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Abstract

Given a set of propositions with unknown truth values, a ‘judgement aggregation
rule’ is a way to aggregate the personal truth-valuations of a set of jurors into some
‘collective’ truth valuation. We introduce the class of ‘quasimajoritarian’ judgement
aggregation rules, which includes majority vote, but also includes some rules which
use different weighted voting schemes to decide the truth of different propositions. We
show that if the profile of jurors’ beliefs satisfies a condition called ‘value restriction’,
then the output of any quasimajoritarian rule is logically consistent; this directly
generalizes the recent work of Dietrich and List (2007). We then provide two sufficient
conditions for value-restriction, defined geometrically in terms of a lattice ordering or
an ultrametric structure on the set of jurors and propositions. Finally, we introduce
another sufficient condition for consistent majoritarian judgement aggregation, called
‘convexity’. We show that convexity is not logically related to value-restriction.

Let P be a finite set of propositions and let J be a finite jury. For all j ∈ J , let
Pj ⊂ P be j’s judgement set: the set of propositions which j believes are true. Assume Pj
is logically consistent, for each j ∈ J . The list P := (Pj)j∈J is called a judgement profile.
A judgement aggregation rule is a function R which converts any judgement profile P into
an aggregate judgement set R(P) ⊂ P; heuristically, R(P) is the set of propositions which
are judged to be ‘true’ by the jury J as a whole.

For example, the simple majoritarian rule Rmaj works as follows: For all p ∈ P, let
Jp := {j ∈ J ; p ∈ Pj}. Then define Rmaj(P) := {p ∈ P ; |Jp| > |J |/2}. The problem is
that Rmaj(P) may be inconsistent; this phenomenon was called the Doctrinal Paradox by
Kornhauser and Sager (1986, 1993) in the context of jurisprudence. List and Pettit (2002)
called this phenomenon the Discursive Dilemma, and showed that it is inevitable using
any ‘reasonable’ judgement aggregation rule (not just Rmaj). Since then, the Dilemma has
been the subject of intense investigation; see List and Puppe (2007) for a survey.

Dietrich and List (2007; Proposition 16) have shown that if the profile P satisfies
a structural condition called value restriction, then Rmaj(P) will be consistent. Value
restriction is a somewhat abstract property without any clear social or epistemological
interpretation, but Dietrich and List also provide several geometrically appealing sufficient
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conditions for value restriction, which involve some linear ordering of the elements of J
and/or P; these include the sufficient condition of ‘unidimensional alignment’ earlier pro-
posed by List (2003, 2006). These conditions can be plausibly interpreted as arranging
jurors and/or propositions along some ‘ideological continuum’ (e.g. from ‘liberal’ to ‘con-
servative’; from ‘religious fundamentalist’ to ‘scientific rationalist’, etc.). However, there
are many judgement aggregation problems where such a one-dimensional ordering of jurors
and/or propositions may not be possible. We will generalize the conditions of Dietrich and
List to a much broader class of geometric realizations.1

In §1 we show that value-restriction guarantees logical consistency using any quasi-
majoritarian judgement aggregation rule; this is a somewhat broader class than the rule
Rmaj considered in Dietrich and List (2007). In §2, we introduce diamond profiles, which
involve arranging J into a lattice (a partially ordered set with ‘meet’ and ‘join’ operators);
this generalizes the unidimensional order condition of Dietrich and List (2007). We show
that any diamond profile is value-restricted. In §3 we show that any ultrametric profile is
value-restricted; ultrametric profiles are defined by geometrizing J and P in terms of an
ultrametric space. In §4, we introduce define the class of convex profiles, by embedding J
in a vector space V and identifying P with convex subsets of V ; this again generalizes the
‘unidimensional order’ condition of Dietrich and List (2007). We show that Rmaj is consis-
tent on any convex profile; however, convex profiles are not necessarily value-restricted, so
this result falls outside the scope of the theory developed by Dietrich and List (2007).

