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Abstract  

 

Product Lifecycle Management (PLM) provides a framework for information sharing which 

promotes various types of decision making procedures. For PLM to advance towards 

knowledge-driven decision support, then this demands more than simply exchanging 

information. There is, therefore, a need to formally capture best practice through-life 

engineering knowledge which can be fed back across the product lifecycle. This paper 

investigates the Interoperable Manufacturing Knowledge Systems (IMKS) concept. IMKS 

uses an expressive ontological approach which drives the improved configuration of PLM 

systems for manufacturing knowledge sharing. An ontology of relevant core product lifecycle 

concepts is identified from which viewpoint-specific domains, such as design and 

manufacture, can be formalised. Essential ontology-based mechanisms are accommodated to 

support the verification and sharing of manufacturing knowledge across domains. The work 

has been experimentally assessed using an aerospace compressor disc design and 

manufacture example. Whilst it has been demonstrated that the approach supports the 

representation of disparate design and manufacture perspectives as well as manufacturing 

knowledge feedback in a timely manner, areas for improvement have also been identified for 

future work. 
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1. Introduction 

 

As engineering enterprises seek to expand their product portfolios into the global arena, a 

multitude of information is generated at various stages of the product lifecycle. The 

resourceful use of this information helps organisations stay competitive within the changing 

marketplace by supporting knowledge-driven decision making. The latter is reliant on the 

effectiveness with which knowledge sharing across business functions is managed. For 

example, appropriately-captured knowledge originating from the design, production and 

service of previous product versions can be reused and tailored to meet the future planning 

requirements in new product development.  

 

Manufacturing companies are nowadays deploying a range of software solutions to improve 

the visibility of information and support interactions within and across groups.  The 

implementation of Product Lifecycle Management (PLM) software represents one such 

initiative. However, because PLM toolkits lack the adequate support for reasoning about 

information structures and how to efficiently reuse these structures to enable decision 

making, this implies that PLM accounts for a relatively narrow success in offering some 

breadth of information support [1]. Hence, knowledge which should in fact be cross-

functional remains latent and in tacit form within its individual design and production groups.  

 

Consequently, the interoperability of valuable knowledge across design and manufacturing 

stages cannot be readily achieved using PLM toolkits alone. In the context of this work, the 

term interoperability refers to the ability to promptly and accurately share computer-

interpretable knowledge across multiple application systems. This lack of interoperability 

across design and manufacture implies that cross-functional communication very often 



remains largely reactive and the achievement of timely exchanges continues to be a difficult 

task. 

 

Ontologies are machine-interpretable models of shared domains of interest and constitute a 

subset of the underlying technologies for information and knowledge support [2]. They also 

provide a basis for sharing meaning in computational form [3]. For these primary reasons, 

ontologies possess attractive properties as far as knowledge capture and sharing are 

concerned in PLM. Various contributions have demonstrated that the semantic value of the 

captured knowledge is dependent on the expressiveness of the ontology language used [4, 5, 

6]. In production engineering, heavyweight (i.e., expressive) ontologies are favoured [3, 6, 7] 

as they are accompanied with logic-based reasoning mechanisms which carefully prescribe 

the semantics, behaviour and conditions present within information structures. Expressive 

ontologies thus impart the ability to configure knowledge models for improved decision 

making [7].  

 

This paper investigates the Interoperable Manufacturing Knowledge Systems (IMKS) 

approach. The latter exploits the capabilities of expressive ontologies to configure PLM 

systems, in order to offer groundbreaking potential in manufacturing knowledge support and 

sharing. Moreover, the investigation has been scoped around an aerospace compressor disc 

design and manufacturing perspectives. A part family and feature-based understanding has 

been utilised to enable the feedback, into design realisation, of key manufacturability rules 

that have a direct implication on the design of the product. This is analogous to the 

coordination and sharing of critical information as key characteristics that carry crucial 

product semantics throughout the product lifecycle [8].  

 



The paper is structured as follows: Section 2 provides an overview of the IMKS approach and 

analyses related work. Section 3 then explores the various facets of exploiting expressive 

ontologies to capture, specialise and verify knowledge. This leads to a demonstration of the 

IMKS approach in section 4 followed by relevant discussions and conclusions in sections 5 

and 6 respectively. 

 

2. Towards knowledge-driven decision making in PLM 

 

This section presents an overview of the traditional approaches that have been utilised to 

support information sharing in PLM. The IMKS approach and its contributions are then 

highlighted, followed by a review of more recent and related methods, that include the 

combination of PLM and knowledge-based techniques. 

