
HAL Id: hal-01670450
https://hal.inria.fr/hal-01670450

Submitted on 7 Jan 2019

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Periodic scheduling for MARTE/CCSL: Theory and
practice

Min Zhang, Feng Dai, Frédéric Mallet

To cite this version:
Min Zhang, Feng Dai, Frédéric Mallet. Periodic scheduling for MARTE/CCSL: Theory and practice.
Science of Computer Programming, Elsevier, 2018, 154, pp.42-60. �10.1016/j.scico.2017.08.015�. �hal-
01670450�

https://hal.inria.fr/hal-01670450
https://hal.archives-ouvertes.fr

Periodic scheduling for MARTE/CCSL: theory

and practice

Min Zhang1,2, Feng Dai1,2, and Frédéric Mallet*3,4

1Shanghai Key Laboratory of Trustworthy Computing, ECNU,
Shanghai, China

2MoE International Joint Lab of Trustworthy Software, ECNU,
Shanghai, China

3Université Cote d’Azur, CNRS, I3S, France
4INRIA Sophia Antipolis Méditerranée, France

Abstract

The UML profile for Modeling and Analysis of Real-Time and Em-
bedded systems (MARTE) is used to design and analyze real-time and
embedded systems. The Clock Constraint Specification Language (ccsl)
is a companion language for MARTE. It introduces logical clocks as first
class citizens as a way to formally specify the expected behavior of mod-
els, thus allowing formal verification. ccsl describes the expected infinite
behaviors of reactive embedded systems. In this paper we introduce and
focus on the notion of periodic schedule to allow for a nice finite abstrac-
tion of these infinite behaviors. After studying the theoretical properties
of those schedules we give a practical way to deal with them based on the
executable operational semantics of ccsl in rewriting logic with Maude.
We also propose an algorithm to find automatically periodic schedulers
with the proposed sufficient condition, and to perform formal analysis of
ccsl constraints by means of customized simulation and bounded LTL
model checking.

1 Introduction

Lamport’s logical clocks [1] originated from the need to synchronize distributed
systems without assuming a reliable single common timing mechanism to com-
pare events. Indeed, maintaining a global clock in a widely distributed system
may be very costly. Rather than maintaining a total order on events, a partial
view was proposed as sufficient to maintain causal relationships.

*Corresponding author: Frederic.Mallet@unice.fr

1

Full text available from the Publisher: https://doi.org/10.1016/j.scico.2017.08.015

In a very different community, synchronous languages [2, 3, 4] use the word
clock to emphasize a multiform notion of time where the notion of physical time
is initially relaxed with the notion of ordering. The main important difference
is that synchronous languages accept instantaneous causal relations, which are
an important abstraction in synchronous circuits but are less relevant in widely
distributed environments.

The Clock Constraint Specification Language (ccsl) [5, 6] proposes a con-
crete syntax to handle logical clocks as first-class citizens. While synchronous
languages mainly focus on signals and values and use logical clocks as a con-
trolling mechanism, ccsl discards the values and only focuses on clock-related
issues. In this paper, we focus on the periodic scheduling of ccsl from both the-
oretical and practical perspectives, considering that reactive embedded systems
have recurrent behaviors for which the design of correct periodic schedulers is
very important in the development of such systems [7, 8]. While deciding on
the existence of a schedule for a given set of ccsl constraints is still an open
problem, we discuss here a sufficient condition for having a class of bounded
schedules which can be extended to infinite but periodic ones. In our earlier
work [9], we considered a pragmatic point of view and a very restrictive con-
dition for the existence of periodic schedules. We propose here a much less
restrictive condition, that (1) allows to find more periodic schedules, (2) is less
restrictive on the condition to find a periodic schedule, and (3) considers a big-
ger subset of ccsl constraints. About (3), we consider specifically the periodic
filter of ccsl, which offers a generic notion of periodicity on logical clocks that
generalizes the classical definition of periodic activation. In this paper, we prove
the correctness of our condition and present an operational method for building
periodic schedules from a bounded schedule that satisfies the condition.

Furthermore, we also give a formal executable operational semantics of the
extended ccsl language using Maude [10], an algebraic language based on
rewriting logic. The formal operational semantics of ccsl was initially defined
in a research report [5] in a bid to provide a reference semantics for building
simulation tools, like TimeSquare [11]. Maude provides various formal analysis
approaches, such as simulation, state space exploration (exhaustive or bounded,
symbolic or explicit-state), by which we can analyze ccsl specifications to, for
instance, check the existence of desired schedules with specific properties (e.g.,
reduce memory usage), produce a schedule or simulation by applying customized
scheduling policies, and verify the satisfiability of expected properties.

The benefits of the new semantics defined in rewriting logic are multifold.
The first benefit is that rewriting logic gives a direct implementation of the
operational semantics while TimeSquare provides a Java-based implementation
which is prone to introduce unexpected complexity. The second and most impor-
tant benefit is that we can directly use the tools that are provided for rewriting
logic to analyze a ccsl specification by means of simulation, state-space ex-
ploration, and even linear temporal logic model checking. Previous work on
studying ccsl properties [12] relies on several intermediate transformations to
automata and other specific formats so that model-checking becomes possible
when a ccsl specification is finite. A ccsl specification is called finite if it can

2

be transformed into a finite-state automaton [13]. However, some ccsl opera-
tors, which are called unsafe operators, cannot be transformed into finite-state
automata. It either meant reducing to a safe subset of ccsl [14] or detecting
that the specification was describing a finite reachable state-space even though
relying on unsafe operators. In this contribution, we rely on the Maude en-
vironment [10] to provide a direct analysis support to ccsl specifications by
formally defining its operational semantics in Maude, and we can explore un-
safe specifications using bounded model checking and do not restrict to the safe
subset.

For periodic scheduling, we provide a prototype implementation in Maude
based on the new formal semantics of ccsl to detect the proposed conditions
and build the satisfying schedule. As another contribution, we propose five arbi-
tration policies to reduce the set of possible solutions when a ccsl specification
is under-specified. Such arbitration policies can be seen as optimization crite-
ria akin to those classically used in real-time scheduling to optimize memory
or bandwidth. Those arbitration policies can also be naturally implemented in
Maude based on the new formal semantics.

This paper is an extended version of our previous work [9]. Apart from
adding much more detail on the formal semantics of ccsl, this extended version
adds the following contributions:

1. We consider an operator for the ccsl language that was ignored in previ-
ous work, the so-called periodic filter, which serves for the specification of
logical repetitive patterns between logical clocks.

2. We propose a less constraining sufficient condition for the existence of
periodic schedules and give a formal proof of its correctness.

3. We present a formal executable operational semantics of the extended
ccsl language in Maude and illustrate its applications to various formal
analysis tasks, such as checking the existence of bounded and periodic
schedules, deriving a customized simulation and performing LTL model-
checking.

4. More user-defined arbitration policies are supported for customized simu-
lations of schedules.

The rest of this paper is organized as follows. Section 2 introduces ccsl
and the notion of schedule with bounded and periodic restrictions. It also gives
conditions for being able to build a periodic schedule, and we prove that those
conditions are sufficient. Section 3 gives a brief introduction to Maude. Section
4 discusses the encoding of the semantics of ccsl in Maude and details the
way its environment can be used to compute bounded and periodic schedules.
Section 5 considers several examples to illustrate the interest of this encoding
and the usefulness of our tool. Finally, Section 6 compares this work to previous
work, including our own, and Section 7 gives some concluding remarks.

3

2 The Clock Constraint Specification Language
with Periodic Filter

2.1 Syntax and semantics of CCSL

ccsl relies on the notion of logical clocks, which are commonly used to express
partial orders in distributed systems [1] or synchronization conditions in syn-
chronous languages [3]. We use the wording clock or logical clock indistinctly in
the following. While traditional synchronous languages give a syntax to com-
bine signals, infinite sequences of values, and use clocks to express when the
signals are present (have a value), ccsl discards the values on purpose to focus
on relationships among clocks.

Definition 1 (Logical clock). A logical clock c is an infinite sequence (a stream)
of ticks, (cn)n∈N+ .

While a logical clock can represent any kind of repetitive event, the ticks
stand for their successive occurrences. All the events are assumed to be in-
dependent, so there is no relationship between the ticks of two clocks unless
explicitly defined. ccsl gives a syntax to define such relationships. Concretely,
clocks can be used to observe the occurrence of events. In such cases, ccsl
describes the expected observations. They can also be used as activation con-
ditions to control the behavior of a system.

ccsl constraints express some relationships between clocks, and their under-
lying ticks. One possible behavior is captured as a synchronous schedule defined
as an infinite sequence of steps. At each step, the schedule defines which clocks
tick and which ones do not tick. A ccsl specification characterizes a set of valid
schedules. Each constraint potentially reduces the number of valid schedules by
forbidding some clocks to tick.

Definition 2 (Schedule). Given a set C of clocks, a schedule of C is a total
function δ : N+ → 2C such that at each step n in N+, δ(n) 6= ∅.

N+ denotes the set of all the non-zero natural numbers. By the condition
δ(n) 6= ∅ in Definition 2 we exclude from schedules those trivial steps where
there is no clock ticking.

Purely synchronous constraints define when some clocks should tick together
and when they cannot, i.e. synchronization conditions. Other more general
constraints look at the past, the history (as far as they need) to decide what
may happen at a given step.

Definition 3 (History). A history of a schedule δ over a set C of clocks is a
function χδ : C × N+ → N such that for each clock c ∈ C and n ∈ N+:

χδ(c, n) =

 0 if n = 1
χδ(c, n− 1) if n > 1 ∧ c 6∈ δ(n− 1)
χδ(c, n− 1) + 1 if n > 1 ∧ c ∈ δ(n− 1)

4

Intuitively, χδ(c, n) denotes the number of times that a clock c has ticked
before reaching step n in the schedule δ. For simplicity, we write χ for χδ
when the context is clear. This ability to look into the past as far as we need
raises reachability problems unusual in traditional synchronous languages, which
commonly look only at the preceding step.

In ccsl, there are four primitive constraint operators which are binary rela-
tions between clocks, and five kinds of clock definitions [6]. The four constraint
operators are called precedence, causality, subclock and exclusion; and the five
clock definitions are called union, intersection, infimum, supremum, and delay.
For simplicity, we call all of them ccsl constraints in this paper. Besides the
nine existing primitive operators, we consider a new one called periodic filter.
The purely synchronous operators (subclock, exclusion, union, intersection) rely
only on the notion of schedule. The other ones rely on history.

