Animation and formal verification of real-time reactive systems in an object-oriented environment

Abstract

Real-time reactive systems are characterized by their continuous interaction with their environment through stimulus-response behavior. The safety-critical nature of their domain and their inherent complexity advocate the use of formal methods in the software development process. TROMLAB development environment supports a process model adequate for dealing with the complexity of reactive systems. The foundation of the TROMLAB environment is the Timed Reactive Object Model (TROM), which combines object-oriented and real-time technologies. Simulation is essential in the behavioral analysis of real-time reactive systems; animation allows a visualization of the simulation process. A rigorous trace analysis of simulation scenarios provides insight into the behavior of the collaborating entities in the configuration. This supports validation of systems designed incrementally and iteratively in the software development life-cycle. Moreover, safety-critical systems need to be verified for adherence to stringent safety and liveness properties. The scope of this thesis is two-fold. We first present an animation tool supporting simulation of reactive systems described in the TROM formalism. We include formal specifications of the functionalities of the simulator in VDM specification language. We then introduce a methodology for formal verification of TROM subsystems. The novelty of the methodology lies in the formal verification approach embedded within an object-oriented framework. The simulator and the verification methodology conform respectively to the operational and logical semantics of TROMs

    Similar works