33,370 research outputs found

    The geometry of consistent majoritarian judgement aggregation

    Get PDF
    Given a set of propositions with unknown truth values, a `judgement aggregation rule' is a way to aggregate the personal truth-valuations of a set of jurors into some `collective' truth valuation. We introduce the class of `quasimajoritarian' judgement aggregation rules, which includes majority vote, but also includes some rules which use different weighted voting schemes to decide the truth of different propositions. We show that if the profile of jurors' beliefs satisfies a condition called `value restriction', then the output of any quasimajoritarian rule is logically consistent; this directly generalizes the recent work of Dietrich and List (2007). We then provide two sufficient conditions for value-restriction, defined geometrically in terms of a lattice ordering or an ultrametric structure on the set of jurors and propositions. Finally, we introduce another sufficient condition for consistent majoritarian judgement aggregation, called `convexity'. We show that convexity is not logically related to value-restriction

    On the evolution of the instance level of DL-lite knowledge bases

    Full text link
    Recent papers address the issue of updating the instance level of knowledge bases expressed in Description Logic following a model-based approach. One of the outcomes of these papers is that the result of updating a knowledge base K is generally not expressible in the Description Logic used to express K. In this paper we introduce a formula-based approach to this problem, by revisiting some research work on formula-based updates developed in the '80s, in particular the WIDTIO (When In Doubt, Throw It Out) approach. We show that our operator enjoys desirable properties, including that both insertions and deletions according to such operator can be expressed in the DL used for the original KB. Also, we present polynomial time algorithms for the evolution of the instance level knowledge bases expressed in the most expressive Description Logics of the DL-lite family

    BOOL-AN: A method for comparative sequence analysis and phylogenetic reconstruction

    Get PDF
    A novel discrete mathematical approach is proposed as an additional tool for molecular systematics which does not require prior statistical assumptions concerning the evolutionary process. The method is based on algorithms generating mathematical representations directly from DNA/RNA or protein sequences, followed by the output of numerical (scalar or vector) and visual characteristics (graphs). The binary encoded sequence information is transformed into a compact analytical form, called the Iterative Canonical Form (or ICF) of Boolean functions, which can then be used as a generalized molecular descriptor. The method provides raw vector data for calculating different distance matrices, which in turn can be analyzed by neighbor-joining or UPGMA to derive a phylogenetic tree, or by principal coordinates analysis to get an ordination scattergram. The new method and the associated software for inferring phylogenetic trees are called the Boolean analysis or BOOL-AN

    Probabilistic entailment in the setting of coherence: The role of quasi conjunction and inclusion relation

    Full text link
    In this paper, by adopting a coherence-based probabilistic approach to default reasoning, we focus the study on the logical operation of quasi conjunction and the Goodman-Nguyen inclusion relation for conditional events. We recall that quasi conjunction is a basic notion for defining consistency of conditional knowledge bases. By deepening some results given in a previous paper we show that, given any finite family of conditional events F and any nonempty subset S of F, the family F p-entails the quasi conjunction C(S); then, given any conditional event E|H, we analyze the equivalence between p-entailment of E|H from F and p-entailment of E|H from C(S), where S is some nonempty subset of F. We also illustrate some alternative theorems related with p-consistency and p-entailment. Finally, we deepen the study of the connections between the notions of p-entailment and inclusion relation by introducing for a pair (F,E|H) the (possibly empty) class K of the subsets S of F such that C(S) implies E|H. We show that the class K satisfies many properties; in particular K is additive and has a greatest element which can be determined by applying a suitable algorithm
    corecore