12 research outputs found

    Cautious Reinforcement Learning with Logical Constraints

    Full text link
    This paper presents the concept of an adaptive safe padding that forces Reinforcement Learning (RL) to synthesise optimal control policies while ensuring safety during the learning process. Policies are synthesised to satisfy a goal, expressed as a temporal logic formula, with maximal probability. Enforcing the RL agent to stay safe during learning might limit the exploration, however we show that the proposed architecture is able to automatically handle the trade-off between efficient progress in exploration (towards goal satisfaction) and ensuring safety. Theoretical guarantees are available on the optimality of the synthesised policies and on the convergence of the learning algorithm. Experimental results are provided to showcase the performance of the proposed method.Comment: Accepted to AAMAS 2020. arXiv admin note: text overlap with arXiv:1902.0077

    An Anytime Algorithm for Reachability on Uncountable MDP

    Get PDF
    We provide an algorithm for reachability on Markov decision processes with uncountable state and action spaces, which, under mild assumptions, approximates the optimal value to any desired precision. It is the first such anytime algorithm, meaning that at any point in time it can return the current approximation with its precision. Moreover, it simultaneously is the first algorithm able to utilize \emph{learning} approaches without sacrificing guarantees and it further allows for combination with existing heuristics

    Logically-constrained neural fitted Q-iteration

    No full text

    Logically-constrained neural fitted Q-iteration

    No full text
    We propose a method for efficient training of Q-functions for continuous-state Markov Decision Processes (MDPs) such that the traces of the resulting policies satisfy a given Linear Temporal Logic (LTL) property. LTL, a modal logic, can express a wide range of time-dependent logical properties (including "safety") that are quite similar to patterns in natural language. We convert the LTL property into a limit deterministic Buchi automaton and construct an on-the-fly synchronised product MDP. The control policy is then synthesised by defining an adaptive reward function and by applying a modified neural fitted Q-iteration algorithm to the synchronised structure, assuming that no prior knowledge is available from the original MDP. The proposed method is evaluated in a numerical study to test the quality of the generated control policy and is compared with conventional methods for policy synthesis such as MDP abstraction (Voronoi quantizer) and approximate dynamic programming (fitted value iteration).Comment: AAMAS 201
    corecore