valAssl2.Seq2 +
valGet7.valAssl4.Seq2 + valGet8. 'valAssl6.Seq2 + valGet9. valAssl8.Seq2 +
valGetlO. valAss2O.Seq2) I
$'valGet6.Va16)\{valAssl,valAsslO,valAssll,valAssl2,valAss2,valAss3,valAss4,valAss5,valAss6,valAs
s7,valAss8,valAss9,valGetO,valGetl,valGetlO,valGet2,valGet3,valGet4,valGetS,valGet6,valGet7,valqe
t8 ,valGet9)

===> (Seq3 I
Va16) \{valAsal ,valAsslO,valAssll,valAssl2 ,valAss2,valAss3 ,valAsa4,valAss5,valAss6,valAss7 ,valAss8
,valAss9,valGetO,valGetl,valGetlO,valGet2,valGet3,valGet4,valGet5,valqet6,valqet7,valqet8,valGet9

===> ('valAss6.Seq3 I
Va14)\CvalAssl,valAsslO,valAssll,valAssl2,valAss2,valAss3,valAss4,valAss5,valAss6,valAss7,va].Assg
,valAss9,valGetO,valGetl,valGetlO,valqet2,valqet3 ,valGet4,valGet5,valGet6,valGet7,valGet8,valGet9

===> (Seq2 I
Va14)\va1Ass1,va1Ass1O,va1Ass11,va1Ass12,va1Ass2,va1Ass3,va1Ass4,va1Ass5,va1Ass6,va1Ass7,va1Ass8
,valAss9,valGetO,valGetl,valGetlO,valGet2,valGet3,valqet4,valqet5,valqet6,valqet7,valqet8,valqetg

==> Seq

Appendix C: CCS Models and Experiments for CWB
	

246

Figure 3.7

Model

bi Seqi va1Ass4.Seq2

bi Seq2 (valGet4. valAss6.Seq3+valGet5. valAss7.Seq3+valGet6. valAss8.Seq3\
+valGet7 .valAss9 .Seq3+valGet8. valAsslO.Seq3+valGet9. valAssil .Seq3\
+valGetlO. valAssl2.Seq3+valGetll. valAssl3.Seq3+valGetl2. valAssl4.Seq3)
bi Seq3 3.(valGet4.valAss8.Seq2+valGet5.valAsslO.Seq2-i-valGet6.valAssl2.Seq2\
+valGet7.valAssl4Seq2+valGet8. valAssl6.Seq2+valcei9. valAssl8.Seq2\
+valGetlO. valAss4.Seq2+valGetll. valAss4.Seq2-i-valGetl2. valAss4.Seq2\
+valGetl3 valAss4 .Seq2+valGetl4. valAss4 .Seq2)
bi ValO valAssl .Vall+valAss2 .Va12+valAss3 .Val3+valAss4 .Va14\
+valAss5 .Va15+valAss6 .Va16+valAss7 .Va17+valAssS .ValS\
+valAss9 .Va19+vaiAsslO .VallO+valAssll .Valil+valAssl2 .Vall2+\
valAssl3 .Va113+valAssl4 .Vall4+ $ valGetO .ValO
bi Vail valAssi.Vali+vaiAss2.Va12+valAss3.Va13+valAss4.Va14\
+vaiAss5 .ValS+vaiAss6 .Va16+valAss7 .Va17+vaiAss8 .Va18\
+valAss9 .Va19+vaiAsslO .VallO+valAssll .Valli+valAssl2 .Vall2'-\
valAssl3 .Va113+valAssl4 .Vali4+ $ valGeti Vail
bi Va12 vaiAssl .Vali+valAss2 .Va12+vaiAss3 .Va13+valAss4 .Val4\
+valAss5 .Va15+valAss6 .Vai6+valAss7 .Va17+vaiAss8.Va18\
+valAss9 .Val9+valAsslO .ValiO+valAssil .Valll+valAssi2 .Va112+\
valAssl3 .Vali3+valAssl4 .Vall4+ $ vaiGet2 .Va12
bi Va13 valAssl .Vall+valAss2 .Va12+valAss3 .Va13+valAss4 .Va14\
+vaiAsst .Va15+valAss6 .Va16+valAss7 .Vai7+vaiAss8 .Va18\
+valAss9 .Va19+vaiAsslO .VallO+valAssll .Valli+valAssl2 .Vall2+\
valAssi3 .Va113+valAssl4 .Vali4+ $ valGet3 .Va13
bi Va14 valAssi Vali+valAss2 .Va12+vaiAss3 .Val3+valAss4 .Val4\
+valAss5 .Va15+valAss6 .VaiS+valAss7 .Va17+valAss8 .Va18\
+valAss9 .Va19+valAssiO .VallO+valAssil .Valll+valAssi2 .Vail2+\
valAssl3 .Vall3+valAssl4 .Va114+ $ valGet4 .Va14
bi Va15 vaiAssl .Vall+valAss2 .Va12+valAss3 .Va13-s-valAss4 .Va14\
+valAss5 .Va15+valAss6 .ValG+valAss7 .Va17+valAss8 .Va18\
+valAss9 .Va19+valAsslO .VailO+valAssll .Vaill+valAssl2 .Va112+\
valAssl3 .Va113+valAssi4 .Vali4+ $ valGet5 .Va15
bi Va16 valAssi .Vaii+valAss2 .Va12+vaiAss3 .Val3+valAss4 .Va14\
+vaiAss5 .Va15+valAss6 .Val6+valAss7 .Va17+valAssS .Va18\
+valAss9 .Va19+valAsslO .VallO+vaiAssli .Valil+valAssl2 .Va112+\
valAssi3 .Vali3+valAssl4 .Va114+ $ valGet6 .Va16
bi Va17 vaiAssl .Vall+valAss2 .Va12+valAss3 .Va13+valAss4 .Va14\
+valAss5 .Va15+valAss6 .Vai6+valAss7 .Vai7+valAss8 .Va18\
+valAss9 .Va19+valAsslO .VailO+valAssll .Valll+valAssl2 .Va112+\
valAssl3 .Va113+valAssl4 .Vali4+ $ valGet7 .Va17
bi ValS valAssl.Vall+valAss2.Vai2+valAss3.Val3+valAss4.Va14\
+valAss5 .Va15-i-vaiAss6 .Va16-i-valAss7 .Va17+valAss8 Vai8\
+valAss9 .Va19+valAsslO .ValiO-I-valAssil .Valll+valAssi2 .Vall2+\
vaiAssi3 .Vali3+valAssl4 .Va114+ $ valGet8 .Va18
bi Va19 valAssl.Vall+valAss2.Va12+valAss3.Vai3+valAss4.Va14\
+valAss5 .ValS+valAss6 .Va16+valAss7 .Vai7+valAss8 .ValS\
+valAss9 .Va19+valAsslO .VallO+valAssll .Valll+valAssl2 .Va112+\
valAssl3 .Vail3+valAssi4 .Vali4+ $ valGet9 .Va19
bi VallO vaiAssl .Vall+valAss2 .Va12+valAss3 .Vai3+valAss4 .Va14\
+valAss5 .Va15+valAss6 .Va16+valAss7 .Va17+valAss8 .VaiS\
+valAss9 .Va19+valAsslO .ValiO+valAssll .Valll+valAssi2 .Vall2+\
valAssl3 .Vall3+vaiAssl4.Va114+ $valGetiO.VallO
bi Valli valAssi .Vali+valAss2 .Vai2+valAss3 .Va13+valAss4 .Val4\
+valAss5 .Va15+valAss6 .Va16+valAss7 .Va17+valAss8 .ValS\
+valAss9 .Va19+valAsslO .VallO+valAssll .Valll+valAssl2 .Vali2+\
valAssl3 .Va113-i-valAssi4 .Va114+ $ vaiGetil .Valll
bi Va112 valAssi .Vall+valAss2 .Va12+valAss3 .Va13+valAss4 .Va14\
+valAss5 .Va15+valAss6 .Vai6*valAss7 .Va17+valAss8 .Va18\
+valAss9 .Val9+valAssiO .VallO+valAssll .Valll+valAssl2 .Va112-i-\
valAssl3 .Vall3+vaiAssl4 .Vali4+ $ valGetl2 .Va112
bi Va113 valAssi .Vall+valAss2 .Va12+valAss3 .Vai3+vaiAss4 .Va14\
+valAss5 .Va15+valAss6 .Va16+valAss7 .Vai7i-valAss8 .VaiS\
+valAss9 .Va19+valAsslO .VallO+valAssll .Valll+valAssi2 .Va112+\
valAssl3 .Vali3+vaiAssl4 .Va114+ $ valGetl3 .Vail3
bi Va114 valAssi .Vaii+valAss2 .Va12+valAss3 .Vai3+valAss4 .Va14\
+valAss5 .Val5+valAss6 .Va16+valAss7 .Va17+valAss8 .Va18\
+valAss9 .Va19+vaiAsslO .VallO+valAssil .Valll+valAssl2 .Vali2+\
valAssl3 .Va113+valAssi4 .Vall4+ $ vaiGeti4 .Va114

bi Seq (Seqi I ValO)\
\(vaiAsslvaiAss2valAss3valAss4vaiAss5valAss6valAss7vaiAss8valAss9\
valAsslOvalAsslivalAssl2,vaiAssl3valAssi4valAssi6valAssl7valAssl8\
valGetO,vaiGetivaiGet2,valGet3valGet4valGet5,valGet6,valGet7 \
valGet8valGet9vaiGetlO,valGetllvalGetl2,vaiGetl3valGetl4)

Appendix C: CCS Models and Experiments for CWB 	 247

Output

Command: states Seq
(valAss4.Seq2 I

Va114)\(valAsslvalAsslO,valAssllvalAssl2valAssl3,valAssl4valAssl6,valAssl7,valAssl8,valAss2,v
alAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGetO,valGetl,valGetlO,valGetll,valCetl2
,valGetl3,valGetl4,valGet2,valGet3,valGet4,valGet5valGet6,valGet7,valGet8,valGet9)

((va1Get4. valAss8.Seq2 + valGet5. valAsslO.Seq2 + valGet6. valAssl2.Seq2 +
va1Get7.va1Ass14.Seq2 + va1Get8. valAssl6.Seq2 + valGet9. valAsslS.Seq2 + valGetlO. valAss4.Seq2
+ valGetli. valAss4.Seq2 + va1Get12. valAss4.Seq2 + va1Get13. valAss4.Seq2 +
va1Get14. valAss4.Seq2) I
$valGetl4.Va114)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6,valAssl7,valAssl
8,valAss2 ,valAss3,valAss4valAss5,valAss6,valAss7,valAss8,valAss9,valGetO,valGetl,valGetlOvalGet
11,valGetl2,valGatl3 ,valGetl4valGet2,valGet3,valGet4,valGet5,valGet6valGet7,valGet8,valGet9)

(1.(va1Get4. valAss8.Seq2 + va1Get5. valAsslO.Seq2 * va1Get6. 'valAssl2.Seq2 +
va1Get7.va1Ass14.Seq2 + va1Get8. valAssl6.Seq2 + va1Get9. valAssl8.Seq2 + valGetlO. valAss4.Seq2
+ valGetli. valAss4.Seq2 + va1Get12. valAss4.Seq2 + valGetl3. valAss4.Seq2 +
va1Get14. valAss4.Seq2)
$valGetl4.Va114)\{valAsslvalAsslO,valAssll,valAssl2,valAssl3,valAssl4valAssl6,valAssl7,valAssl
8,valAss2,valAss3 ,valAss4,valAss5valAss6valAss7valAss8valAss9valGetO,valGetl,valGetlO,valGet
11,valGetl2valGetl3,valGetl4,valGet2,valGet3 valGet4,valGet5,valGet6,valGet7,valGet8,valGet9)

(2.(va1Get4.va1Ass8.Seq2 + va1Get5.va1Ass1O.Seq2 + va1Get6.va1Ass12.Seq2 +
va1Get7.va1Ass14.Seq2 + va1Get8. valAssl6.Seq2 + va1Get9. valAssl8.Seq2 + valGetlO. valAss4.Seq2
+ valGetli. valAss4.Seq2 + va1Get12. valAss4.Seq2 + va1Get13. valAss4.Seq2 +
va1Get14. valAss4.Seq2) I
$valGetl4.Va114)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4valAssl6,valAssl7,valAssl
8,va1Ass2,va1Ass3,va1Ass4,va1Ass5,va1Ass6,va1Ass7va1Ass8,va1Ass9,va1Get0,va1Get1va1Get10,va1Get
11,valGetl2,valGetl3,valGetl4valGet2,valGet3,valGet4valGet5valGet6valGet7,valGet8,valGet9)

(Seq3 I
Va114)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6valAssl7,valAssl8valAss2,v
alAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGetO,valGetl,valGetlO,valGetll,valGetl2
valGetl3 valGetl4 valGet2 valGet3 valGet4 valGet5 valGet6 valGet7 valGet8 valGet9)
(valAssl4.Seq3 I

Va112)\(valAssl,valAsslO,valAssll,valAssl2valAssl3,valAssl4,valAsslS,valAssl7valAssl8,valAss2,v
alAss3 valAss4 valAss5 valAss6 valAss7 valAss8 valAss9 valGetD valGeti valGetlO valGetli valGetl2
,valGetl3,valGetl4,valGet2valGet3valGet4valGet5,valGet6,valGet7,valqet8,valGet9)

(Seq2 I
Va112) \va1Ass1,va1Ass10,va1Ass11,va1Ass12va1Ass13 valAssl4,valAssl6,valAssl7,valAsslB,valAss2,v
alAss3 valAss4 valAss5 valAss6, valAss7 valAss8 valAss9 valGet0 valGetl valGetlO valGetil valGetl2
,valGetl3,valGetl4,valGet2,valGet3 ,valGet4,valGet5,valGet6,valGet7valGet8,valGet9}

(valAssl2.Seq2 I
Va16)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4valAssl6,valAssl7,valAsslS,valAss2,va
lAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGet0,valGetl,valGetlO,valGetll,valGetl2,
valGetl3,valGetl4,valGet2,valGet3,valGet4,valGet5,valGet6valGet7valGet8,valGet9)

((valGet4. valAss8.Seq2 + va1Get5. valAsslO.Seq2 + valGet6. valAssl2.Seq2 +
va1Get7.va1Ass14.Seq2 + va1Get8. valAssl6.Seq2 + va1Get9. valAsslS.Seq2 + valGetlO. valAss4.Seq2
+ valGetil. 'valAss4.Seq2 + valGetl2. valAss4.Seq2 + va1Get13. valAss4.Seq2 +
va1Get14. valAss4.Seq2) I
$va1Get6.Va16)\Cva1ss1,va1Ass10,va1Ass11,va1Ass12,va1Ass13,va1Ass14,va1Ass16,va1Ass17,va].Ass18
valAss2,valAss3,valAss4,va].Ass5,va].Ass6valAss7,valAss8,valAss9,valGet0,valGetivajGetlO,valGetll
,valGetl2,valGetl3,valGetl4,valGet2,valGet3,valGet4,valGet5valGet6,valqet7,valGet8,valqet9)

(1.(valGet4. valAss8.Seq2 + va1Get5. valAsslO.Seq2 + va1Get6. valAssl2.Seq2 +
va1Get7.va1Ass14.Seq2 + valGet8. valAssl6.Seq2 * va1Get9. 'valAsslS.Seq2 + valGetlO. valAss4.Seq2
+ valGetll. valAss4.Seq2 + va1Get12. valAss4.Seq2 * va1Get13. valAss4.Seq2 +
va1Get14. valAss4.Seq2) I
$valGet6.Va16)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6,valAssl7,valAssl8,
valAss2,valAss3 ,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGet0,valGetl,valGetlQ,valGetll
,valGetl2valGetl3,valGetl4,valGet2,valGet3,valGet4,valGet5valqet5,valqet7,valqetg,valqet9)

(2.(va1Get4. valAss8.Seq2 + va1Get5. valAsslO.Seq2 + va1Get6. valAssl2.Seq2 +
va1Get7.va1Ass14.Seq2 + valGet8. valAsslG.Seq2 + va1Get9. valAssl8.Seq2 + valGetlO. valAss4.Seq2
+ valGetll. valAss4.Seq2 + valGet12. valAss4.Seq2 + va1Get13. valAss4.Seq2 *
va1Get14. valAss4.Seq2) I
$va1Get6.Va16)\va1Ass1va1Ass10,va1Ass11va1Ass12,va1Ass13,va1Ass14,va1Ass16,va1Ass17,va1Ass18,
valAss2,valAss3valAss4,valAss5,valAss6valAss7,valAss8,valAss9,valGetQ,valGetivalGetlQ,valGetll
,valGetl2 ,valGetl3,valGetl4valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,valGet8,valGet9)

(Seq3 I
Va16)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3valAssl4,valAssl6,valAssl7valAssl8,valAss2va
lAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGetQ,valGetl,valGetjO,valGetll,valGetl2,
valGetl3valGetl4,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7valGet8,valqet9)

(valAss6.Seq3 I
Va14) \{valAssl,valAsslOvalAssllvalAssl2 ,valAssl3 ,valAssl4,valAssl6,valAssl7 ,valAssl8valAss2 ,va
lAss3 valAss4,valAsst,valAss6,valAss7,valAss8,valAss9valGet0valGetl,valGetlO,valGetll,valGetl2,
va1Get13va1Get14,va1Get2,va1Get3va1Get4,va1Get5,va1Get6,va1Get7,va1Get8va1Get9)

(Seq2 I
Va14)\{valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6,valAssl7,valAssl8,valAss2,va
lAss3,valAss4,valAss5,valAss6,valAss7,valAss8valAss9,valGet0,valGetl,valGetlO,valGetll,va1Get12,
valGetl3,valGetl4valGet2,valGet3,valGet4valGet5valGet6,valGet7,valqet8,valqet9)