Figure 1 shows the definition of the satisfiability of a constraint φ with
regards to a schedule δ, which is denoted by δ |= φ. For example, given two
clocks c1 and c2, δ |= c1 ≺ c2 holds if and only if for each n in N+, c2 must not
tick at step n if the number of ticks of c1 is equal to the one of c2 up to step n
(not including step n). Intuitively, ‘c1 precedes c2’ means that c1 must always
tick earlier than c2. Precedence and causality are asynchronous constraints and
they forbid clocks to tick depending on what has happened on other clocks in the
earlier steps. Subclock and exclusion are synchronous constraints and they force
clocks to tick depending on whether another clock ticks or not in the same step.
Union defines a clock c1 which ticks whenever either c2 or c3 ticks; intersection
defines a clock c1 which ticks whenever both c2 and c3 tick; supremum defines
the slowest clock c1 which is faster than both c2 and c3; infimum defines the
fastest clock c1 which is slower than both c2 and c3; and delay defines the clock
c1 which is delayed by c2 with d steps. Periodic filter is used to define a clock,
e.g., c1 in the figure, which ticks once periodically every pth tick of another clock
c2. Note that we need m× p− 1 because the tick of c2 at step n is not counted
in the history χ(c2, n). By construction, c1 is a subclock of c2 and is slower than
c2.

Subclock, exclusion, union and intersection are also called stateless con-
straints since the tick of a clock at a step only depends on the ticks of other
clocks at the same step, while other constraints are stateful, when the ticks of
a clock depend on the ticks of other clocks at previous steps.

Given a set Φ of clock constraints and a schedule δ, δ satisfies Φ (denoted
by δ |= Φ) if δ |= φ for each φ in Φ. We use δ; k |= φ to denote that δ satisfies
φ at step k (k ∈ N+). That is, δ; k |= φ holds if and only if the counterpart
formula of φ in Figure 1 is true after the universally quantified variable n in the
formula is eliminated by being instantiated with k. We use δ; k |= Φ to denote
that δ satisfies all the constraints in Φ at step k, i.e., ∀φ ∈ Φ.δ; k |= φ.

2.2 Bounded and periodic schedules

Given a set Φ of ccsl constraints, deciding if there exists at least one schedule
that satisfies Φ is still an open problem. Intuitively, the satisfying schedule may

5

1. δ |= c1 ≺ c2 ⇐⇒ ∀n ∈ N+.χ(c2, n) = χ(c1, n)⇒ c2 6∈ δ(n) (Precedence)

2. δ |= c1 � c2 ⇐⇒ ∀n ∈ N+.χ(c1, n) ≥ χ(c2, n) (Causality)

3. δ |= c1 ⊆ c2 ⇐⇒ ∀n ∈ N+.c1 ∈ δ(n)⇒ c2 ∈ δ(n) (Subclock)

4. δ |= c1 # c2 ⇐⇒ ∀n ∈ N+.c1 6∈ δ(n) ∨ c2 6∈ δ(n) (Exclusion)

5. δ |= c1 , c2 + c3 ⇐⇒ ∀n ∈ N+.(c1 ∈ δ(n) ⇐⇒ c2 ∈ δ(n) ∨ c3 ∈ δ(n)) (Union)

6. δ |= c1 , c2 × c3 ⇐⇒ ∀n ∈ N+.(c1 ∈ δ(n) ⇐⇒ c2 ∈ δ(n) ∧ c3 ∈ δ(n)) (Intersection)

7. δ |= c1 , c2 ∧ c3 ⇐⇒ ∀n ∈ N+.χ(c1, n) = max(χ(c2, n), χ(c3, n)) (Infimum)

8. δ |= c1 , c2 ∨ c3 ⇐⇒ ∀n ∈ N+.χ(c1, n) = min(χ(c2, n), χ(c3, n)) (Supremum)

9. δ |= c1 , c2 d ⇐⇒ ∀n ∈ N+.χ(c1, n) = max(χ(c2, n)− d, 0) (Delay)

10. δ |= c1 , c2 ∝ p ⇐⇒ ∀n ∈ N+.c1 ∈ δ(n) ⇐⇒ c2 ∈ δ(n) ∧ ∃m ∈ N+.χ(c2, n) = m× p− 1 (Periodicity)

$

1

Figure 1: Definition of the 10 primitive ccsl operators.

s0start s1 s2 s3 . . .

{c1}

{c2}

{c1, c2} {c1}
{c1, c2}

{c2}

{c1}
{c1, c2}

{c2}

{c1}
{c1, c2}

{c2}

Figure 2: State-based representation of the schedules satisfying c1 ≺ c2.

be an infinite sequence of finite valuations, so it may require to explore an infinite
number of states. For example, Figure 2 shows a state-based representation of
the schedules that satisfy the constraint c1 ≺ c2 [12]. An arrow from one state
to another represents one step and the label of the arrow is the set of all the
clocks that tick at this step. An infinite path from the initial state s0 represents
a schedule. For precedence, it needs an infinite number of states to represent all
the possible schedules [12]. In the work [15], such constraint is called divergent.

Finding a periodic schedule is a way to have a finite abstraction to charac-
terize this infinite state space.We consider two special kinds of schedules called
bounded schedule and periodic schedule from a pragmatic point of view. We
show that the existence of a bounded schedule for a set of ccsl constraints
among those introduced in the previous subsection is decidable. Additionally,
we propose a simple sufficient condition for the existence of a periodic schedule.

Definition 4 (Bounded schedule). Given a set Φ of clock constraints on clocks
in C and a function δ : N+

≤n → 2C , δ is called an n-bounded schedule of Φ if for
each 0 < i ≤ n, δ; i |= Φ.

N+
≤n denotes the set of all the non-zero natural numbers that are less than

or equal to n. The satisfiability of an n-bounded schedule with respect to a
set Φ of constraints is denoted by δ |=n Φ. It is obvious that given a bound
n it is a decidable problem to check if there exists an n-bounded schedule for

6

1start 2 . . . k k + 1 . . . k + p k + p+ 1 . . .

p

Figure 3: Periodic schedule.

a set of ccsl constraints because the number of candidate schedules is finite,
i.e., (2|C|− 1)n, where |C| denotes the number of clocks in C. It is also obvious
that there is no schedule that satisfies a set Φ of clock constraints if there does
not exist an n-bounded schedule for Φ, although not vice versa. The existing
tool TimeSquare [11] for the analysis of ccsl constraints can be considered as
a bounded schedule solver because it builds a schedule up to a given number of
steps and stops whenever it cannot progress anymore.

Bounded schedules are sometimes too restrictive in practice because we usu-
ally do not assign a bound to clocks in real-time embedded systems and assume
that reactive systems can run forever and only terminate when shut down. Thus,
clocks should tick infinitely often from the theoretical point of view. We identify
another class of schedules which are unbounded and force all the clocks to occur
periodically. We call them periodic schedules.

Definition 5 (Periodic schedule). A schedule δ is periodic if there exist k, p in
N+ such that for each k′ ∈ N+ and k′ ≥ k, δ(k′ + p) = δ(k′).

Figure 3 depicts a periodic schedule whose period is p. Each node denotes a
time point, and each plain arrow denotes the elapse of a time unit. The dashed
line indicates that, any clock ticking at either end of line also ticks at the other
end. From step k, the schedule starts to repeat every pth step infinitely.

It is also an open problem to decide whether there exists a periodic schedule
for a given arbitrary set of clock constraints. In the rest of this section, we
propose a sufficient condition for the existence of a periodic schedule, and an
approach to construct periodic schedules based on bounded ones.

Theorem 1. Given a schedule δ : N+ → 2C , a clock constraint φ, and two
natural numbers k, k′ with k′ > k, then δ |=k φ ⇒ δ; k′ |= φ if all the following
five conditions hold:

1. δ(k′) = δ(k);

2. If φ is in form of c1 ≺ c2 or c1 4 c2, then χ(c1, k
′)−χ(c1, k) ≥ χ(c2, k

′)−
χ(c2, k);

3. If φ is in form of c1 , c2 $ d, then χ(c2, k) ≥ d and χ(c1, k
′)− χ(c1, k) =

χ(c2, k
′)− χ(c2, k);

4. If φ is in form of c3 , c1 ∧ c2 or c3 , c1 ∨ c2, then χ(c1, k
′)− χ(c1, k) =

χ(c2, k
′)− χ(c2, k) = χ(c3, k

′)− χ(c3, k);

7

5. If φ is in form of c1 , c2 ∝ p, then c1 ∈ δ(k′) =⇒ (χ(c2, k
′) + 1)

mod p = 0.

Intuitively, condition 1 says that the clocks that tick at step k are the same
as those at step k′; condition 2 says that the number of ticks of clock c1 must be
greater than or equal to the one of clock c2 in a period if they are constrained
by causality or precedence; and 3 and 4 say that the number of ticks of clocks
that are constrained by a delay, infimum or supremum must be the same in
a period. Note that we do not care about what has happened to clocks only
constrained by stateless constraints. In addition, if c1 and c2 are constrained by
a delay, the number of ticks of c2 up to step k must be greater than or equal to
d, as required by condition 3.

Proof. By case analysis:
The stateless (synchronous) constraints only use condition 1, we start with

them.

1. φ ≡ c1 ⊆ c2: δ; k |= c1 ⊆ c2 implies that c1 ∈ δ(k)⇒ c2 ∈ δ(k). Obviously,
we have c1 ∈ δ(k′)⇒ c2 ∈ δ(k′). Thus, δ; k′ |= c1 ⊆ c2.

2. φ ≡ c1 , c2 + c3: δ; k |= c1 = c2 + c3 means that c1 ∈ δ(k) ⇐⇒ c2 ∈
δ(k)∨ c3 ∈ δ(k). It is obvious that c1 ∈ δ(k′) ⇐⇒ c2 ∈ δ(k′)∨ c3 ∈ δ(k′),
and hence δ; k′ |= c1 , c2 + c3.

3. φ ≡ c1 , c2 ∗ c3: δ; k |= c1 = c2 ∗ c3 means that c1 ∈ δ(k) ⇐⇒ c2 ∈
δ(k)∧ c3 ∈ δ(k). It is obvious that c1 ∈ δ(k′) ⇐⇒ c2 ∈ δ(k′)∧ c3 ∈ δ(k′),
and hence δ; k′ |= c1 , c2 ∗ c3.

4. φ ≡ c1 # c2: δ; k |= c1 # c2 means that c1 6∈ δ(k) ∨ c2 6∈ δ(k). Obviously,
we have c1 6∈ δ(k′) ∨ c2 6∈ δ(k′), and hence δ; k′ |= c1 # c2.

5. φ ≡ c1 ≺ c2: δ; k |= c1 ≺ c2 implies that χδ(c1, k) = χδ(c2, k)⇒ c2 6∈ δ(k).
It is obvious that χδ(c1, k) = χδ(c2, k) ⇐⇒ χδ(c1, k

′) = χδ(c2, k
′)

� If χδ(c1, k) 6= χδ(c2, k), there must be χδ(c1, k) > χδ(c2, k) because
precedence implies causality [12], and hence χδ(c1, k

′) > χδ(c2, k
′) by

condition 2. Consequently, we have δ; k′ |= c1 ≺ c2.

