117,695 research outputs found

    Reusable Knowledge-based Components for Building Software Applications: A Knowledge Modelling Approach

    Get PDF
    In computer science, different types of reusable components for building software applications were proposed as a direct consequence of the emergence of new software programming paradigms. The success of these components for building applications depends on factors such as the flexibility in their combination or the facility for their selection in centralised or distributed environments such as internet. In this article, we propose a general type of reusable component, called primitive of representation, inspired by a knowledge-based approach that can promote reusability. The proposal can be understood as a generalisation of existing partial solutions that is applicable to both software and knowledge engineering for the development of hybrid applications that integrate conventional and knowledge based techniques. The article presents the structure and use of the component and describes our recent experience in the development of real-world applications based on this approach

    A knowledge-based approach to VLSI-design in an open CAD-environment

    Get PDF
    A knowledge-based approach is suggested to assist a designer in the increasingly complex task of generating VLSI-chips from abstract, high-level specifications of the system. The complexity of designing VLSI-circuits has reached a level where computer-based assistance has become indispensable. Not all of the design tasks allow for algorithmic solutions. AI technique can be used, in order to support the designer with computer-aided tools for tasks not suited for algorithmic approaches. The approach described in this paper is based upon the underlying characteristics of VLSI design processes in general, comprising all stages of the design. A universal model is presented, accompanied with a recording method for the acquisition of design knowledge - strategic and task-specific - in terms of the design actions involved and their effects on the design itself. This method is illustrated by a simple design example: the implementation of the logical EXOR-component. Finally suggestions are made for obtaining a universally usable architecture of a knowledge-based system for VLSI-design

    Neuro-fuzzy knowledge processing in intelligent learning environments for improved student diagnosis

    Get PDF
    In this paper, a neural network implementation for a fuzzy logic-based model of the diagnostic process is proposed as a means to achieve accurate student diagnosis and updates of the student model in Intelligent Learning Environments. The neuro-fuzzy synergy allows the diagnostic model to some extent "imitate" teachers in diagnosing students' characteristics, and equips the intelligent learning environment with reasoning capabilities that can be further used to drive pedagogical decisions depending on the student learning style. The neuro-fuzzy implementation helps to encode both structured and non-structured teachers' knowledge: when teachers' reasoning is available and well defined, it can be encoded in the form of fuzzy rules; when teachers' reasoning is not well defined but is available through practical examples illustrating their experience, then the networks can be trained to represent this experience. The proposed approach has been tested in diagnosing aspects of student's learning style in a discovery-learning environment that aims to help students to construct the concepts of vectors in physics and mathematics. The diagnosis outcomes of the model have been compared against the recommendations of a group of five experienced teachers, and the results produced by two alternative soft computing methods. The results of our pilot study show that the neuro-fuzzy model successfully manages the inherent uncertainty of the diagnostic process; especially for marginal cases, i.e. where it is very difficult, even for human tutors, to diagnose and accurately evaluate students by directly synthesizing subjective and, some times, conflicting judgments

    Modelling and analyzing adaptive self-assembling strategies with Maude

    Get PDF
    Building adaptive systems with predictable emergent behavior is a challenging task and it is becoming a critical need. The research community has accepted the challenge by introducing approaches of various nature: from software architectures, to programming paradigms, to analysis techniques. We recently proposed a conceptual framework for adaptation centered around the role of control data. In this paper we show that it can be naturally realized in a reflective logical language like Maude by using the Reflective Russian Dolls model. Moreover, we exploit this model to specify, validate and analyse a prominent example of adaptive system: robot swarms equipped with self-assembly strategies. The analysis exploits the statistical model checker PVeStA

    A Context-Oriented Extension of F#

    Get PDF
    Context-Oriented programming languages provide us with primitive constructs to adapt program behaviour depending on the evolution of their operational environment, namely the context. In previous work we proposed ML_CoDa, a context-oriented language with two-components: a declarative constituent for programming the context and a functional one for computing. This paper describes the implementation of ML_CoDa as an extension of F#.Comment: In Proceedings FOCLASA 2015, arXiv:1512.0694

    Towards supporting multiple semantics of named graphs using N3 rules

    Get PDF
    Semantic Web applications often require the partitioning of triples into subgraphs, and then associating them with useful metadata (e.g., provenance). This led to the introduction of RDF datasets, with each RDF dataset comprising a default graph and zero or more named graphs. However, due to differences in RDF implementations, no consensus could be reached on a standard semantics; and a range of different dataset semantics are currently assumed. For an RDF system not be limited to only a subset of online RDF datasets, the system would need to be extended to support different dataset semantics—exactly the problem that eluded consensus before. In this paper, we transpose this problem to Notation3 Logic, an RDF-based rule language that similarly allows citing graphs within RDF documents. We propose a solution where an N3 author can directly indicate the intended semantics of a cited graph— possibly, combining multiple semantics within a single document. We supply an initial set of companion N3 rules, which implement a number of RDF dataset semantics, which allow an N3-compliant system to easily support multiple different semantics

    Realising the open virtual commissioning of modular automation systems

    Get PDF
    To address the challenges in the automotive industry posed by the need to rapidly manufacture more product variants, and the resultant need for more adaptable production systems, radical changes are now required in the way in which such systems are developed and implemented. In this context, two enabling approaches for achieving more agile manufacturing, namely modular automation systems and virtual commissioning, are briefly reviewed in this contribution. Ongoing research conducted at Loughborough University which aims to provide a modular approach to automation systems design coupled with a virtual engineering toolset for the (re)configuration of such manufacturing automation systems is reported. The problems faced in the virtual commissioning of modular automation systems are outlined. AutomationML - an emerging neutral data format which has potential to address integration problems is discussed. The paper proposes and illustrates a collaborative framework in which AutomationML is adopted for the data exchange and data representation of related models to enable efficient open virtual prototype construction and virtual commissioning of modular automation systems. A case study is provided to show how to create the data model based on AutomationML for describing a modular automation system
    • …
    corecore