Seq

Appendix C: CCS Models and Experiments for CWB
	

248

Figure 3.8

Model
bi Seql va1Ass4.Seq2

bi Seq2)valGet4. valAss6 .Seq3+valGet5. valAss7 .Seq3+valGet6. valAss8.Seg3\
+valGet7 .valAss9 .Seq3+valGet8. valAssl0Seq3+valGet9 valAssli .Seq3\
+valGetlQ $O-i-valGetll $O+valGetl2 $0)

bi Seq3 3.Seq2

bi ValO valAssl .Vall+valAss2 .Va12+valAss3 .Val3+valAss4 .Va14\
+valAss5 .Va15+valAss6 .Va16+valAss7 .Va17-i-valAss8 .Va18\
+vaiAss9 .Va19+valAssl0 .VaiiO+valAssil .Valll+valAssl2 .Vall2+\
vaiAssl3.Vall3+valAssi4.Va114+ $valGet0.ValO

bi Vail valAssi .Vall+valAss2 .Va12+vaiAss3 .Va13+vaiAss4 Va14\
+valAss5 .Val5+valAss6 .Va16+vaiAss7 .Va17-fvalAss8 .Va18\
+vaiAss9 .Va19+vaiAssi0 .VailO+vaiAssll .Valll+valAssi2 .Va112+\
valAssl3 .Va113+valAssl4 .Vali4+ $ valGetl .Vall

bi Va12 vaiAssl .Vali+valAss2 .Va12+valAss3 .Vai3+valAss4 .Val4\
+valAss5 Vai5+valAss6 .Vai6+valAss7 .Va17+vaiAss8 .Val8\
+valAss9 .Vai9+valAsslO .ValiO+valAssii .Valll+vaiAssl2 .Va112*\
valAssl3 .Vail3+vaiAssi4 .Vall4+ $ vaiGet2 .Vai2

bi Va13 valAssi .Vall+valAss2 .Va12+valAss3 .Va13+valAss4 .Vai4\
+valAss5 .Va15+vaiAss6 .Val6+vaiAss7 .Vai7+valAss8 .ValB\
+valAss9 .Va19+valAsslO .VailO+valAssll .Valll*valAssl2 .Vall2+\
valAssl3 .Va113+valAssl4 .Va114+ $ valqet3 .Va13

bi Va14 valAssl .Vall+valAss2 .Va12+valAss3 .Vai3+valAss4 .Va14\
i-valAss5 .Vai5+valAss6 .Va16+valAss7 .Va17+valAss8 .Va18\
+valass9 .Va19+valAsslO .VallO-'-valAssli .Vaili+valAssi2 .Vail2+\
valAssl3 .Vail3+valAssl4 Va114+ $ valGet4 .Vai4

bi Va15 valAssi .Vall+valAss2 .Va12+valAss3 .Vai3+valAss4 .Va14\
+valAss5 .Va15+valAss6 .Va16+valAss7 .Va17+valAss8 .ValS\
+valAss9 .Va19+valAssl0 .Vali0+valAssll .Valli+vaiAssl2 .Va112+\
valAssl3 .Va113+valAssl4 .Vall4+ $ 'valGet5 .Va15
bi Va16 vaiAssl .Vall+valAss2 Va12+valAss3 .Val3+vaiAss4 .Vai4\
+valAss5 .Va15+valAss6 .Va16+valAss7 .Va17+vaiAssS .Va18\
+valAss9 .Va19+valAsslO .VallO+valAssli Valli+valAssl2 .Vall2+\
valAssi3 .Va113+valAssl4 .Va114+ $ valGet6 .Vai6
bi Va17 valAssl.Vali+vaiAss2.Vai2+valAss3.Va13+valAss4.Va14\
-'-valAssS .Va15+valAss6 .Va16+valAss7 .Va17+valAssS .Val8\
+valAss9 .Va19+vaiAssl0 .VallO+valAssll .Valll+valAssl2 .Vall2+\
va1Ass13 .Va113+valAssl4 .Vail4+ $ valGet7 .Va17
bi ValS vaiAssl .Vall+valAss2 Va12+valAss3 .Va13+valAss4 .Va14\
+valAss5 .Va15+valAss6 .Va16+valAss7 .Va17+valAssS .Va18\
+valAss9 .Va19+valAsslO .VallO+valAssll .Valli+valAssl2 .Vall2+\
valAssl3 .Va113+valAssl4 Valll+ $ valGet8 .Va18
bi Va19 valAssi .Vall-i-valAss2 .Va12+valAss3 .Va13-I-valAss4 .Val4\
+valAss5 .Val5+valAss6 .Vai6+vaiAss7 .Val7+valAss8 .Va18\
+valAss9 .Va19+valAsslO .VallO+valAssli .Valli+valAssl2 .Va112-i-\
valAssl3 .Va113+valAssl4 .Vali4+ $ valGet9 .Vai9
bi VallO vaiAssl .Vall*valAss2 .Va12*vaiAss3 .Va13+valAss4 .Val4\
+valAss5 .Val5+valAss6 .Va16+valAss7 .Va17+valAss8 .Va18\
+valAss9 .Val9-i-valAssio .VallO+valAssll .Valll+valAssl2 .Va112+\
valAssl3 .Va113+valAssl4 .Vall4+ $ valGetlO .VallO
bi Valil valAssi .Vail+valAss2 .Val2+valAss3 .Val3+vaiAss4 .Val4\
+valAss5 .Va15+valAss6 .Va16+vaiAss7 .Va17+valAss8 .Vai8\
+valAss9 .Va19+valAsslO .VallO+valAssll .Valll+valAssl2 .Vall2-f-\
valAssl3 .Va113+valAssl4 .Vall4+ $ valGetll .Valll
bi Va112 valAssl .Vali+valAss2 .Va12+vaiAss3 .Va13+valAss4 .Va14\
+valAss5 .Va15+valAss6 .ValS+valAss7 .Val7+valAss8 .Va18\
+valAss9 .Va19+valAsslO .VallO+valAssll .Valli+valAssl2 .Va112+\
valAssl3 .Va113+valAssl4 .Va114+ $ valGeti2 .Va112
bi Va113 valAssi .Vall+valAss2 .Val2+valAss3 .Va13+vaiAss4 .Va14\
+valAss5 .Va15+valAss6 .Va16+vaiAss7 .Vai7+valAss8 .ValS\
+valAss9 .Vai9+valAsslo .VallO+valAssll .Valll+valAssl2 .Vall2+\
valAssl3 .Vali3+valAssl4 .Va114+ $ 'valGetl3 .Vali3
bi Va114 valAssi .Vall+valAss2 .Vai2+valAss3 .Vai3+vaiAss4 .Va14\
+valAss5 .Va15*valAss6 .Va16+valAss7 .Va17-f-valAss8 .Vai8\
+valAss9 .Va19+valAssl0 .VailO+valAssil .Valll+vaiAssl2 .Va112+\
valAssl3 .Va113-fvalAssl4.Vall4+ $ vaiGetl4.Va114

bi Seq)Seql I ValO)\
\valAssl,valAss2,valAss3,valAss4,valAss5valAss6,vaiAss7valAssS,valAss9 \
valAsslO,valAssll,valAssi2,valAssl3 ,valAssl4vaiAssl6valAssi7 ,valAssl8 \
valGet0valGetivalGet2,valGet3,valGet4,valGet5valGet6,valGet7 \
valGet8,valGet9,valGetl0,valGetll,valGetl2,valGetl3valGetl4)

Appendix C: CCS Models and Experiments for CWB 	 249

Output

Command: states Seq
($0 I

$valGetlO.VallO)\{valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6,valAssl7,valAssl
8,va1Ass2va1Ass3,va1Ass4,va1Ass5,va1Ass6,va1Ass7,va1Ass8,va1Ass9,va1GetOva].Get1,va1Get1Qva1Get
11,valGetl2,valGetl3,valGetl4,valGet2,valGet3valqet4,valqet5,valqet6valGet7,valqet8valqet9)

($0 I
VallO)\(valAssl,valAsslO,valAssllvalAssl2,valAssl3,valAssl4,valAssl6,valAssl7,valAssl8valAss2v
alAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9valGet0,valGetl,valGetlQ,valGetll,valGetl2
,valGetl3valGetl4,valGet2,valGet3valGet4,valGets,valGet6valGet7,valqet8,valGet9}

(Seq2 I
$valGetlO.VallO)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3valAssl4,valAsslS,valAssl7,valAssl
8valAss2,valAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGetO,valqetl,valGetlOvalGet
11, valGetl2 valGetl3 valGetl4 valGet2 valGet3 valGet4 valGet5 valGet6 valGet7 valGetS valGet9)

(1.Seq2
$valGetlO.VallO)\(valAssl,valAsslOvalAssll,valAssl2,valAssl3,valAssl4,valAssl6valAssl7,valAssl
8,valAss2,valAss3,valAss4,valAss5valAss6,valAss7valAssS,valAss9,valGetQ,valGetl,valGetlQ,valGet
11,valGetl2,valGetl3 va1Get14,va1Get2,va1Get3,va1Get4,va1Get5,va1Get6,va1Get7,va1Get8,va1Get9)

(2.Seq2
$va1Get10.Va110)\(va1Ass1va1Ass1O,va1Ass11,va1Ass12,va1Ass13va1Ass14,va1Ass16,va1Ass17,va1Ass1
8valAss2,valAss3 ,valAss4,valAss5,valAss6,valAss7,valAss8valAss9valGetOvalqetl,valGetlQ,valGet
11,valGetl2valGetl3,valGetl4,valGet2,valGet3,valGet4valGet5valGet6,valGet7,valGet8,valqet9)

(Seq3 I
VallO)\(valAssl,valAsslO,valAssllvalAssl2,valAssl3,valAssl4,valAssl6valAss17,valAsslS,valAss2,v
alAss3,valAss4,valAssSva1Ass6,valAss7valAss8,valAss9valGet0,valGetl,valGetlQ,valGetll,valGetl2
,valGetl3,valGetl4valGet2,valGet3valGet4,valGet5,valGet6,valGet7,valGetSvalqetg)

(valAsslO.Seq3 I
Va18)\(valAsslvalAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6,valAssl7,valAssl8,valAss2,va
lAss3,valAss4valAss5,valAss6,valAss7,valAssS,valAss9,valGetQ,valGetl,valGetlO,valGetll,valGetl2,
valGetl3 valGetl4 valGet2 valGet3 valGet4 valets valGet6 valqet7 valGet8 valcet9)

(Seq2
$valGet8.Va18)\{valAss1,valAsslQvalAssll,va1Assl2,valAssl3,valAss14,valAss16,va1Assl7va1Ass18,
valAss2,valAss3valAss4,valAss5,valAss6valAss7,valAss8,valAss9valqetO,valGetj,valqetlO,valGetll
valGetl2,valGetl3,valGetl4,valGet2,valGet3,va1Get4,valGet5,valGet6,va].Get7,valqet8,valqetg)
(1.Seq2 I

$valGetS.Va18)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6,valAssl7,valAssl8,
valAss2,valAss3,valAss4valAss5,valAss6,valAss7,valAssS,va1Ass9,valGetOvalGetl,va1GetlO,valGetlj
valGetl2 valGetl3 , valGetl4 valGet2 valGet3 valGet4 valGet5 , valGet6 , valGet7 , valGet8 valGet9

(2.Seq2 I
$'valGet8.Va18)\CvalAssl,valAsslO,valAssll,valAssl2,valAssl3,valAss14,valAss16,va1Assl7,valAssl8,
valAss2,valAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGeto,valGetl,valGetlo,valGetll
,valGetl2,valGetl3,valGet14,valGet2,valGet3,valGet4,valGet5,valqet6,valGet7,valGet8,valqet9)

(Seq3
Va18)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAsslS,valAssl7,valAssl8,valAss2,va
lAss3,valAss4,valAss5,valAss6,valAss7,valAssS,valAss9,valGetQ,valGetl,v51Get10,valGetll,valGetl2
valGetl3 ,valGetl4,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,valqet8,valqet9)

(valAss8.Seq3 I
Va16)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,va1Assl4,valAssl6,valAssl7,va1Ass18,va1Ass2,va
lAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGetQ,valGetl,valGet1O,valGetll,valGetll,
valGetl3,valGetl4,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,vajGet8,valGet9)

(Seq2 I
$'va1Get6.Va16)\va1Ass1,va1Ass10,va1Ass11,va1Ass12,va1A5s13,va1Ass14,va1Ass16,va1Ass17,va1Ass18,
valAss2,valAss3,valAss4,valAss5,valAss6,valAss7,valAssS,valAss9,va1GetQ,valGetl,va1GetlQ,valGetll
valGetl2 , valGetl3 , valGetl4 , valGet2 , valGet3 , valGet4 , valGet5 , valGet6 , valGet7 valGet8 , valGet9)

(1.Seq2 I
$'va1Get6.Va16)\va1Ass1,va1Ass1O,va1Ass11,va1Ass12,va1Ass13,va1Ass14,va1Ass16,va1Ass17,va1Ass18,
valAss2,valAss3,valAss4,valAss5,valAss6,valAss7,valAss8,va1Ass9,valGetQ,valGetl,valGetlo,valGetll
valGetl2 valGetl3 , valGetl4 , valGet2 , valGet3 , valGet4 , valGet5 , valGet6, valGet7 , valGet8 , valGet9

(2.Seq2 I
$ 'valGet6.Va16)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAss14,va1Ass16,valAssl7,valAss18,
valAss2,valAss3,valAss4,valAsss,valAss6,valAss7,valAssB,valAss9,valGetQ,valGet1,valGetlO,va1Get1l
,valGetl2,valGetl3,valGetl4,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,valGet8,va1Get9}

(Seq3 I
Va16)\{valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6,valAssl7,valAsslB,valAss2,va
lAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,valGeto,valGet1,va1Get1Q,valGet1l,va1Getl2,
valGetl3,valGetl4,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,valGet8,valqet9}

('valAss6.Seq3 I
Va14)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAss14,va1Ass16,va1Ass17,valAssl8,va1Ass2,va
lAss3,valAss4,valAss5,valAss6,valAss7,valAss8,valAss9,va1Get0,valGetl,valGetlQ,valGetll,valGetll,
valGetl3,valGetl4,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,valGet8,valGet9)

(Seq2 I
Va14)\(valAssl,valAsslO,valAssll,valAssl2,valAssl3,valAssl4,valAssl6,valAss17,valAssl8,va1Ass2,va
lAss3,valAss4,valAssS,valAss6,valAss7,valAss8,valAss9,valGetO,va1Get1,valGetlO,valGetll,valGetl2,
valGetl3 ,valGetl4,valGet2,valGet3,valGet4,valGet5,valGet6,valGet7,valGet8,valGet9)

Seq

Appendix C: CCS Models and Experiments for CWB 	 250

Figure 3.9

Model

bi Station)3.Packet I 2.Station)
bi Packet $0

Output

Command: sim Station

Simulated agent: Station
Transitions

1: 	1 ---> 2.Packet I l.Station

Sirs> 1
1 ---->

Simulated agent: 2.Packet 	l.Station
Transitions:

1: 	1 ---s l.Packet I Station

Sim> 1
1 --->

Simulated agent: iPacket 	Station
Transitions:

1: --- 1 ---> Packet 	(2.Packet I l.Station)

Sirs> 1
1 --->

Simulated agent: Packet)2.Packet I l.Station)
Transitions:

1: --- 1 ---> $0 I)l.Packet I Station)

Sirs> 1
1 --->

Simulated agent: $0 I)l.Packet I Station)
Transitions:

1: ---- 1 ---> $0 I)Packet)2.Packet I l.Station))

Sims 1
1 --->

Simulated agent: $0 I)Packet I)2.Packet I l.Station))
Transitions:

1: --- 1 ---> $0 I)$0 I)l.Packet I Station))

Sim> 1
1 --->

Simulated agent: $0 I)$0 I)LPacket I Station))
Transitions:

1: --- 1 ---> $0 I ($0 I)Packet I)2.Packet I l.Station)))

Appendix C: CCS Models and Experiments for CWB 	 251

Figure 3.10

Model

hi Station (3. pSched.$O I 2.Station)
bi Packet $psched.$O

Output

Command: sim Station

Simulated agent: Station
Transitions:

1: 	1 ---> 2. pSched.$O I 1.Station

Sim> 1
1 --->

Simulated agent: 2. pSched.$0 I l.Station
Transitions:

1: 	1 ----> 1. 'pSched.$O 	Station

Sim> 1
1 --->

Simulated agent: 1. pSched.$0 	Station
Transitions:

1: 	1 ---> pSched.$O I (2. pSched.$0 	1.Station(

Sim> 1
1 --->

Simulated agent: pSched.$0 I (2. pSched.$0 I 1.Station(
Transitions:

1: 	'pSched ---> $0 I (2. pSched.$0 I l.Station)

Sim> 1
pSched --->

Simulated agent: $0 I (2. pSched.$0 	l.Station)
Transitions:

1: 	1 ---> $0 	(1. pSched.$O I Station(

Sim> 1
1 --->

Simulated agent: $0 I (1. pSched.$0 I Station(
Transitions:

1: 	1 ---> $0 I (pSched.$0 I (2. pSched.$0 	1.Station()

Simm 1
1 --->

Simulated agent: $0 I (pSched.$O 	(2. pSched.$0 I l.Station((
Transitions:

1: 	pSched ---> $0 1 ($0 I (2. pSched.$O I l.Station()

Appendix C: CCS Models and Experiments for CWB 	 252

Figure 3.11

Model
hi Boat ($'jacql.$tugacq2.1.tugrel2.1.$tugacql.l.tugrell.jrell.$O\
2.Boat)

hi Tugs3 $tugacql.Tugs2 + $tugacq2.Tugsl + $tugacq3.TugsO
bi Tugs2 $tugacql.Tugsl * $tugacq2.TugsO * $tugrell.Tugs3
hi Tugsl $tugacql.TugsO + $tugrell.Tugs2 + $tugrel2.Tugs3
bi TugsO $tugrell.Tugsl + $tugrel2.Tugs2 + $tugrel3.Tugs3

bi Jetties2 $jacql.Jettiesl + $jacq2.JettiesO
bi Jettiesi $jacql.JettiesO + $jrell.Jetties2
hi JettiesO $jrellJettiesl + $jrel2.Jetties2

hi Model (Boat I Tugs3 J Jetties2)\(tugacql,tugacg2tugacq3,\
tugrell,tugrel2tugrel3,jacql,jacq2jrell,jrel2)

