2,012,405 research outputs found

    Logical Step-Indexed Logical Relations

    Full text link
    Appel and McAllester's "step-indexed" logical relations have proven to be a simple and effective technique for reasoning about programs in languages with semantically interesting types, such as general recursive types and general reference types. However, proofs using step-indexed models typically involve tedious, error-prone, and proof-obscuring step-index arithmetic, so it is important to develop clean, high-level, equational proof principles that avoid mention of step indices. In this paper, we show how to reason about binary step-indexed logical relations in an abstract and elegant way. Specifically, we define a logic LSLR, which is inspired by Plotkin and Abadi's logic for parametricity, but also supports recursively defined relations by means of the modal "later" operator from Appel, Melli\`es, Richards, and Vouillon's "very modal model" paper. We encode in LSLR a logical relation for reasoning relationally about programs in call-by-value System F extended with general recursive types. Using this logical relation, we derive a set of useful rules with which we can prove contextual equivalence and approximation results without counting steps

    Logical Dreams

    Full text link
    We discuss the past and future of set theory, axiom systems and independence results. We deal in particular with cardinal arithmetic

    Logical-function generator

    Get PDF
    Apparatus and technique for generating logical functions and circuits have been developed. They provide aid in designing and constructing hardware to generate logic circuits, by defining circuit connections required to generate these functions. With this method, it is possible quickly and automatically to design logic, while eliminating involved and time-consuming mathematical manipulations

    Limiting logical pluralism

    Get PDF
    In this paper I argue that pluralism at the level of logical systems requires a certain monism at the meta-logical level, and so, in a sense, there cannot be pluralism all the way down. The adequate alternative logical systems bottom out in a shared basic meta-logic, and as such, logical pluralism is limited. I argue that the content of this basic meta-logic must include the analogue of logical rules Modus Ponens and Universal Instantiation. I show this through a detailed analysis of the ‘adoption problem’, which manifests something special about MP and UI. It appears that MP and UI underwrite the very nature of a logical rule of inference, due to all rules of inference being conditional and universal in their structure. As such, all logical rules presuppose MP and UI, making MP and UI self-governing, basic, unadoptable, and required in the meta-logic for the adequacy of any logical system

    Logical Bell Inequalities

    Full text link
    Bell inequalities play a central role in the study of quantum non-locality and entanglement, with many applications in quantum information. Despite the huge literature on Bell inequalities, it is not easy to find a clear conceptual answer to what a Bell inequality is, or a clear guiding principle as to how they may be derived. In this paper, we introduce a notion of logical Bell inequality which can be used to systematically derive testable inequalities for a very wide variety of situations. There is a single clear conceptual principle, based on purely logical consistency conditions, which underlies our notion of logical Bell inequalities. We show that in a precise sense, all Bell inequalities can be taken to be of this form. Our approach is very general. It applies directly to any family of sets of commuting observables. Thus it covers not only the n-partite scenarios to which Bell inequalities are standardly applied, but also Kochen-Specker configurations, and many other examples. There is much current work on experimental tests for contextuality. Our approach directly yields, in a systematic fashion, testable inequalities for a very general notion of contextuality. There has been much work on obtaining proofs of Bell's theorem `without inequalities' or `without probabilities'. These proofs are seen as being in a sense more definitive and logically robust than the inequality-based proofs. On the hand, they lack the fault-tolerant aspect of inequalities. Our approach reconciles these aspects, and in fact shows how the logical robustness can be converted into systematic, general derivations of inequalities with provable violations. Moreover, the kind of strong non-locality or contextuality exhibited by the GHZ argument or by Kochen-Specker configurations can be shown to lead to maximal violations of the corresponding logical Bell inequalities.Comment: 12 page

    Contraception & Logical Consistency

    Get PDF
    • …
    corecore