39,182 research outputs found

    Animation and formal verification of real-time reactive systems in an object-oriented environment

    Get PDF
    Real-time reactive systems are characterized by their continuous interaction with their environment through stimulus-response behavior. The safety-critical nature of their domain and their inherent complexity advocate the use of formal methods in the software development process. TROMLAB development environment supports a process model adequate for dealing with the complexity of reactive systems. The foundation of the TROMLAB environment is the Timed Reactive Object Model (TROM), which combines object-oriented and real-time technologies. Simulation is essential in the behavioral analysis of real-time reactive systems; animation allows a visualization of the simulation process. A rigorous trace analysis of simulation scenarios provides insight into the behavior of the collaborating entities in the configuration. This supports validation of systems designed incrementally and iteratively in the software development life-cycle. Moreover, safety-critical systems need to be verified for adherence to stringent safety and liveness properties. The scope of this thesis is two-fold. We first present an animation tool supporting simulation of reactive systems described in the TROM formalism. We include formal specifications of the functionalities of the simulator in VDM specification language. We then introduce a methodology for formal verification of TROM subsystems. The novelty of the methodology lies in the formal verification approach embedded within an object-oriented framework. The simulator and the verification methodology conform respectively to the operational and logical semantics of TROMs

    Periodic scheduling for MARTE/CCSL: Theory and practice

    Get PDF
    International audienceThe UML profile for Modeling and Analysis of Real-Time and Embedded systems (MARTE) is used to design and analyze real-time and embedded systems. The Clock Constraint Specification Language (ccsl) is a companion language for MARTE. It introduces logical clocks as first class citizens as a way to formally specify the expected behavior of models , thus allowing formal verification. ccsl describes the expected infinite behaviors of reactive embedded systems. In this paper we introduce and focus on the notion of periodic schedule to allow for a nice finite abstraction of these infinite behaviors. After studying the theoretical properties of those schedules we give a practical way to deal with them based on the executable operational semantics of ccsl in rewriting logic with Maude. We also propose an algorithm to find automatically periodic schedulers with the proposed sufficient condition, and to perform formal analysis of ccsl constraints by means of customized simulation and bounded LTL model checking

    Applying Formal Methods to Networking: Theory, Techniques and Applications

    Full text link
    Despite its great importance, modern network infrastructure is remarkable for the lack of rigor in its engineering. The Internet which began as a research experiment was never designed to handle the users and applications it hosts today. The lack of formalization of the Internet architecture meant limited abstractions and modularity, especially for the control and management planes, thus requiring for every new need a new protocol built from scratch. This led to an unwieldy ossified Internet architecture resistant to any attempts at formal verification, and an Internet culture where expediency and pragmatism are favored over formal correctness. Fortunately, recent work in the space of clean slate Internet design---especially, the software defined networking (SDN) paradigm---offers the Internet community another chance to develop the right kind of architecture and abstractions. This has also led to a great resurgence in interest of applying formal methods to specification, verification, and synthesis of networking protocols and applications. In this paper, we present a self-contained tutorial of the formidable amount of work that has been done in formal methods, and present a survey of its applications to networking.Comment: 30 pages, submitted to IEEE Communications Surveys and Tutorial

    Specification Patterns for Robotic Missions

    Get PDF
    Mobile and general-purpose robots increasingly support our everyday life, requiring dependable robotics control software. Creating such software mainly amounts to implementing their complex behaviors known as missions. Recognizing the need, a large number of domain-specific specification languages has been proposed. These, in addition to traditional logical languages, allow the use of formally specified missions for synthesis, verification, simulation, or guiding the implementation. For instance, the logical language LTL is commonly used by experts to specify missions, as an input for planners, which synthesize the behavior a robot should have. Unfortunately, domain-specific languages are usually tied to specific robot models, while logical languages such as LTL are difficult to use by non-experts. We present a catalog of 22 mission specification patterns for mobile robots, together with tooling for instantiating, composing, and compiling the patterns to create mission specifications. The patterns provide solutions for recurrent specification problems, each of which detailing the usage intent, known uses, relationships to other patterns, and---most importantly---a template mission specification in temporal logic. Our tooling produces specifications expressed in the LTL and CTL temporal logics to be used by planners, simulators, or model checkers. The patterns originate from 245 realistic textual mission requirements extracted from the robotics literature, and they are evaluated upon a total of 441 real-world mission requirements and 1251 mission specifications. Five of these reflect scenarios we defined with two well-known industrial partners developing human-size robots. We validated our patterns' correctness with simulators and two real robots

    Temporalized logics and automata for time granularity

    Full text link
    Suitable extensions of the monadic second-order theory of k successors have been proposed in the literature to capture the notion of time granularity. In this paper, we provide the monadic second-order theories of downward unbounded layered structures, which are infinitely refinable structures consisting of a coarsest domain and an infinite number of finer and finer domains, and of upward unbounded layered structures, which consist of a finest domain and an infinite number of coarser and coarser domains, with expressively complete and elementarily decidable temporal logic counterparts. We obtain such a result in two steps. First, we define a new class of combined automata, called temporalized automata, which can be proved to be the automata-theoretic counterpart of temporalized logics, and show that relevant properties, such as closure under Boolean operations, decidability, and expressive equivalence with respect to temporal logics, transfer from component automata to temporalized ones. Then, we exploit the correspondence between temporalized logics and automata to reduce the task of finding the temporal logic counterparts of the given theories of time granularity to the easier one of finding temporalized automata counterparts of them.Comment: Journal: Theory and Practice of Logic Programming Journal Acronym: TPLP Category: Paper for Special Issue (Verification and Computational Logic) Submitted: 18 March 2002, revised: 14 Januari 2003, accepted: 5 September 200

    Robust Model Predictive Control for Signal Temporal Logic Synthesis

    Get PDF
    Most automated systems operate in uncertain or adversarial conditions, and have to be capable of reliably reacting to changes in the environment. The focus of this paper is on automatically synthesizing reactive controllers for cyber-physical systems subject to signal temporal logic (STL) specifications. We build on recent work that encodes STL specifications as mixed integer linear constraints on the variables of a discrete-time model of the system and environment dynamics. To obtain a reactive controller, we present solutions to the worst-case model predictive control (MPC) problem using a suite of mixed integer linear programming techniques. We demonstrate the comparative effectiveness of several existing worst-case MPC techniques, when applied to the problem of control subject to temporal logic specifications; our empirical results emphasize the need to develop specialized solutions for this domain
    • …
    corecore