Output
Command: sic Model
Simulated agent: Model
Transitions:

t<jacql> ---> (($tugacq2.1. tugrel2.l.$'tugacql.l. tugrell. jrell.$O I 2.Boat(I
Tugs3 I Jettiesl(\(jacql,jacq2jrelljrel2tugacql,tugacq2tugacq3,tugrell,tugrel2,tugrel3)

1 ---> (($jacql.$tugacq2.1. tugrel2.1.$tugacql.l. tugrell. jrell.$O I l.Boat)
($tugacql.Tugs2 + $tugacq2.Tugsl + $tugacq3.TugsO) I ($jacql.Jettiesl +
$jacq2.JettiesO)(\(jacgl,jacq2,jrell,jrel2,tugacql,tugacq2tugacq3,tugrell,tugrel2,tugrel3)
Sim> 1

t<jacql> --->
Simulated agent: (($tugacq2.1. tugrel2.l.$tugacql.l. tugrell. jrell.$O I 2.Boat(I Tugs3
Jettiesl)\{jacql,jacq2,jrell,jrel2,tugacql,tugacq2tugacq3,tugrell,tugrel2,tugrel3}
Transitions:

t<tugacq2> ---> ((1. tugrel2.l.$tugacql.l. tugrell. jrell.$O I 2.Boat(Tugsl
Jettiesl)\{jacql,jacq2jrell,jrel2tugacqltugacq2,tugacq3,tugrell,tugrel2tugrel3}

1 ---> (($tugacq2.1. tugrel2.l.$tugacgl.l. tugrell. jrell.$O I l.Boat(I
($tugacql.Tugs2 + $tugacq2.Tugsl + $tugacq3.TugsO) I ($jacql.JettiesO +
$jrell.Jetties2((\(jacql,jacq2,jrell,jrel2tugacqltugacq2,tugacq3tugrell,tugrel2,tugrel3)
Sim> 1

t<tugacq2> --->
Simulated agent: ((1. tugrel2.l.$tugacql.1. tugrell. jrell.$O I 2.Boat(I Tugsl
Jettiesl(\{jacql,jacq2jrell,jrel2tugacql,tugacg2,tugacg3tugrell,tugrel2,tugrel3}
Transitions:

1: 	1 ---> ((tugrel2.1.$tugacql.1. tugrell. jrell.$O I l.Boat) I ($tugacql.TugsO +
$tugrell.Tugs2 + $tugrel2.Tugs3(I ($jacql.JettiesO +
$jrell.Jetties2((\(jacql,jacq2jrell,jrel2tugacql,tugacq2,tugacq3tugrelltugrel2,tugrel3}
Sim> 1

1 --->
Simulated agent: ((tugrel2.1.$tugacql.l. tugrell. jrell.$O I l.Boat) I ($tugacql.TugsO +
$tugrell.Tugs2 + $tugrel2.Tugs3) I ($jacql.JettiesO +
$jrell.Jetties2)(\{jacql,jacq2,jrell,jrel2,tugacgl,tugacq2,tugacg3tugrell,tugrel2tugrel3}
Transitions:

1: 	t<tugrel2> ---> ((l.$tugacql.1. tugrell. jrell.$O I l.Boat) I Tugs3 I
($jacql.JettiesO +
$jrell.Jetties2))\(jacql,jacq2,jrell,jrel2tugacqltugacq2,tugacq3,tugrell,tugrel2,tugrel3)
Sim> 1

t<tugrel2> --->
Simulated agent: ((l.$tugacql.1. tugrell. jrell.$O I l.Boat) I Tugs3 I ($jacql.JettiesO *
$jrell.Jetties2((\(jacgl,jacg2jrell,jrel2,tugacql,tugacq2,tugacq3,tugrelltugrel2tugrel3}
Transitions:

1: 	1 ---> (($tugacql.l. tugrell. jrell.$O I Boat(I ($tugacql.Tugs2 + $tugacq2.Tugsl
$tugacq3.TugsO(I ($jacql.JettiesO +
$jrell.Jetties2((\(jacql,jacq2jrell,jrel2,tugacgl,tugacq2,tugacq3tugrell,tugrel2tugrel3)
Sim> 1

1 --->
Simulated agent: (($tugacql.1. tugrell. jrell.$O I Boat(I ($tugacql.Tugs2 + $tugacq2.Tugsl
$tugacq3.TugsO(($jacql.JettiesO +
$jre1l.Jetties2((\jacq1jacq2jrelljrel2,tugacql,tugacq2tugacq3,tugrelltugrel2tugrel3}
Transitions:

t<jacql> ---> (($tugacql.l. tugrell. jrell.$O
($tugacq2.1.tugrel2.1.$tugacql.l.tugrell.jrell.$O I 2.Boat((I ($tugacql.Tugs2 +
$tugacq2.Tugsl + $tugacq3.TugsO(I
JettiesO)\(jacqljacq2,jrelljrel2tugacql,tugacq2,tugacq3tugrell,tugrel2tugrel3}

t<tugacql> ---> ((1. tugrell. jrell.$O I Boat(I Tugs2 I ($jacql.JettiesO +
$jre1l.Jetties2))\jacq1jacq2,jre1ljrel2tugacql,tugacq2,tugacq3tugre1ltugrel2,tugrel3}

1 ---> (($tugacql1. tugrell. jrell.$O I
($jacql.$tugacq2.1.tugrel2.1.$tugacql.1.tugrell.jrell.$O I l.Boat)(I ($tugacql.Tugs2 +
$tugacq2.Tugsl + $tugacq3.TugsO(I ($jacql.JettiesO +
$jrell.Jetties2((\(jacql,jacq2,jrell,jrel2,tugacql,tugacq2,tugacq3tugrell,tugrel2tugrel3)

Sim> 1
t<jacql> --->

Appendix C: CCS Models and Experiments for CWB 	 253

Simulated agent: (($tugacql.1. tugrell. jrell.$0
($tugacq2.1.tugrel2.1.$tugacql.l.tugrell.jrell.$0 I 2.Boat)(I ($tugacql.Tugs2 *
$tugacq2.Tugsl + $tugacq3.Tugso)
Jettieso)\(jacql,jacq2,jrelljrel2,tugacqltugacq2tugacq3,tugrell,tugrell,tugrel3)
Transitions:

t<tugacq2> ---> (($tugacgl.1. tugrell. jrell.$0 I
(1. tugrel2.1.$tugacql.1. tugrell. jrell.$0 I 2.Boat)) I Tugsl
Jetties0)\{jacql,jacq2jrell,jrel2,tugacqltugacq2,tugacq3,tugrelltugrel2,tugrel3}

t<tugacql> ---> ((1. tugrell. jrell.$0
($tugacq2.1. tugrel2.1.$tugacql.1. tugrell. jrell.$0 I 2.Boat)(I Tugs2
Jettieso)\(jacqljacq2,jrelljrel2tugacqltugacq2tugacq3tugrelltugrel2tugrel3)

1 ---> (($tugacql.1. tugrell. jrell.$0 I
($tugacq2.1. tugrel2.1.$tugacql.1.tugrell.jrell.$0 I 1.Boat)) I ($tugacql.Tugs2 +
$tugacq2.Tugsl + $tugacq3.Tugso) I ($jrell.Jettiesl +
$jrel2 .Jetties2) (\(jacql jacq2, jrell jrel2 tugacqi, tugacq2 tugacq3, tugrell, tugrel2, tugrel3)
Sim> 1

t<tugacq2> --->
Simulated agent: (($tugacql.l. tugrell. jrell.$0 I (1. tugrel2.1.$tugacql.l. tugrell. jrell.$0
I 2.Boat)) I Tugsl
JettiesO)\(jacqljacq2,jrelljrel2,tugacql,tugacq2,tugacq3,tugrell,tugrel2tugrel3)
Transitions:

t<tugacql> ---> ((1.tugrell. 'jrell.$O I (l.'tugrel2.1.$tugacql.l.tugrell.jrell.$0
I 2.Boat)) I Tugs0 I
JettiesO)\(jacgl,jacq2jrell,jrel2,tugacql,tugacq2tugacq3tugrelltugre].2,tugre].3)

1 ---> (($tugacql.l.tugrell.jrell.$0 I (tugrel2.1.$tugacql.l.tugrell.jrej.1.$0
l.Boat() I ($tugacql.TugsO + $tugrell.Tugs2 + $tugrel2.Tugs3) I ($jrell.Jettiesl +
$jrel2.Jetties2))\(jacql,jacq2,jrell,jrel2,tugacql,tugacq2,tugacq3tugrelltugrel2,tugrel3}
Sim> 1

t<tugacql> --->
Simulated agent: ((1. 'tugrell. jrell.$0 I (1. tugrel2.l.$tugacql.l. tugrell. jrell.$0 I 2.Boat))
Tugs0 I JettiesO)\{jacql,jacq2,jrell,jrel2,tugacql,tugacq2,tugacq3tugrell,tugrel2,tugrel3}

Transitions:
1: 	1 ---> (('tugrell.jrell.$O I ('tugrel2.1.$tugacql.l.tugrell. jrell.$O I l.Boat))

($tugrell.Tugsl + $tugrel2.Tugs2 + $tugrel3.Tugs3) I ($jrell.Jettiesl +
$jrel2.Jetties2()\(jacql,jacq2jrell,jrel2,tugacqltugacq2,tugacq3,tugrell,tugrel2,tugre].3)
Sim> 1

1 --->
Simulated agent: ((tugrell. jrell.$0 I ('tugrel2.1.$tugacql.l. tugrell. jrell.$0 I l.Eoat))
($tugrellTugsl + $tugrel2.Tugs2 + $tugrel3.Tugs3) I ($jrell.Jettiesl +
$jrel2.Jetties2))\{jacql,jacq2,jrell,jrel2,tugacql,tugacq2,tugacq3,tugrelltugrel2,tugrel3}
Transitions:

t<tugrell> ---> (('jrell.$O j (tugrel2.1.$tugacql.l. tugrell. jrell.$0 I l.Boat))
Tugsl I ($jrell.Jettiesl +
$jrel2.Jetties2))\(jacql,jacq2,jrell,jrel2tugacql,tugacq2,tugacq3,tugrell,tugrel2,tugrel3)

t<tugrel2> ---> ((tugrell. jrell.$O I (1.$tugacql.1. tugrell. jrell.$0 I 1.Boat))
Tugs2 I ($jrell.Jettiesl +
$jrel2.Jetties2))\Cjacql,jacq2jrelljrel2,tugacql,tugacq2tugacq3tugrelltugrel2tugrel3}
Sim> 1

tetugrell> --->
Simulated agent: (('jrell.$O I ('tugrel2.1.$tugacql.1. tugrell. jrell$O I 1.Boat)) I Tugsl
($jrell.Jettiesl +
$jrel2.Jetties2)(\{jacql,jacq2,jrell,jrel2,tugacgltugacq2tugacq3,tugrell,tugrel2tugrel3}
Transitions:

t<jrell> ---> (($0 1 (tugrel2.1.$tugacql.1. tugrell. jrell.$0 I 1.Boat() 	Tugsl
Jetties1(\jacq1,jacq2,jrel1,jrel2tugacql,tugacq2,tugacq3,tugrell,tugrel2,tugrel3)

---. t<tugrel2> ---> (('jrell.$O I (1.$tugacql.1. tugrell. jrell.$0 I l.Soat() I Tugs3
($jrell.Jettiesl +
$jre12.Jetties2))\jacq1,jacq2,jre11jre12tugacq1,tugacq2,tugacq3,tugre11,tugrel2,tugrel3}
Sim> 1

t<jrell> --->
Simulated agent: (($0 I ('tugrel2.1.$'tugacql.1. 'tugrell. jrell.$0 I 1.Boat)(I Tugsl I
Jettiesl(\{jacql,jacq2,jrell,jrel2,tugacql,tugacq2,tugacq3,tugre].].,tugrel2,tugrel3)
Transitions:

1: 	t<tugrel2> ---> (($0 I (1.$tugacql.1. tugrell. jrell.$0 I 1.Boat)(I Tugs3 I
Jettiesl(\{jacql,jacq2jrelljrel2,tugacql,tugacq2tugacq3tugre].l,tugrel2tugrel3)
Sim> 1

t<tugrel2> --->
Simulated agent: (($0 I (1.$'tugacql.l. tugrell. jrell$0 I 1.Boat((I Tugs3 I
Jettiesl(\{jacql jacq2, jrell jrel2, tugacql, tugacq2 tugacq3, tugrell tugrel2, tugrel3)
Transitions:

1: 	1 ---> (($0 I ($tugacql.1. 'tugrell. jrell.$0 I Boat((I ($tugacql.Tugs2 +
$tugacq2.Tugsl + $tugacq3.Tugso(I ($jacqlJettieso +
$jrell.Jetties2((\{jacql,jacq2,jrell,jrel2,tugacql,tugacq2,tugacq3,tugre].ltugrel2tugrel3}
Sim> 1

1 --->
Simulated agent: (($0 I ($tugacql.1. tugrell. jrell.$0 I Boat() I ($tugacql.Tugs2 +
$tugacq2.Tugsl + $tugacq3.Tugso(I ($jacql.Jettieso +
$jrell.Jetties2()\(jacql,jacq2,jrell,jrel2,tugacql,tugacq2tugacq3tugrell,tugrel2tugrel3)
Transitions:

t<jacql> ---> (($0 I ($tugacql1. tugrell. jrell$0 I
($'tugacq21.tugrel2.1.$'tugacql.ltugrell.jrell.$0 I 2.Boat(((I ($tugacql.Tugs2 +
$tugacq2.Tugsl + $tugacq3.TugsO(I
JettiesO(\{jacql, jacq2, jrell, jrel2, tugacql, tugacq2, tugacq3, tugrell, tugrel2, tugrel3}

t<tugacql> ---> (($0 I (1. tugrell. 'jrell$O I Boat((I Tugs2 I ($jacqlJettiesO +
$jrell.Jetties2)(\(jacqljacq2,jrell,jrel2tugacqltugacq2,tugacq3,tugrell,tugrel2,tugrel3}

Appendix C: CCS Models and Experiments for CWB 	 254

Figure 3.13 and 3.15

Model

hi Producer 2. 'widGivel.Producer
hi Consumer $widTakel.1.Consumer

bi WidO $widGivel.Widl
bi Widl $widGivel.Mid2 	$widTakel.MidO
bi Mid2 $widGivel.Mid2 + $widTakel.Midl
bi Wid3 $widGivel.Mid4 + $widTakel.Wjd2
hi Mid4 $widrakel.Mid3

hi Model (Producer I Consumer I WidO(\widTakelwidGivel)

Output

Command: statesobs Model
===> Model
1 ===> (1. widGivel.Producer 	$ widTakel.l.Consumer 	$widGivel.Widl(\widGivel,widTakel}
1 1 ===> (widGivel.Producer 	$widTakel.l.Consumer I $widGivel.Widl(\(widGivel,widTakel}
1 1 ==> (Producer I $widTakel.l.Consumer I Widl(\(widGive1widTakel}
1 1 ==> (Producer 	l.Consumer 	MidO(\{widGivel,widTekel}
1 1 1 ===> (1. widGivel.Producer I $widTakel.l.Consumer I ($widGivel.Mid2 +

$widTakel .MidO((\(widGivel,widTakel)
1 1 1 ===> (1. widGivel.Producer 	l.Consumer I WidO(\(widGivel,widTakel)
1 1 1 1 ===> (widGivel.Producer 	$widTakel.l.Consumer I ($widGivel.Mid2 +

$widTakel.WidO((\{widGivel,widTekel}
1 1 1 1 ===> (widGivel.Producer 	Consumer I $widGivel.Widl(\widGivel,widTakel}
1 1 1 1 ===> (widGivel.Producer 	l.Consumer 	WidO(\(widGivel,widTekel)
1 1 1 1 ===> (Producer 	$widTekel.l.Consumer I Wid2(\{widGivel,widTakel)
1 1 1 1 ===> (Producer 	l.Consumer 	Midl(\(widGivel,widTakel}
1 1 1 1 1 ===> (1. widGivel.Producer I $widTakel.l.Consumer I

$widpakel . Midl (\ {widGivel, widTakel)
1 1 1 1 1 1 ===> (widGivel.Producer I $widTakel.l.Consumer

$widTakel .Widl (\ (widGivel widrakel)
=== 1 1 1 1 1 1 ===> (widGivel.Producer 	Consumer I ($widGivel.Mid2 +
$widTakel .WidO() \(widGivelwidTakel)

1 1 1 1 1 1 => (widGivel.Producer 	l.Consumer I Midl(\(widGivel,widTekel}
1 1 1 1 1 1 ===> (Producer I l.Consumer I Wid2(\(widGive1,widTake1)

Figure 3.17

Model

hi Ferry $cooptFQ1.1. schedl.l.Ferry + $cooptFQ2.1. sched2.l.Ferry
+ $cooptFQ3.1. sched3.l.Ferry
bi Carl 1. waitFQl.$schedl.$O
hi Car2 2. waitFQ2.$sched2.$O
hi Car3 3. waitFQ3.$sched3.$O

hi FQ $waitFQ1.FQ1 + $weitFQ2.FQ2 + $waitFQ3.FQ3
hi FQ1 $cooptFQl.FQ + $waitFQ2.FQ12 + $waitFQ3.FQ13
hi FQ2 $cooptFQ2.FQ + $waitFQ3.FQ23 + $waitFQ1.FQ21
hi FQ3 $cooptFQ3.FQ + $waitFQ1.FQ31 + $weitFQ2.FQ32
hi P012 $cooptFQ1.FQ2 + $waitFQ3.FQ123
hi FQ13 $cooptFQ1.FQ3 + $weitFQ2.FQ132
hi FQ21 $cooptFQ2.FQ1 + $waitFQ3.FQ213
hi P023 $cooptFQ2.FQ3 + $waitFQ1.FQ231
hi FQ31 $cooptFQ3.FQl + $waitFQ2.FQ312
hi FQ32 $cooptFQ3.FQ2 + $waitFQl.FQ321
hi P0123 $'cooptFQ1.FQ23
hi P0132 $cooptFQ1.FQ32
hi P0213 $cooptFQ2.FQ13
hi P0231 $cooptPQ2.FQ31
hi P0312 $cooptFQ3.F012
hi P0321 $cooptPQ3.PQ21

hi Model (Ferry I Carl I Car2 I Cer3 I P0 (\{waitFQl,waitFQ2,waitFQ3,\
cooptFQl cooptFQ2, cooptFQ3, schedi, sched2 sched3 }