 

2.1. Traditional approaches to information sharing in PLM 

 

The process of information sharing has traditionally been based on the exploitation of a 

common schema, or product master model [9] that enforces a rigid structure to meet the 

integrated information modelling needs in design and manufacture. This method of ensuring 

information sharing can be problematic in a number of ways since, e.g., multiple information 

viewpoints are required by design and manufacturing engineers [10, 11]. Furthermore, 

engineers generally tend to have their own preferred terms that are confined to their specific 

problem domains and as such, alternative representations and definitions of concepts are 

inevitable [6].  

 



Traditional approaches to information sharing in PLM have been largely driven by software 

systems that focus on integration, as they support a common platform for the management of 

product-related information with mechanisms to capture the essential workflows required to 

achieve collaborative design and manufacture [40, 41]. An example of this has been realised 

in the development of a STEP and XML-enabled PLM platform capable of integrating 

several customised design tools, such as CAD and CAE instruments that have been 

developed in-house [48]. The platform supports the management of flows of information that 

are critical to the design process of turbomachinery. 

 

In line with this, the evolution of PLM systems has also witnessed a shift from the utilisation 

of data models to information models as methods of designing and implementing these 

systems. This has been realised in line with the need to move from simply geometry-based 

product information towards more meaningful feature interactions required for describing the 

multiple viewpoints of the features of a product in relationship to the type of part being 

modelled [10, 11, 32].   

 

Furthermore, it is understood that the utilisation of information models for developing PLM 

systems, although suitable from an integration perspective, falls short of the ability to foster 

interoperability [42, 43]. Hence, there is a number of extensions required by PLM systems 

and the following research questions, pertinent to the context of this article, intend to address 

the related extensions: 

1. What consists a suitable approach to progress towards meeting the interoperability 

requirements of self-describing PLM applications? 



2. To what extent is it possible to capture and reuse formalised knowledge, as opposed to 

simply data and information, in the product lifecycle to help make useful and timely 

decisions for benefiting product development? 

3. To what extent can a progression towards rigorous semantic-based approaches support 

the requirements for meeting product, process and resource lifecycle management [44]? 

 

 

 

2.2. Overview of the IMKS approach 

 

The Interoperable Manufacturing Knowledge Systems (IMKS) approach [12] has been 

proposed as an effort towards tackling the research questions identified in section 2.1. The 

approach explores radically new methods by extending PLM into a richer knowledge sharing 

base to support the capture, sharing and verification of multiple sources of manufacturing 

knowledge in a dynamic environment. Figure 1 identifies a high-level view of the IMKS 

approach, which is further developed in section 3 of this article. 

 

Figure 1. The Interoperable Manufacturing Knowledge Systems (IMKS) approach 



 

Based on Figure 1, there are three main contributions that this work targets notably: (1) the 

exploitation of a core ontology and specialisation mechanisms to address the interoperability 

requirements of various viewpoints across the PLM, (2) the ability to capture formalised 

semantics and knowledge using mathematically-rigorous and explicitly encoded, i.e. 

heavyweight, ontologies, and (3) the verification and feedback of knowledge from 

manufacturing stages to product design stages using ontology-based mechanisms.  

 

2.3. Lightweight v/s  heavyweight approaches 

 

The representation of knowledge in computational form is largely dependent on the level of 

rigour with which the semantics (i.e., meaning) that describe the knowledge can be modelled. 

There are two types of ontology approaches that can be followed in order to model semantics. 

They are notably referred to as ‘lightweight’ and ‘heavyweight’ methods. Lightweight 

ontologies, e.g. data and information models, consist of simple representations that involve 

taxonomies of concepts and relations and assume that the meaning associated with concept 

terms is fully understood, agreed and, therefore, readily interpretable [4]. On the other hand, 

heavyweight ontologies, i.e. knowledge-based models, consist of both lightweight structures 

as well as formal axioms that support the definition of the semantics of terms used for 

computer-based knowledge representation [4, 6]. Therefore, heavyweight (i.e., expressive) 

ontologies are preferred for ensuring greater confidence behind the meaning of formalised 

knowledge. 

 

 

 



2.4. Ontologies of core concepts 

 

Prior work [6, 7, 15] has demonstrated that an ontology of well-defined core concepts can 

serve as a foundation for the sufficiently flexible development of domain-specific concepts, 

such as those pertinent to feature-based design and manufacturing planning viewpoints. Thus, 

the IMKS approach allows the derivation of specialised knowledge bases as repositories for 

designers and planners alike, without the need to commit to a fixed master model. In that 

sense, the heavyweight ontology dimension of this work builds on top of the current 

perceived advantages of applying formal ontologies within a PLM context to aid the process 

of semantic interoperability and knowledge exchanges [3, 6, 7, 16, 17].  