1 Value Restriction and Quasimajoritarianism

Let P be a set of propositions. A logic on P is a collection Y of nonsingleton finite subsets
of P, called minimal inconsistent sets. A subset of P is inconsistent if it contains some
element of Y, and consistent if it doesn’t.2 The set P is symmetric if, for every p ∈ P, its
negation ¬p is also in P (note that we identify ¬¬p with p). In this case, a judgement
set Pj ⊂ P is called logically complete if, for every p ∈ P, either p ∈ Pj or ¬p ∈ Pj. We
do not assume that either the individual or collective judgement sets are complete. (Thus,
individual jurors and the whole jury can ‘abstain from judgement’ on some propositions.)

A profile P := (Pj)j∈J is value-restricted if, for any Y ∈ Y, there exist y1, y2 ∈ Y such
that Jy1 ∩ Jy2 = ∅. (That is: for all j ∈ J , either y1 6∈ Pj or y2 6∈ Pj).

A voting rule is a collection R of subsets of J such that, if R ∈ R and R ⊆ R′, then
R′ ∈ R also. An element R ∈ R is a ruling coalition; for example, if Jp is the set of jurors
supporting a proposal p, and Jp ∈ R, then p is approved by the jury.

R is called supermajoritarian if for all R ∈ R, we have |R| > |J |/2. For example, the
simple majoritarian rule Rmaj := {R ⊆ J ; |R| > |J |/2} is supermajoritarian. If j ∈ J ,
we say that j has a veto in R if j ∈ R for all R ∈ R.

1A different ‘geometric’ approach to judgement aggregation has recently been introduced by Eckert and
Klamler (2008). Our model is unrelated to their work.

2Presumably the elements of P are embedded in some logico-deductive framework —e.g. predicate
calculus —and Y is defined using this framework. However, the actual manner in which Y is defined is
unimportant to us.
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A propositionwise judgement aggregation rule (or rule for short) for a set of propositions P
is a collection R = {Rp}p∈P , where Rp is a voting rule for each p ∈ P. If P is a judgement
profile on P, then we define R[P] := {p ∈ P ; Jp ∈ Rp} —the set of all propositions p
which are approved by a ruling coalition (according to the voting rule Rp specific to p).
We say R is supermajoritarian if each Rp is supermajoritarian. We say R is quasimajoritarian
if, for any p1, p2 ∈ P and any R1 ∈ Rp1 and R2 ∈ Rp2 , we have R1 ∩R2 6= ∅.

Example 1.1: (a) The simple majoritarian aggregation rule Rmaj simply sets Rp := Rmaj

for all p ∈ P; this rule is supermajoritarian.

(b) Any supermajoritarian rule is quasimajoritarian, because if |R1| > |J |/2 and |R2| >
|J |/2, then R1 ∩R2 6= ∅ by the pigeonhole principle.

(c) Suppose j has a veto in Rp for every p ∈ P; then R is quasimajoritarian. (In this case
we say j has a global veto).

(d) Let N ≥ 2, and let J1, . . . ,JN ⊆ J be subsets such that Jn ∩ Jm 6= ∅ for all n,m ∈
[1...N ]. Suppose that, for each p ∈ P, there is some n = n(p) ∈ [1...N ] such that the rule
Rp requires unanimous approval of all members of Jn. Then R is quasimajoritarian. Note
that R is not necessarily supermajoritarian (because J1, . . . ,JN need not be majorities).
Also, there might be no juror with a global veto (if J1 ∩ · · · ∩ JN = ∅).
(e) Let J := {1, 2, 3, 4, 5}, let P := {p1, p2}, let Rp1 := {R ⊆ J ; |R| ≥ 4} and let
Rp2 := {R ⊆ {1, 2, 3} ; |R| ≥ 2}. Then R is quasimajoritarian. However, rule Rp2 is
not supermajoritarian, and no one has a veto anywhere. ♦

Dietrich and List (2007, Theorem 1) show that Rmaj is the only rule which is anony-
mous, ‘neutral’ about the acceptance/rejection of each proposal in P, and which produces
consistent outcomes on at least some restricted classes of judgement profiles. However, in
some cases, we might reject anonymity (e.g. if certain jurors have special ‘expertise’ about
certain propositions). In other cases, we might reject neutrality (e.g. in criminal law,
the defendant is ‘presumed innocent’ until proven guilty; in medicine, the ‘precautionary
principle’ says that a drug or treatment should be regarded as unsafe until it is proven
safe). Thus, it is sometimes appropriate to consider aggregation rules other than Rmaj.
Therefore, our first result extends the proof of Proposition 16 in Dietrich and List (2007)
to the class of quasimajoritarian rules.