Appendix C: CCS Models and Experiments for CW.B 	 255

Output
Command: states Model

Model
(($cooptFQl.l. schedl.l.Ferry + $cooptFQ2.1. sched2.1.Ferry + $cooptFQ3.1. sched3.1.Ferry)

waitFQ1.$schedl.$0 I 1. waitFQ2.$sched2.$0 I 2. waitFQ3.$sched3.$0 I ($waitFQl.FQ1 +
$waitFQ2.FQ2 +
$waitFQ3 .FQ3)) \cooptFQl, cooptFQ2, cooptFQ3, schedi, sched2, sched3,waitFQl,waitFQ2,waitFQ3)

(($cooptFQl.1. schedl.l.Ferry + $cooptFQ2.1. 'sched2.1.Ferry + $cooptFQ3.1. sched3.l.Ferry)
$schedl.$0 I 1. 'waitFQ2.$sched2.$O I 2. waitFQ3.$sched3.$0 I
FQ1)\(cooptFQl,cooptFQ2,cooptFQ3, schedi, sched2,sched3,waitFQl,weitFQ2,waitFQ3)

(1. 'schedl.l.Ferry I $schedl.$0 I 1. 'waitFQ2.$sched2.S0 J 2. 'waitFQ3.$sched3.$0 I
FQ) \{cooptFQl, cooptFQ2,cooptFQ3,schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3)

(($cooptFQl.1. 'schedl.l.Ferry + $cooptFQ2.1. sched2.l.Ferry + $cooptFQ3.l. sched3.1.Ferry)
$schedl.$0 I 'waitFQ2.$sched2.$0 I 1. 'waitFQ3.$sched3.$0 I ($waitFQ2.FQ12 + $waitFQ3.F013 +
$ 'cooptFQl .FQ)) \cooptFQl, cooptFQ2,cooptFQ3, schedl, sched2, sched3 ,waitFQl,waitFQ2,waitFQ3)

('schedl.l.Ferry I $schedl.$0 	waitFQ2.$sched2.$0 I 1. 'waitFQ3.$sched3.$0 I ($waitFQl.FQ1
$waitFQ2.FQ2 + $waitFQ3.FQ3))
\(cooptFQl, cooptFQ2,cooptFQ3,schedl sched2, sched3,waitFQl,waitFQ2,waitFQ3)

(l. 'schedl.l.Ferry I $schedl.$0 I waitFQ2.$sched2.$0 I 1. 'waitFQ3.$sched3.$O j FQ)
\(cooptFQl, cooptFQ2,cooptFQ3, schedi, sched2, sched3,waitFQl,waitFQ2,waitFQ3)

((ScooptFQl.l. schedl.l.Ferry + $cooptFQ2.1. sched2.l.Ferry + $cooptFQ3.1. .sched3.1.Ferry)
$schedl.$0 I $sched2.$0 I 1. 'waitFQ3.$sched3.$0 I FQ12)
\ (cooptFQl, cooptFQ2, cooptFQ3, schedi, sched2, sched3 waitFQl waitFQ2 , waitFQ3)

(schedl.l.Ferry I $schedl.$0 I $sched2.$0 I 1. waitFQ3.$sched3$0 I FQ2)
\(cooptFQl, cooptFQ2,cooptFQ3, schedi, sched2,sched3 ,waitFQl,waitFQ2,waitFQ3)

= (1.Ferry I $0 I 'waitFQ2.$sched2.$0 I 1. 'waitFQ3.$sched3.$0 I ($waitFQ1.FQ1 +
$waitFQ2.FQ2 * $waitFQ3.FQ3))
\(cooptFQl, cooptFQ2, cooptFQ3, ached?, sched2,sched3,waitFQl,waitFQ2,waitFQ3)

(1. schedl.1.Ferry I $schedl.$0 I $sched2.$0 I 1. waitFQ3.$sched3.$0I FQ2(
\(cooptFQl,cooptFQ2, cooptFQ3, schedi, sched2, sched3,waitFQl,waitFQ2,waitFQ3)

(($cooptFQl.1. schedl.1.Ferry + $cooptFQ2.1. 'sched2.1.Ferry + $cooptFQ3.1. sched3.l.Ferry(
$schedl.$0 I $sched2.$0 I waitFQ3.$sched3.$0 I ($waitFQ3.FQ123 + $cooptFQ1.FQ2((
\(cooptFQl,cooptFQ2, cooptFQ3, schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3)

(1.Ferry I $0 I $sched2.$0 I 1. waitFQ3.$sched3.$0 I FQ2(
\cooptFQ1, cooptFQ2,cooptFQ3,schedl,sched2, sched3,waitFQl,waitFQ2,waitFQ3}

('schedl.l.Ferry I $schedl.$0 I $sched2.$0 I 'waitFQ3.$sched3.$O I ($waitFQ1FQ21 +
$waitFQ3.FQ23 + $cooptFQ2.FQ()
\(cooptFQl, cooptFQ2, cooptFQ3 , schedl, sched2, sched3 ,waitFQl,waitFQ2,waitFQ3)

(1. schedl.1.Ferry I $schedl$0 I $sched2.$0 I 'waitFQ3.$sched3.$0 I FQ2)
\{cooptFQl, cooptFQ2, cooptFQ3, schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3}

(($cooptFQl.1. schedl.1.Ferry + $cooptFQ2.1. 'sched2.1.Ferry + $cooptFQ3.1. sched3.1.Ferry(
$schedl.$0 I $sched2.$0 I Ssched3.S0 I FQ123(
\(cooptFQl,cooptFQ2, cooptFQ3, schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3)

= (($cooptFQl.1. 'schedl.l.Ferry + $cooptFQ2.1. sched2.l.Ferry +
$cooptFQ3.1. sched3.1.Ferry) I $schedl.$0 I $sched2.$0 I $sched3.$0 I $'cooptFQ1.FQ23)
\ (cooptFQl, cooptFQ2, cooptFQ3 , schedl, sched2 , sched3 , waitFQl , waitFQ2 , waitFQ3

(Ferry I $0 I $sched2.$0 I 'waitFQ3.$sched3.$0 I ($waitFQ1.FQ21 + $waitFQ3.FQ23 +
$ 'cooptFQ2 .FQ((\(cooptFQl, cooptFQ2 , cooptFQ3, schedl, sched2, sched3,waitFQl,waitFQ2 ,waitFQ3(

('schedl.l.Ferry I $schedl.$0 I $sched2.$0 I $sched3.$0 I FQ23(
\ cooptFQ1, cooptFQ2, cooptFQ3 , schedi, sched2, sched3 , waitFQl , waitFQ2 , waitFQ3 I

= (1.Ferry I $0 I $sched2.$0 I waitFQ3.$sched3.$0 I ($waitFQl.FQ21 + $waitFQ3.FQ23 +
$ 'cooptFQ2 .FQ)) \(cooptFQl,cooptFQ2,cooptFQ3,schedl,sched2, sched3,waitFQl,waitFQ2,waitFQ3)

(1. 'schedl.l.Ferry I $schedl.$0 I $sched2.$0 I $sched3.$0 I FQ23(
\ (cooptFQl, cooptFQ2 , cooptFQ3, schedl, sched2, sched3 , waitFQl , waitFQ2 , waitFQ3

(1. 'sched2.1.Ferry I $0 I $sched2.$0 I 'waitFQ3.$sched3.$0 I
FQ(\cooptFQ1,cooptFQ2,cooptFQ3, schedi, sched2,sched3,waitFQl,waitFQ2,waitFQ3)

(Ferry I $0 I $sched2.$0 I $sched3.$0 I FQ23(
\(cooptFQl,cooptFQ2, cooptFQ3, schedl,sched2, sched3,waitFQl,waitFQ2,waitFQ3)

= (($cooptFQl.1. 'schedl.l.Ferry + $cooptFQ2.1. sched2.1.Ferry +
$cooptFQ3.1. 'sched3.1.Ferry(I $0 I $sched2.$0 I $sched3.$0 I ($waitFQ1.FQ231 + $'cooptFQ2.FQ3)(
\(cooptFQl, cooptFQ2,cooptFQ3 schedi, sched2, sched3 ,waitFQl,waitFQ2,waitFQ3)
= (Ferry 1 $0 I $sched2$0 I $sched3.$0 I ($waitFQ1.FQ231 + $'cooptFQ2.FQ3()

\cooptFQ1, cooptFQ2, cooptFQ3, schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3)
(1.Ferry I $0 I $sched2.$0 I $sched3.$0 I FQ23(

\ {cooptFQl, cooptFQ2, cooptFQ3, schedl, sched2, sched3 , waitFQl , waitFQ2 , waitFQ3
= (1.Ferry I $0 I $sched2.$0 I $sched3.$0 I ($waitFQ1.FQ231 + $cooptFQ2.FQ3()

\ (cooptFQl, cooptFQ2 , cooptFQ3, schedi, sched2, sched3 , waitFQl , waitFQ2 , waitFQ3
('schedl.l.Ferry I $schedl.$0 I $sched2.$0 I $sched3.$0 I ($waitFQ1.FQ231 * $'cooptFQ2.FQ3))

\(cooptFQl,cooptFQ2,cooptFQ3, schedl, sched2,sched3 ,waitFQl,waitFQ2,waitFQ3)
(1. 'sched2.1.Ferry I $0 I $sched2.$0 I $sched3.$0 I FQ3(

\(cooptFQl, cooptFQ2, cooptFQ3,schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3}
(sched2.1.Ferry I $0 I $sched2.$0 I $sched3.$0 I ($waitFQl.FQ31 * $waitFQ2.FQ32 +

$ 'cooptFQ3 .FQ() \{cooptFQl, cooptFQ2, cooptFQ3, schedi, sched2,sched3 ,waitFQl,waitFQ2,waitFQ3}
(1.Ferry I $0 I $0 I $sched3.$0 I ($waitFQl.FQ31 + $waitFQ2.FQ32 +

$ cooptFQ3 .FQ) (\{cooptFQl,cooptFQ2, cooptFQ3, schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3}
(Ferry I $0 I $0 I $sched3.$0 I ($waitFQ1.FQ31 + $waitFQ2FQ32 * $cooptFQ3.FQ((

\(cooptFQl, cooptFQ2, cooptFQ3, schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3)
= (($cooptFQ1.1. 'schedl.l.Ferry + $cooptFQ2.1. 'sched2.1.Ferry +

$cooptFQ3.1. 'sched3.1.Ferry(I $0 I $0 I $sched3.$0 I ($waitFQ1.FQ31 + $waitFQ2.FQ32 +
$ cooptFQ3 .FQ((\(cooptFQl, cooptFQ2, cooptFQ3,schedl, sched2,sched3,waitFQl,waitFQ2,waitFQ3)

(1. 'sched3.1.Ferry I $0 I $0 I $sched3.$0 I FQ(
\(cooptFQl, cooptFQ2, cooptFQ3, schedi, sched2, sched3,waitFQl,waitFQ2,waitFQ3)

('sched3.1.Ferry I $0 I $0 I $sched3.$0 I ($waitFQ1.FQ1 + $waitFQ2.FQ2 + $waitFQ3.FQ3)(
\{cooptFQl, cooptFQ2, cooptFQ3, schedl,sched2, sched3,waitFQl,waitFQ2,waitFQ3(

(1.Ferry I $0 I $0 I $0 I ($waitFQ1.FQ1 + $waitFQ2.FQ2 + $waitFQ3.FQ3)(
\cooptFQ1, cooptFQ2 ,cooptFQ3, schedl, sched2 , sched3,waitFQl,waitFQ2,waitFQ3}

(Ferry I $0 I $0 I $0 I ($waitFQ1.FQ1 + $waitFQ2.FQ2 +
$waitFQ3 .FQ3((\(cooptFQl, cooptFQ2, cooptFQ3,schedl, sched2, sched3,waitFQl,waitFQ2,waitFQ3)

= (($cooptFQl.l. 'schedl.l.Ferry + $cooptFQ2.1. sched2.1.Ferry +
$cooptFQ3.1. 'sched3.1.Ferry) 1 $0 I $0 I $0 I ($waitFQ1.FQ1 + $waitFQ2.FQ2 + $waitFQ3.FQ3)(
\ {cooptFQl, cooptFQ2, cooptFQ3, schedl, sched2, sched3 , waitFQl, waitFQ2 , waitFQ3)

Appendix C: CCS Models and Experiments for CWB 	 256

Figure 3.19

Model
hi Waiter $waitCQ.(valGet3.$0 + valGet0.Waiter + valGetl.Waiter\
+ valGet2.Waiter * valGet4.Waiter)

hi ValO valAssl.Vall+valAss2.Va12+valAss3.Va13+valAss4.Val4 + $valGeto.ValO

hi Vail valAssl.Vall+valAss2.Va12+valAss3.Va13+valAss4.Va14 + $valGetl.Vall

bi Va12 valAssl .Vall+valAss2 .Va12+valAss3 .Va13+valAss4 .Va14 + $ valGet2 .Va12

hi Va13 valAssi .Vall+valAss2 .Val2+valAss3 .Va13+valAss4 .Va14 + $ valGet3 .Va13

bi Va14 valAssl.Vall+valAss2.Val2+valAss3.Va13+valAss4.Va14 + $valGet4.Val4

hi Signaller valGet0. valAssi. waitCg.Signaller +\
valGeti. valAss2. waitCQ.Signaller +\
valGet2. valAss3. waitCQ.Signaller +\
valGet3. 'valAss4. waitCQ.Signaller +\
valGet4. valAss5. waitCQSignaller

hi Model (Waiter I Signaller I ValO(\{waitCQ\
valGet0 valGeti valGet2 valGet3 valGet4, \
valAssO valAssi valAss2 ,valAss3 valAss4}

Output
Sim, random
For how many steps: 20

t<valGet0> --->
t<valAssl> --->
t<waitCQ> --->
t<valGtl> --->
t<valGetl> --->
t<valAss2> --->
t<waitCQ> --->
t<valGet2> --->
t<valGet2> --->
t<valAss3> --->
t<waitCQ> --->
t<valGet3> --->
t<valGet3> -->
t<valAss4> --->

** Simulation terminated: Deadlock. **

Simulated agent: ($0 I waitCg.Signaller
Va14(\(valAss0valAssl,valAss2,valAss3valAss4,valGetO,valGetl,valGet2,valGet3,valGet4,wajtcg)
Transitions:

** Deadlocked. **

Appendix C: CCS Models and Experiments for CWB 	 257

Figure 3.20

Model
bi Waiterl vaiGet3.0 + valGetO. waitCQl.Waitingl\

+valGeti. waitCQl.Waitingl\
+valGet2. waitCQl.Waitingl\
+ valGet4. waitCQl.Waitingl

hi Waitingi tryl.(valGet3.'goGol.0 + valGeto.noGol.Waitingl\
+ valGeti. noGol.Waitingl\
+ valGet2. noGol.Waitingl\
+ valGet4. 'noGol.Waitingl)

bi Waiter2 valGet3.0 + valGetO. 'waitCQ2.Waiting2\
+ valGeti. 'waitCQ2.Waiting2\
+ valGet2. waitCQ2.Waiting2\
+ valGet4. 'waitCQ2.Waiting2

bi Waiting2 try2.(valGet3. goGo2.0 + valGetO. 'noGo2.Waiting2\
+ valGeti. 'noGo2.Maiting2\
+ valGet2. 'noGo2.Waiting2\
+ valGet4. 'noGo2.Waiting2)

hi ValO valAssi .Vall+valAss2 .Va12+vaiAss3 .Va13+valAss4 .Va14 + 'valGetO .ValO
bi Vail valAssi .Vall+valAss2 .Va12+valAss3 .Va13+valAss4 .Va14 + 'valGeti Vail
bi Va12 valAssi .Vall+valAss2 .Va12+valAss3 .Val3+valAss4 .Va14 + 'valGet2 .Va12
hi Va13 valAssi .Vall+valAss2 .Va12+valAss3 .Val3+valAss4 .Va14 + 'valGet3 .Va13
hi Va14 valAssl .Vall+vaiAss2 .Va12+valAss3 .Val3+valAss4 .Va14 + 'valGet4 .Va14

hi Signaller valGetO. 'valAssi. 	signalCQ.done.Signailer +\
valGeti. 'valAss2. 'signalCQ.done.Signaller +\
vaiGet2. 'valAss3. 	signalCQ.done.Signaller +\
valGet3. 'valAss4. 'signalCQ.done.Signaller +\
valGet4. 'valAss5. 'signalCQ . done. Signaller

hi CQ signalCQ.CQ + waitCQ1.CQ1 + waitCQ2.CQ2
hi CQ1 signalCQ.Tryl000 + waitCQ2.CQ12
hi CQ2 signalCQ.Try2000 + waitCQ1.CQ21
hi CQ12 signalCQ.Tryl200
bi CQ21 signalCQ.Try2lOO
bi Try0000 	done.CQ
bi Tryl000 	try1.(noGol.done.CQ1 + goGol.Try0000)
hi TryOOlO 	done.CQ1
bi Try2000 	try2.(noGo2. 	done.CQ2 + goGo2.Try0000)
bi Try0020 	done.CQ2
hi Try1200 	tryl.(noGol. done.CQ12 + goGol.Try2000)
hi TryOO12 	done.CQ12
hi Try2100 	try2.(noGo2.'done.CQ21 + goGo2.Tryl000)
hi Try0021 	done.CQ21
hi Try2010 	'try2.(noGo2.'done.CQ12 + goGo2.TryOO10)
hi Tryl02O 	'tryl.(noGol.'done.CQ21 + goGol.Try0020)
hi Model 	(Waiteri 	I 	Waiter2 	I 	Signaller 	I 	CQ 	I 	ValO)\(waitCQ1,waitCQ2,\
signalCQ, done, tryl, try2, goGol, goGo2 , noGol , noGo2, \
valGetO , valGeti , valGet2 , valGet3 , valGet4, \
valAssO , valAssi , valAss2 , valAss3 , valAss4 , valAss5)

Output
Sim> random 30

t<valGet0> --->
t<valAssl> --->
tevalGeti> --->
t<waitCQl> --->
t<signalCQ> --->
t<tryl> ---->
t<valGetl> --->
tevalGeti> --->
tenoGol> --->
t<done> --->
t<waitCQ2> --->
t'zvalGetl> ---->
tevalAss2> ---->
t<signalCQ> --->
t<tryl>
t<valGet2> --->
tenoGol> --->
t<done> --->
t<valGet2> --->
t<valAss3> --->
t<signalCQ> --->
t<tryl> --->
t'zvalGet3s --->
tegoGol> --->
t<try2> --->
t<valGet3> --->
t<goGo2> --->
t<done> --->
t<valGet3> --->
t<valAss4> --->

Simulation complete.

