10,438 research outputs found

    Multi-ring SDH network design over optical mesh networks

    Get PDF
    Ankara : The Department of Electrical and Electronics Engineering and Sciences of Bilkent University, 2002.Thesis (Master's) -- Bilkent University, 2002.Includes bibliographical references leaves 84-87.The evolution of networks in telecommunications has brought on the importance of design techniques to obtain survivable and cost-effective transportation networks. In this thesis, we study Synchronous Digital Hierarchy (SDH) ring design problem with an interconnected multi-ring architecture overlaid over an optical mesh network. We decouple the problem into two sub-problems: the first problem is the SDH ring selection, and the second problem is the mapping of these rings onto the physical mesh topology. In this structure, the logical topology consists of SDH Add/Drop Multiplexers (ADMs) and Digital Cross-Connects (DXCs), and the physical topology consists of Optical Cross-Connects (OXCs). The ring selection problem is to choose the rings that give minimum inter-ring traffic in the network. Since inter-ring traffic increases the network cost and complexity, we aim to minimize the inter-ring traffic. We propose a greedy heuristic algorithm for this problem that finds a solution subject to the constraint that the number of nodes on each ring is limited. Numerical results on the ring design problem are presented for different topologies. Once the logical topology is obtained, resilient mapping of SDH rings onto the mesh physical topology is formulated as a Mixed Integer Linear Programming (MILP) problem. In order to guarantee proper operation of SDH ring protection against all single failures, each link on an SDH ring must be mapped onto a lightpath which is link and node disjoint from all other lightpaths comprising the same ring. The objective of this mapping is to minimize the total fiber cost in the network. We also apply a post-processing algorithm to eliminate redundant rings. The postprocessing algorithm is very useful to reduce the cost. We evaluate the performance of our design algorithm for different networks.Tan, Tuba AkıncılarM.S

    Energy-Efficient Design of Wavelength-Routing Networks

    Get PDF
    We discuss the power-aware Logical Topology Design problem in wavelength routing net- works, and analyze the economical impacts of power-efficiency. Results show that energy-optimized logical topologies can bring significant economical saving

    On Diagnosis of Forwarding Plane via Static Forwarding Rules in Software Defined Networks

    Full text link
    Software Defined Networks (SDN) decouple the forwarding and control planes from each other. The control plane is assumed to have a global knowledge of the underlying physical and/or logical network topology so that it can monitor, abstract and control the forwarding plane. In our paper, we present solutions that install an optimal or near-optimal (i.e., within 14% of the optimal) number of static forwarding rules on switches/routers so that any controller can verify the topology connectivity and detect/locate link failures at data plane speeds without relying on state updates from other controllers. Our upper bounds on performance indicate that sub-second link failure localization is possible even at data-center scale networks. For networks with hundreds or few thousand links, tens of milliseconds of latency is achievable.Comment: Submitted to Infocom'14, 9 page

    Optimization in Telecommunication Networks

    Get PDF
    Network design and network synthesis have been the classical optimization problems intelecommunication for a long time. In the recent past, there have been many technologicaldevelopments such as digitization of information, optical networks, internet, and wirelessnetworks. These developments have led to a series of new optimization problems. Thismanuscript gives an overview of the developments in solving both classical and moderntelecom optimization problems.We start with a short historical overview of the technological developments. Then,the classical (still actual) network design and synthesis problems are described with anemphasis on the latest developments on modelling and solving them. Classical results suchas Menger’s disjoint paths theorem, and Ford-Fulkerson’s max-flow-min-cut theorem, butalso Gomory-Hu trees and the Okamura-Seymour cut-condition, will be related to themodels described. Finally, we describe recent optimization problems such as routing andwavelength assignment, and grooming in optical networks.operations research and management science;

    Benchmarking and viability assessment of optical packet switching for metro networks

    Get PDF
    Optical packet switching (OPS) has been proposed as a strong candidate for future metro networks. This paper assesses the viability of an OPS-based ring architecture as proposed within the research project DAVID (Data And Voice Integration on DWDM), funded by the European Commission through the Information Society Technologies (IST) framework. Its feasibility is discussed from a physical-layer point of view, and its limitations in size are explored. Through dimensioning studies, we show that the proposed OPS architecture is competitive with respect to alternative metropolitan area network (MAN) approaches, including synchronous digital hierarchy, resilient packet rings (RPR), and star-based Ethernet. Finally, the proposed OPS architectures are discussed from a logical performance point of view, and a high-quality scheduling algorithm to control the packet-switching operations in the rings is explained

    Energy-efficient traffic engineering

    Get PDF
    The energy consumption in telecommunication networks is expected to grow considerably, especially in core networks. In this chapter, optimization of energy consumption is approached from two directions. In a first study, multilayer traffic engineering (MLTE) is used to assign energy-efficient paths and logical topology to IP traffic. The relation with traditional capacity optimization is explained, and the MLTE strategy is applied for daily traffic variations. A second study considers the core network below the IP layer, giving a detailed power consumption model. Optical bypass is evaluated as a technique to achieve considerable power savings over per-hop opticalelectronicoptical regeneration. Document type: Part of book or chapter of boo

    Optical fibre local area networks

    Get PDF

    Power-Aware Routing and Wavelength Assignment in Optical Networks

    Get PDF
    We introduce the Power-Aware RWA problem, whose goal is to accommodate lightpaths in wavelength routing networks minimizing the power consumption. Formulation, algorithms, and results are presented, showing that significant power savings are possibl
    corecore