20,818 research outputs found

    Logic-Based Specification Languages for Intelligent Software Agents

    Full text link
    The research field of Agent-Oriented Software Engineering (AOSE) aims to find abstractions, languages, methodologies and toolkits for modeling, verifying, validating and prototyping complex applications conceptualized as Multiagent Systems (MASs). A very lively research sub-field studies how formal methods can be used for AOSE. This paper presents a detailed survey of six logic-based executable agent specification languages that have been chosen for their potential to be integrated in our ARPEGGIO project, an open framework for specifying and prototyping a MAS. The six languages are ConGoLog, Agent-0, the IMPACT agent programming language, DyLog, Concurrent METATEM and Ehhf. For each executable language, the logic foundations are described and an example of use is shown. A comparison of the six languages and a survey of similar approaches complete the paper, together with considerations of the advantages of using logic-based languages in MAS modeling and prototyping.Comment: 67 pages, 1 table, 1 figure. Accepted for publication by the Journal "Theory and Practice of Logic Programming", volume 4, Maurice Bruynooghe Editor-in-Chie

    State-of-the-art on evolution and reactivity

    Get PDF
    This report starts by, in Chapter 1, outlining aspects of querying and updating resources on the Web and on the Semantic Web, including the development of query and update languages to be carried out within the Rewerse project. From this outline, it becomes clear that several existing research areas and topics are of interest for this work in Rewerse. In the remainder of this report we further present state of the art surveys in a selection of such areas and topics. More precisely: in Chapter 2 we give an overview of logics for reasoning about state change and updates; Chapter 3 is devoted to briefly describing existing update languages for the Web, and also for updating logic programs; in Chapter 4 event-condition-action rules, both in the context of active database systems and in the context of semistructured data, are surveyed; in Chapter 5 we give an overview of some relevant rule-based agents frameworks

    OperA/ALIVE/OperettA

    Get PDF
    Comprehensive models for organizations must, on the one hand, be able to specify global goals and requirements but, on the other hand, cannot assume that particular actors will always act according to the needs and expectations of the system design. Concepts as organizational rules (Zambonelli 2002), norms and institutions (Dignum and Dignum 2001; Esteva et al. 2002), and social structures (Parunak and Odell 2002) arise from the idea that the effective engineering of organizations needs high-level, actor-independent concepts and abstractions that explicitly define the organization in which agents live (Zambonelli 2002).Peer ReviewedPostprint (author's final draft

    A commentary on standardization in the Semantic Web, Common Logic and MultiAgent Systems

    Get PDF
    Given the ubiquity of the Web, the Semantic Web (SW) offers MultiAgent Systems (MAS) a most wide-ranging platform by which they could intercommunicate. It can be argued however that MAS require levels of logic that the current Semantic Web has yet to provide. As ISO Common Logic (CL) ISO/IEC IS 24707:2007 provides a firstorder logic capability for MAS in an interoperable way, it seems natural to investigate how CL may itself integrate with the SW thus providing a more expressive means by which MAS can interoperate effectively across the SW. A commentary is accordingly presented on how this may be achieved. Whilst it notes that certain limitations remain to be addressed, the commentary proposes that standardising the SW with CL provides the vehicle by which MAS can achieve their potential.</p

    An Abstract Formal Basis for Digital Crowds

    Get PDF
    Crowdsourcing, together with its related approaches, has become very popular in recent years. All crowdsourcing processes involve the participation of a digital crowd, a large number of people that access a single Internet platform or shared service. In this paper we explore the possibility of applying formal methods, typically used for the verification of software and hardware systems, in analysing the behaviour of a digital crowd. More precisely, we provide a formal description language for specifying digital crowds. We represent digital crowds in which the agents do not directly communicate with each other. We further show how this specification can provide the basis for sophisticated formal methods, in particular formal verification.Comment: 32 pages, 4 figure

    Ontologies across disciplines

    Get PDF
    • …
    corecore