Appendix C: CCS Models and Experiments for CWB 	 258

Figure 3.21

Model

bi Waiterl valGet3.0 + valGetO. 'waitCQl.Waitingl\
+ valGetl. 'waitCQl.Waitingl\
+valGet2. 'waitCQl.Waitingl\
+ valGet4. 'waitCQl.Waitingi

bi Waitingl tryl.(valGet3.goGol.0 + valGett.'noGol.Waitingi\
+ valGetl. 'noGol.Waitingl\
valGet2. 'noGol.Waitingl\

+ valGet4. 'noGol.Waitingl)

bi Waiter2 valGet3.0 + valGetO. 'waitCQ2.Waiting2\
+ valGeti. 'waitCQ2.Waiting2\
+ valGet2. waitCQ2.Waiting2\
+ valGat4. 'waitCQ2.Waiting2

bi Waiting2 try2.(valGet3.'goGo2.0 + valGeto. noGo2.Waiting2\
+ valGetl. 'noGo2.Waiting2\
+ valGet2. 'noGo2.Waiting2\
+ vaiGet4. noGo2.Waiting2)

bi ValO valAssl.Vall+valAss2 .Va12-i-valAss3 .Va13+valAss4.Val4 + valGetO.ValO
bi Vail vaiAssi.Vall+valAss2 .Vai2+vaiAss3 .Vai3+valAss4.Va14 + 'valGeti.Vall
bi Va12 valAssi .Vall-i-vaiAss2 .Val2+vaiAss3 .Vai3+valAss4 .Va14 + 'valGet2 .Va12
bi Va13 valAsal .Vall+valAss2 .Vai2-i-valAss3 .Va13+valAss4 .Va14 + 'valGet3 .Va13
bi Va14 valAssl .Vall+valAss2 .Va12+vaiAss3 .Va13+valAss4 .Va14 + 'valGet4 .Va14

bi Signaller valGetO. vaiAssl. 'signalcQ.done.Signaller +\
valGeti. vaiAss2. 'signalCQ.done.Signaller +\
valGet2. valAss3. 'signalCQ.done.Signaller +\
valGet3. valAss4. 'signalCQ.done.Signalier +\
vaiGet4. 'valAss5. 'signalCQ.done.Signaller

bi CQ signalCQ.CQ + waitCQ1.CQ1 + waitCQ2.CQ2
bi CQ1 signalCQ.Tryl000 + waitCQ2.CQ12
bi CQ2 signalCQ.Try2000 + waitCQl.CQ21
bi CQ12 signalCQ.Tryi200
bi CQ21 signalCQ.Try2lOO

bi Try0000 	'done.CQ
bi Tryi000 	'tryl.(noGol.TryOOlO + goGol.Try0000)
bi TryOOiO 	'done.CQl
bi Try2000 	'try2.(noGo2.TryOO20 + goGo2.Try0000)
bi Try0020 	done.CQ2
bi Try1200 	'tryl.(noGol.Try2OlO + goGol.Try2000)
bi TryOO12 	'done.CQ12
bi Try2100 	'try2.(noGo2.TrylO2O + goGo2.Tryl000)
bi Try0021 	'done.CQ21
bi Try2010 	'try2.(noGo2.TryOO12 + goGo2.TryOO10)
bi Tryl020 	'try1.(noGo1.Try0021 + goGol.Try0020)

bi Model 	(Waiterl 	I 	Waiter2 	J 	Signaller 	I 	CQ 	I 	VaiO)\CwaitCQ1,waitCQ2,\
signalCQ, done, tryl, try2, goGol , goGo2 , noGol , noGo2, \
valGetO , valGetl , valGet2 , valGet3 , valGet4,
valAssO , valAssl ,valAss2 valAss3 , valAss4 , valAss5}

Appendix C: CCS Models and Experiments for CWB 	 259

Output

Sirs> random 30
tevalGetO> --->
t<valGet0> --->
t<valGetOs --->
t<valAssl> --->
t<waitCQ2> --->
t<signalCQ> --->
t<try2> --->
t<valGetl> --->
t<noGo2> --->
tadone> --->
t<waitCQl> --->
t<valGetl> --->
t<valAss2> --->
t<signalCQ> --->
t<try2> --->
t<valGet2> --->
t<noGo2> --->
t<tryl> --->
t<valGet2> --->
t<noGol> --->
tedone> --->
t<valGet2> --->
t<valAss3> --->
t<signalCQ> --->
t<try2> --->
t<valGet3> --->
t<goGo2> --->
tetryl> --->
t<valGet3> --->
t<goGol> --->

Simulation complete.

Simulated agent: (0 I 0 1 done.Signaller I Try0000 I Va13)
\(donegoGol,goGo2,noGol,noGo2signalCQ,tryl,try2,valAsso,valAsslvalAss2,valAss3,valAss4,valAss5
valGetO valGeti valGet2 valGet3 valGet4 waitCQl waitCQ2)
Transitions:

1: 	tadone> ---> (0 1 0 1 Signaller I CQ I \Ta13)
\{done,goGol,goGo2,noGol,noGo2, signalCQ, tryl, try2,valAss0,valAssl,valAss2,valAss3,valAss4,valAss5
,valGet0,valGetl,valGet2,valGet3,valGet4,waitCQ1,waitCQ21

Appendix C: CCS Models and Experiments for CWB 	 260

Figure 3.22

Model
bi Ited CheckerlO

bi CheckerO 0
bi Checkerl l.(iGet3.Ited + iGetO.Checker0)
bi Checker2 1. iGet3.Ited * iGet0.Checkerl)
hi Checker3 1.(iGet3.Ited + iGet0.Checker2)
bi Checker4 1.(iGet3.Ited + iGetO.Checker3)
bi Checker5 1.(iGet3.Ited * iGet0.Checker4)
bi Checker6 1.(iGet3.Ited + iGet0.Checker5)
bi Checker7 1. (iGet3.Ited + iGet0.Checker6)
bi Checker8 1.(iGet3.Ited + iGet0.Checker7)
bi Checker9 1. (iGet3.Ited + iGet0.Checker8)
bi CheckerlO 1.(iGet3.Ited + iGeto.Checker9)

bi Iter 1. iGetO.l. iGet0.l. lGet3.$0

bi Model (Ited I Iter)\(iGet3,iGet0)

Output
Command: if m322.cwb
done.
Command: states Model

Model
((iGet3.Ited + iGetO.Checker9) I 	iGeto.l.iGet0.1.lGet3.$0)\(iGetO,iGet3)
(Checker9 I l.iGet0.l.lGet3.$0)\(iGeto,iGet3)
((iGet3.Ited + iGet0.Checker8) I 	iGeto.l.lGet3.$0)\(iGeto,iGet3)
(CheckerS I 1. lGet3.$O)\(iGet0,iGet3)
((iGet3.Ited + iGeto.Checker7) 	lGet3.$0)\(iGet0,iGet3)
((iGet3.Ited + iGet0.Checker7) 	$0)\iGetO,iGet3)

Command: statesobs Model
===> Model

1 ===> ((iGet3.Ited + iGet0.Checker9) 	iGetO.l. iGet0.l. lGet3.$0)\{iGetOiGet3}
1 ==> (Checker9 I 1. iGet0.l. lGet3.$0)\iGet0,iGet3)
1 1 ===> ((iGet3.Ited + iGet0.Checker8) I 'iGet0.l.lGet3.$0)\{iGet0,iGet3)
1 1 ===> (CheckerS I 1. lGet3.$0)\(iGet0,iGet3)
1 1 1 ===> ((iGet3.Ited + iGet0.Checker7) I 'lGet3.$0)\(iGetO,iGet3)
1 1 1 lGet3 ==> ((iGet3.Ited + iGet0.Checker7) I $0)\{iGet0,iGet3}

Figure 3.23

Model

See Figure 3.11

Output

See Figure 3.11.

Appendix C: CCS Models and Experiments for CWB 	 261

Figure 3.24

Model
bi Philosopher rtAcql.2. lfAcql.2. rfRell. lfRell.2.Philosopher
bi Fork fAcql.NoFork
bi NoFork fRell.Fork
bi P1 Philosopher[al/rfAcql,a2/lfAcql,rl/rfRell,r2/lfRellJ
bi P2 Philosopher[a2/rfAcql,a3/lfAcql,r2/rfRell,r3/lfRellJ
bi P3 Philosopher[a3/rfAcqlal/lfAcql,r3/rfRell,rl/lfRell]
bi Forkl Fork[al/fAcgl,rl/fRell]
hi Fork2 Fork[a2/fAcql,r2/fRell}
bi Fork3 Fork[a3/fAcq1,r3/fRel1]
bi Model (Forkl I Fork2 I Fork3 I Fl I P2 I P3)\(al,a2,a3,rl,r2,r3)

Output
Command: sim
Agent: Model
Simulated agent: Model
Transitions

t<a3> ---> (Forkl I Fork2 I NoFork[a3/fAcq1,r3/fRel1] I P1 I P2
(2.'lfAcql.2.'rRe11. 1fRell.2.Philosopher([al/1fAcql,rl/lfRel1,e3/rfAcql,r3/rfRel1](\al,a2,a3,r
1, r2 r3)

t<a2> ---> (Forkl I NoFork[a2/fAcql,r2/fRel1) I Fork3 I P1
(2.'lfAcql.2. rfRell.'lfRell.2.Philosopher)[a3/lfAcql,r3/lfRell,a2/rfAcql,r2/rfRell)
P3) \ Cal, a2 a3 , ri, r2 r3)

t<al> ----> (NoFork[al/fAcql,rl/fRell] I Fork2 I Fork3
(2.'lfAcql.2.'rfRell.'lfRell.2.Philosopher)[a2/lfAcql,r2/lfRell,al/rfAcql,rl/rfRell] I P2
P3) \ (al, a2 ,a3 rl r2, r3)
Sim> random 12

t<a3> --->
t<a2> --->
t<al> --->

** Simulation terminated: Deadlock. **

Simulated agent: (NoFork[al/fAcql, rlhfRell] I NoFork[a2/fAcql, r2/fRell]
NoFork[a3/fAcql,r3/fRell] I (2.lfAcql.2. rfRell. lfRell.2.Philosopher)
[a2/lfAcql,r2/lfRell,al/rfAcql,rl/rfRell] I
(2.'lfAcql.2.'rfRell.'lfRell.2.Philosopher)[a3/lfAcgl,r3/lfRell,a2/r

Figure 3.26/7/8
Model

bi Boat $ tugacq2 . $ jacqi. (WorklNewBoat)
bi Work 3. tugrel2.lO.$tugacql.3. tugrell. jrell.Idle
bi NewBoat 4. 'n.Boat
bi Idle 1.Idle
hi Tugs3 ($tugacql.Tugs2)+($tugacq2.Tugsl)+($tugacq3.Tugso)
hi Tugs2 ($tugacql.Tugsl)+($tugacq2.TugsO)+($tugrell.Tugs3)
bi Tugsl ($tugacql.TugsO)+($tugrell.Tugs2)+($tugrel2.Tugs3)
bi TugsO ($tugrell.Tugsl)-i- ($tugrel2.Tugs2)+($tugrel3.Tugs3)
bi Jetty2 ($jacql.Jettyl) + ($jacq2.JettyO)
bi Jettyl ($jacgl.JettyO) + ($jrell.Jetty2)
hi JettyO ($jrell.Jettyl) + ($jrel2.Jetty2)
hi Obs $n.Obs
bi DEMOS ObsllOO.O
hi Model (Tugs3lJetty2jBoat)

\(tugacql, tugacq2, tugacq3, tugrell, tugrel2, tugrel3, jacqi, jacq2, jrell, jrel2)
hi Frog (DEMOS I Model)\(n)

Output
Sim> 	t<tugacq2> --->

1 --->
t<jacgl> --->
1 --->
1 --->
1 --->
t<tugrel2> --->
1 --->
t<n> --->
t<tugacq2> --->
t<jacql> --->
1 --->
1 --->
1 --->
t<tugrel2> --->
1 --->
ten> --->
t<tugacq2> --->
1 --->
1 --->
1 --->
1 --->
1 --->
t<tugacql> --->

Appendix C: CCS Models and Experiments for CWB 	 262

Chapter 6

Figure 6.1

Model
bi Boat jAl. tA2. tR2. tAl. ,jRl.O
bi T2 (tAi.Ti) + (tA2.TO)
bi Ti (tAl.TO) + (tRi.T2)
bi TO (tRl.Ti) + (tR2.T2)
bi J2 (jAi.Ji) + (jA2.JO)
bi Ji (jAi.JO) + (jRl.J2)
bi JO (jR1.J1) + (jR2.J2)
bi Ml (T2IJ2IBoatIBoatIBoat)\(tAi tA2, jAi, jA2,tRi tR2, jRl, jR2)
bi 3s2 (jAi.Jsl)
bi Jsl (jAl.JsO) + (jRl.Js2)
bi JsO (jRi.Jsi)
bi M2 (T2IJs2IBoatIBoatIBoat)\(tAi tA2 tRltR2,jAi, jRi)

Output
Command: eq
Agent: Ml
Agent: M2
true
Command: cong
Agent: Mi
Agent: M2
true

Figure 6.3

Model
bi R bAl. bRi.R
bi W bA3. bR3.W
bi B3 (bAl.B2) +(bA2.B1) + (bA3.BO)
bi B2 (bAl.Bi) +(bA2.BO) + (bRi.B3)
bi Bi (bAi.BO) +(bR2.B3) + (bRi.B2)
bi BO (bR3.B3) -+(bR2.B2) + (bR1.B1)
bi Mi (RIRWB3) \(bRl,bR2bR3,bAibA2,bA3)
bi ER bRAi. bRR1.ER
bi EW bWA3. bMR3.EW
bi EM (B3IER[bAi/bRAibRl/bRR1JIER[bAi/bRA1,bRi/bRRi] IEW[bA3/bWA3,bR3/bWR3fl\
\ (bAi bA2, bA3 bRi bR2, bR3)
bi SB3 (bSA1.SB2) + (bSA3.SBO)
bi SB2 (bSAi.SB1) + (bSR1.SB3)
bi SBi (bSA1.SBO) + (bSR1.SB2)
bi SBO (bSR3.SB3) + (bSR1.SB1)
bi EMi (SB3 ER[bSAi/bRAi,bSR1/bRR1] jER[bSAi/bRAibSRi/bRRi} I
EW[bSA3/bWA3bSR3/bWR3]) \
\(bSAl bSA3 bSRi, bSR3)

Output
Command: eq
Agent: EM
Agent: EMI
true
Command: cong
Agent: EM
Agent: EM].
true
Command: eq
Agent: Mi
Agent: EMi
true
Command: cong
Agent: Mi
Agent: EM].
true

Appendix C: CCS Models and Experiments for CWB 	 262

Chapter 6

Figure 6.1

Model
bi Boat jAl. tA2. tR2. tA?. jRl.O
bi T2 (tAi.T1) + (tA2.TO)
bi Ti (tAi.TO + (tR1.T2)
bi TO (tRl.Ti) + (tR2.T2)
bi J2 (jAl.J1) + (jA2.JO)
bi Ji (jAl.JO) + (jRl.J2)
bi JO (jRl.Ji) + (jR2.J2)
bi Mi (T2IJ2JBoatIEoatIBoat)\{tAl tA2,jAi,jA2,tRi, tR2, jRl,jR2}
bi Js2 (jAl.Jsi)
bi Jsi (jAi.JsO) + (jRi.Js2)
bi JsO (jRi.Jsl)
bi M2 (T2Js2IBoatBoatBoat)\(tAi,tA2tRi,tR2,jAi,jRi)

Output
Command: eq
Agent: Mi
Agent: M2
true
Command: cong
Agent: Mi
Agent: M2
true

Figure 6.3

Model
bi R bA?. bRi.R
bi W bA3. bR3.W
bi 83 (bA?.B2) +(bA2.Bi) + (bA3.BO)
bi B2 (bAlE?) +(bA2.BO) + (bRi.83)
bi B? (bAi.BO) +)bR2.B3) + (bRl.B2)
bi BO (bR3.B3) +(bR2.B2) + (bRiE?)
bi Ml (RIRWB3)\(bRi,bR2,bR3,bAi,bA2,bA3)
bi ER bRA?. bRR?.ER
bi EM bWA3. bWR3.EW
bi EM (B3IER[bAl/bRA1,bRl/bRRi] IER[bAi/bRAi,bRi/bRRiI EW[bA3/bWA3,bR3/bWR3])\
\ (bAl bA2, bA3 bRi bR2 bR3)
bi SB3 (bSA1.8B2) + (bSA3.SBO)
bi SB2 (bSA1.SB1) + (bSR1.SB3)
bi SB? (bSA1.SBO) + (bSR1.SB2)
bi SBO (bSR3.SB3) + (bSRi.SBi)
bi EM1 (SB3jER[bSAi/bRAi,bSR1/bRRi] IER[bSAi/bRA1,bSR1/bRRiI I\
EW[bSA3!bWA3bSR3/bWR3])
\ {bSAi bSA3 bSRi bSR3}

