6 research outputs found

    HeIse Wheels: a Family of Mechanisms for Implementing Variable Geometry Hybrid Wheels

    Get PDF
    This paper presents a family of mechanisms of two degrees of freedom for implementing variable geometry hybrid wheels. These mechanisms are capable of transforming a circular wheel into a hybrid wheel with multiple legs. In this paper we describe the main attributes and advantages of these mechanisms, which we named HeIse Wheels. In addition, various terms and concepts related to the mathematical modeling of these devices are defined. The family of mechanisms consists of 14 original designs, which represent a sound solution to the problem of wheel-hybrid wheel transformation

    Design, analysis and fabrication of an articulated mobile manipulator

    Get PDF
    The process involved in designing, fabricating and analysing a mobile robotic manipulator to carry out pick and place task in a dynamic and unknown environment has been explained here. The manipulator designed and fabricated has a 5 – axis articulated arm for pick and place application but also can be reconfigured to do other tasks. The manipulator is built with its driving or power means fitted at the bottom to distribute the load effectively and also make handling easier. The mobile platform employs a novel suspension system which helps in relatively distributing the load equally to all wheels regardless of the wheels position giving the mobile platform better control and stability. With reference to many available manipulators and mobile platforms in the market, a practical design is perceived using designing tools and a fully functional prototype is fabricated. The kinematic model determining the end effector’s position and orientation is analysed systematically and presented. Navigational controls are built using fuzzy logic and genetic algorithm with the help of the sensors’ information so that the robot can negotiate obstacle while carrying out various tasks in an unknown environment. The path tracking for pick-and-place application is the overall target of this industrial manipulator

    System Design, Motion Modelling and Planning for a Recon figurable Wheeled Mobile Robot

    Get PDF
    Over the past ve decades the use of mobile robotic rovers to perform in-situ scienti c investigations on the surfaces of the Moon and Mars has been tremendously in uential in shaping our understanding of these extraterrestrial environments. As robotic missions have evolved there has been a greater desire to explore more unstructured terrain. This has exposed mobility limitations with conventional rover designs such as getting stuck in soft soil or simply not being able to access rugged terrain. Increased mobility and terrain traversability are key requirements when considering designs for next generation planetary rovers. Coupled with these requirements is the need to autonomously navigate unstructured terrain by taking full advantage of increased mobility. To address these issues, a high degree-of-freedom recon gurable platform that is capable of energy intensive legged locomotion in obstacle-rich terrain as well as wheeled locomotion in benign terrain is proposed. The complexities of the planning task that considers the high degree-of-freedom state space of this platform are considerable. A variant of asymptotically optimal sampling-based planners that exploits the presence of dominant sub-spaces within a recon gurable mobile robot's kinematic structure is proposed to increase path quality and ensure platform safety. The contributions of this thesis include: the design and implementation of a highly mobile planetary analogue rover; motion modelling of the platform to enable novel locomotion modes, along with experimental validation of each of these capabilities; the sampling-based HBFMT* planner that hierarchically considers sub-spaces to better guide search of the complete state space; and experimental validation of the planner with the physical platform that demonstrates how the planner exploits the robot's capabilities to uidly transition between various physical geometric con gurations and wheeled/legged locomotion modes

    Navegación de un robot móvil sobre terreno irregular con contacto de su brazo con el suelo

    Get PDF
    En esta tesis se aborda el problema de la navegabilidad de robots móviles sobre terrenos irregulares, los cuales poseen diferentes inclinaciones y variedad de obstáculos. Este tema constituye actualmente una línea de investigación activa dirigida al desarrollo de nuevos robots y, adicionalmente, enfocada al desarrollo de estrategias de navegación eficientes y con el mínimo riesgo de inutilización. En primer lugar se desarrolló el robot móvil Lázaro para navegar en este tipo de terrenos, el cual posee un brazo articulado con una rueda como efector final. Esta rueda le permite al brazo mantener un punto de contacto adicional con el suelo que puede ayudar al robot a compensar situaciones de inestabilidad y sobrepasar algunos obstáculos que pudieran presentarse en estos entornos. Posteriormente, se desarrollaron tres medidas cuantitativas que permiten evaluar la navegabilidad de cualquier robot móvil cuando transita sobre terreno irregular. Estas tres medidas son: un índice de estabilidad, el cual evalúa la propensión al vuelco; un índice de direccionamiento, el cual evalúa la disponibilidad del robot para direccionarse y seguir una trayectoria dada y, por último, un índice de deslizamiento, el cual evalúa la propensión del robot a deslizarse hacia abajo cuando se desplaza sobre superficies inclinadas. Finalmente, se definieron un conjunto de maniobras que puede ejecutar Lázaro y que están dirigidas a garantizar la navegación cuando el robot se desplaza sobre superficies inclinadas o cuando debe sobrepasar obstáculos tales como escalones, rampas o zanjas. Todas las estrategias diseñadas se fundamentan en el uso del brazo como herramienta adicional que posee el robot para mejorar su navegabilidad