Proposition 1.2 If P is value-restricted, and R is a quasimajoritarian aggregation rule,
then the judgement set R(P) is logically consistent.

Proof: (by contradiction) Suppose R(P) was logically inconsistent, and find Y ⊂ R(P)
with Y ∈ Y. Then there exist y1, y2 ∈ Y such that Jy1 ∩ Jy2 = ∅ (because P is
value-restricted). But Jy1 ∈ Ry1 and Jy2 ∈ Ry2 ; hence Jy1 ∩ Jy2 6= ∅ because R is
quasimajoritarian. Contradiction. 2
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2 Diamond profiles

A lattice is a partially ordered set (L,�) such that, for any `1, `2 ∈ L:

• There is a unique element `1 ∨ `2 in L (the join of `1 and `2) such that, for all ` ∈ L,
[`1 � ` and `2 � `] ⇐⇒ [(`1 ∨ `2) � `].

• There is a unique element `1∧ `2 in L (the meet of `1 and `2) such that, for all ` ∈ L,
[`1 � ` and `2 � `] ⇐⇒ [(`1 ∧ `2) � `].

If `1 � `2 then the diamond between `1 and `2 is the set [`1, `2] := {` ∈ L ; `1 � ` � `2}. The
operations ∧ and ∨ are commutative and associative. Thus, if Y = {y1, y2, . . . , yN} ⊆ L is
any finite subset, we can define

∧

Y := y1 ∧ y2 ∧ · · · ∧ yN and
∨

Y := y1 ∨ y2 ∨ · · · ∨ yN . If
L is finite, then it has a global maximum

∨

L and global minimum
∧

L.

Example 2.1: (a) Let L be any finite, totally ordered set (e.g. a finite subset of R). If
`1, `2 ∈ L then `1 ∨ `2 = max{`1, `2} and `1 ∧ `2 = min{`1, `2}.
(b) Let S be either (i) a set, or some ‘mathematical structure’ such as (ii) a topological
space, or (iii) a measure space, or an algebraic structure such as a (iv) group, (v) ring, (vi)
module, (vii) vector space, (viii) convex set, etc. Let L be either (i) the set of all subsets
of S, or the set of suitable ‘substructures’ of S, such as (ii) all open sets, or all closed sets,
or (iii) all measurable sets or (iv) all subgroups, (v) subrings, (vi) submodules, (vii) linear
subspaces, (viii) convex subsets of S, etc. For all `1, `2 ∈ L, let (`1 � `2) ⇐⇒ (`1 ⊆ `2),
and `1 ∧ `2 := `1 ∩ `2. In cases (i,ii,iii), let `1 ∨ `2 := `1 ∪ `2. Otherwise, let `1 ∨ `2 be the
smallest substructure of L containing `1∪ `2 (e.g. (iv) the ‘subgroup generated by’, or (vii)
the ‘subspace spanned by’, or the (viii) ‘convex hull of’ `1 ∪ `2, etc.).

(c) Let S = N, with (`1 � `2) ⇐⇒ (`1 divides `2). Then `1 ∨ `2 = lcm(`1, `2), and
`1 ∧ `2 = gcd(`1, `2).

(d) Let L ⊆ RN for some N ∈ N. For any q, r ∈ L, let (q � r) ⇐⇒ (qn ≤ rn for all
n ∈ [1...N ]). Let q ∨ r := s, where sn := max{qn, rn} for all n ∈ [1...N ]. Let q ∧ r := t,
where tn := min{qn, rn} for all n ∈ [1...N ].