Output
Command: eq
Agent: EM
Agent: EM?
true
Command: cong
Agent: EM
Agent: EM?
true
Command: eq
Agent: Mi
Agent: EM?
true
Command: cong
Agent: Ml
Agent: EM?
true

Appendix C: CCS Models and Experiments for CWB 	 263

Figure 6.5

Model
bi M dA2. dR2.hD.M
bi P dA4. dR2. hD. dR2.P
bi D5 dA5DO + dA4.Dl + dA3.D2 + dA2.D3 + dAl.D4
bi D4 dA4.DO + dA3.Dl + dA2.D2 + dAl.D3 + dRl.D5
bi D3 dA3.JJO + dA2.Dl + dAl.D2 + dR2.D5 + dRl.D4
bi D2 dA2.DO + dAl.Dl + dR3.D5 + dR2.D4 + dRl.D3
bi Dl dAl.DO + dR4.D5 + dR3.D4 + dR2.03 + dRl.D2
bi DO dR5.D5 + dR4.D4 + dR3.D3 + dR2.D2 + dRl.Dl
bi F (MIPID5)\(dRldR2,dR3,dR4,dR5 dAl,dA2,dA3,dA4,dA5,hD)

bi D15 dlA4.Dll+ dlA2.D13
bi D13 dlR2.D15 + dlA2.Dll
bi Dli diR2.Dl3
bi Fl (M[diA2/dA2,dlR2/dR2JIP[dlA4/dA4,dlR2/dR2]fDl5)\(dlR2,dlA2,diA4,hD)

Output
Agent: F
Agent: Fl
true
Command: eq
Agent: F
Agent: Fl
true

Figure 6.8

Model
bi Bureau typing.Ci + copying.C2 + printing.C3
bi Messenger typing.D1 + copying.D2

bi Ci 0
bi C2 0
bi C3 0
bi Di 0
bi D2 0

bi Model (Messenger I Bureau)\(typing,copying,printing)

bi Modell (Messenger I Bureau)

Output
Command: states Modell

Di 	C3
Di 	C2
D2 	Cl
D2 	C3
Messenger Cl
Messenger C3
Messenger 	C2
Di 	Bureau
D2 	Bureau
D2 	C2
Di 	Cl
Modell

Command: states Model
)D2 	C2 (\ {Copying,printing, typing)
(Di 	Ci) \ (copying,printing, typing)
Model

Appendix C: CCS Models and Experiments for CWB 	 264

Figure 6.9

Model

bi Bureau typing.Cl + copying.C2 + printing.C3
bi Messenger typing.D1 * copying.02

bi Cl 0
bi C2 0
bi C3 0
bi Dl 0
bi D2 0

bi Model (Messenger I Bureau)\)typing,copying,printing}

bi Modell (Messenger 	Bureau)

bi Emergency typing.Bureau

bi Problem (Messenger I Emergency)\)typingcopying,printing)

bi Probleml (Messenger I Emergency)

Output

Command: states Problem
(Dl I Bureau) \(eopying,printing, typing)
Problem

Command: states Probleml
02 	Cl
D2 	C3
Messenger 	Cl
Messenger 	C3
Messenger 	C2
02 	C2
02 	Bureau
Dl 	Cl
Dl 	C3
Dl I C2
Messenger I Bureau
Dl 	Emergency
D2 	Emergency
Dl 	Bureau
Probleml

Appendix C: CCS Models and Experiments for CWB 	 265

Figure 6.11

First simolification - Model
bi Stream memAcq4. memRel4. tSched.Stream

bi Mem4 memAcq4.MemO
bi MemO memRel4.Mem4

bi Input (Stream I Mem4)\(memAcq4,memRel4}

bi Modela (Input I Input

bi Streami tSched.Streaml

bi Inputl Streami

bi Modelia (Inputillnputi)

Output
Command eq
Agent: Modela
Agent: Modella
true

Second simDlification - Model
bi Trans tsched. linkAcqi. buffAcq2. linkRell.\
linkAcqi. buffRel2. linkRell Trans

bi Linki linkAcql.LinkO
bi LinkO linkRell.Linkl

bi Huffs2 buffAcq2.BuffsO
bi suffsO buffRel2.Buffs2

bi Modeib (Trans I Trans I Linki I Buffs2(\
\ClinkAcql linkRell,buffAcq2,buffRel2)

bi Transi tsched. linkAcqi. buffAcq2. buffRel2. 'linkRell.Trans

bi Modelib (Transi I Transi I Linki I Buffs2(\
\(linkAcql linkRell,buffAcq2,buffRel2)

Output
Command: eq
Agent: Modeib
Agent: Modelib
false

Figure 6.12

Model
bi Station eAcql.Sending
bi Sending eRell.Station

bi Etherl eAcql.EtherO
bi EtherO eRellEtherl

bi Model (Etherl I Station I Station I Station(\(eAcql,eRell}

Output
Command: states Model

Model
= (Etherl I Station I Station I Station(\(eAcqleRell)

(EtherO I Sending I Station I Station(\(eAcql,eRell)
= (EtherO 	Station 	Sending 	Station(\(eAcql,eRell)
= (EtherO 	Station 	Station I Sending)\{eAcqleRell)

Appendix C: CCS Models and Experiments for CWB 	 266

Figure 6.14

Model
bi Stationi eWaittJntill.Waitingl
bi Waitingl $schedl.Tryingl
bi Tryingi eLenl.l.Stationl + eLen2.1.Stationl +eLen3.1.Stationl\

+ etenO. eAcql.Sendingl
bi Sendingl 4. eRell.Donel
bi Donal eQSignal.Stationl

bi Station2 eWaituntil2.Waiting2
bi Waiting2 $sched2.Trying2
bi Trying2 etenl.l.Station2 + eLen2.1.Station2 +eLen3.1.Station2\

+ eLenO. eAcql.Sending2
bi Sending2 4. eRell.Done2
bi Done2 eQsignal.Station2

bi Station3 eWaituntil3.Waiting3
bi Waiting3 $sched3.Trying3
bi Trying3 eLenl.l.Station3 + eLen2.1.Station3 +eLen3.1.Station3\

+ etenO. eAcql.Sending3
bi Sending3 4. eRell.Done3
bi Done3 eQSignal.Station3

bi Etherl $eAcql.EtherO
bi EtherO $eRell.Etherl

bi EtherQ0000 $eWaittjntill.EtherQlOOl + $ewaituntil2.EtherQ2001\
+ $eWaituntil3.EtherQ3001 + $eQsignal.Signal0000

bi EtherQlOOl $eMaittjntil2.EtherQl2O2 + $eWaittjntil3.EtherQl302\
+ $eQsignal . SignallOOl

bi EtherQ2001 $eWaituntill.EtherQ2102 + $eWaitUntil3.EtherQ2302\
+ $eQSignal.Signal200l

bi EtherQ3001 $eWaitUntil2.EtherQ3202 + $eWaituntill.EtherQ3102\
+ $eQSignal.Signal300l

bi EtherQ1202 $eWaituntil3.EtherQl233 + $eQSignal.Signal1202
bi EtherQ1302 $eWaittJntil2.EtherQl323 + $eQSignal.Signal1302
bi EtherQ2102 $eWaituntil3.EtherQ2l33 + $eQSignal.Signal2lO2
bi EtherQ2302 $ewaituntill.EtherQ2313 + $eQSignal.Signal2302
bi EtherQ3102 $eWaittJntil2.EtherQ3123 + $eQSignal.Signal3102
bi EtherQ3202 $ewaituntill.EtherQ3213 * $eQSignal.Signal3202

bi EtherQ1233 $eQSignal.Signall233
hi EtherQ1323 $eQSignal.Signall323
hi EtherQ2133 $eQSignal.Signal2133
bi EtherQ2313 $eQSignal.Signal2313
hi EtherQ3123 $eQSignal . Signal3l23
hi EtherQ3213 $eQSignal.Signal3213

bi Signal0000 EtherQ0000

hi SignellOOl schedl. eLenO.Signal0000
hi Signa12001 sched2. eLenO.Signal0000
bi Signa13001 sched3. eLenO.Signal0000

bi Signa11202 schedi. eLenl.Signal200l
hi Signa11302 schedi. eLenl.Signal300l
hi Signa12102 sched2. 'eLenl.SignallOOl
hi Signal2302 sched2. eLenl.Signal300l
bi Signa13102 sched3. eLenl.SignallOOl
bi Signal3202 sched3. eLenl.Signal200l

bi Signa11233 schedl. eLen2.Signal23O2
bi Signall323 schedl. eLen2.Signal32O2
hi Signa12133 sched2. eLen2.Signall3O2
hi Signal2313 sched2. eLen2.Sigrial3lO2
hi Signa13123 •sched3. eLen2.Signall2O2
bi Signal3213 sched3. eLen2.Signal2lO2

bi Model (EtherS I EtherQ1202 I Waitingl I Waiting2 I Sending3)\
\(eAcql eRelleLeno, eLenl, eLen2eLen3, schedl,sched2,sched3,eQSignal, \
eWaitUntill, ewaitgntil2 eWaittJntil3)

Output
Command: states Model

Model
($eRell.Etherl 1 ($eQSignal.Signal1202 + $eWaitUntil3.EtherQl233) I $schedl.Tryingl

$sched2.Trying2
3. eRell.Done3)\(eAcql,eLenO,eLenl,eLen2eLen3,eQsjgnaleRell,ewajtrjntjll,ewaituntil2,ewajtrjntjl3
schedl sched2, sched3)

Appendix C: CCS Models and Experiments for CWB
	

267

= ($eRell.Etherl I EtherQ1202 I $schedl.Tryingl I Waitirxg2
3 'eRell .Done3)\(eAcql,eLeno,eLenl,eLen2,eLen3, eQSignal, eRell,eWaituntill, ewaituntil2,eWaitUntil3
schedl, sched2, sched3)

3: ($eRell.Etherl I ($eQSigna1.Signa112O2 + $ewaitunti13.EtherQ1233) I $schedl.Tryingl I
$sched2.Trying2 I
2. 'eRell.Done3)\(eAcql,eLeno,eLenl,eLen2,eLen3,eQsjgnal,eRe].1,ewajtrjntjll,ewajtuntjl2,ewajtuntjl3
schedi, sched2 sched3)

4: ($eRell.Etherl I ($eQSigna1.Sigria11202 + $ewaitunti13.EtherQ1233) I $schedl.Tryingl I
$sched2.Trying2
1. 'eRell.Done3)\(eAcql,eLenO,eLenl,eLen2,eLen3,eQsjgnal,eRelj,ewajtrJntjll,ewajtuntjl2ewajtuntjl3
schedl, sched2, sched3

5: ($eRell.Etherl I ($eQSigna1.Signa11202 + $eWaitUnti13.EtherQl233) I $schedl.Tryingl I
$sched2.Trying2 I
'eRell.Done3)\{eAcql,eLenO,eLenl,eLen2,eLen3,eQsjgnaleRel1,ewajtuntjlj,ewajtrJntjl2,ewajtuntjl3,s
chedi, sched2, sched3
6: (Etherl 1 ($eQSigna1.Signa11202 + $eWaitunti13.EtherQ1233) I $schedl.Tryingl I $sched2.Trying2

Done3)\eAcq1,eLen0,eLen1,eLen2,eLen3,eQs±gna1,eRe11,ewajtijntj11,ewajtuntj12,ewajtuntj13,sched1,s
ched2, sched3)
7: (Etherl I Signal1202 I $schedl.Tryingl 	$sched2.Trying2 I
Station3) \ (eAcqi eten0 eLeni eLen2 , eten3 , eQsignal, eRell, eWaittJntill, eWaituntil2, eWaitUntil3, sched
1, sched2 , sched3
8: (Etherl I 'eLenl.Signa12001 I Tryinqi I $sched2.Trying2 I
Station3(\(eAcql,eLeno,eLenl,eLen2,eLen3,eosignal,eRell,ewajttjntjll,ewajtuntjl2,ewajtr.jntil3,sched
1, sched2, sched3)
9: (Etherl I Signa12001 I 1.Stationl J $sched2.Trying2 I
Station3) \ eAcq1, eLen0 eLeni, eLen2 , eLen3, eQSignal eRell, eWaittJntill, eWaituntil2, eWaituntil3, schod
1, sched2 sched3
10: (Etherl I 'eLeno.SignalOOOO I 1.Stationl I Trying2
Station3)\(eAcql,eLenO,eLenl,eten2,eLen3,eQsignal,eRel1,ewajtuntjll,ewajtuntjl2,ewajtuntjl3sched
1, sched2, sched3)
11: (Etherl I Signal0000 I 1.Stationl I 'eAcql.Sending2
Station3)\(eAcq1,eLen0,eLen1,eLen2,eLen3,eQgjgna1,ep.e11,ewaituntj11ewajtuntj12ewajtnj3sched
1, sched2, sched3)
12: (EtherO I Signal0000 I 1.Stationl I Sending2
Station3) \ (eAcqi, eLenO, eLeni, eLen2, eLen3 eQSignal, eRell eWaitUntill, eWaitUntil2 eWaitUntil3, sched
1, sched2, sched3)

= (Etherl I EtherQ3001 I 1.Stationl I 'eAcql.Sending2
Waiting3) \(eAcq1 eLenO, eLenl, eLen2 eLen3 , eQSignal, eRell eWaitUntill, eWaitUntil2 , eWaitUntil3 sched
1, sched2 sched3)
13: (EtherO I EtherQ3001 I 1.Stationl I Sending2
Waiting3)\(eAcq1,eLen0,eLen1,eLen2,eLen3,eQsigna1,eRe11,eWaitUntj11,eWaitUntj12ew5jtntj135h5
1, sched2, sched3)
14: ($eRell.Etherl 1 ($eQSigna1.Signa13001 + $eWaitUntill.EtherQ3102 + $eWaitUnti12.EtherQ3202) I
Stationi I 3. 'eRell.Done2
$sched3 .Trying3) \(eAcql, eLenO, eLenl,eten2, eLen3, eQSignal, eRell,eWaitUntill, eWaitUntil2, eWaitUntil
3, schedi, sched2, sched3)
15: ($eRell.Etherl I EtherQ3102 I Waitingl I 3. eRell.Done2
$sched3 . Trying3) \ eAcq1, etenO, eLenl, eLen2, eten3 , eQSignal, eRell, eWaittJntill, eWaitUntil2 , eWaitUntil
3, schedi, sched2, sched3
16: ($eRell.Etherl I ($eQSigna1.Signa13102 + $eWaitUnti12.EtherQ3123) I $schedl.Tryingl I
2. 'eRell.Done2 I
$sched3 .Trying3) \(eAcql,eLenO, eLenl, eLen2,eLen3, eQSignal, sWell, eWaitUntill,eWaitUntil2,ewaittjntjl
3, schedi, sched2, sched3
17: ($eRell.Etherl I ($eQSigna1.Siqna131O2 + $eWaitUnti12.EtherQ3123) I $schedl.Tryingl I
1. 'eRell.Done2
$sched3 .Trying3(\eAcq1, eLenO, eLenl,eLen2,eLen3,eQ5ignal, sWell, eWaitUntill, eWaitUntil2,eWaittJntjl
3, schedi, sched2, sched3)
18: ($eRell.Etherl I ($eQSigna1.Signa13102 + $eWaitUnti12.EtherQ3123) I $schedl.Tryingl I
'eRell.Done2 I
$sched3 .Trying3) \(eAcql, eLenO, eLenl,eten2,eLen3, eQSigxa1,eRe11, eWaitUntill, eWaitUntil2, eWaitUntil
3, schedi, sched2, sched3)
19: (Etherl I ($eQSigna1.Signa131O2 + $eWaitUnti12.EtherQ3123) I $schedl.Tryingl I Done2 I
$sched3 .Trying3) \(eAcql,eLeno,eLenl,eLen2, eLen3, eQSignal, eRell,eWaitUntill, eWeitUntil2, eWeitUntil
3, schedi, sched2 , sched3)
20: (Etherl I Signa13102 I $schedl.Tryingl I Station2 I
$sched3 .Trying3) \(eAcql, eLeno,eLenl, eLen2,eLen3, eQSignal, eRell,eWaitUntill,ewaittjntjl2, eWaitUntil
3, schedi, sched2, sched3
21: (Etherl I 'eLenl.signallOOl I $schedl.Tryingl I Station2 I
Trying3) \ (eAcqi, eLenO, eLenl, eLen2, eLen3 , eQSignal, eRell, eWaitUntill , eWaitUntil2 , eWaitUntil3, schedi
sched2, sched3)

22: (Etherl I SignallOOl I $schedl.Tryingl I Station2 I
l.Station3)\(eAcq1,eLen0,eLen1,eLen2,eLen3,eQ5jgnal,eRe11,ewajtunti11,eWajtuntjl2ewagnj1350
edl, sched2, sched3)
23: (Etherl I 'eLenO.SignalOOOO I Tryingi I Station2 I
l.Station3)\(eAcq1,eLenO,eLen1,eLen2,eLen3,eQsjgnal,eRel1,ewajtuntj11,ewajtUntj12eWajtgntj35h
edi, sched2, sched3
24: (Etherl I signal0000 I 'eAcql.Sendingl I Station2 I

eWaitUnti12,eWaitUnti13,sch
edi, sched2, sched3
25: (EtherO I Signal0000 I Sendingi I Station2 I
l.Station3(\{eAcql,eLeno,eLenl,eLen2,eLen3,eQsjgnal,eRell,ewajtuntjll,ewajtuntjl2eWajtuntjl3sch
edi, sched2, sched3)

= (Etherl I EtherQ2001 I eAcql.Sendingl I Weiting2 I
1 .Station3) \(eAcql,eLeno, eLeni, eLen2,eLen3,eQSignal, eRell, eWaitUntill,eWaitUntil2, eWaitUntil3,sch
edi, sched2, sched3)
26: (EtherO I EtherQ2001 I Sendingi I Waiting2 I
l.Station3)\(eAcql,eLeno,eLenl,eLen2,eLen3,eQsjgnal,eRell,ewajtUntjll,ewajtuntjl2,ewajtuntil3sch
edi, sched2, sched3)
27: ($eRell.Etherl I ($eQSigna1.Signa12001 + $eWaitUntill.EtherQ2102 + $eWaitUnti13.EtherQ2302(
3. 'eRell.Donel I $sched2.Trying2 I