� If χδ(c1, k) = χδ(c2, k), then c2 6∈ δ(k), which implies c2 6∈ δ(k′)
because δ(k) = δ(k′) by condition 1. Thus, δ; k′ |= c1 ≺ c2

6. φ ≡ c1 , c2 $ d: δ; k |= c1 , c2 $ d implies that χ(c1, k) = max(χ(c2, k)−
d, 0). Because χ(c2, k) ≥ d, there is χ(c1, k) = χ(c2, k) − d. We have
χ(c1, k)+n = χ(c2, k)+n−d for each n in N. Let n = χ(c1, k

′)−χ(c1, k).
Thus, χ(c1, k

′) = χ(c2, k
′) − d by condition 3. Because n ≥ 0, we have

χ(c2, k
′)− d ≥ 0. Thus, χ(c1, k

′) = max(χ(c2, k
′)− d, 0). Namely, δ; k′ |=

c1 , c2 $ d.

8

c1 c1 c1

c2 c2 c2

1 2 3 4 5 6 1 2 3 4 5 6 1 2 3 4 5 6

Schedule (a) Schedule (b) Schedule (c)

Figure 4: Three schedules that satisfy the precedence constraint c1 ≺ c2.

7. φ ≡ c1 4 c2: δ; k |= c1 4 c2. Namely, χ(c1, k) ≥ χ(c2, k). Since χ(c1, k
′)−

χ(c1, k) ≥ χ(c2, k
′) − χ(c2, k) then χ(c1, k) + (χ(c1, k

′) − χ(c1, k)) ≥
χ(c2, k) + (χ(c2, k

′) − χ(c2, k)), i.e., χ(c1, k
′) ≥ χ(c2, k

′). Thus, δ; k′ |=
c1 4 c2.

8. φ ≡ c3 , c1 ∧ c2: δ; k |= c3 , c1 ∧ c2 means that χ(c3, k) = max(χ(c1, k), χ(c2, k)).
Thus, we have χ(c3, k) +m = max(χ(c1, k) +m,χ(c2, k) +m) for each m
in N. Let m = χ(c1, k

′) − χ(c1, k). By condition 4, we have χ(c3, k
′) =

max(χ(c1, k
′), χ(c2, k

′)), and hence δ; k′ |= c3 , c1 ∧ c2.

9. φ ≡ c3 , c1 ∨ c2: δ; k |= c3 , c1 ∨ c2 means that χ(c3, k) = min(χ(c1, k), χ(c2, k)).
for each m in N. Let m = χ(c1, k

′) − χ(c1, k). By condition 4, we have
χ(c3, k

′) = min(χ(c1, k
′), χ(c2, k

′)), and hence δ; k′ |= c3 , c1 ∨ c2.

10. φ ≡ c1 , c2 ∝ p: the proof is straightforward by condition 5 and the
definition of periodic filter.

The proof is done.

We explain by an example that the conditions in Theorem 1 are less con-
straining than those defined in our previous work [9]. Figure 4 shows three
schedules for the precedence constraint c1 ≺ c2. All three are periodic sched-
ules according to Definition 5. For instance, we can find k = 1 and p = 2 for
schedule (a), and k = 1 and p = 4 for schedule (b) such that k and p satisfy
Definition 5. Schedule (a) and (b) also satisfy the condition in Theorem 1 with
k = 1, k′ = 3 and k = 1, k′ = 5 respectively. It is also obvious that schedule (c)
also satisfies Definition 5 with k = 1, p = 1 and the conditions in Theorem 1 with
k = 1, k′ = 2. By schedule (c), we have χ(c1, k

′)−χ(c1, k) > χ(c2, k
′)−χ(c2, k)

with k = 1, k′ = 2. Schedule (c) does not satisfy the conditions defined in the
work [9], where all the clocks are required to tick the same number of ticks from
k to k′. In that sense, the conditions in Theorem 1 are less constraining and
provide an important relaxation to find practical solutions.

Corollary 1. Given a schedule δ : N+ → 2C , a set Φ of clock constraints, and
two natural numbers k, k′(k′ > k), δ |=k Φ ⇒ δ; k′ |= Φ if each constraint φ in
Φ satisfies all the five conditions in Theorem 1.

Given an n-bounded schedule δ of a set Φ of clock constraints, if there exist
two natural numbers k, k′ ≤ n, which satisfy the five conditions in Theorem 1,
we can define a periodic schedule δ′ by extending δ such that δ′ satisfies Φ.

9

δ′(x) =

{
δ(x) if x ≤ k′
δ(k + (x− k) mod (k′ − k)) if x > k′

1start 2 . . . k . . . k1
. . . k′ . . . x . . .

n

. . .

k′ − k

k1 = k + (x− k) mod (k′ − k)

δ

δ′

Figure 5: Construction of periodic schedule δ′ from an n-bounded schedule δ.

Figure 5 shows the construction of δ′ based on δ. From k′, the schedule δ′

repeats infinitely the steps from k to k′ − 1. We next prove that δ′ |= Φ. By
definition of δ′, it is obvious that for all k′′ ≤ k′ there is δ′; k′′ |= Φ. For all k′′

such that k′′ > k′, let k1 = k + (k′′ − k) mod (k′ − k). Obviously, k1 < k′, and
hence δ′; k1 |= Φ. By definition of δ′, we have δ′(k′′) = δ(k1) Because k and k′

satisfy the five conditions, so do k1 and k′′. By Corollary 1, we have δ′; k′′ |= Φ
for all k′′ in N+ such that k′′ > k′. Thus, we have δ′ |= Φ.

Note that the five conditions in Theorem 1 are independent, which means
that given a set Φ of ccsl constraints, if two clocks c1 and c2 are constrained
by different stateful constraints the number of ticks from step k to k′ of clock
c1 is not necessarily the same as the one of clock c2. Namely, by the extended
schedule δ′, the clocks that are constrained by different stateful constraints in
Φ can tick different times in a period. This makes a periodic schedule that
is defined in the above-mentioned approach relatively general, compared with
those schedules which force all the clocks to tick the same number of times in a
period. However, if the stateful constraints delay, infimum and supremum where
c1 and c2 are referenced are related to each other due to some other clocks, c1
and c2 must tick the same number of times in a period. This is straightforward
to prove by Theorem 1.

We can also define infinite but non-periodic schedules with the proposed
approach. Let us consider two disjoint ccsl constraints φ1 and φ2 such that
clock(φ1) ∩ clock(φ2) = ∅, where clock : Φ → 2C is a function that returns the
set of all the clocks in a given constraint. We assume that φ1 is a stateless
constraint while φ2 is a stateful one. Because φ1 is stateless, we can find a
non-periodic schedule for it and denote it by δ1. For the stateful constraint φ2,
we assume there is a periodic schedule δ2 found under the proposed sufficient
condition. Let δ be a schedule such that for each i in N+, δ(i) = δ1(i) ∪ δ2(i).
Then, δ must be a schedule of {φ1, φ2}. However, δ may not be periodic because
δ1 is non-periodic.

The proposed approach is also suitable to more general cases where there
are n sets of ccsl constraints and each set is disjoint from others.

Theorem 2. Given n sets Φ1, . . . ,Φn of ccsl constraints on n sets C1, . . . , Cn
of clocks where Ci ∩ Cj = ∅ with 1 ≤ i < j ≤ n, let δ1, . . . , δn be n schedules

10

of Φ1, . . . ,Φn respectively and δ : N+ → 2C1∪...∪Cn be a schedule such that
∀i ∈ N+.δ(i) =

⋃
j∈n δj(i). Then, δ is a schedule of Φ1 ∪ . . . ∪ Φn.

We explain the basic idea of the proof of Theorem 2. Let φ be a constraint
in some Φi(1 ≤ i ≤ n). We prove δ |= φ by case analysis on the form of φ. As
an example, we consider precedence and assume that φ = c1 ≺ c2 with clocks
c1 and c2 in Ci. For each j in N+, χδi(c1, j) = χδi(c2, j) =⇒ c2 6∈ δi(j). By
definition of δ, there is c2 6∈ δi(j) ⇐⇒ c2 6∈ δ(j) and χδ(c, j) = χδi(c, j) for
each c ∈ {c1, c2} and j ∈ N+. That is because c1, c2 6∈ Ck with k = 1, . . . , n and
k 6= i. Thus, for each j in N+ we have χδ(c1, j) = χδ(c2, j) =⇒ c2 6∈ δ(j), and
hence δ |= φ. Other cases can be proved likewise, and we omit the details in the
paper.

By Theorem 2, we can divide a set Φ of constraints into several subsets such
that the sets of clocks of these subsets of constraints are disjoint. Then, we
search for a schedule for each subset of constraints with which we can define a
schedule for Φ.

Definition 6 (Connected clocks). Given a set C of clocks and a set Φ of clock
constraints, two clocks c and c′ in C are connected, denoted by c � c′, if and
only if one of the following two conditions is satisfied:

1. There exists a constraint φ in Φ such that c ∈ clock(φ) and c′ ∈ clock(φ),
or

2. There exist n clocks (n > 0), i.e., c1, . . . , cn in C, such that c � c1,
c1 � c2, . . ., cn � c′.

Let C be a partition of C, i.e., C ⊆ 2C is a set of subsets of clocks in C such
that:

1. For each C ′ in C and two arbitrary clocks c, c′ in C ′, c � c′;

2. For two arbitrary subsets C1, C2 in C, C1 ∩C2 = ∅, and for each c1 in C1

and c2 in C2 there is c1 6� c2;

3. C =
⋃
i∈|C| Ci;

4. ∅ 6∈ C.

Intuitively, C is a set of disjoint subsets of clocks, and clocks in each subset are
connected. A special case is that C = {C} if all the clocks in C are connected.

Given a set Φ of ccsl constraints on a set C of clocks, we assume that
C = {C1, . . . , Cn} with some n in N, and Φi ⊆ Φ is the set of all the constraints
in Φ which are defined on Ci. If there exists a schedule δi for each Φi such that
δi |= Φi, let δ be a schedule such that ∀j ∈ N+.δ(j) =

⋃
i∈|C| δi(j). By Theorem

2, δ |= Φ must hold.

11

3 Maude in a Nutshell

In this section, we introduce some background on Maude that is necessary to
understand this paper. Maude is a rewriting-logic-based algebraic specification
language and also an efficient rewrite engine [10]. The underlying rewriting logic
of Maude is a logic of concurrent change well suited to formalize states and con-
current computations. Maude has been widely used as a logical and semantic
framework for the formalization and verification of computer systems and pro-
gramming languages [16, 17, 18, 19]. Maude specifications are executable, and
various formal analysis methods are provided, such as simulation, reachability
analysis by state-space exploration, and LTL model checking.