 

There is a vital benefit to the development of specialised concept definitions from a core set 

of concepts, in order to suit different stages of the product lifecycle without enforcing a single 

structure. A common semantic foundation provides a means of verifying across knowledge 

bases since meaningful mappings and concept lineages can be identified across the design 

and production perspectives [18]. This basis constitutes another crucial facet of the IMKS 

approach in being able to support manufacturing knowledge sharing mechanisms into design 

realisation.  

 

2.5. Combined PLM and knowledge-based approaches 

 

The exploration of ontology-driven PLM systems is a relatively recent research area [17] but 

is quickly gaining consideration both at research and industry level. Earlier work [5, 19, 20] 

has shown that the shift towards ontology-based approaches can start to support the capture 

of semantics of product data and various types of product features. A wider appreciation of 



PLM coupled with knowledge-based approaches appears in more recent efforts. Raza et al. 

[21] have applied ontologies within the PLM system at Ford in order to enable the 

reconfiguration of assembly line to meet changing requirements, where product and resource 

data in Teamcenter [22] have been translated into the Web Ontology Language (OWL) [23]. 

It is to be noted that most current related work in ontology-driven PLM systems [24-26] 

employ OWL as ontology language.  

 

This, therefore, raises an important concern from the point of view of semantic knowledge 

capture and sharing. It has been shown that OWL is limited in representing complex 

manufacturing constraints and process semantics [3, 6]. Furthermore, although some efforts 

have utilised OWL with rule languages [20, 27], these rule languages do not benefit from full 

first order logic constructs. They, therefore, fall short of the required expressive power and 

reasoning mechanisms to accurately encode and infer over PLM subject matter. 

 

From the perspective of developing core ontologies which then specialise into different 

viewpoints across the product lifecycle, important understandings have been proposed. The 

contribution by Kesavadas et al. [28] acknowledges the use of formal ontologies to 

progressively capture design and manufacturing concepts. Other authors [17, 29, 30] have 

identified the potentials of using upper level and core ontologies from which to relate PLM 

structures. Unfortunately, these approaches either still lack the level of semantic rigour or 

need to be further explored in order to be industrially viable. 

 

Zhan et al. [26] have investigated ontologies to share knowledge regarding product data in 

Computer Aided Design (CAD). Ontology mapping mechanisms have also been specified as 

a means of knowledge verification across systems. On the other hand, Lee and Suh [31] have 



explored a multi-layered approach to PLM using ontologies. Each layer encompasses a 

specific product viewpoint in PLM and each exploits axioms, knowledge maps and 

specialised domain knowledge. The latter approach, which uses the Prolog language, reflects 

one of the infrequent cases in which first order logic models have been created for PLM.  

 

An important observation regarding similar work is that while the intention to progress 

towards interoperable decision making systems is present, little attempt has been made at 

exploiting truly rigorous semantic definitions. Furthermore, a significant proportion of efforts 

have concentrated on the representation of product design information and the capture of 

design intent, thereby leaving a gap in knowledge verification from manufacturing-intensive 

functions into design stages.  

 

 

3. Formal ontologies to capture design and manufacturing knowledge 

 

3.1. Building blocks of the IMKS approach 

 

Figure 2 identifies the vital building blocks of the IMKS approach, both from a functional 

and an implementation perspective. The ontology development methodology provides a route 

from domain modelling to knowledge sharing by firstly including the definition of 

lightweight ontology models of the necessary core concepts, design and manufacturing 

domains (Figure 2A). The mechanisms for specialising the design and manufacturing 

domains also need to be elicited (Figure 2B). The lightweight ontology entities, together with 

the necessary semantic constraints (Figure 2C), are transformed and captured in heavyweight 

format, resulting in explicitly-encoded ontologies (Figure 2D). 



 

 

Figure 2. Building blocks of the IMKS approach 

 

Another important building block is associated with the understanding and formal 

specification of the mappings that hold across the specialised design and manufacture 

concepts (Figure 2E). With this in place, it then becomes possible to define knowledge 

verification constraints (Figure 2F) which interact with the design and manufacture concepts 

to provide a basis for the interpretation and sharing of product lifecycle knowledge (Figure 

2G). 

 

From an implementation perspective, IMKS utilises ontologies, mappings and knowledge 

verification constraints that are encoded in the Knowledge Frame Language (KFL) [13]. The 

latter is a heavyweight ontology language based on the Common Logic standard [14] and 

possesses superior expressiveness and provision for deductive reasoning mechanisms when 

compared to Web Ontology Language (OWL) based technologies [6]. The defined 



ontologies, present at the knowledge architecture level, are deployed using the Highfleet 

Integrated Ontology Development Environment (IODE) [37] (Figure 2H).  