    Design and Experimental Evaluation of a Hybrid Wheeled-Leg Exploration Rover in the Context of Multi-Robot Systems

    Get PDF
    With this dissertation, the electromechanic design, implementation, locomotion control, and experimental evaluation of a novel type of hybrid wheeled-leg exploration rover are presented. The actively articulated suspension system of the rover is the basis for advanced locomotive capabilities of a mobile exploration robot. The developed locomotion control system abstracts the complex kinematics of the suspension system and provides platform control inputs usable by autonomous behaviors or human remote control. Design and control of the suspension system as well as experimentation with the resulting rover are in the focus of this thesis. The rover is part of a heterogeneous modular multi-robot exploration system with an aspired sample return mission to the lunar south pole or currently hard-to-access regions on Mars. The multi-robot system pursues a modular and reconfigurable design methodology. It combines heterogeneous robots with different locomotion capabilities for enhanced overall performance. Consequently, the design of the multi-robot system is presented as the frame of the rover developments. The requirements for the rover design originating from the deployment in a modular multi-robot system are accentuated and summarized in this thesis

    Lázaro: a mobile robot with an arm developed to contact with the ground

    Full text link
    [EN] This paper aims to describe Lázaro, which is a small mobile robot that has an arm designed especially to provide an additional contact point with the ground that can be used to improve the tipover stability and to overcome obstacles. Specifically, the description of the mechanical structure and electronic components for perception, communication and control is discussed. Subsequently, the operating characteristics of the robot are reviewed in terms of kinematics, control architecture, operating modes and interface. Finally, a description of some performance tests is presented.[ES] Este artículo tiene por objetivo describir a Lázaro, el cual es un pequeño robot móvil que posee un brazo diseñado especialmente para propiciar un punto adicional de contacto con el suelo que puede utilizarse para mejorar la estabilidad al vuelco y superar obstáculos. Específicamente, se aborda la descripción de la estructura mecánica así como los componentes electrónicos destinados a percepción, comunicación y control. Posteriormente, se revisan las características de funcionamiento de este robot, en cuanto a su cinemática, arquitectura de control, modos de operación e interface. Finalmente, se hace una descripción de algunas pruebas de funcionamiento.Este trabajo ha sido financiado parcialmente por el Decanato de Investigación de la Universidad Nacional Experimental del Táchira con el proyecto 01-020-2010. Además, por el proyecto español DPI 2015-65186-R de la CICYT, el proyecto andaluz PE2010 TEP-6101 y la Asociación Universitaria Iberoamericana de Postgrado (AUIP). .García, JM.; Medina, IJ.; Martínez, JL.; García Cerezo, A. (2017). Lázaro: Robot Móvil dotado de Brazo para Contacto con el Suelo. Revista Iberoamericana de Automática e Informática industrial. 14(2):174-183. https://doi.org/10.1016/j.riai.2016.09.012OJS174183142Barrientos, A., Peñín, L., Balaguer, C., & Aracil, R., 1996. Fundamentos de robótica. McGraw-Hill. Madrid.Ben-tzvi, P., Goldenberg, A., & Zu, J., 2008. Design, simulations and optimization of a tracked mobile robot manipulator with hybrid locomotion and manipulation capabilities. In: IEEE International Conference on Robotics and Automation. Pasadena, USA. pp. 2307-2312.Ben-Tzvi, P., Ito, S., & Goldenberg, A., 2009. A mobile robot with autonomous climbing and descending of stairs. Robotica 27, 171-188.Bluethmann, B., Herrera, E., Hulse, A., Figuered, J., Junkin, L., Markee, M., et al. (2010). An active suspension system for lunar crew mobility. In: IEEE Aerospace Conference. Big Sky, USA. pp. 1-9.Casper, J., & Murphy, R., 2003. Human - robot interactions during the robotassisted urban search and rescue response at the World Trade Center. IEEE Transactions on Systems, Man and Cybernetics 33, 367-385.Chiu, Y., Shiroma, N., Igarashi, H., Sato, N., Inami, M., & Matsuno, F., 2005. Fuma: Environment information gathering wheeled rescue robot with oneDOF arm. In: IEEE International Workshop on Safety, Security and Rescue Robotics. Kobe, Japan. pp. 81-86.Choi, K., Jeong, H., Hyun, K., Choi, H., & Kwak, Y., 2007. Obstacle negotiation for the rescue robot with variable single-tracked mechanism. In: IEEE/ASME international conference on Advanced intelligent mechatronics. Zurich, Switzerland. pp. 1-6.Cordes, F., Dettmann, A., & Kirchner, F., 2011. Locomotion modes for a hybrid wheeled-leg planetary rover. In: IEEE