3.1 Formalization in Maude

A module is the unit of Maude programs. A module specifies a logical theory. In
Maude there are two kinds of modules, functional modules and system modules.
A functional module specifies a membership equational theory, and a system
model specifies a rewrite theory. A membership equational theory is a pair of
the form (Σ, E∪A), whose underlying logic is called membership equational logic
[20]. Σ is called a signature, specifying type structures as sorts and subsorts
and function symbols; E is a collection of (possibly conditional) equations and
memberships defined on Σ; and A is a collection of equational attributes such
as associativity, commutativity and identity, declared for those operators in Σ.
Equations are used to axiomatize the properties of the operators in Σ. Maude
performs equational reduction with the equations E oriented from left to right
modulo the axioms A.

A system module specifies a rewrite theory (Σ, E ∪ A,R), which consists of
an underlying membership equational theory (Σ, E ∪A) and a set R of rewrite
rules, each of which has the form:

l : t −→ t′if (
∧
i

pi = qi) ∧ (
∧
j

uj := vj) ∧ (
∧
k

wk : sk) ∧ (
∧
m

tm −→ t′m),

where l is a label, and t, t′ are the terms that are constructed by the operators
in Σ with some universally quantified variables. A rewrite rule may have con-
ditions. There are four kinds of conditions which can be ordinary equations,
matching equations, membership conditions, or rewrite conditions [10]. Mathe-
matically, a matching equation uj := vj is interpreted as an ordinary equation.
Operationally, it is treated by matching the term e.g., uj on the left-hand side
against the one e.g., vj on the right-hand side. A matching equation holds if
and only if the matching succeeds. In uj there may be new variables, i.e., the
variables that occur in uj but neither in t nor in any of the conditions before
uj in the rewrite rule. After matching succeeds, these new variables are in-
stantiated by the corresponding subterms in the canonical form of vj . We omit
explanations of membership conditions and rewrite conditions because they are
not used in our work. Interested readers can refer to the work [10] for more
details. Computationally, given a term t0 which has a subterm t′0 that can be

12

matched by t in the above rule with a substitution σ, t0 can be rewritten into a
new term with t′0 being replaced by the corresponding substitution instance of t′,
provided that the conditions of the rule hold in the context of the substitution.

When specifying a system in Maude as a rewrite theory, the underlying
membership equational theory of the rewrite theory specifies the “static aspects”
of the system, i.e., the algebraic structure of the set of system states, and the
rules in R specify the “dynamic aspects” of the system, i.e., all the possible
transitions that the system can perform. In Maude, a system state is represented
as a Σ-term. Transitions among the states are formalized by rewrite rules.

We briefly summarize the syntax of Maude (see [10] for more details). A
functional module has the form of fmod ModName is Decs&Stmts endfm, where
ModName is a user-defined name of the module and Mod&Stmts includes impor-
tations of other modules, declarations of sorts and subsort relations, declarations
of operators, variables and equations. Sorts and subsort relations are declared
by the keywords sorts and subsort, respectively. Operators are declared with
the op keyword in the form: op f : s1 . . . sn-> s, where si(i = 1, . . . , n) and s
are sorts. Maude allows for user-defined mixfix operators and uses underbars
in operators to indicate each of the argument positions. An equation in Maude
is declared in the form of eq t = t′, where t and t′ are two terms of the same
sort. An equation can be conditional, which is declared by the keyword ceq

and ended with the keyword if, followed by a conjunction of conditions. A
rewrite rule in Maude is declared in the form of rl [label]: t => t′. A condi-
tional rewrite rule is declared by the keywords crl and if with a conjunction
of rewrite conditions.

3.2 Formal analysis in Maude

Maude specifications are executable under certain conditions. Maude provides
multiple formal analysis methods, including simulation, reachability analysis,
and LTL model checking to formally analyze systems.

Simulation is achieved using Maude’s rewrite command (abbreviated rew),
which repeatedly applies the rewrite rules to transform a given term step by
step. The transformation process simulates one behavior of the specified system.
There may be some rules that can be applied an infinite number of times. In
such cases, an upper bound to the rewrite steps is needed to force Maude to
stop.

Maude provides the search command to explore the reachable state space of
specified systems. The syntax of search command follows the general scheme:

search [n,m] in ModName : t1 =>* t2 such that condition .

where n,m are optional arguments providing a bound on the number of expected
solutions and the maximum depth of the search; t1 is the starting term; t2 is
a pattern which is essentially a term that contains some variables and has the
same sort as t1; and condition represents an optional condition which has the
same form as the one of conditions in conditional rules. A term t is a solution
if t matches against t2 with a match satisfying the optional condition and there

13

〈X, c1 ≺ c2〉
F−→ 〈X ′, c1 ≺ c2〉

X(c1) = X(c2) =⇒ c2 6∈ F
[Precedence]

〈X, c1 � c2〉
F−→ 〈X ′, c1 � c2〉

X(c1) = X(c2)
[Causality-I]

〈X, c1 ⊆ c2〉
F−→ 〈X ′, c1 ⊆ c2〉

[Subclock]

〈X, c1 # c2〉
F−→ 〈X ′, c1 # c2〉

[Exclusion]

〈X, c1 , c2 + c3〉
F−→ 〈X ′, c1 , c2 + c3〉

[Union]
〈X, c1 , c2 × c3〉

F−→ 〈X ′, c1 , c2 × c3〉
[Intersection]

〈X, c1 , c2 ∧ c3〉
F−→ 〈X ′, c1 , c2 ∧ c3〉

[Infimum-I]
X(c2) > X(c3)

〈X, c1 , c2 ∧ c3〉
F−→ 〈X ′, c1 , c2 ∧ c3〉

X(c2) < X(c3)
[Infimum-II]

〈X, c1 , c2 ∧ c3〉
F−→ 〈X ′, c1 , c2 ∧ c3〉

X(c2) = X(c3)
[Infimum-III]

〈X, c1 , c2 ∨ c3〉
F−→ 〈X ′, c1 , c2 ∨ c3〉

[Supremum-I]
X(c2) < X(c3)

〈X, c1 , c2 ∨ c3〉
F−→ 〈X ′, c1 , c2 ∨ c3〉

X(c2) > X(c3)
[Supremum-II]

〈X, c1 , c2 ∨ c3〉
F−→ 〈X ′, c1 , c2 ∨ c3〉

X(c2) = X(c3)
[Supremum-III]

〈X, c1 , c2 $ d〉 F−→ 〈X ′, c1 , c2 $ d〉
[Delay-I]

X(c2) ≥ d

〈X, c1 , c2 $ d〉 F−→ 〈X ′, c1 , c2 $ d〉

X(c2) < d
[Delay-II]

〈X, c1 , c2 ∝ p〉 F−→ 〈X ′, c1 , c2 ∝ p〉
[Periodicity-I]

∃m ∈ N+.X(c2) = p×m− 1

〈X, c1 , c2 ∝ p〉 F−→ 〈X ′, c1 , c2 ∝ p〉
[Periodicity-II]

6 ∃m ∈ N+.X(c2) = p×m− 1

c1 6∈ F ∨ c2 ∈ F

c1 6∈ F ∨ c2 ∈ F ∨ c3 ∈ F

c2 6∈ F ∨ {c1, c2} ⊆ F

c1 6∈ F ∨ c2 6∈ F

c1 6∈ F ∨ {c2, c3} ⊆ F

c1 ∈ F ⇐⇒ c2 ∈ F c1 ∈ F ⇐⇒ c3 ∈ F

c1 ∈ F ⇐⇒ c2 ∈ F

c1 ∈ F ⇐⇒ c2 ∈ F ∧ c3 ∈ F

c1 ∈ F ⇐⇒ c2 ∈ F ∨ c3 ∈ F

c1 ∈ F ⇐⇒ c2 ∈ F c1 6∈ F

c1 6∈ Fc1 ∈ F ⇐⇒ c2 ∈ F

c1 ∈ F ⇐⇒ c3 ∈ F

〈X, c1 � c2〉
F−→ 〈X ′, c1 � c2〉

X(c1) > X(c2)
[Causality-II]

Figure 6: Operational semantics of ccsl.

exists a rewriting sequence from t1 to t. The arrow =>* is used to restrict the
length of rewriting steps to none, one or more steps. If the arrow =>! is used
instead of =>*, then a solution must be a term that cannot be further rewritten.

Maude has an efficient LTL model checker, supporting model checking of the
properties expressed in linear temporal logic. Given a Maude specification of a
system and a set of atomic propositions defined on system states, the Maude
LTL model checker is invoked by the built-in function modelCheck, which takes
two arguments, an initial state and an LTL formula, and returns true if no
counterexample is found, and otherwise a counterexample as a witness to the
violation. An LTL formula is built out of atomic propositions that need to be
predefined and logical and temporal operators in LTL. A condition of doing LTL
model checking in Maude is that the set of states that are reachable from the
given initial state is finite.

4 Operational Semantics of CCSL and its for-
malization in Maude

4.1 Operational semantics of CCSL

We define a clock system, denoted by 〈X,Φ〉, consisting of a configuration X
and a set Φ of ccsl constraints. Let CΦ be the set of all the clocks in Φ. A
configuration X : CΦ → N is a function and for each c in CΦ, X(c) denotes

14

the current number of ticks of clock c. Let F be a non-empty subset of CΦ. If
the ticking of every clock in F satisfies all the clock constraints in Φ, there is

a transition from 〈X,Φ〉 to 〈X ′,Φ〉 with respect to F , denoted by 〈X,Φ〉 F−→
〈X ′,Φ〉, where:

∀c ∈ CΦ.X
′(c) =

{
X(c) + 1 if c ∈ F
X(c) if otherwise.

(1)

Figure 6 shows the operational semantics of the 10 types of clock constraints
in ccsl. Above a line is the condition of the transition under the line. We
take the operational semantics of precedence for example. The rule labeled
Precedence says that there is a transition from 〈X, c1 ≺ c2〉 to 〈X ′, c1 ≺ c2〉 with
respect to F if the condition X(c1) = X(c2) =⇒ c1 6∈ F holds. The condition
clearly corresponds to the definition of precedence in Figure 1. For the definition
of infimum, three cases are considered based on the relation between X(c2) and
X(c3). For instance, when X(c2) > X(c3) holds, c1 is in F if and only if c2 is
in F , as formalized by the rule labeled by Infimum-I. Otherwise, c1 , c2 ∧ c3
is violated in the new configuration X ′. Two other cases are formalized by
Infimum-II and Infimum-III, respectively. The operational semantics of other
constraints are defined likewise.