 

A PLM platform, that uses Siemens Teamcenter [22] and NX CAD [38] applications, is 

configured from the ontologies implemented in IODE (Figure 2I). In addition to this, new 

Graphical User Interfaces (GUIs) have to be designed for use in the NX environment so as to 

communicate shared knowledge at a user level. The interpretation and sharing of knowledge 

is assisted by the GUIs and a Java Application Programming Interface (API) to enable 

interactions between the PLM and knowledge-based platforms (Figure 2J). 

 

3.2. Lightweight model of the Manufacturing Core Ontology 

 

Figure 3 introduces the Manufacturing Core Ontology (i.e., ontology of core concepts), which 

is first captured as a UML class model. The diagram identifies general categories of 

information, the core types of concepts (i.e., classes) that fall within these categories and 

important associations (i.e., relations) across concepts. The fundamentals of this ontology 

involve the notion of part planning using part families and features [32, 33], where sufficient 

flexibility in the formal meaning of concepts has been accommodated to support the 

improved configuration of design and manufacturing solution. 

 



 

Figure 3. UML class model of the Manufacturing Core Ontology 

 

The Manufacturing Core Ontology model aims at providing an improved way for configuring 

design and manufacturing computer-based systems with a focus on interoperability. This is 

because various core concepts central to the description of both design and manufacturing 

stages of the product lifecycle have been captured and linked. Furthermore, the relationships 

specified in the model constitute the primary associations across the categories of information 

and provide fundamental semantic structures for capturing meaning. An example in which 

the Manufacturing Core Ontology could be exploited is in the configuration of a CAD 

environment that is built upon the rationale of part families and features in design and 

manufacture. 

 

Following this example, a design solution that has been generated using the ontology-

configured CAD environment would be an instance of some specific type (i.e., subclass) of 



DesignPartFamily. At a model representation level used in the configured CAD environment, 

any type of DesignPartFamily holds DesignFeature types. Specific constraints and rules, 

established over types of part families and types of features, dictate how a design solution is 

instantiated. In other words, when some type of DesignPartFamily is instantiated into a 

design solution, the latter would hold all the conditions and knowledge previously captured at 

the type (i.e., class) level. The knowledge specialisation mechanisms, explored in this work, 

are further discussed in section 3.3.1.  

 

Likewise, the interactions between knowledge coming from the specialisation of 

ManufacturingMethod, ManufacturingResource and ManufacturingFacility enable the useful 

configuration of manufacturing solutions, i.e., instances of some type of 

ManufacturingPartFamily. On the other hand, the Manufacturing Core Ontology supports the 

capture of more dynamic knowledge, pertinent to shop-floor processes within the 

RealisedPart domain. Altogether, the ontology presented here comprehensively models a 

backbone of core concepts that reflects important stages of the product lifecycle. This has 

been made possible thanks to a number of strands of work, including our long standing 

contributions towards the best practice organisation and sharing of manufacturing knowledge 

and substantial efforts coming from international standards [14, 34-36].  

 

3.3. Heavyweight model of the Manufacturing Core Ontology 

 

3.3.1. Declaration of contexts, classes and relations 

 

The UML class model of the Manufacturing Core Ontology provides a roadmap of the 

necessary ontological entities that need to be formalised in KFL, in order to obtain a 



semantically rich ontology. KFL, as a knowledge representation language, possesses a 

rigorously-defined meta-model which is instantiated into user-specific ontologies such as the 

Manufacturing Core Ontology presented in this section. A user-specific ontology typically 

occupies a context (i.e. an identifier) which references all the classes, relations, and integrity 

constraints that make up the ontology.  

 

The basic structures of the Manufacturing Core Ontology consist of the declaration of a 

context, classes and relations. The core ontology occupies a context which is declared in KFL 

as thus: 

 

:Ctx MLO 

:Inst UserContext 

:supCtx TopUserContext 

:name "Middle Level Ontology" 

 

The directive :Ctx captures the identifier for the context, in this case MLO, which is made an 

instance of UserContext and a sub-context of TopUserContext. A name can be assigned to 

MLO through the :name directive. Note that the Manufacturing Core Ontology is being 

developed as a middle level ontology. This is because the ontology builds its entities on top 

of the system-defined context of the KFL meta-model. By using similar KFL directives, it is 

possible to capture taxonomies of classes and specify relations that hold across the 

individuals of these classes as prescribed in the UML class model of the ontology. These 

structures are essentially instantiated from the KFL meta-model [6, 7, 15]. 