For example, suppose there are N independent ‘ideological dimensions’ (e.g. socialist vs.
laissez-faire; social liberal vs. social conservative; pacifist vs. militarist; cosmopolitan vs.
nationalist; rehabilitationist vs. punitivist, etc.) corresponding to various aspects of what
is usually called the ‘left vs. right’ ideological continuum. Then each point in L ⊂ RN
could represents a person who is assigned a position on each axis. Thus, q � r if r is ‘more
right-wing’ in every ideological dimension than q is. ♦

The profile P is diamond if J is a lattice, and for all p ∈ P, the set Jp is a diamond in
J . If J ⊂ R [Example 2.1(a)], then this is equivalent to the condition of unidimensional
order from Dietrich and List (2007).

Example 2.2: Suppose the jurors in J can be partially ordered along some ‘ideological
continuum’ [e.g. as in Example 2.1(d)], such that (J ,�) forms a lattice. Each p ∈ P can
also be located somewhere in this ideological continuum; thus p is only acceptable to jurors
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in some ‘ideological range’, which we assume is a diamond. For example, if j :=
∧

J and

j :=
∨

J , and p was an ‘extreme left-wing’ (respectively, right-wing) proposition, then we
would have Jp = [j, j] (resp. Jp = [j, j]) for some j ∈ J . If p was a ‘centrist’ proposition,
then Jp = [j1, j2] for some j1 � j2 ∈ J . ♦

Proposition 2.3 If P is diamond, then P is value-restricted; hence the outcome of any
quasimajoritarian judgement rule is consistent.

Proof: [based on Prop. 17 of Dietrich and List (2007)]

Let Y ∈ Y. Suppose (for a contradiction) that Y violated value-restriction. That is:

∀ y1, y2 ∈ Y, Jy1 ∩ Jy2 6= ∅. (1)

For any y ∈ Y , there are j
y
� jy in J such that Jy = [j

y
, jy] (because P is diamond).

Let j :=
∨

{j
y

; y ∈ Y} and j :=
∧

{jy ; y ∈ Y} (well-defined because Y is finite). For

all y1, y2 ∈ Y, eqn.(1) yields some j ∈ Jy1 ∩ Jy2 ; thus, j
y1
� j � jy2

, so j
y1
� jy2

. Thus,

for all y ∈ Y, we have j
y
� j. Thus, j � j. Thus, [j, j] 6= ∅. Let j ∈ [j, j]. Then for

any y ∈ Y, we have j
y
� j � j � j � jy; hence j ∈ [j

y
, jy] = Jy; hence y ∈ Pj. Thus,

Y ⊆ Pj. But Y ∈ Y, while Pj is consistent. Contradiction. 2

3 Ultrametric profiles

Let X be a set, and let d be an ultrametric on X . That is, d : X ×X−→[0,∞) is a function
such that:

• For all x ∈ X , d(x, x) = 0 and d(x, y) > 0 for all y 6= x.

• For all x, y ∈ X , d(x, y) = d(y, x).

• For all x, y, z ∈ X , d(x, z) ≤ max{d(x, y), d(y, z)}.

(It is the third property —a ‘strong’ form of the triangle inequality —which puts the ‘ultra’
in ‘ultrametric’). If x ∈ X , and r > 0, let B(x, r) := {y ∈ X ; d(x, y) ≤ r} be the closed
ball of radius r around x.

Example 3.1: (a) Let A be a finite set, and let AN be the set of all infinite sequences
a = (a0, a1, a2, . . .) where an ∈ A for all n ∈ N. For any a,b ∈ AN, let ∆(a,b) :=
min {n ∈ N ; an 6= bn}. Define ultrametric d : AN ×AN−→[0,∞) by d(a,b) := 1/∆(a,b).
In this case, B(a, r) :=

{

b ∈ AN ; bn = an,∀n ≤ 1/r
}

.

Intuitively, if A is an ‘alphabet’, then a sequence a ∈ AN is a ‘text’. The ultrametric d
says that two texts are ‘close’ if they agree on a long initial segment.

(b) Again let A be a finite set, let M be any ‘indexing’ set, and let AM be the set
of all functions a : M−→A; we will indicate such a function as a = [am]m∈M, where
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am := a(m). Let f : M−→(0,∞) be some function, and for any a,b ∈ AM, let ∆(a,b) :=
min {f(m) ; m ∈M and am 6= bm}. Define ultrametric d : AM×AM−→[0,∞) by d(a,b) :=
1/∆(a,b). In this case, B(a, r) :=

{

b ∈ AM ; bm = am,∀m ∈M with f(m) ≤ 1/r
}

.