4.2 Formalization of a clock system

The formalization of a clock system 〈X,Φ〉 consists of formalizations of X and
Φ. ccsl constraints can be naturally formalized in Maude. We use quoted iden-
tifiers to represent clocks in ccsl, e.g., ’c represents a clock c. We declare a sort
Clock whose elements are essentially the quoted identifiers that are represented
by the sort Qid in Maude. In the following Maude module CONSTRAINTS two
sorts Constraint and Constraints are declared to represent ccsl constraints
and sets of constraints, respectively. The constant empty denotes an empty set
of constraints, and the infix operator __ denotes the union of two sets of con-
straints. The operators declared from Line 6 to 15 are used to represent the ten
ccsl constraints correspondingly.

1 fmod CONSTRAINTS is

2 sorts Constraint Constraints .

3 subsort Constraint < Constraints .

4 op empty : -> Constraints [ctor] .

5 op __ : Constraints Constraints -> Constraints [ctor

assoc comm id: empty] .

6 op _<_ : Clock Clock -> Constraint [ctor] .

7 op _!=_$_ : Clock Clock Nat -> Constraint [ctor] .

8 op _!=_+_ : Clock Clock Clock -> Constraint [ctor] .

9 op _!=_*_ : Clock Clock Clock -> Constraint [ctor] .

10 op _!=_/_ : Clock Clock Clock -> Constraint [ctor] .

11 op _!=_\/_ : Clock Clock Clock -> Constraint [ctor] .

12 op _<<_ : Clock Clock -> Constraint [ctor] .

15

13 op _#_ : Clock Clock -> Constraint [ctor] .

14 op _<=_ : Clock Clock -> Constraint [ctor] .

15 op _!=_~_ : Clock Clock Nat -> Constraint [ctor] .

16 ...

17 endfm

To formalize a configuration X in a clock system, we think of a logical clock
in a configuration as a triple (c, `, n), consisting of the clock identifier c, a list `
of records with each value being tick or idle (abbreviated by t or i respectively),
which represents that the clock ticks or not at the step where the value is located
in the list, and a natural number n that denotes the numbers of ticks in `.1 We
call it a clock triple. Initially, ` is an empty list, and n is 0. In the following
module CONFIGURATION, sort ConfElt is declared to represent clock triples. The
infix operator [_,_,_] is used to construct a clock triple with a clock, a list of
records and a natural number as its arguments. Clock and TickList are the
sorts to represent clocks and lists of ticks. Each list consists of a finite number
of t and i, which are constants to represent tick and idle respectively. Given
a clock system, we use a collection of clock triples to represent a configuration
of the clocks in the system, and declare a sort named Conf to represent the
configurations.

1 fmod CONFIGURATION is

2 including NAT + CLOCK + TICK -LIST . --- + is a union

operator on modules

3 sort ConfElt Conf .

4 subsort ConfElt < Conf .

5 op [_,_,_] : Clock TickList Nat -> ConfElt [ctor] .

6 op empty : -> Conf [ctor] .

7 op _,_ : Conf Conf -> Conf [ctor assoc comm id: empty]

8 endfm

Each state of a clock system for a set of ccsl constraints consists of a set
of clocks, a set of ccsl constraints on the clocks and a configuration of all the
clocks. Besides the three information, we introduce a natural number to each
state to represent the elapsed time (the number of elapsed steps) of the system.
Such information is not used for specifying the operational semantics of ccsl,
but for the purpose of verification by fixing a bound for searching and state
exploration. We declare a sort CCSLState and an operator <_;_;_;_> as shown
below to formalize states of clock systems.

1 sort CCSLState .

2 op <_;_;_;_> : ClockSet Constraints Conf Nat -> CCSLState [

ctor] .

In the initial state of a clock system, the configuration is the set of initial clock
triples and the step is 0.

1We keep n in the triple for the efficiency purpose of formal analysis because in this way
we do not need to count the number of ticks in ` every time it is needed.

16

4.3 Formalization of the operational semantics of CCSL

The operational semantics of CCSL constraints can be naturally formalized
using Maude rewrite rules. The main rule is defined as follows:

1 --- The transition rule that formalizes the operational

semantics of CCSL

2 crl < (F, F’) ; PHI ; X ; K > => < (F, F’) ; PHI ; update(X

,F) ; K + 1 >

3 if F =/= empty /\ satisfy(F, X, PHI) .

In the above rule, F, F’ are variables of sort ClockSet; and PHI, X, and K are
variables of sorts Constraints, Conf, and Nat, respectively. X and F correspond
to X and F in Figure 6. Given a set C of clocks, F can be instantiated by any
subset C ′ of C by matching (F, F’) to C with the variable F’ of sort ClockSet
being instantiated by C−C ′. As mentioned in Section 4, F must be a non-empty
set and satisfy corresponding conditions for ccsl constraints so that the clocks
in F can tick in the current configuration X. The first conjunct in the condition
part of the above rule says that F is not empty, and the second one means
that F satisfies the constraints PHI in the configuration X. The definition of the
function satisfy is explained later. If the two conditions hold, we obtain a new
configuration by updating configuration X with the set F of clocks according to
Equation 1, as represented by update(X,F).

To formalize the satisfiability of a bounded schedule with respect to a set
Φ of ccsl constraints, we declare in Maude a predicate satisfy which takes
three arguments: a set F of clocks, a configuration X, and a ccsl constraint
φ. The predicate returns true if C satisfies Φ with respect to X, and otherwise
false. We consider each possible constraint form in Φ when defining satisfy.
As examples, we list below four equations that are defined in Maude to specify
the satisfiability of a set F (represented by F) of clocks with precedence, delay,
infimum and periodicity with respect to X, respectively:

1 --- Declaration of predicate satisfy:

2 op satisfy : ClockSet Conf Constraint -> Bool .

3 --- Precedence

4 eq satisfy(F, ([C1, TL1 , N1], [C2, TL2 , N2], X), C1 < C2)

=

5 if N1 == N2 then not (C2 in F) else true fi .

6 --- Delay

7 eq satisfy(F, ([C2, TL2 , N2], X), C1 != C2 $ N) =

8 if N2 >= N then (C1 in F) == (C2 in F) else not (C1 in

F) fi .

We first consider the Maude definition of precedence for example. The second
argument of satisfy at Line 4 represents an arbitrary configuration X, where
there must be at least two clock triples of C1 and C2 whose lists of ticks are
TL1 and TL2 respectively. The variables N1 and N2 of sort Nat in the triples
represent the numbers of ticks in TL1 and TL2. The right-hand side term of the

17

equation represents the condition of the rule defined for precedence in Figure
6. Because the correspondence between the condition and their definitions in
the equation is clear, we omit detailed explanations in the paper. The second
equation is defined to formalize the two cases (Delay-I and Delay-II in Figure
6) of the operational semantics of delay.

Likewise, we consider the Maude definitions of infimum and periodicity. The
equations defined for them are as follows:

1 --- Infimum

2 eq satisfy(F, ([C1, TL1 , N1],[C2, TL2 , N2],[C3, TL3 , N3], X

), C1 != C2 /\ C3) =

3 (if N2 > N3 then (C1 in F) == (C2 in F) else

4 (if N2 < N3 then (C1 in F) == (C3 in F) else

5 (C1 in F) == (C2 in F or C3 in F)

6 fi)

7 fi) .

8 --- Periodicity

9 eq satisfy(F, ([C1, TL1 , N1], [C2, TL2 , N2], X), C1 != C2 ~

P) =

10 if (N2 + 1) rem P == 0 then (C1 in F == C2 in F) else

not (C1 in F) fi .

5 Formal Analysis on CCSL in Maude

Given a set of ccsl constraints, several properties need to be checked or verified,
e.g., is there a schedule that satisfies all the constraints? (are the constraints
consistent?); if so, pick one specific schedule according to an external criteria
(avoid deadlocks, reduce memory usage, force a fast pace). In this section, we
show four applications that directly derive from our encoding of the operational
semantics of ccsl in Maude.

5.1 Bounded scheduling

Given a bound n and a set of clock constraints Φ, we can use Maude’s search

command to search for all the n-bounded schedules that satisfy Φ. If Maude
cannot find at least one of such schedules, it means that there does not exist such
an n-bounded schedule, and further we can conclude that there does not exist
a schedule that satisfies Φ, i.e., Φ is not valid. For instance, {c1 ≺ c2, c2 ≺ c1}
is invalid.

We show an example of finding bounded schedules for a given set of clock
constraints using Maude’s search command.

Example 1. Find bounded schedules that satisfy the set of constraints Φ1 =
{c1 ≺ c2, c3 , c1 $ 1, c2 ≺ c3}.

In Maude, we use ’c1 < ’c2, ’c3 != ’c2 $ 1 and ’c2 < ’c3 to represent
the three constraints, respectively. First, we use Maude’s search command to

18

find schedules with maximal search depth 30. The actual command and the
result returned by Maude are as follows:

1 search [,30] < (’c1, ’c2, ’c3) ; (’c1 < ’c2) (’c2 < ’c3) ’

c3 != ’c1 $ 1 ;

2 [’c1 ,nil ,0],[’c2 ,nil ,0],[’c3 ,nil ,0] ; 0 >

=>*

3 < CS:ClockSet ; CTS:Constraints ; X:ConfList

; 30 > .

4 Solution 1 (state 30)

5 X:ConfList -->

6 [’c1 ,t i t i t i t i t i t i t i t i t i t i t i t i t

i t i t i,15]

7 [’c2 ,i t i t i t i t i t i t i t i t i t i t i t i t i

t i t i t,15]

8 [’c3 ,i i t i t i t i t i t i t i t i t i t i t i t i t

i t i t i,14]

9 No more solutions.

In the above search command, we only provide the maximum depth of the
search and do not specify the number of expected solutions. It means that
Maude will return all the solutions it finds within the depth 30. The starting
term represents the initial configuration where the list of each clock is nil, and
the step is 0. The pattern represents an arbitrary configuration where the step
is 30, which means a configuration after 30 steps of evolution. The collection
of the tick lists of all the clocks in the configuration can be interpreted as a
schedule of bound 30.

The search command returns only one solution, which means that there
exists only one schedule whose bound is 30 within the search depth 30. The
bounded schedule satisfies the three constraints in Φ1. From the list of ticks of
the three clocks, one can see that c1 and c3 only tick at all odd steps except
that c3 does not tick at the first step because of the constraint c3 , c1 $ 1,
and c2 only ticks at all even steps. Namely, c1 and c2 tick alternatively by
the returned bounded schedule. The result coincides with the definition of
alternation constraint between clocks in an earlier work of the third author [12].

5.2 Periodic scheduling

We can also find periodic schedules in Maude using the operational semantics
of ccsl. The basic idea is to formalize the sufficient conditions in Theorem 1
and at each step k′ we check if all these conditions are satisfied by a k′-bounded
schedule, that is, if there exists a step k such that 1 ≤ k < k′ and the k′-bounded
schedule satisfies the five conditions with k′ and k. If that is the case, a periodic
schedule is found, whose period is k′ − k.