 

 



3.3.2. Semantic constraints 

 

The declaration of semantic constraints is one of the fundamental strengths of heavyweight 

ontologies [6, 7, 15]. Since the Manufacturing Core Ontology comprises a set of well-defined 

core concepts, this implies that semantic constraints are required to catch the formal meaning 

of core concepts so that the integrity-driven specialisation of viewpoint-specific knowledge 

models can be ensured. 

 

Semantic constraints can be captured by exploiting integrity constraints, which are logic-

based axioms that help confine the formal interpretation of concepts in KFL ontologies. An 

example of an integrity constraint developed for the Manufacturing Core Ontology is 

depicted next.  

 

 

(=> (or (DesignFeature ?df) 

    (supTC ?df DesignFeature)) 

    (or (not (exists (?fmm) 

           (and (FeatureManufacturingMethod ?fmm) 

            (hasManufacturingMethod ?df ?fmm)))) 

    (not (exists (?fmm) 

           (and (supTC ?fmm FeatureManufacturingMethod) 

            (hasManufacturingMethodType ?df ?fmm)))))) 

:IC hard "A DesignFeature type/individual cannot have an 

associated FeatureManufacturingMethod type/individual, since 



the latter is only applicable to ManufacturingFeature 

types/individuals." 

 

The integrity constraint expression is intended to make core concepts foolproof when they are 

specialised. The axiom is stating that given a DesignFeature individual or subtype of 

DesignFeature, then it is not possible for these entities to be related to some individual or 

subtype of FeatureManufacturingMethod. This is because the latter is reserved exclusively 

for reasoning about individuals and subtypes of ManufacturingFeature [15]. Notice how the 

expression is appended with an :IC hard directive followed by the natural language 

interpretation of the integrity constraint. A hard integrity constraint, i.e., :IC hard, ensures 

that rigorous semantics are stored through compulsory conditions. This level of granularity of 

constraint on knowledge is currently not achievable in OWL-based approaches, hence the 

benefit of using a KFL approach over mainstream ontology languages to capture more 

expressive semantics. 

 

 

3.4. Specialisation of knowledge models, mappings and verification 

 

3.4.1. Specialisation mechanisms 

 

In this section, a very simple part family and feature understanding is applied to illustrate 

specialisation mechanisms and those utilised for verifying cross-functional knowledge. 

Figure 4 identifies a product exemplar, highlighting the variations in the design and 

manufacturing interpretation of concepts pertinent to the definition of a part family. The latter 

denoted as the notion (A), and termed LboroDesignPF in the design perspective and 



LboroManufacturingPF in the manufacturing perspective, is one which comprises two 

feature concepts, namely (B) and (C). The feature concepts relate to concepts (D), (E) and 

(F), which serve as geometrical attributes of interest. These feature attributes are critical 

parameters relevant to both designers and manufacturing engineers alike and are, therefore, 

assumed to be consistently-defined across the design and manufacturing perspectives. 

 

 

Figure 4. Example of simple part family and feature configurations 

 

Figure 5 identifies the approach for progressively specialising core concepts to support the 

creation of a knowledge model to represent the design perspective of the part family 

previously identified in Figure 4. The Upper Level Ontology, i.e., ULO, context enfolds the 

KFL meta-model from which the Manufacturing Core Ontology is instantiated. 

 

The specialised design ontology, which in Figure 5 occupies the dsn context, i.e., design 

context, is in essence both an instantiation of the ULO and a sub-model of the Manufacturing 

Core Ontology. This is obvious from the class/sub-class relations that hold between classes 

defined within the MLO and dsn contexts, e.g., the Cylinder and RoundHole classes are 

subtypes of the core concept DesignFeature. These specialisation mechanisms imply that the 

semantics from the MLO context are inherited by the concepts within the dsn context.  



 

On the other hand, relations defined in the Manufacturing Core Ontology, such as 

hasFeatureType and hasFeatureAttributeType are simply reused for satisfying the design 

ontology. It is also important to notice that at the level of the specialised design ontology, 

assertions over classes are made in order to build an expressive model, e.g., the 

LboroDesignPF as a class holds two types of design feature classes in its definition namely 

Cylinder and RoundHole.  

 

 

Figure 5. Developing specialised knowledge models 

 

 



Hence, when the specialised design ontology is instantiated at the bottom level, the semantics 

from the third level coupled with those from the MLO context drive the integrity of the 

instantiated model. In the approach, the last level is reserved for software applications whose 

system structures are to be ontology-driven. For example, a user interacting with a CAD 

system would design a new part, that conforms to the part family configuration in Figure 4, 

by creating the individual LboroPart1706 (an instance of the class LboroDesignPF) that has 

the feature individuals Cylinder1 and RoundHole1, each with distinct feature attributes and 

values.  