If M = N, and f(m) := m , this coincides with example (a). Suppose M is a set of
‘elementary statements’ about the world, and let A = {T, F}; thus, any element of AM
assigns a truth value to each element of M, which we can suppose describes a ‘world-view’.
Suppose that f(m) is inversely proportional to the ‘importance’ or ‘priority’ of statement
m. Thus, 1/∆(a,b) measures the importance of the most important statement on which
the world-views a and b disagree. Thus, d(a,b) is small if a and b agree on all ‘important’
statements. ♦

A judgement profile P is called ultrametric if there is some ultrametric space (X , d) such
that P ⊆ X and J ⊆ X , and for all j ∈ J , Pj = P ∩B(j, rj) for some rj > 0. Intuitively,
juror j endorses all propositions in P which are close enough to her own ‘world-view’
(represented by the position of j in X ).

Proposition 3.2 If P is ultrametric, then P is value-restricted; hence the outcome of any
quasimajoritarian judgement rule is consistent.

Proof: Let Y ∈ Y, and let R := diam(Y) := sup {d(y1, y2) ; y1, y2 ∈ Y}. Now, Y is finite,
so there exist y1, y2 ∈ Y with d(y1, y2) = R. We claim that, for any j ∈ J , either y1 6∈ Pj
or y2 6∈ Pj.
By contradiction, suppose {y1, y2} ⊆ Pj. Now, Pj = P ∩B(j, rj) for some rj > 0. Thus,

R = d(y1, y2) ≤
(u)

max{d(y1, j), d(j, y2)} ≤
([)

rj. (2)

Here, (u) is because d is an ultrametric; ([) is because {y1, y2} ⊆ Pj ⊆ B(j, rj). Thus,

∀ y ∈ Y, d(j, y) ≤
(u)

max{d(j, y1), d(y1, y)} ≤
(∗)

max{rj, R} (†)
rj. (3)

Here, (u) is because d is an ultrametric, and (∗) is because d(j, y1) ≤ rj (because y1 ∈
Pj ⊆ B(j, rj)) and d(y1, y) ≤ diam(Y) = R. Meanwhile (†) is by eqn.(2).

Equation (3) implies that Y ⊆ B(j, rj); hence Y ⊆ Pj. But Y ∈ Y, while Pj is consistent.
Contradiction. 2

4 Convex profiles

We will now introduce another ‘geometric’ sufficient condition for consistent majoritarian
judgement aggregation. This condition can be seen as another generalization of ‘unidimen-
sional order’, but we will demonstrate (by a counterexample) that it is not a special case
of value-restriction.

Let V be a real vector space, and let J ⊂ V be a finite symmetric subset of V —that
is, for all j ∈ J , we have −j ∈ J also. We also assume 0 ∈ J . The judgement profile P

is convex if, for all p ∈ P, there is some convex subset Cp ⊂ V such that Jp = Cp ∩ J .
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Example 4.1: (a) (Unidimensional order) Let V = R; then a convex subset is an interval.
Thus, if |J | is odd, then convexity is equivalent to the ‘unidimensional order’ condition in
Dietrich and List (2007).

(b) (World-views) Let ‖•‖ be a norm on V and suppose P ⊂ V; thus, for any p ∈ P and
any r > 0, the closed ball B(p, r) = {v ∈ V ; ‖v − p‖ ≤ r} is a convex set. Suppose that
for all p ∈ P, Jp = B(p, rp) ∩ J for some rp > 0; then P is convex. (Intuitively, V is a
space of ‘world-views’; the world-view of juror j is represented by the location of j in V .
The proposition p obtains the endorsement of all jurors j whose own world-view is close
enough to p).