We declare a function getPeriod, which returns the period for a given con-
figuration X if the underlying bounded schedule in X satisfies the sufficient con-
ditions, and 0, otherwise. As shown below, getPeriod takes four arguments,

19

a configuration, a set of constraints, and two natural numbers corresponding
to k and k′, respectively. It checks each step from k to 0 in a backward man-
ner until it finds one satisfying the sufficient conditions. Once (and if) such
a step is found, the corresponding period is returned. In the equation, term
sd(K’,K) represents the value of subtracting K from K’, with K’ greater than
K. isPeriodic is an auxiliary function, which returns true when a bounded
schedule satisfies the sufficient conditions with respect to a set of constraints
and two given steps. It is defined inductively with respect to each kind of con-
straint. The second equation defined below considers the case of precedence.
The conjuncts at Line 9 represent Condition 1 and the first conjunct at Line 10
represents Condition 2 in Theorem 1. Other conditions are formalized likewise,
and we omit the details in the paper.

1 --- Declaration and definition of getPeriod and isPeriodic

2 op getPeriod : Conf Constraints Nat Nat -> Nat .

3 op isPeriodic : Conf Constraints Nat Nat -> Bool .

4 eq getPeriod(X, PHI , K, K’) =

5 if K > 0 then (if isPeriodic(X,PHI ,K,K’) then sd(K’,K)

else

6 getPeriod(X,PHI , sd(K,1),K’) fi)

7 else 0 fi .

8 eq isPeriodic (([C1, TL1 , N1],[C2, TL2 , N2], X), (C1 < C2)

PHI , K, K’) =

9 tick(TL1 ,K) == tick(TL1 ,K’) and

10 tick(TL2 ,K) == tick(TL2 ,K’) and

11 sd(N1,num(TL1 ,K)) >= sd(N2,num(TL2 ,K)) and

12 isPeriodic(X,PHI ,K,K’) .

Using the rewrite rule defined in Section 4.3, one can find periodic schedules
with search command by specifying an extra condition. The condition is that
isPeriod must return a non-zero period in the expected configuration. For
instance, the following code shows the command to find a periodic schedule for
the constraints in Φ1 and the solution returned by Maude:

1 search [1] < (’c1, ’c2, ’c3);(’c1 < ’c2)(’c2 < ’c3)(’c3 !=

’c1 $ 1);[’c1,nil ,0] [’c2,nil ,0] [’c3,nil ,0] ; 0 > =>*

< F ; PHI ; X’ ; K’ > such that P:NzNat := getPeriod(X

’,PHI ,sd(K’,1),K’) .

2 Solution 1 (state 4)

3 X’:Conf --> [’c1,t i t i,2], [’c2,i t i t,2], [’c3,i i t i

,1]

4 K’:Nat --> 4

5 P:NzNat --> 2

The solution states that a periodic schedule is found, whose period is 2 and the
starting step of the first period is 2. The returned periodic schedule is essentially
the same as the one found by bounded scheduling in Section 5.1

We can search simultaneously more than one periodic schedules for a given

20

Table 1: Four periodic schedules found by Maude for c1 ≺ c2 when the bound
is set to 4.

Schedule Clock/
Step

1 2 3 4 5 6 . . . Period
p

1
c1 t t t t t t . . .

1
c2 i t t t t t . . .

2
c1 t i t i t i . . .

2
c2 i t i t i t . . .

3
c1 t t t t t t . . .

1
c2 i i t t t t . . .

4
c1 t t t i t i . . .

2
c2 i i i t i t . . .

set of constraints. Let us consider finding periodic schedules of the precedence
constraint c1 ≺ c2 as an example. We set the number of expected periodic
schedules to search to be 4. The command used for the search is as follows:

1 search [4] < (’c1, ’c2) ; (’c1 < ’c2); [’c1,nil ,0], [’c2,

nil ,0] ; 0 > =>*

2 < F ; PHI ; X’ ; K’ > such that P := getPeriod(X

’,PHI ,sd(K’,1),K’) .

Table 1 shows four periodic schedules found by Maude for c1 ≺ c2 when the
bound is set to 4. The red steps in each schedule in the table are the starting
steps of the first and second iterations of the period.

We can also provide a concrete period and use Maude to search if there exist
such periodic schedules with the given specific period. However, due to the
infinite number of steps, and like when searching bounded schedules, it cannot
be guaranteed that there do not exist such periodic schedules even if Maude
returns no result.

5.3 Formal verification by (bounded) model checking

Beside checking the existence of expected schedules, one may also want to ex-
plore the properties of the schedules that satisfy a set of constraints. For in-
stance, one would expect that all the clocks must tick infinitely often, or a clock
must tick some steps later after some other clock ticks. Another important
application of the executable semantics of ccsl is to verify such properties by
bounded model checking using the search command or Maude’s LTL model
checker.

21

Figure 7: A component in a practical
application.

in1

in2

step1

step2
step3

out

⪯

⪯

≺

≺

⪯

tmp1 tmp2

+

≜ ≺
$ 1

≺

Figure 8: An abstraction as a clock
constraint specification.

5.3.1 Detection of deadlock schedules by bounded model checking

Finding deadlocks, or rather finding schedules without deadlocks, is one very
important feature for a ccsl specification. The word deadlock usually means
that after some steps, the system cannot evolve at all, i.e., no clock can tick.
Due to the polychronous nature of ccsl, some parts of the system may be
highly independent from other parts (see Definition 6 about connected clocks).
Consequently, we use a stronger condition for deadlocks. Indeed, in ccsl, we
expect all the clocks to tick infinitely often, so deadlock means that after some
steps there is at least one clock that will never be allowed to tick.

Besides, since a ccsl specification may have conflicts, some schedules may
end up in deadlocks while others may not. On this matter, we use the same
definition as in [12]. We rely on our encoding in Maude to select those schedules
that do not have deadlocks.

Example 2. The example is from a previous work [12]. It was previously
used to perform flow latency analysis with the Architecture Analysis & Design
Language (AADL) [21]. As shown in Figure 7, the component takes two inputs
in1 and in2, performs computations on the two inputs concurrently in step1 and
step2, then combines the results to produce a final value in step3 based on data
produced at step1 and step2, and then outputs this final result through out.

The application continuously captures new inputs and produces one output
for each pair of inputs in a streaming fashion.

Each processing unit is controlled by a clock, and a set Φ2 of clock constraints
specify the intentional semantics of the AADL specification (see Figure 8). Let
us note that tmp1 and tmp2 are two intermediate clocks required to specify
constraints between in1, in2 and out.

Using the approach introduced in Section 5.2, we can find multiple periodic
schedules in which each clock can tick infinitely often. A common feature of
these periodic schedules is that in1 must always tick simultaneously with in2.
If we break this pattern (not explicitly specified), the application may go into

22

Table 2: Six deadlock schedules found by Maude for ccsl constraints Φ2.

No. in1 in2 step1 step2 step3 out tmp1 tmp2

1 t i t i i i t i

2 i t i t i i t i

3 t i i i i t i i i i i i t i i i

4 i i t i i i i t i i i i t i i i

5 t i t t i i t i t t i i i t i i t i t i t i i t

6 t i i t i t t i i t i t i t i i t i t i t i i t

a deadlock state. The reason for the deadlock is that the specification does not
force in1 and in2 to tick simultaneously (see Φ2). If in1 ticks alone (resp. in2),
then out should tick next, but in order to tick out needs both ticks of in1 and
in2, as defined by the constraints between in1, in2 and out. However, in2 (resp.
in1) can only tick if out ticks before, which therefore leads to a deadlock.

In Maude, one can find such a deadlock by searching for a target state which
cannot be further rewritten by any rewrite rules. For the above example, we
search for the deadlock schedules within 3 steps in Maude with the following
command:

1 search [,3] < ’in1 , ’in2 , ’out , ’step1 , ’step2 , ’step3 , ’

tmp , ’tmp2 ;

2 (’out < ’tmp2)(’step1 < ’step3)(’step2 < ’step3) (’tmp < ’

out)(’in1 <= ’step1)

3 (’in2 <= ’step2) (’step3 <= ’out) (’tmp2 != ’tmp $ 1)(’

tmp != ’in1 + ’in2) ;

4 [’in1 ,nil ,0], [’in2 ,nil ,0], [’out ,nil ,0],[’step1 ,nil ,0],

[’step2 ,nil ,0],

5 [’step3 ,nil ,0], [’tmp ,nil ,0], [’tmp2 ,nil ,0] ; 0 > =>! S:

CCSLState .

The search command finds six deadlock schedules, as shown in Table 2. A
common feature of these deadlock schedules is that at some step in1 and in2 do
not tick simultaneously, which finally results in a state where no clock can tick
anymore.

One solution to the deadlock is to force in1 and in2 to tick simultaneously,
which can be achieved by introducing two new constraints, i.e. in1 ⊆ in2 and
in2 ⊆ in1. Maude returns no solution, which means that no deadlock schedule
is found 2. However, forcing in1 and in2 to tick simultaneously may be too
restrictive from a pragmatic point of view since it may be difficult to synchronize
two independent events. It suffices to enforce the slowest clock between in1 and

2It is worth mentioning that it does not guarantee that there is no deadlock schedule
because only a bounded state space is explored.

23

in2 to tick before out. Thus, we replace in1 + in2 by in1 ∧ in2 in Figure 8. We
denote the new set after replacing the constraint by Φ′2. Maude also returns no
solution with a given maximum depth of the search for Φ′2.

5.3.2 LTL Model checking of periodic schedules

In this section, we explore the solutions that do not require to rely on bounded
model-checking only. This is the reason that motivated the definition of periodic
schedules since it allows a finite abstraction of the infinite state space.

By definition, in periodic schedules all clocks tick periodically. For properties
where the exact number of ticks is not relevant (most often, only the difference
between the number of ticks of two clocks is important), we can force each
periodic schedule to go from step k′ back to step k, where k and k′ are the
beginning and ending steps of the first period of the schedule (k < k′).

1 crl [next] : < (F, F’); PHI ; X ; K’ > => < (F, F’); PHI ;

X’ ; K’ + 1 >

2 if F =/= empty /\

3 satisfy(F,X,PHI) /\

4 X’ := update(X,F) /\

5 getPeriod(X’,K’ + 1,PHI) == 0 .

6 crl [periodic] : < (F, F’); PHI ; X ; K’ > =>

7 < (F, F’); PHI ; rollback(X’, P); sd(K’ +

1,P) >

8 if F =/= empty /\

9 satisfy(F,X,PHI) /\

10 X’:= update(X,F) /\

11 P := getPeriod(X’,K’ + 1,PHI) .

An extra condition is added to check if a successor configuration X’ has an
underlying periodic schedule. If not, configuration X is changed into a new one,
i.e. X’. Otherwise, it is changed into an old one by rolling back P steps, where
P is the period of the searched periodic schedule.