 

3.4.2. Mappings across design and manufacturing concepts 

 

In order to enable knowledge verification, it is important to build mappings across design and 

manufacturing entities. The formalisation of these mappings needs an understanding of how 

PartFamily and Feature types overlap between the design and manufacturing perspectives. 

The KFL lines next illustrate how, by exploiting the mapsTo symmetric and transitive binary 

relation defined in the MLO context, cross-domain mappings can be stated for the PartFamily 

and Feature types in Figure 4. mfg is the context for entities in the manufacturing domain. 

The mappings shown are one-to-one in nature. However, more complex product 

representations can exist where many-to-one, one-to-many and many-to-many relationships 

are encountered.   

 

(MLO.mapsTo dsn.LboroDesignPF mfg.LboroManufacturingPF) 

(MLO.mapsTo dsn.Cylinder mfg.TurnedProfile) 

(MLO.mapsTo dsn.RoundHole mfg.Bore) 

 



3.4.3. Knowledge verification constraints  

 

The ability to drive the feedback of manufacturing knowledge into design stages is dependent 

on the formalisation of cross-functional knowledge verification constraints as well as existing 

cross-domain mappings. The following KFL entry exemplifies a knowledge verification 

constraint using relevant entities from Figures 4 and 5, where knowledge associated with a 

design feature, critical from a manufacturing perspective, has been formalised. The 

knowledge verification constraint works in such a way that given an antecedent (i.e., ‘if’ 

statement), a consequent (i.e., ‘then’ statement) is checked against the Knowledge Base. 

 

(=> (and (RoundHole ?hole) 

         (Diameter ?dia1) 

         (hasFeatureAttribute ?hole ?dia1) 

         (hasDimension ?dia1 (mm ?num1))) 

    (exists (?tool ?dia2) 

       (and (StandardDrillingTool ?tool) 

            (available ?tool) 

            (Diameter ?dia2) 

            (hasFeatureAttribute ?tool ?dia2) 

            (hasDimension ?dia2 (mm ?num2)) 

            (lteNum ?num2 ?num1)))) 

:IC soft "*** RoundHole *** The nominal value of round hole 

diameter may not be less than the available minimum standard 

drill size. Since the selected hole diameter value is below 

the available minimum standard drill size, standard tooling 

and standard machining methods cannot be used." 



:hasCtx workshop1 

 

The :IC soft message catches the natural language interpretation of the constraint. The 

message is intended to warn the designer of a potential concern, from a manufacturing point 

of view, related to the chosen diameter of a RoundHole (bottom level in Figure 5) if during 

design, the diameter of that feature happens to be less than the available minimum standard 

drill size.  

 

Furthermore, a knowledge verification constraint needs to be made applicable to a specific 

context by using the directive :hasCtx. In this case, the term workshop1 is referring to one 

such context for knowledge verification. In general, enterprises that have multiple factories, 

each with its own machining and tooling capabilities, can have several knowledge 

verification contexts. For example, another context workshop2 could be present, in which 

entities from the dsn context would be referenced in a similar way but with different 

information on standard drilling sizes. 

 

 

4. Demonstration of the IMKS approach 

 

4.1. Compressor disc example 

 

Figure 6 illustrates a test case based on an aerospace compressor disc, in which its design and 

manufacturing perspectives have been modelled and made to interoperate, using the IMKS 

approach. The rationale behind the selection of an aerospace compressor disc as test case is 

that, while working with collaborators on the IMKS project, it became obvious that there 



were alternative representations of the disc during its design and manufacture stages. 

Furthermore, it was understood that it was almost impossible to fully standardise the 

CAD/CAM model of the disc as a route towards reconciling its design and manufacture 

representations. Therefore, the achievement of seamless knowledge exchanges to drive better 

CAD/CAM capability of the disc was still an area for improvement, which the IMKS 

approach could target. 

 

Figure 6. Provision for manufacturing knowledge feedbacks 

 



A breakdown of the design and manufacturing feature concepts present on the disc (here 

viewed as a half cross-section about the axis) is portrayed. The parameterised model of the 

latter and its accompanying features are used as a basis for modifying existing designs and 

generating new product variants.  

 

To accomplish this requires supporting the representation of relevant knowledge from the 

manufacturing perspective of the disc part family. The ability for so doing is reliant upon a 

number of factors. Firstly, it is necessary to understand how manufacturing features are 

accumulated during the production sequence of the part family. In Figure 6, the sorts of 

machining operations for the compressor disc consist of: 

 

• Operation 30 (OP30): Turn Head Form 

• Operation 50 (OP50): Turn Web Profile 

• Operation 70 (OP70): Rough and finish turn Circumferential Groove and Outer Profile. 