(c) (Voronoi model) Suppose P = P1 tP2 t · · · t PK , where for each k ∈ [1...K], Pk is a
set of mutually exclusive propositions. (For example, Pk = {P, ¬P} for some proposition
P .) Thus, for all j ∈ J , and k ∈ [1...K], the intersection Pj ∩ Pk can contain at most
one element. Let ‖•‖ be a norm on V , and let P ⊂ V. For all j ∈ J and k ∈ K, suppose
Pj ∩ Pk = {pkj} where pkj is the element in Pk which is closest to j with respect to norm
‖•‖. For any k ∈ [1...K], the set Pk partitions V into Voronoi cells {Cp}p∈Pk , where, for all
p ∈ Pk, we define Cp :=

{

v ∈ V ; ‖v − p‖ ≤ ‖v − p′‖, ∀p′ ∈ Pk
}

. Each Cp is convex. (For
example, if Pk = {P, ¬P}, then CP and C¬P are half-spaces divided by the hyperplane
which perpendicularly bisects the line from P to ¬P in V). Assume that no element of J
lies on the boundary between two Voronoi cells (generically, this is true). Then Jp = J ∩Cp
for all p ∈ P, so the profile P is convex. ♦
Proposition 4.2 If P is convex, and R is any supermajoritarian judgement rule, then
R(P) is consistent.

Proof: We claim that, for all p ∈ R(P), Jp contains 0. To see this, note that |Jp| > |J |/2,
so there exists j ∈ Jp such that −j ∈ Jp also. But then 0 = (j− j)/2 ∈ Jp by convexity.

It follows that R(P) ⊆ P0; hence R(P) is consistent, because P0 is consistent. 2

Proposition 4.3 A convex profile need not be value-restricted.

Proof: Figure 1 portrays a counterexample. Here, V = R2 and J = {0,±i,±j}, where
i = (1, 0) and j = (0, 1). Let P := {p, ¬p, q, ¬q, (p⇒ q), ¬(p⇒ q)}. Let Jp = {i,−j},
Jq = {−i, 0,−j}, and J(p⇒q) = {−i, 0,+j,−j}. In each case, let J¬x = J {x . The figure
shows how Jx and J¬x can be separated by a line; thus, each is the intersection of J
with a half-plane (i.e. a convex set). Thus, the profile is convex. Note that every juror
has complete and logically consistent beliefs; we have

Pi = {p, ¬(p⇒ q), ¬q}; P−i = P0 = {¬p, (p⇒ q), q};
Pj = {¬p, (p⇒ q), ¬q}; and P−j = {p, (p⇒ q), q}.

(Indeed, any ‘inconsistent’ juror would have to be located inside the shaded region in
the figure). Now, let Y = {p, (p ⇒ q), ¬q}. This set is logically inconsistent, but it
violates ‘value restriction’, because

Jp ∩ J¬q = {i}; Jp ∩ J(p⇒q) = {−j}; and J(p⇒q) ∩ J¬q = {+j}.
Each intersection is nonempty; hence the profile is not value-restricted. 2
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Figure 1: A convex profile which is not value-restricted; see the proof of Proposition 4.3

References

Dietrich, F., List, C., November 2007. Majority voting on restricted domains. Presented at SCW08; see
http://personal.lse.ac.uk/LIST/PDF-files/MajorityPaper22November.pdf.

Eckert, D., Klamler, C., 2008. A geometric approach to judgement aggregation. Presented at SCW08; see
http://www.accessecon.com/pubs/SCW2008/SCW2008-08-00214S.pdf .

Kornhauser, L., Sager, L., 1986. Unpacking the court. Yale Law Journal.

Kornhauser, L., Sager, L., 1993. The one and the many: adjudication in collegial courts. California Law
Review 91, 1–51.

List, C., 2003. A possibility theorem on aggregation over multiple interconnected propositions. Math.
Social Sci. 45 (1), 1–13.

List, C., 2006. Corrigendum to: “A possibility theorem on aggregation over multiple interconnected propo-
sitions”. Math. Social Sci. 52 (1), 109–110.

List, C., Pettit, P., 2002. Aggregating sets of judgements: an impossibility result. Economics and Philos-
ophy 18, 89–110.

List, C., Puppe, C., September 2007. Judgment aggregation: a survey. (preprint).

8