By excluding non-periodic schedules, we obtain a finite state space only from
the searched periodic schedules, as depicted in Figure 9. Figure 9 (left) shows an
example of a state space that contains both periodic and non-periodic schedules
up to a bound, e.g. 3. The path with a loop represents a periodic schedule.
In the figure there are three periodic schedules, which constitute a finite state
space, as shown in Figure 9 (right). The finite state space can then be model
checked. It is worth mentioning that we still need to set a bound in order to
search for periodic schedules. In that sense, model checking of periodic schedules
is still not complete because it is possible that some periodic schedules are not
found within a given search bound and hence cannot be model checked.

Next, we show some basic properties that clock constraints are expected to
satisfy and their representations as LTL formulae. Let tick be a parameterized
predicate on states, which takes a clock c as argument and returns true if c
ticks in a state. The definition of tick in Maude is as follows:

24

1 subsort CCSLState < State .

2 op tick : Clock -> Prop .

3 eq < F ; PHI ; [C, (TL t),N] X ; K > |= tick(C) = true .

4 eq S:CCSLState |= P:Prop = false [owise] .

The operator tick defines a proposition tick(c) for each clock c. The first
equation defines that tick(c) is true in a given state where clock c ticks. The
second equation (line 4) means that tick(c) is false in other cases. Below we
list four common properties of ccsl constraints and their corresponding LTL
formulas.

� Repeated ticking : all clocks must tick infinitely often, which can be for-
malized as:

∧
c∈C 23tick(c).

� Simultaneous ticking : two clocks c1 and c2 must always tick simultane-
ously, which can be formalized as: 2(tick(c1) ⇐⇒ tick(c2)).

� Leading-to ticking : if a clock c1 ticks, it must cause another clock c2 to
tick eventually, which can be formalized as: 2(tick(c1)→ 3tick(c2)).

� Alternative ticking : two clocks c1 and c2 must always tick in alternation,
which can be formalized as: 2(tick(c1) → #(¬tick(c1) U tick(c2)) ∧
tick(c2)→ #(¬tick(c2) U tick(c1)).

We take the model checking of some LTL properties of the constraints in
Φ1 as an example. The intention of composing the three constraints in Φ1 is to
force clocks c1 and c2 to tick alternatively. By bounded scheduling and periodic
scheduling analyses, we have indeed found a schedule that seemingly satisfies
this property. By model checking, we can formally verify it. The command used
for model checking the property is as follows:

1 red modelCheck(<(’c1 ,’c2 ,’c3); (’c1 < ’c2) (’c2 < ’c3) (’c3

!= ’c1 $ 1);

2 [’c1 ,nil ,0], [’c2 ,nil ,0], [’c3 ,nil ,0]; 0 >,

3 []((tick(’c1) -> O (~ tick(’c1) U tick(’c2))

) /\

4 (tick(’c2) -> O (~ tick(’c2) U tick(’c1))

))) .

5 result Bool: true

Maude returns true, meaning that Φ satisfies the alternative ticking property.

5.4 Simulation with customized arbitration policies

Given a set Φ of clock constraints, there may be more than one schedule. In
such cases, we can find an external criteria to pick one that has a given property.
In a previous work [11], this was called an arbitration/simulation policy. One
of the side effects of our work is that we can now formalize these arbitration

25

start start

State space without bound Bounded state space

bound: 3

=⇒

Figure 9: Bounded state space of periodic schedulers.

policies and ask Maude to apply them for us. a clock must not tick if it does
not have to tick. Such policies are usually user-definable. Another application
of the executable operational semantics of ccsl is to simulate the behaviors of
clocks under given constraints along with some arbitration policies.

We consider five basic arbitration policies, which we call randomness, max-
imum minimum, laziness, activeness and mixity, respectively.

� Randomness: to specify that at each step a successor is randomly chosen
among all possible successors.

� Maximum: to specify that at each step the number of clocks that tick is
maximal among all possible successors. Such a solution is not necessarily
unique. This is useful to force the pace and execute as much as possible.

� Minimum: to specify that at each step the number of clocks that tick is
minimal among all possible successors. Such a solution is not necessarily
unique.

� Laziness: to specify a set of lazy clocks that only tick if they have to tick
at each step.

� Activeness: to specify a set of active clocks that tick as soon as they can
at each step. When all the clocks are active ones, the policy is equivalent
to maximum.

� Mixity : to specify a set of lazy clocks and a set of active clocks. When all
the clocks are lazy ones, the policy is equivalent to minimum.

Each of the above arbitration policies except randomness determines a unique
successive behavior of each clock. By simulating the behaviors of clocks from
initial state with an arbitration policy, it produces a trace which is essentially
a schedule characterized by the policy.

26

The arbitration policies can be considered as internal strategies that control
how the rewrite rules are applied. Formalizing strategies in Maude can be done
using Maude’s built-in meta-programming features, in which Maude programs
are used as data in formalized strategies. Thanks to this feature, arbitration
policies in CCSL can be naturally formalized in Maude.

Below we give partly the Maude definitions of the basic data types, functions
and the rewrite rules used to achieve customized simulation.

1 sort Policy CCSLState4Sim .

2 ops rand max min : -> Policy .

3 ops lazy active : ClockSet -> Policy . op mix : ClockSet

ClockSet -> Policy .

4 op [_‘,_] : CCSLState Policy -> CCSLState4Sim .

5 op getAllSuccessors : CCSLState Nat -> ConfSet .

6 op getConfbyPol : ConfSet Policy -> Conf .

7 crl [next] : [< F ; PHI ; X ; K >, P] => [< F ; PHI ; X’

; K + 1 >, P]

8 if X’ := getConfbyPol(getAllSuccessors(< F ; PHI ; X ; K

>, 0), P).

9 --- The Maude definition of getAllSuccessors

10 ceq getAllSuccessors(< F ; PHI ; X ; K >, N) =

11 downTerm(T, nil), getAllSuccessors(< F ; PHI ; X ; K >,

N + 1)

12 if RT := metaSearch(upModule(’CCSL -SEMANTIC ,false),upTerm

(< F ; PHI ; X ; K >),

13 ’<_;_;_;_>[upTerm(F),upTerm(PHI),’X’:Conf ,upTerm(

M + 1)],nil ,’+,1,N)/\

14 (’X’:Conf <- T) := getSubstitution(RT) .

15 --- the Maude definition of getConfbyPol with laziness

policy

16 eq getConfbyPol(CF,lazy(C,CS)) = getConfbyPol(

getNonTickConf(CF,C),lazy(CS)) .

We declare a sort Policy for arbitration policies, and six operators (as shown
above at Lines 2 and 3) to represent the six kinds of arbitration policies respec-
tively. A state of a clock system with policy consists of two parts, i.e., a state of
the system and a policy, which is formalized as a term [S, P] with a state S

of sort CCSLState and a policy P of sort Policy. We name the sort of such terms
CCSLState4Sim. Behaviors of a clock system with policy can be formalized by
the conditional rewrite rule defined at Lines 7 to 8. The main difference with
Section 4.3 is that the successor X’ of X in the new rule must be the one that
follows the given arbitration policy. The basic idea for obtaining such X’ is to
search by one-step forward from X using the rule defined in Section 4.3 and find
all possible successors, which is achieved by function getAllSuccessors. Then,
X’ is determined according to the given policy, which is achieved by function
getConfbyPol.

The two functions getAllSuccessors and getConfbyPol are declared at
Lines 5 and 6. In the declaration of getAllSuccessors, ConfSet is a sort to

27

represent sets of configurations. In the definition of getAllSuccessors from
Line 10 to 14, metaSearch is a built-in meta-level function corresponding to the
search command. We omit detailed explanations about this function because
it is out of the scope of this paper. Interested readers are referred to the work
[10] for details. As an example, we give the definition of getConfbyPol with
laziness policy, i.e., the equation at Line 16. CF is a variable of ConfSet, repre-
senting a set of configurations. The function getNonTickConf returns the sets
of configurations in CF where clock C does not tick at the last step. If there is no
such a configuration, CF is returned. We omit the definition of getNonTickConf
because it is straightforward.

With the rule defined above, we can use Maude’s rew command to simulate
the behavior of a clock system with respect to a set of ccsl constraints and
an arbitration policy. As an example, we simulate a clock system with respect
to the constraints in Φ′2 with different arbitration policies. Because simulation
will not terminate unless the schedule being simulated is a deadlock one. We
set a bound 50 to the maximal depth of simulation. The commands used for
the simulations are of the following form:

1 rew [50] [< ’in1 , ’in2 , ’out , ’step1 , ’step2 , ’step3 , ’tmp

, ’tmp2 ;

2 (’out < ’tmp2)(’step1 < ’step3)(’step2 < ’step3) (’tmp < ’

out)(’in1 <= ’step1)

3 (’in2 <= ’step2) (’step3 <= ’out) (’tmp2 != ’tmp $ 1)(’

tmp1 != ’in1 /\ ’in2);

4 [’in1 ,nil ,0], [’in2 ,nil ,0], [’out ,nil ,0], [’step1 ,nil ,0],

[’step2 ,nil ,0],

5 [’step3 ,nil ,0], [’tmp ,nil ,0], [’tmp2 ,nil ,0] ; 0 >, P] .

We replace P in the above command with max, min, lazy(’step1,’step2),
active(’step1,’step2) and mix(’step1,’step2) to simulate with the five
arbitration policies, respectively. Maude returns different schedules. To make
simulation results easier to read, we developed a prototype tool on the top of
Eclipse using Maude as the underlying simulation engine. Figure 10 shows the
graphical representation of the five simulation results generated by the tool. All
the five schedules satisfy the sufficient conditions of periodicity, and hence are
periodic. There two main reasons for the periodicity of these schedules. One
reason is the alternation constraint between the clocks out and tmp1. However,
only by alternation a schedule may not be periodic because there is no constraint
on the interval between two alternative ticks. When an arbitration policy is
provided, the clocks that should tick in next step may be deterministic. The
schedule becomes periodic when all the intervals between alternative ticks are
the same. However, the periods of schedules may be different under different
policies. For instance, the periods under maximum and activeness with step1

and step2 are 1, while the periods under the other three policies are 5 (under
minimum), 3 (under laziness) and 2 (under mixity), respectively.

28

Figure 10: The simulation results with the five arbitration policies.