Turn End Face 

• Operation 90 (OP90): Finish turn Bolt Face and Limit Diameter both sides of disc 

• Operation 110 (OP110): Produce Bolt Holes. Mill Blade Loading Slot, Defender Slots and 

Blade Locking Slots in Circumferential Groove 

• Operation 180 (OP180): Turn Balancing Land 

 

Secondly, it is required to identify key manufacturing constraints that occur along the 

production sequence of the part family and establish what manufacturing feature(s) and 

feature attribute(s) participate in these constraints. For example, in Figure 6, a set of critical 

constraints occur during OP50 and OP70 and involving the Web Profile and Circumferential 

Groove features respectively. 



 

The third important factor demands understanding the direct mappings holding across the 

design and manufacturing features, so that the knowledge from the manufacturing constraints 

can be exploited in design stages. Figure 6 illustrates knowledge feeding back from the 

Circumferential Groove manufacturing feature towards its counterpart in the design 

perspective. The figure also depicts how manufacturing knowledge related to the Web Profile 

has an implication on five design features to which it maps, i.e., a one-to-many mapping 

exists in this case. 

 

4.2. Specialised compressor disc ontology  

 

The design and manufacturing perspectives of the compressor disc have been formalised and 

all concepts, pertinent to the understanding in Figure 6, have been specialised from the 

semantics of the Manufacturing Core Concepts ontology. Figure 7 captures important 

structures within the implemented specialised compressor disc ontology. The Integrated 

Ontology Development Environment (IODE) platform [37] has been used to deploy the 

ontologies. 

 

The diagram identifies a number of class specialisations such as (A) HPCDiscPF, i.e., high 

pressure compressor disc part family which is a subtype of the core concept 

DesignPartFamily and (B) CircumferentialGroove as a subtype of DesignFeature. Assertions 

over classes are also present, e.g., (C) a set of feature attribute types that relate to 

CircumferentialGroove and (D) the knowledge that HPCDiscPF holds 

CircumferentialGroove as feature type. Note also that CircumferentialGroove as a type of 

DesignFeature inherits core semantics dictating that it should have some associated Function 



(E). A mapping assertion is also present which indicates that the CircumferentialGroove 

definitions in the design and manufacturing perspectives are matching concepts. 

 

Figure 7. Implementation of the specialised compressor disc ontology 

 

In a similar way, the manufacturing representation of the compressor disc can be captured. In 

Figure 7, two class specialisations (G) of the core concept ManufacturingPartFamily are 

present. ManufacturingFeature has been specialised into a number of feature types, relevant 

to the definition of the compressor disc manufacturing perspective, such as the highlighted 

WebProfile class (H). The latter is a required feature type for part family definitions (I). 

Furthermore, core semantics prescribe that subtypes of ManufacturingFeature require some 

type of manufacturing method and in this example WebProfile has a WebProfileFMM, i.e., a 



distinct feature manufacturing method for its production. Cross-domain feature mapping 

assertions (K) are also present together with knowledge verification constraints, (L) and (M) 

pertaining to CircumferentialGroove and WebProfile respectively, to support the 

communication of manufacturing knowledge for improved decision making in design. 

 

4.3. IMKS demonstration concept 

 

The implementation of the specialised compressor disc ontology constitutes a key asset in 

being able to tailor an ontology-driven PLM environment. Figure 8 depicts the IMKS 

demonstration concept which exploits the combined use of a PLM software application with 

the investigated ontology-based approach, notably: 

 

• Siemens Teamcenter [22]: This environment is used by a designer to initiate the retrieval 

of an HPCDiscPF individual. Teamcenter provides a platform for the organisation of part 

families and features. 

• Siemens NX [38]: This is the primary application with which the designer interacts in 

order to receive feedback on the manufacturability of a number of features. Once a part 

family individual has been retrieved from Teamcenter, the designer opens it in NX before 

making design changes. When a new design has been completed, the designer validates it 

according to existing manufacturing part family rules and constraints. These are held 

within IODE. 

• All ontology structures, including the Manufacturing Core Ontology and its 

specialisations into the design and manufacturing perspectives of the compressor disc are 

held in IODE. The Query and Facts Asserter tools are IODE functionalities for 

interrogating and instantiating ontologies respectively. 



• The interfacing of the compressor disc ontology with NX and Teamcenter can be 

achieved through the Java Application Programming Interface (API). This is possible 

because most commercial CAD applications provide open API to help communicate 

information generated in the application [26]. 