Appendix C: CCS Models and Experiments for CiTE 	 268

Station3) \ (eAcqi, eLenO eLeni, eLen2 , eLen3 , eQSigrial eRell eWaittJntill eWaittJntil2, eWaituntil3 , sched
1, sched2, sched3)

($eRell.Etherl I EtherQ2302 I 3. 'eRell.Donel I $sched2.Trying2 I
Waiting3)\(eAcq1,eLen0,eLen1,eLen2,eLen3,eQsjgna1,eRe11,ewaj5untj11,ewajtuntj12,eajtn5j135c5
1 sched2, sched3

($eRell.Etherl I ($eQSigna1.81gna12302 + $eWaitUntill.EtherQ2313) I 2. 'eRell.Donel
$sched2.Trying2 I
$sched3 .Trying3) \{eAcql,eLeno,eLenl, eLen2,eLen3, eQSignal,eRell, eWaitUntill,eWaittJntil2, e6aittJnti1
3, schedi sched2 sched3}

($eRell.Etherl I ($eQsigna1.Siqna12302 + $e9JaittJntill.EtherQ2313) I 1. 'eRell.Donel
$sched2.Trying2
$sched3 .Trying3) \(eAcql, eLen0,eLenl,eLen2, eLen3,eQSignal,eRell, eWaitUntill, eWaitUntil2,eWaituntil
3 schedi sched2 , sched3 }

($eRell.Etherl I ($eQSigna1.S1gna12302 + $eWaitUntill.EtherQ2313) I 'eRell.Donel
$sched2.Trying2 I

3, schedi , sched2, sched3)
(Etherl I ($eQSigna1.Signa12302 + $eWaitUntill.EtherQ2313) I Donel j $sched2.Trying2 I

$sched3 .Trying3) \(eAcql,eLen0,eLenl,eLen2, eLen3, eQSignal,eRell, eWaitUntill, eWaitUntil2, eWaitUntil
3, schedl, sched2, sched3)

(Etherl I Signa12302 I Stationl I $sched2.Trying2 I

3, schedi, sched2, sched3)
(Etherl I 'eLenl.Signa13001 I Stationl I Trying2

$sched3 .Trying3) \(eAcql, eLenO, eLenl,eLen2, eLen3, eQSignal, eRell, eWaittjntill, eWaitUntil2, eWaitUntil
3, schedl, sched2 , sched3

(Etherl I Signa13001 I Stationl I 1.Station2
$sched3 .Trying3) \(eAcql, eLenO, eLenl, eLen2,eLen3, eQSignal, eRell, eWaitUntill,eWaitUntil2,ewajtrjntjl
3, schedi, sched2, sched3)

(Etherl I 'eLeno.SignalOOOO I Stationl I 1.Station2
Trying3) \(eAcql, eLenO, eLenl, eLen2, eLen3 , eQSignal,eRell, eWaitUntill, eWaitUntil2,eWaitUntil3,schedl
sched2, sched3)

(Etherl I Signal0000 I Stationl I 1.Station2
'eAcql .Sending3) \{eAcql, eLenO, eLeni, eLen2, eLen3, eQSignal, eRell, ewaitUntill, eWaitUntil2, eWaitUntil
3, schedi, sched2, sched3)

(EtherO I Signal0000 I Stationl I 1.Station2
Sending3) \(eAcql, eLen0,etenl, eLen2,eLen3, eQSignal,eRell,eWaitUntill, eWaitUntil2, eWaitUntil3,sched
1, sched2, sched3)

(Etherl I EtherQlOOl I Waitinqi I 1.Station2
eAcqi . Sending3) \ (eAcql, eLenO, eLeni, eLen2, eLen3 eQSignal, eRell, eWaitUntill, eWaitUntil2, eWaitUntil

3, schedl, sched2 , sched3)
(EtherO I EtherQlOOl I Waitingl I 1.Station2

Sending3(\(eAcql, eLen0,eLenl, eLen2,eLen3 , eQSignal, eRell, eWaitUntill, eWaitUntil2, eWaitUntil3 , sched
1, sched2, sched3)

($eRell.Etherl I ($eQSignal.SignallOOl + $ehaitUnti12.EtherQ12O2 + $eWaitUnti13.EtherQ1302) I
$schedl.Tryingl I Station2
3.
schedi, sched2, sched3

Appendix C: CCS Models and Experiments for CWB 	 269

Figure 6.16

Model
hi Stationi 'sAcql.Tryingl
hi Tryingi sAvaill.Stationl + sAvailO. eQWaitl.Waitingl
bi Waitingi $eSchedl. (cAvailO. etAcql.4.Donel\
+ cAvaill.SackOffl + cAvail2.BackOffl + cAvail3.BackOffl)

bi Donel sRell. etRell.Tryingl
bi BackOffi cRemi .$cAvailO. 1 .Tryingl

bi Station2 sAcql.Trying2
bi Trying2 sAvaill.Station2 + sAvailO. eQwait2.Waiting2
bi Waiting2 $esched2. (cAvailO. etAcql.4.Done2\
+ cAvaill.BackOff2 + cAvail2.BackOff2 * cAvail3.BackOft2)

bi Done2 sEell. etRell.Trying2
hi BackOff2 cRemi . $cAvailO .1 . Trying2

hi Station3 sAcql.Trying3
bi Trying3 sAvaill.Station3 + sAvailO. eQwait3.Waiting3
bi Waiting3 eSched3. (cAvailO. etAcql.4.Done3\
+ cAvaill.BackOff3 + cAvail2.BackOff3 + cAvail3.EackOff3)

hi Done3 sRell. etRell.Trying3
bi BackOff3 cRemi . ScAvailO .1 .Trying3

hi Ethernet $eQCooptl.$etAcql.tisedl + $eQCoopt2.$etAcql.tised2 +\
$eQCoopt3 . $ • etAcqi .tjsed3

hi Usedi eQLenO.Nextl + eQLenl. cAddl.Nextl + eQLen2. cAddl.Nextl
bi Nexti etRell. eSchedl.ReSched
hi Used2 eQLenO.Next2 + eQLenl. cAddl.Next2 + eQLen2. cAddl.Next2
hi Next2 etRell. eSched2.ReSched
bi Used3 eQLenO.Next3 + eQLenl. cAddl.Next3 + eQLen2. cAddl.Next3
hi Next3 etRell. eSched3.ReSched
bi ReSched eQLenO.Ethernet + eQLefli.cAddl.(eQcooptl.e5chedl.Re5ched\
+ eQCoopt2. eSched2.ReSched + eQCoopt3. eSched3.ReSched(\
+ eQLen2. cAddi. (eQCooptl. • eSchedl .Resched\
+ eQCoopt2. eSched2.ReSched + eQCoopt3. eSched3.ReSched)

hi Sendingi $sAcql.SendingO + $sAvaill.Sendingl
bi SendingO $sRell.SendingO + $sAvailO.Sendingo

bi ColsO $cAddl.Colsl + $cAdd2.Cols2 + $cAdd3.Cols3 + $cAvailO.ColsO
hi Colsi $cAddl.Cols2 + $cAdd2.Cols3 + $cReml.ColsO + $cAvaill.Colsl
bi Cols2 $cAddl.Cols3 + $cReml.Colsl + $cAvail2.Cols2
bi Cols3 $cReml.Cols2+ $cAvail3.Cols3

hi EtherQ0000 $eQWaitl.EtherQlOOl + $eQWait2.EtherQ2001\
+ $eQWait3.EtherQ3001 + $eQLenO.EtherQ0000

bi EtherQlOOl $eQWait2.EtherQl2O2 + $eQWait3.EtherQl302\
+ $eQCooptl.EtherQ0000 + $eQLenl.EtherQlOOl

hi EtherQ2001 $eQWaitl.EtherQ2102 + $eQWait3.EtherQ2302\
+ $eQCoopt2.EtherQ0000 + $eQLenl.EtherQ2001

bi EtherQ3001 $eQWait2.EtherQ3202 + $eQWaitl.EtherQ3102\
+ $ eQCoopt3 .EtherQ0000 + $ eQLenl .EtherQ300l

hi EtherQ1202 $eQWait3 .EtherQl233 * $ eQCooptl .EtherQ200l + $ eQLen2 .EtherQl2O2
hi EtherQ1302 $eQWait2 .EtherQl323 + $ eQCooptl .EtherQ300l + $ eQLen2 .EtherQl3O2
bi EtherQ2102 $eQWait3.EtherQ2133 + $eQCoopt2.EtherQl001 + $eQLen2.EtherQ2102
hi EtherQ2302 $eQWaitl.EtherQ2313 + $eQCoopt2.EtherQ3001 + $eQLen2.EtherQ2302
hi EtherQ3102 $eQWait2.EtherQ3123 + $eQCoopt3.EtherQlOO1 + $eQLen2.EtherQ3102
bi EtherQ3202 $eQwaitl .EtherQ32l3 + $ 'eQCoopt3 .EtherQ200l + $ eQLen2 .EtherQ32O2

hi EtherQ1233 $eQCooptl.EtherQ2302 + $eQLen3.EtherQl233
hi EtherQ1323 $eQCooptl.EtherQ3202 + $eQLen3.EtherQl323
bi EtherQ2133 $ 'eQCoopt2 .EtherQl3O2 + $ eQLen3 .EtherQ2l33
bi EtherQ2313 $ eQCoopt2 .EtherQ3lO2 + $ 'eQLen3 .EtherQ23l3
hi EtherQ3123 $ eQCoopt3 .EtherQl2O2 + $ eQLen3 .EtherQ3l23
hi EtherQ3213 $ eQCoopt3 .EtherQ2lO2 + $ eQLen3 .EtherQ32l3

bi EtherRi $etAcql.EtherRO
hi EtherRO $etRell.EtherRl

hi Transmitterl (Stationi 	Sendingl(\sAcq1sRe11,sAvei1O, sAvaill}
bi Transmitter2 (Station2 	Sendingl(\(sAcql,sRell, sAvailO sAvaill)
bi Transmitter3 (Station3 	Sendingi) \{sAcql, sRell, sAvailO, sAvaill}

hi Model (EtherRO I Ethernet I EtherQ1202 I\
ColsO I Waitingi I Waiting2 I (Done3lSendingo(\(sAcql,sRellsAvailo,sAvaill))\

\ (etAcqi etRell, etenO, eteni, eten2 eLen3 eSchedl eSched2 eSched3 \
eQCooptl, eQCoopt2eQCoopt3,eQWaitl,eQwait2,eQwajt3, eQLen3, eQLen2,eQLenl, eQLenO, \
cAddi, cAdd2 cAdd3 cRerul, cAvailO cAvaill, cAvail2 cAvail3

Appendix C: CCS Models and Experiments for CWB

Output

Sun> random 40
tesRell> --->
t<etRell> --->
t<eQCooptl> --->
t<sAvail0>
t<eQwait3> ---->
t<etAcql> --->
t<eQLen2> --->
t<cAddl> --->
t<etRell> --->
t<eSchedl> --->
tacAvaill> --->
t<eQLen2> --->
t<cAddl> --->
t<cReml> --->
t<eQCoopt2> --->
t<egched2> --->
t<eQLenl> ---->
t<cAddl> --->
t<eQCoopt3> --->
t<eSched3> --->
t<eQLenO>
t<cAvail2> --->
t<cAvail2> --->
t<cReml> --->
t<cReml> --->
1 --->
1 --->
t<cAvailO> --->
t<cAvail0> --->
t<cAvail0> --->
1 --->
tasAvailO> --->
sAvaill --->
sAcqi --->

t<eQWait3> --->
sAvaill --->
sAcqi --->

sAvailO --->
t<eQCoopt3> --->
t<eQWaitl> --->

Simulation complete.

Command: states Ethernet
eQCooptl. eSchedl.ReSched + eQCoopt2. eSched2.ReSched + eQCoopt3. eSched3.ReSched
cAddl. (eQCooptl. eSchedl.ReSched + eQCoopt2. eSched2.ReSched + eQCoopt3. eSched3.ReSched)

ReSched
4 	eSched3 ReSched

eSched2 ReSched
eSchedl ReSched
cAddl.Next3

Next3
cAddl.Next2
Next2
cAddl.Nextl

Nextl
Used3

14; Used2
Usedl
$eQtooptl .$ etAcqi .Usedl + $eQCoopt2 .$ etAcqi .Used2 + $eQtoopt3 .$ etAcql .Used3
$etAcql.tjsed3
$etAcql.tJsed2
$etAcql.tisedl
Ethernet

Command: states Stationl
etRell.Tryingl

Donel
1.Donel
2.Donel
1.Tryingl
3.Donel
$cAvail0.1.Tryingl
4.Donel
BackOffi

etAcql.4.Donel
$eSchedl. (cAvailO. etAcql.4.Donel
cAvailO. etAcql.4.Donel * cAvaill
Waitingl

eQWaitl.Waitingl
Tryingl
Stationl

+ cAvaill.BackOffl + cAvail2.Backoffl + cAvail3.Backoffl)
BackOffi * cAvail2.BackOffl + cAvail3.Backoffl

270

Appendix C: CCS Models and Experiments for CW.B 	 271

Figure 6.18

Model
bi Reader bufacql. bufrell.Reader
hi Writer bofacq3. bufrel3.Writer
bi Euffers3 bufacql.Eufers2 + bufacq3.BuffersO
bi Buffers2 bufacql.Bufersl + bufrell.Buffers3
bi Buffersi bufacql.BuffersO + bufrell.Buffers2
bi BuffersO bufrell.Buffersl + bufrel3.Buffers3
hi Model)Buffers3ReaderReaderIWriter)\{bufacql,bufacq3,bufrell,bufre13}

Output
Command: states Model

Model
(Buffers2 I ThinkerO I 2.ReaderO I l.Writer)\)bufacql,bufacq3,bufrellbufrel3}
()$bufacql.Buffersl + $bufrell.Buffers3) I 2.Thinkerl I l.Readero

Writer) \)bufacql,bufacq3,bufrell,bufrel3)
=)Buffers2 I Readerl I 2.Thinkerl

$ bufacq3. bufrel3 Writer) \(bufacql,bufacq3,bufrell,bufrel3)
)($bufacql.Buffersl + $bufrell.Buffers3) I l.Thinkerl I ReaderO

$ bufacq3. bufrel3 Writer) \)bufacql,bufacq3bufrell,bufrel3)
)Buffersl I l.Thinkerl I ThinkerO

$ bufacq3. bufrel3 Writer) \)bufacql,bufacg3,bufrell,bufrel3)
()$bufacql.Bufferso + $bufrell.Buffers2) I Thinkerl I 2.Thinkerl

$bufacq3. bufrel3.Writer)\(bufacqlbufac3,bufrel1bufrel3}

Figure 6.21

Model
hi ReaderO bufacql.Thinkero
hi ThinkerO 3.Thinkerl
bi Thinkerl bufrell.Readerl
hi Readerl 1.Reader0
bi Writer $bufacq3. 'bufrel3.Writer
hi Buffers3 $bufacqlBuffers2 + $bufacq3.Buffers0
hi Buffers2 $bufecql.Buffersl + $bufrell.Buffers3
hi Buffersl $bufacgl.Bufferso + $bufrell.Buffers2
bi BuffersO $bufrell.Buffersl + $bufrel3.Buffers3
hi Reader0a 'bufacqlThinkero
hi Thinker0a Thinkerl
hi Thinkerla bufrell.Readerl
hi Readerla ReaderO
hi Modela\)Buffers3 ReaderoalReaderOelWriter) \Cbufacql,bufacq3,bufrell,bufrel3)

Output
Command: states Modela

Modela =)Buffers3 I Reader0a I Reader0a I Writer) \{bufacql,bufacq3,bufrellbufrel3)
)BuffersO 	ReaderOa 	Readeroa 	bufrel3 .Writer) \(bufacqlbufacq3,bufrell,bufrel3}
)Buffers2 	Reader0a ThinkerO [Writer) \thufacql,bufacq3bufrell,bufrel3)

=)Buffers2 ThinkerOl Readeroa 	Writer) \)bufacqi,bufacq3,bufrell,bufrel3)
=)Buffers2 ReaderO 	ThinkerO 	Writer) \(bufacql,bufecq3,bufrell,bufrel3)
=)Buffers2 ThinkerOj ReaderO I Writer) \{bufacql,bufacq3,bufrell,bufrel3)
)Buffersl 	ThinkerO I ThinkerO 	Writer)\(bufacqlbufacq3,bufrellbufrel3)

=)Buffersl j ThinkerO 	ThinkerO I $bufacq3. bufrel3.Writer)
\ Cbufacql bufacq3 bufrell, bufrel3}

))Sbufacql .BuffersO +$bufrell.Buffers2)j 2 .Thinkerll 2 .Thinkerll $ 'bufacq3 'bufrel3 Writer)
\{bufacql , bufacq3 huftell, bufrel3)

))$bufacql.BuffersO + $bufrell.Buffers2) I l.Thinkerl I l.Thinkerl
$ bufacq3 bufrel3 Writer) \(bufacql,bufacq3,bufrell,bufrel3}

))$bufacql.BuffersO + $bufrell.Buffers2) I Thinkerl I Thinkerl
$'bufacq3. 'bufrel3Writer)\{bufacql,bufacq3,bufrell,bufrel3}

)Buffers2 I Readerl I Thinkerl 	$'bufacq3. 'bufrel3.Writer) \(bufacql,bufacq3,bufrell,bufrel3)
=)Buffers2 I Thinkerl 	Readerl I $'bufacq3. 'bufrel3.Writer)

\)bufacql bufacq3 bufrell , buf rel3)
)Buffers3 I Readerl I Readerl 	$'bufacq3. 'bufrel3.Writer) \{bufacql,bufacg3,bufrell,bufrel3}