6 Related Work and Discussion

ccsl mainly deals with logical clocks, i.e., unbounded increasing sequences
(streams) of integers. The semantics of clock constraints may depend on Boolean
parameters, in which case, we remain in a finite world and can rely on traditional
verification and analysis results and tools. The constraints may also depend on
unbounded natural numbers, for instance, the number of times a given clock has
ticked. In this latter case, the constraint is called unsafe [13]. A specification is
safe if it does not use any unsafe constraint.

The satisfiability of ccsl specifications has already been studied. Most of the
time, decidability is achieved by reducing to a safe subset of ccsl constraints.
The reference semantics of ccsl was given in a research report [5] mainly to be
able to define a simulation tool called TimeSquare [11]. TimeSquare encodes
the operational semantics of ccsl in Java and captures Boolean constraints
symbolically using Binary Decision Diagrams (BDD). TimeSquare works step
by step and at each step, finding a solution reduces to a satisfiability problem.
After deciding if and how many valid solutions can be found at a step, the
TimeSquare clock engine picks one solution according to its simulation policy,
updates the state space and moves forward. TimeSquare does not consider the
unbounded specification as a whole and only produces one finite possible trace
that satisfies all the constraints up to a given number of steps. In this work, we
use bounded model-checking, and we can then explore all the solutions reached
in a given number of steps, instead of only one.

Several solutions have been proposed to make an exhaustive exploration of
the entire state space (not up to a pre-defined number of steps). A comprehen-
sive list of references has been summarized in a recent survey [12]. However, one
aspect is to be able to decide whether the state space can be represented with a
finite abstraction even though the specification is unsafe [13]. Another way is to
force a finite space by restricting to subsets of safe constraints [22, 14, 23]. In the
work [24], a subset of CCSL constraints are transformed into timed automata
to model check both logical and chronometric properties of CCSL constraints

29

using the UPPAAL tool. In this work, we do not make any assumptions on
whether the specification is safe or not by considering only periodic scheduling
of ccsl from both theoretical and practical perspectives.

Like other existing approaches proposed for the formal analysis of ccsl, the
formal analysis approach to periodic scheduling of ccsl is also based on its
formal semantics. However, the main difference is that, thanks to the Maude
environment, all the analyses performed result directly from the operational
semantics without intermediate transformations, so without the need to prove
that the semantics is preserved. Yu et al. [22] proposed to encode ccsl in
Signal before transforming it to the internal format of Sigali. We hope that
the encoding in Maude will allow to conduct automated verification for all the
transformational approaches that use ccsl as a step. Maude also gives a frame-
work to define the arbitration policies formally for the purpose of simulation.
Some undocumented simulation policies are available in TimeSquare [11]. In
Section 4, we give a simple formal interpretation for three of these simulation
policies. We also propose three more and show how they can be implemented
using Maude metasearch function.

Finally, abstract interpretation [25] or infinite model-checking [26] would
allow reasoning on the global ccsl specification without restrictions. However,
the encoding is likely to introduce semantic variations and we do not know at
the moment how to encode ccsl constraints in a compositional way.

7 Conclusion and Future Work

We have proposed a new notion of bounded and periodic schedules to satisfy
a ccsl specification. The satisfiability problem for ccsl specifications, which
is still an open problem in the general case, is proved to be decidable with
regards to bounded and periodic schedules even when using unsafe constraints.
This is the first main result from a theoretical perspective. From a practical
point of view, the second result of this paper is to present a Maude encoding of
the formal semantics of an extended subset of ccsl to compute bounded and
periodic schedules. We also describe how to implement customized arbitration
policies within both simulation and bounded model-checking context.

Compared with our earlier work [9], we proposed in this paper less constrain-
ing conditions for being able to build more periodic schedules automatically with
the tool. We have also improved our work by considering an extended subset of
the language to support the notion of logical periodicity between logical clocks.
We then had to define a new semantic model for considering this extension.

ccsl is still an emerging formal specification language which is under further
study. We are considering introducing new types of constraints such as alterna-
tive operators. Maude, as a formal meta-tool, provides a formal environment to
study the language itself by quickly developing formal analysis toolkit for ccsl
in terms of the executable semantics of ccsl constraints. For its executability
of the mathematical semantics, Maude can be used as a precise interpreter and
state explorer for the formal analysis of ccsl constraints.

30

Acknowledgment

We thank all the anonymous reviewers including those who reviewed the work-
shop version published in FTSCS 2015 for their valuable comments on this
work. This research was supported by The National Natural Science Founda-
tion of China (NSFC) project: No. 61502171 and by the French Clarity Project3

.

References

References

[1] Leslie Lamport. Time, clocks, and the ordering of events in a distributed
system. Commun. ACM, 21(7):558–565, 1978.

[2] Gérard Berry and Georges Gonthier. The Esterel synchronous program-
ming language: Design, semantics, implementation. Sci. Comput. Pro-
gram., 19(2):87–152, 1992.

[3] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas Halbwachs,
Paul Le Guernic, and Robert de Simone. The synchronous languages 12
years later. Proceedings of the IEEE, 91(1):64–83, 2003.

[4] Dumitru Potop-Butucaru, Robert de Simone, and Jean-Pierre Talpin. The
synchronous hypothesis and polychronous languages. In Embedded Systems
Design and Verification, chapter 8, pages 1–20. CRC Press, 2009.

[5] Charles André. Syntax and semantics of the Clock Constraint Specification
Language (CCSL). Research Report 6925, INRIA, 2009.

[6] Frédéric Mallet, Charles André, and Robert de Simone. CCSL: specifying
clock constraints with UML/MARTE. Innovations in Systems and Software
Engineering, 4(3):309–314, 2008.

[7] C. L. Liu and James W. Layland. Scheduling algorithms for multiprogram-
ming in a hard-real-time environment. J. ACM, 20(1):46–61, 1973.

[8] Liliana Cucu, Nicolas Pernet, and Yves Sorel. Periodic real-time scheduling:
from deadline-based model to latency-based model. Annals OR, 159(1):41–
51, 2008.

[9] Min Zhang and Frédéric Mallet. An executable semantics of clock constraint
specification language and its applications. In 4th International Workshop
on Formal Techniques for Safety-Critical Systems (FTSCS), volume 596 of
CCIS, pages 37–51. Springer, 2015.

3http://www.clarity-se.org/

31

http://www.clarity-se.org/

[10] Manuel Clavel, Francisco Durán, Steven Eker, Santiago Escobar, Patrick
Lincoln, Narciso Mart́ı-Oliet, José Meseguer, and Carolyn Talcott. All
about Maude, volume 4350 of LNCS. Springer, 2007.

[11] Julien Deantoni and Frédéric Mallet. TimeSquare: Treat your models with
logical time. In Carlo A. Furia and Sebastian Nanz, editors, TOOLS (50),
volume 7304 of LNCS, pages 34–41. Springer, 2012.

[12] Frédéric Mallet and Robert de Simone. Correctness issues on
MARTE/CCSL constraints. Sci. Comput. Program., 106:78–92, 2015.

[13] Frédéric Mallet, Jean-Vivien Millo, and Robert de Simone. Safe CCSL
specifications and marked graphs. In 11th ACM/IEEE Int. Conf. on Formal
Methods and Models for Codesign, pages 157–166. IEEE, 2013.

[14] Régis Gascon, Frédéric Mallet, and Julien DeAntoni. Logical time and
temporal logics: Comparing UML MARTE/CCSL and PSL. In C. Combi,
M. Leucker, and F. Wolter, editors, TIME, pages 141–148. IEEE, 2011.

[15] Qingguo Xu, Robert de Simone, and Julien DeAntoni. Divergence detec-
tion for CCSL specification via clock causality chain. In 2nd International
Symposium on Dependable Software Engineering: Theories, Tools, and Ap-
plications (SETTA), volume 9984 of LNCS, pages 18–37. Springer, 2016.

[16] José Meseguer and Grigore Rosu. The rewriting logic semantics project: A
progress report. Inf. Comput., 231:38–69, 2013.

[17] José Meseguer and Grigore Rosu. The rewriting logic semantics project.
Theor. Comput. Sci., 373(3):213–237, 2007.

[18] José Meseguer. Twenty years of rewriting logic. J. Log. Algebr. Program.,
81(7-8):721–781, 2012.

[19] Peter Csaba Ölveczky. Real-Time Maude and its applications. In 10th
International Workshop on Rewriting Logic and Its Applications (WRLA),
volume 8663 of LNCS, pages 42–79. Springer, 2014.

[20] José Meseguer. Membership algebra as a logical framework for equational
specification. In 12th International Workshop on Recent Trends in Al-
gebraic Development Techniques (WADT), volume 1376 of LNCS, pages
18–61. 1997.

[21] Peter Feiler and Jörgen Hansson. Flow latency analysis with the archi-
tecture analysis and design language (AADL). Technical Note CMU/SEI-
2007-TN-010, Carnegie Mellon, Software Engineering Institute, 12 2007.

[22] Huafeng Yu, Jean-Pierre Talpin, Löıc Besnard, Thierry Gautier, Hervé
Marchand, and Paul Le Guernic. Polychronous controller synthesis from
MARTE/CCSL timing specifications. In 9th IEEE/ACM International
Conference on Formal Methods and Models for Codesign, MEMOCODE,
pages 21–30. IEEE, 2011.

32

[23] Ling Yin, Frédéric Mallet, and Jing Liu. Verification of MARTE/CCSL
time requirements in Promela/SPIN. In I. Perseil, K. Breitman, and
R. Sterritt, editors, ICECCS, pages 65–74. IEEE Computer Society, 2011.

[24] Jagadish Suryadevara, Cristina Cerschi Seceleanu, Frédéric Mallet, and
Paul Pettersson. Verifying MARTE/CCSL mode behaviors using UP-
PAAL. In 11th International Conference on Software Engineering and
Formal Methods (SEFM), volume 8137 of LNCS, pages 1–15. Springer,
2013.

[25] Patrick Cousot. Abstract interpretation. ACM Comput. Surv., 28(2):324–
328, 1996.

[26] Jérôme Leroux and Grégoire Sutre. Flat counter automata almost ev-
erywhere! In 3rd International Symposium on Automated Technology for
Verification and Analysis, volume 3707 of LNCS, pages 489–503. Springer,
2005.

33

	Introduction
	The Clock Constraint Specification Language with Periodic Filter
	Syntax and semantics of CCSL
	Bounded and periodic schedules

	Maude in a Nutshell
	Formalization in Maude
	Formal analysis in Maude

	Operational Semantics of CCSL and its formalization in Maude
	Operational semantics of CCSL
	Formalization of a clock system
	Formalization of the operational semantics of CCSL

	Formal Analysis on CCSL in Maude
	Bounded scheduling
	Periodic scheduling
	Formal verification by (bounded) model checking
	Detection of deadlock schedules by bounded model checking
	LTL Model checking of periodic schedules

	Simulation with customized arbitration policies

	Related Work and Discussion
	Conclusion and Future Work

