741 research outputs found

    Methodology for Conflict Detection and Resolution in Semantic Revision Control Systems

    Get PDF
    Revision control mechanisms are a crucial part of information systems to keep track of changes. It is one of the key requirements for industrial application of technologies like Linked Data which provides the possibility to integrate data from different systems and domains in a semantic information space. A corresponding semantic revision control system must have the same functionality as established systems (e.g. Git or Subversion). There is also a need for branching to enable parallel work on the same data or concurrent access to it. This directly introduces the requirement of supporting merges. This paper presents an approach which makes it possible to merge branches and to detect inconsistencies before creating the merged revision. We use a structural analysis of triple differences as the smallest comparison unit between the branches. The differences that are detected can be accumulated to high level changes, which is an essential step towards semantic merging. We implemented our approach as a prototypical extension of therevision control system R43ples to show proof of concept

    Interoperability of Enterprise Software and Applications

    Get PDF

    Evolving NoSQL Databases Without Downtime

    Full text link
    NoSQL databases like Redis, Cassandra, and MongoDB are increasingly popular because they are flexible, lightweight, and easy to work with. Applications that use these databases will evolve over time, sometimes necessitating (or preferring) a change to the format or organization of the data. The problem we address in this paper is: How can we support the evolution of high-availability applications and their NoSQL data online, without excessive delays or interruptions, even in the presence of backward-incompatible data format changes? We present KVolve, an extension to the popular Redis NoSQL database, as a solution to this problem. KVolve permits a developer to submit an upgrade specification that defines how to transform existing data to the newest version. This transformation is applied lazily as applications interact with the database, thus avoiding long pause times. We demonstrate that KVolve is expressive enough to support substantial practical updates, including format changes to RedisFS, a Redis-backed file system, while imposing essentially no overhead in general use and minimal pause times during updates.Comment: Update to writing/structur

    Middleware for Work Support in Industrial Contexts (MiWSICx)

    Get PDF
    It is generally acknowledged that technological innovation is leading to an increase in the complexity of industrial work. Hence, work assistance has emerged as an important theme in the context of cyber-physical production systems and Industry 4.0 to assist workers in assembly, logistics, maintenance and supervision. Recent research in this domain has focused on demonstrating assistance applications using mobile computing devices such as tablets, smartphones, AR/VR glasses and wearables, but the aspects of technology induced complexity in industrial work distribution, concurrency, information complexity, and variability of information interaction, and their subsequent effect on human workers is yet to be tackled. This paper has two core contributions: first, it reframes the problem of complex industrial work through activity theory, which leads to a conceptual model that couples human information needs to interactive artefacts within an activity context. Second, the problem of assistance is viewed as managing information flow between multiple devices grouped into fluid and adaptive activity contexts, managed by MiWSICx, (Middleware for Work Support in Industrial Contexts) a novel, distributed middleware designed using the actor model of concurrent computation

    Extending product lifecycle management for manufacturing knowledge sharing

    Get PDF
    Product lifecycle management provides a framework for information sharing that promotes various types of decisionmaking procedures. For product lifecycle management to advance towards knowledge-driven decision support, then this demands more than simply exchanging information. There is, therefore, a need to formally capture best practice through-life engineering knowledge that can be fed back across the product lifecycle. This article investigates the interoperable manufacturing knowledge systems concept. Interoperable manufacturing knowledge systems use an expressive ontological approach that drives the improved configuration of product lifecycle management systems for manufacturing knowledge sharing. An ontology of relevant core product lifecycle concepts is identified from which viewpoint-specific domains, such as design and manufacture, can be formalised. Essential ontology-based mechanisms are accommodated to support the verification and sharing of manufacturing knowledge across domains. The work has been experimentally assessed using an aerospace compressor disc design and manufacture example. While it has been demonstrated that the approach supports the representation of disparate design and manufacture perspectives as well as manufacturing knowledge feedback in a timely manner, areas for improvement have also been identified for future work

    Design-time formal verification for smart environments: an exploratory perspective