international conference on robotics and biomimetics. Phuket, Thailand. pp. 2586-2592.Feng, Q., Wang, X., Zheng, W., Qiu, Q., & Jiang, K., 2012. New strawberry harvesting robot for elevated-trough culture. International Journal of Agricultural and Biological Engineering 5, 1-8.García, J. M., Martínez, J. L., Mandow, A., & García-Cerezo, A., 2015a. Steerability analysis on slopes of a mobile robot with a ground contact arm. In: 23rd Mediterranean Conference on Control and Automation. Torremolinos, Spain. pp. 267-272.García, J. M., Medina, I., Cerezo, A. G., & Linares, A., 2015b. Improving the static stability of a mobile manipulator using its end effector in contact with the ground. IEEE Latin American Transactions 13, 3228-3234.García-Cerezo, A., Mandow, A., Martínez, J. L., Gómez-de-Gabriel, J., Morales, J., Cruz, A., et al., 2007. Development of Alacrane: a mobile robotic assitance for exploration and rescue missions. In: IEEE International Workshop on Safety, Security and Rescue Robotics, Rome, Italy. pp. 1-6.Guarnieri, M., Debenest, P., Inoh, P., Fukushima, E., & Hirose, S., 2004. Development of Helios VII: an arm-equipped tracked vehicle for search and rescue operations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Sendai, Japan. pp. 39-45.Guarnieri, M., Kurazume, R., Masuda, H., Inoh, T., Takita, K., Debenest, P., et al., 2009. Helios system: a team of tracked robots for special urban search and rescue operations. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. St. Louis, USA. pp. 2795-2800.Guarnieri, M., Takao, I., Debenest, P., Takita, K., Fukushima, E., & Hirose, S., 2008. Helios IX tracked vehicle for urban search and rescue operations: mechanical design and first tests. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Nice, France. pp. 1612-1617.Hurel, J., Mandow, A., & García-Cerezo, A., 2013. Los sistemas de suspensión activa y semiactiva: una revisión. Revista Iberoamericana de Automática e Informática Industrial 10, 121-132.Iagnemma, K., Rzepniewski, A., Dubowsky, S., & Schenker, P., 2003. Control of robotic vehicles with actively articulated suspensions in rough terrain. Autonomous Robots 14, 5-16.Jardón, A., Giménez, A., Correal, R., Martinez, S., & Balaguer, C., 2008. Asibot: Robot portátil de asistencia a discapacitados. concepto, arquitectura de control y evaluación clínica. Revista Iberoamericana de Automática e Informática Industrial 5, 48-59.Lindemann, R., Bickler, D., Harrington, B., Ortiz, G., & Voorhees, C., 2006. Mars exploration rover mobility development. IEEE Robotics & Automation Magazine 13, 19-26.Mandow, A., Martínez, J. L., Morales, J., Blanco, J. L., García-Cerezo, A., & González, J., 2007. Experimental kinematics for wheeled skid-steer mobile robots. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. San Diego, USA. pp. 1222-1227.Matsuno, F., & Tadokoro, S., 2004. Rescue robots and systems in Japan. In: IEEE International Conference on Robotics and Biomimetics. Shenyang, China. pp. 12-20.Meghdari, A., Naderi, D., & Eslami, S., 2006. Optimal stability of a redundant mobile manipulator via genetic algorithm. Robotica 24, 739-743.Moosavian, S., Semsarilar, H., & Kalantari, A., 2006. Design and manufacturing of a mobile rescue robot. In: IEEE/RSJ International Conference on Intelligent Robots and Systems. Beijing, China. pp. 3982- 3987).Morales, J., Martínez, J. L., Mandow, A., Serón, J., García-Cerezo, A., & Pequeño-Boter, A., 2009. Center of gravity estimation and control for a field mobile robot with a heavy manipulator. In: IEEE International Conference on Mechatronics. Málaga, Spain. pp. 1-6.Ollero, A., Mandow, A., Muñoz, V., & Gómez de Gabriel, J., 1994. Control architecture for mobile robot operation and navigation. Robotics & Computer- Integrated Manufacturing 11, 259-269.Serón, J., Martínez, J. L., Mandow, A., Reina, A. J., Morales, J., & GarcíaCerezo, A., 2014. Automation of the arm-aided climbing maneuver for tracked mobile manipulators. IEEE Transactions on Industrial Electronics 61, 3638-3647.Siegwart, R., Lamon, P., Estier, T., Lauria, M., & Piguet, R., 2002. Innovative design for wheeled locomotion in rough terrain. Robotics and Autonomous Systems 20, 151-162.Stein, M., & Paul, R., 1994. Operator interaction, for time-delayed teleoperation, with a behavior-based controller. In: IEEE International Conference on Robotics and Automation. San Diego, USA. pp. 231-236.Suthakorn, J., Shah, S., Jantarajit, S., Onprasert, W., Saensupo, W., Saeung, S., et al., 2009. On the design and development of a rough terrain robot for rescue missions. In: IEEE International Conference on Robotics and Biomimetics. Bangkok, Thailand. pp. 1830-1835.Vuković, N., & Miljković, Z., 2009. New hybrid control architecture for intelligent mobile robot navigation in a manufacturing environment. Faculty of Mechanical Engineering Transactions 37, 9-18
    corecore