= (Buffers3 	Readerl 	Readerl 	Writer) \(bufacql,bufacq3,bufrell,bufrel3)
)Buffers0 Readerl Readerl 	bufrel3.Writer)\(bufacql,bufacq3,bufrell,bufrel3)
()$bufacql.Buffers2 + $bufacq3.Bufferso) I ReaderO I ReaderO I $'bufacq3. 'bufrel3.Writer)

\ (bufacql bufacq3 , buf rell bufrel3)
12)BuffersOlReaderolReaderOl 'bufrel3 Writer) \{bufacql,bufacq3,bufrell,bufrel3)

)Buffers2 I ReaderO I ThinkerO I $'bufecq3. bufrel3.Writer)
(bufacql , bufacq3 , buf tell, bufrel3)

=)Buffers2 I ThinkerO I ReaderO I $'bufacq3. 'bufrel3.Writer)
\ (bufacql bufacq3 , bufrell bufrel3)

)Buffers3 I ReaderO I ReaderO I Writer)\)bufacql,bufacq3,bufrell,bufrel3)

Appendix C: CCS Models and Experiments for CWB
	

272

Figure 6.22

Model

bi Bi jal.B2
bi 32 tr2.33
bi 33 tal.B4
bi 34 trl.35
bi 35 jrl.0
bi Tugs2 (tal.Tugsl)+(ta2.Tugs0)
bi Tugsl (tal.Tugs0)+(trl.Tugs2)
bi TugsO (trl.Tugsl)+(tr2.Tugs2)
bi Jetty2 (jal.Jettyl)
bi Jettyl (jal.Jetty0) + (jrl.Jetty2)
bi JettyO (jrl.Jettyl)
bi Model (Tugs2 I Jetty2 I 30 I 30 I BO)\(tal,ta2,trl,tr2jal,jrl)

Output

Command: fidobs Model
===> Model

	

===> (Tugso 	Jetty2 	30 	30 	B1)\{jal,jrl,tal,ta2,trl,tr2}

	

===> (TugsO 	Jettyl 	30 	BO 	B2)\(jal,jrl,tal,ta2,trl,tr2)

	

===> (Tugs2 	Jettyl 	30 	BO 	33)\(jal,jrl,talta2,trl,tr2)

	

===> (TugsO 	Jettyl 	BO 	B1 	33)\(jal,jrl,tal,ta2,trl,tr2)

	

===> (Tugsl 	Jettyl 	BO 	30 	B4)\(jaljr1,tal,ta2,trl,tr2)
===>

(TugsO JettyO 30 32 B3)\(jal,jrl,tal,ta2,trl,tr2)

	

===> (Tugs2 	Jettyl 	BO 	BO 	B5)\(jaljrl,tal,ta2,trl,tr2)

	

===> (TugsO 	Jettyl 	BO 	B1 	35)\(jal,jrl,talta2,trl,tr2)

	

===> (Tugs2 	JettyO 	BO 	B3 	33)\(jal,jrl,talta2trl,tr2)

	

===> (Tugs2 	Jetty2 	30 	BO 	0)\jal,jrl,ta1,ta2,tr1,tr2)
===>

(TugsO JettyO 30 B2 B5)\(jal,jrltal,ta2,trl,tr2)

===>

(TugsO JettyO Bi B3 B3)\(jal,jr1,tal,ta2,trl,tr2)

	

===> (TugsO 	Jetty2 	BO 	B1 	0)\(jal,jrl,tal,ta2,trl,tr2)

	

==> (Tugsl 	JettyO 	30 	33 	B4)\(jal,jrl,talta2,trl,tr2)
===>

(TugsO JettyO 30 34 B4)\(jal,jrl,tal,ta2,trl,tr2)

===>

(TugsO Jettyl BO B2 0)\(jal,jrl,tal,ta2,trl,tr2)

	

===> (Tu9s2 	JettyO 	30 	33 	B5)\ja1,jr1,ta1ta2tr1,tr2)
==>

(TugsO JettyO Bi B3 35)\(jal,jrl,tal,ta2,trl,tr2)

	

===> (Tugsl 	JettyO 	30 	34 	B5)\(a1,jrl,ta1,ta2,trl,tr2)
===>(Tugs2 Jettyl 30 B3 0)\(jal,jrl,tal,ta2,trl,tr2)
===>

(TugsO Jettyl 31 33 0)\(ja1,jrl,ta1ta2,trl,tr2)

	

===> (Tugsl 	Jettyl 	30 	34 	0)\(jal,jrl,tal,ta2,trl,tr2)
(Tugs2 JettyO BO 35 B5)\(jal,jrl,tal,ta2,trl,tr2}

==>

(TugsO JettyO 31 35 B5)\jal,jr1,tal,ta2trltr2)
===>

(TugsO JettyO 32 33 0)\{jal,jrl,tal,ta2,trl,tr2)

	

===> (Tugs2 	Jettyl 	30 	35 	0)\(jal,jrl,tal,ta2,tr1,tr2)
===>

(TugsO Jettyl 31 35 0)\(jal,jrl,tal,ta2,trl,tr2)
(Tugs2 JettyO 33 33 0)\(jal,jrl,tal,ta2,trl,tr2)

	

===> (Tugs2 	Jetty2 	30 	0 	0)\(jal,jrl,tal,ta2,trl,tr2)

	

===> (TugsO 	JettyO 	32 	35 	0)\(jal,jrl,tal,ta2,trl,tr2)

	

===> (TugsO 	Jetty2 	Bl 	0 	0)\ja1,jr1,ta1,ta2tr1,tr2)

	

===> (Tugsl 	JettyO 	B3 	34 	0)\ja1,jr1,ta1,ta2,tr1,tr2)
===>

(TugsO JettyO 34 34 0)\(jal,jrl,tal,ta2,trl,tr2)

===>

(TugsO Jettyl 32 0 0)\(jal,jrl,talta2,trl,tr2)
===>

(Tugs2 JettyO 33 35 0)\(jal,jrl,tal,ta2,trl,tr2)

	

===> (Tugsl 	JettyO 	34 	35 	0)\{jal,jrltal,ta2,trltr2)

	

===> (Tugs2 	Jettyl 	33 	0 	0)\(jal,jrl,tal,ta2,tr1,tr2)

	

===> (Tugsl 	Jettyl 	B4 	0 	0)\(jal,jrl,tal,ta2,trl,tr2)

	

===> (Tugs2 	Jettyl 	35 	0 	0)\{jal,jrl,tal,ta2,trl,tr2)

Appendix C: CCS Models and Experiments for CWB
	

273

Figure 6.25

Model
bi 30 ta2.Bl
bi 31 jal.B2
bi 32 tr2.33
bi 33 tal.34
bi 84 trl.35
bi 35 jrl.0

bi Tugs3 (tal.Tugs2)+(ta2.Tugs1)
bi Tugs2 (tal .Tugsl(+(ta2.Tugso)+(trl .Tugs3)
bi Tugsl (tal .Tugso)+(trl .Tugs2(+(tr2 .Tugs3)
bi Tugs0 (tr1.Tugsl)+(tr2.Tugs2)

bi Jetty2 (jal.Jettyl)
bi Jettyl (jal.Jetty0) * (jrl.Jetty2)
bi Jetty0 (jrl.Jettyl)

	

bi Model (Tugs3 I 	Jetty2 I 30 I BO 	80)\(tal,ta2,trl,tr2,jal,jrl)

Output
Command: fdobs Model

===> Model
===> (Tugsl Jetty2 BO 30 Bl)\(jaljrlta1,ta2,tr1,tr2)
===>

(Tugsl Jettyl 80 80 82)\{ja1,jrl,tal,ta2,tr1,tr2}

	

===> (Tugs3 	Jettyl 	80 	30 	B3)\{jaljrl,tal,ta2,trl,tr2}

	

===> (Tugsl 	Jettyl 	80 	31 	83(\(ja1jrl,ta1,ta2,tr1,tr2)

	

===> (Tugs2 	Jettyl 	80 	BO 	84)\(jal,jrltal,ta2trl,tr2}

	

===> (Tugso 	Jettyl 	BO 	31 	B4)\jaljr1,tal,ta2,trl,tr2)

	

===> (Tugsl 	Jettyo 	80 	32 	133)\(jal,jr1,ta1,ta2,trltr2)

	

===> (Tugs3 	Jettyl 	80 	BO 	B5)\(jal,jrl,tal,ta2,trl,tr2)

	

===> (Tugs0 	Jettyo 	BO 	B2 	B4)\{jal,jr1,ta1ta2,tr1,tr2}

	

==> (Tugsl 	Jettyl 	BO 	El 	B5)\(jal,jrl,tal,ta2,tr1,tr2)

	

===> (Tugs3 	Jetty0 	30 	B3 	83)\(jal,jrl,ta1,ta2,trl,tr2)
(Tugs3 Jetty2 80 30 0)\{ja1,jr1,tal,ta2trl,tr2}

	

===> (Tugsl 	JettyO 	80 	32 	B5)\(ja1,jr1,tal,ta2,tr1,tr2)

	

===> (Tugsl 	Jetty0 	B1 	B3 	83)\{jal,jrl,tal,ta2,trl,1r2}

	

===> (Tugsl 	Jetty2 	BO 	Bl 	0(\{jal,jr1tal,ta2,trltr2}

	

===> (Tugs2 	Jetty0 	30 	B3 	84)\{ja1jrl,ta1,ta2trl,tr2}

	

===> (Tugso 	Jetty0 	Bi 	33 	B4)\(jaljrl,ta1,ta2,trl,tr2}

	

===> (Tugsl 	Jetty0 	80 	84 	B4)\(jal,jr1,ta1,ta2,trltr2)

	

===> (Tugsl 	Jettyl 	80 	82 	0)\(jal,jrl,tal,ta2,trl,tr2)

	

===> (Tugs3 	Jetty0 	80 	B3 	B5)\{jal,jrlta1,ta2,trl,tr2}

	

===> (Tugsl 	Jetty0 	31 	113 	B5)\{jal,jrl,tal,ta2,trl,tr2}

	

===> (Tugs2 	Jetty0 	80 	34 	B5)\(jaljrl,tal,ta2tr1,tr2)

	

===> (Tugs3 	Jettyl 	30 	33 	0)\(jal,jrl,tal,ta2trl,tr2)

	

==> (Tugs0 	Jetty0 	81 	B4 	B5)\{jal,jrltal,ta2trl,tr2}

	

===> (Tugsl 	Jettyl 	Bl 	B3 	0)\jal,jr1,ta1,ta2,tr1,tr2)

	

===> (Tugs2 	Jettyl 	80 	B4 	0)\{ja1,jr1,ta1,ta2,trl,tr2}

	

===> (Tugs3 	Jetty0 	BO 	B5 	B5)\(jaljrl,tal1a2,trl,tr2)

	

===> (TugsO 	Jettyl 	31 	34 	0)\(ja1,jrl,ta1,ta2,tr1,tr2)

	

===> (Tugsl 	Jetty0 	Bl 	B5 	B5)\jal,jrl,tal,ta2,tr1,tr2)

	

===> (Tugsl 	Jettyo 	32 	B3 	0)\ja1,jr1:tal,ta2,tr1,tr2)

	

===> (Tugs3 	Jettyl 	80 	35 	0)\(ja1jrl,ta1,ta2tr1,tr2)

	

===> (TugsO 	Jetty0 	32 	34 	0)\(jal,jrl,tal,ta2,trl,tr2)
===>

(Tugsl Jettyl B1 35 0)\(jal,jr1:tal,ta2,tr11r2)

	

===> (Tugs3 	Jettyo 	33 	B3 	0)\(ja1,jrl,tal,ta2,trl,tr2)

	

===> (Tugs3 	Jetty2 	BO 	0 	0)\ja1,jr1,tal,ta2,tr1,tr2)

	

===> (Tugsl 	Jettyo 	82 	35 	0)\(jal,jrl,ta1,ta2,trl,tr2)

	

===> (Tugsl 	Jetty2 	Bl 	0 	0)\(jal,jr1,talta2trl,tr2)

	

===> (Tugs2 	Jetty0 	33 	34 	0)\{jaJjr1,ta1,ta2,tr1,tr2)

	

===> (Tugsl 	Jetty0 	84 	34 	0(\(jal,jrltal,ta2,trl,tr2)

	

===> (Tugsl 	Jettyl 	32 	0 	0)\(ja1,jr1,tal,ta2tr1,tr2)

	

==> (Tugs3 	Jetty0 	B3 	85 	0)\(jal,r1,ta1,ta2tr1,tr2)

	

===> (Tugs2 	Jetty0 	B4 	85 	0)\{jal,jrl,talta2,tr1tr2}

	

===> (Tugs3 	Jettyl 	33 	0 	0)\{ja1,jr1,tal,ta2trl,tr2}

	

===> (Tugs2 	Jettyl 	B4 	0 	0)\(ja1,jr1,tal,1a2,tr1,tr2)

	

===> (Tugs3 	Jettyl 	35 	0 	0)\(ja1jr1,tal,ta2,trltr2)

	

===> (Tugs3 	Jetty2 	0 	0 	0)\(ja1,jrl,ta1ta2,tr1,tr2)

Appendix C: CCS Models and Experiments for CW.B

Figure 6.27

Model
bi Arrival 	cbAddl.Arrival
bi WrapMC cbReml.Wrapping
bi Wrapping oBuffAddl.WrapMC
bi AGVShuttle 	oBuffReml .AGVShuttle
bi OBuffl oBuffReml.OBuffO
bi OBuffO oBuffAddl.OBuffl
bi CBeltO cbAddl.CBeltl
bi CBeltl cbAddl.CBelt2 + cbReml.CBeltO
bi CBelt2 cbAddl.CBelt3 + cbReml.CBe1C1
bi CBelt3 cbAddl.CBelt4 + cbReml.CBelt2
bi CBelt4 cbReml.CBelt3

bi Model (Arrival I WrapMC I AGVShuttle J OBuffl I CBeltO(\
\{cbAddl, cbReml, oBuffAddl, oBuffReml)

bi Mode12 (Arrival I WrapMC I OBuffl j CBeltO)\
\ (cbAddl, cbReml, oBuffAddl oBuffReml)

Output
Command: states Mode12

Model2
(Arrival 	WrapMC 	OBuffl 	CBeltl) \(cbAddl,cbReml,oguffAddl, oBuffReml}
(Arrival 	WrapMC 	OBuffl 	CBelt2)\(cbAddl, cbReml, oBuffAddl, oBuffRemi)
(Arrival 	Wrapping I OBuffl I CBeltO)\(cbAddl,cbReml,oBuffAddl,oguffReml)
(Arrival 	WrapMC I OBuffl J CBelt3(\CcbAddl,cbReml,oBuffAddl,osuffReml)
(Arrival 	Wrapping I OBuffl I CBeltl(\{cbAddlcbRezol,oBuffAddl,oBuffReml)
(Arrival 	WrapMC I OBuffl I CBelt4(\(cbAddl,cbRemloguffAddl,oBuffRemj)
= (Arrival I Wrapping I OBuffl J CBelt2)\(cbAddlcbReml,oBuffAddl,opuffReml)
(Arrival 	Wrapping 	OBuffl 	CBelt3) \(cbAddl, cbReml,oguffAddl, oBuffReml}
(Arrival Wrapping OBuffl CBelt4)\(cbAddlcbReml,oBuffAddl,oguffReml)

Command: states Model
Model
(Arrival WrapMC AGVShuttle OBuffO CBeltO)\(cbAddl,cbReml,oBuffAddl,oBuffReml)
(Arrival 	WrapMC AGVShuttle 	OBuffl 	CBeltl(\(cbAddl, cbReml, oBuffAddl, oBuffReml)
(Arrival 	WrapMC 	AGVShuttle 	OBuffO 	CBeltl) \(cbAddl, cbReml, oBuffAddl, oBuffReml)
(Arrival WrapMC AGVShuttle OBuffl CBelt2(\(cbAddl,cbReml,oBuffAddl,oBuffReml)
(Arrival 	Wrapping I AGVShuttle I OBuffl I CBeltO)\(cbAddlcbReml,oBuffAddl,oguffReml}
(Arrival 	WrapMC I AGVShuttle I OBuffO I CBelt2)\(cbAddl,cbReml,oBuffAddl,oguffReml)
(Arrival 	Wrapping I AGVShuttle I OBuffO I CBeltO)\(cbAddl,cbReml,oBufiAddl,oBuffReml)
(Arrival 	WrapMC I AGVShuttle I OBuffl I CBelt3)\(cbAddlcbReml,oBuffAddlofluffReml}
(Arrival 	Wrapping I AGVShuttle I OBuffl I CBeltl)\(cbAddl,cbReml,oBuffAddloBuffReml)
(Arrival 	WrapMC I AGVShuttle I OBuffO I CBelt3)\(cbAddl,cbReml,oBuffAddl,opuffReml)
(Arrival 	Wrapping I AGVShuttle I OBuffO I CBeltl)\(cbAddl,cbReml,oguffAddl,oBuffReml)
(Arrival 	WrapMC J AGVShuttle I OBuffl I CBelt4(\cbAddl,cbRemloBuffAddloBuffReml}
(Arrival 	Wrapping I AGVShuttle I OBuffl I CBelt2)\{cbAddl,cbReml,oBuffAddl,osuffReml)
(Arrival 	WrapMC I AGVShuttle I OBuffO I CBelt4(\(cbAddl,cbReml,oBuffAddl,oguffReml)

= (Arrival I Wrapping I AGVShuttle I OBuffO I CBelt2(\{cbAddl,cbReml,oBuffAddl,oBuffReml)
(Arrival I Wrapping 	AGVShuttle 	OBuffl I CBelt3(\{cbAddl, cbReml,oBuf fAddi, oBuffReml)
(Arrival Wrapping AGVShuttle OBuffO CBelt3)\(cbAddl,cbReml,oBuffAddl,oBuffReml}
= (ArrivalWrapping AGVShuttle I OBuffi I CBe1t4)\(cbAddlcbRemloBuffAddloBuffReml)

(Arrival I Wrapping I AGVShuttle I OBuffO I CBelt4)\{cbAddl,cbRemloBuffAddl,oBuffReml}

274