    Get PDF
    Smart environments (SmE) are richly integrated with multiple heterogeneous devices; they perform the operations in intelligent manner by considering the context and actions/behaviors of the users. Their major objective is to enable the environment to provide ease and comfort to the users. The reliance on these systems demands consistent behavior. The versatility of devices, user behavior and intricacy of communication complicate the modeling and verification of SmE's reliable behavior. Of the many available modeling and verification techniques, formal methods appear to be the most promising. Due to a large variety of implementation scenarios and support for conditional behavior/processing, the concept of SmE is applicable to diverse areas which calls for focused research. As a result, a number of modeling and verification techniques have been made available for designers. This paper explores and puts into perspective the modeling and verification techniques based on an extended literature survey. These techniques mainly focus on some specific aspects, with a few overlapping scenarios (such as user interaction, devices interaction and control, context awareness, etc.), which were of the interest to the researchers based on their specialized competencies. The techniques are categorized on the basis of various factors and formalisms considered for the modeling and verification and later analyzed. The results show that no surveyed technique maintains a holistic perspective; each technique is used for the modeling and verification of specific SmE aspects. The results further help the designers select appropriate modeling and verification techniques under given requirements and stress for more R&D effort into SmE modeling and verification researc

    Parallelizing Description Logic Reasoning

    Get PDF
    Description Logic has become one of the primary knowledge representation and reasoning methodologies during the last twenty years. A lot of areas are benefiting from description logic based technologies. Description logic reasoning algorithms and a number of optimization techniques for them play an important role and have been intensively researched. However, few of them have been systematically investigated in a concurrency context in spite of multi-processor computing facilities growing up. Meanwhile, semantic web, an application domain of description logic, is producing vast knowledge data on the Internet, which needs to be dealt with by using scalable solutions. This situation requires description logic reasoners to be endowed with reasoning scalability. This research introduced concurrent computing in two aspects: classification, and tableau-based description logic reasoning. Classification is a core description logic reasoning service. Over more than two decades many research efforts have been devoted to optimizing classification. Those classification optimization algorithms have shown their pragmatic effectiveness for sequential processing. However, as concurrent computing becomes widely available, new classification algorithms that are well suited to parallelization need to be developed. This need is further supported by the observation that most available OWL reasoners, which are usually based on tableau reasoning, can only utilize a single processor. Such an inadequacy often leads users working in ontology development to frustration, especially if their ontologies are complex and require long processing times. Classification service finds out all named concept subsumption relationships entailed in a knowledge base. Each subsumption test enrolls two concepts and is independent of the others. At most n^2 subsumption tests are needed for a knowledge base which contains n concepts. As the first contribution of this research, we developed an algorithm and a corresponding architecture showing that reasoning scalability can be gained by using concurrent computing. Further, this research investigated how concurrent computing can increase performance of tableau-based description logic reasoning algorithms. Tableau-based description logic reasoning decides a problem by constructing an AND-OR tree. Before this research, some research has shown the effectiveness of parallelizing processing disjunction branches of a tableau expansion tree. Our research has shown how reasoning scalability can be gained by processing conjunction branches of a tableau expansion tree. In addition, this research developed an algorithm, merge classification, that uses a divide and conquer strategy for parallelizing classification. This method applies concurrent computing to the more efficient classification algorithm, top-search & bottom-search, which has been adopted as a standard procedure for classification. Reasoning scalability can be observed in a number of real world cases by using this algorithm

    Automated synthesis of mediators to support component interoperability

    Get PDF
    Interoperability is a major concern for the software engineering field, given the increasing need to compose components dynamically and seamlessly. This dynamic composition is often hampered by differences in the interfaces and behaviours of independently-developed components. To address these differences without changing the components, mediators that systematically enforce interoperability between functionally-compatible components by mapping their interfaces and coordinating their behaviours are required. Existing approaches to mediator synthesis assume that an interface mapping is provided which specifies the correspondence between the operations and data of the components at hand. In this paper, we present an approach based on ontology reasoning and constraint programming in order to infer mappings between components' interfaces automatically. These mappings guarantee semantic compatibility between the operations and data of the interfaces. Then, we analyse the behaviours of components in order to synthesise, if possible, a mediator that coordinates the computed mappings so as to make the components interact properly. Our approach is formally-grounded to ensure the correctness of the synthesised mediator. We demonstrate the validity of our approach by implementing the MICS (Mediator synthesIs to Connect Components) tool and experimenting it with various real-world case studies

    Proceedings of the Workshop on Models and Model-driven Methods for Enterprise Computing (3M4EC 2008)

    Get PDF
    • …
    corecore