 

 

Figure 8. IMKS demonstration concept 

 

4.4. Retrieving manufacturing-critical information 

 

Figure 9(1) illustrates a compressor disc which has been modified in NX to accommodate 

changes in feature parameters, i.e., attributes, in order to satisfy a new set of design 

requirements for the disc. Once these changes are made, the validation stage is launched by 

selecting the Validate button. This action calls the Part Family and Feature Parameter 

Information dialog box and triggers a number of steps for retrieving manufacturing part 



family and manufacturing-critical design features and their parameters, as shown in Figure 

9(2). The steps are: 

 

• (A): The API communicates the design part family from NX and Teamcenter to the 

compressor disc ontology in IODE. 

• (B): A KFL query is automatically generated to retrieve and display the associated 

manufacturing part family type(s). 

• (C): If there is more than one type of manufacturing part family the designer needs to 

select the appropriate one. This decision is largely dependent on the site or factory at 

which the part is to be produced. Selecting a manufacturing part family triggers another 

KFL query which helps identify the design features which are critical from a 

manufacturing viewpoint. 

• (D): A further level of guidance is offered to the designer who can select a 

manufacturing-critical design feature to view its corresponding critical feature 

parameters. It is important to note that the ability to target the required knowledge is 

dependent on generating the right queries. In the approach, it is clear that manufacturing-

critical entities always participate in knowledge verification constraints, and can therefore 

be referenced appropriately.  

• The designer then selects the Validate changes against manufacturing part family button 

to complete the retrieval of manufacturing-critical information. 

 



 

Figure 9. Part family and feature parameter information 

 

4.5. Validating manufacturing-critical information 

 

Within the scope of this work, the validation of manufacturing-critical information may be 

regarded as an approach that falls under the broader umbrella of Verification, Validation and 



Accreditation (VV&A) techniques [39], which are exploited to achieve the credibility and 

acceptance of a formal approach. 

 

Once the retrieval of manufacturing-critical information has been performed, the validation of 

feature-relevant geometric values from the NX environment is then prompted. The following 

stages complete the validation of manufacturing-critical information as shown in Figure 10. 

 

• (A): The parameters and values gathered from NX are transferred using the API and 

populated into the compressor disc ontology in IODE via the Facts Asserter.  

• (B): The populated facts are assessed against the knowledge verification constraints 

within the ontology. 

• (C): If there is an infringement of a knowledge verification constraint, then, any violated 

manufacturing feature related to that constraint is displayed in a new dialog box. 

• (D): The designer selects a violated manufacturing feature to display its corresponding 

design feature(s) which has participated in the infringement. In the example, the 

WebProfile is one such violated manufacturing feature and the participating design 

features are Cob and Rim.  

• (E): When the designer selects a participating design feature, such as Rim, the related 

parameter, i.e., design feature attribute that has contributed to the violated manufacturing 

feature, is then displayed. 

• (F): A further level of knowledge feedback is supported when the designer selects a 

related parameter, e.g., OuterDiameter of the Rim. This knowledge comes from the 

implicated violation constraint, more specifically the message carried by the knowledge 

verification constraint. This message is vital for making the designer aware of the nature 

of the issue in the designed part. 



• (G): Using the validation results as a basis for decision making, the designer can choose 

to undo parameter changes. Another option is to accept the changes made by selecting 

Continue Anyway. However, this option is considered as not preferred as proceeding with 

changes, which are known to lead to manufacturing issues, can potentially have 

significant consequences during the product lifecycle. Another button, Find Alternative 

Solutions, has been incorporated as a means of guiding the designer towards further 

validation tasks such as contacting a manufacturing engineer or performing a collision 

detection test to verify the suitability of different cutting tools for machining purposes.  

 

 

Figure 10. Validation results 

 

5. Discussion 

 

The approach discussed in this article has demonstrated a motivating concept towards the 

achievement of interoperability across the design and manufacture stages of the product 

lifecycle. This has been made possible through the exploitation of mathematically-rigorous 

ontologies that have been encoded in heavyweight format, to formally describe the meaning 



of PLM system concepts. This implies that the IMKS approach has contributed to answering 

the first related research question (see section 2.1).  

 

However, the IMKS approach has yet to be extended and additional effort is, therefore, 

required in order to progress into a more comprehensive framework recommendation to 

achieve interoperable PLM system development. An interesting direction would be to relate, 

apply and exploit the key functional blocks of the IMKS approach (see Figure 2) in the 

context of the components of existing interoperability frameworks such as the framework for 

enterprise interoperability [46] and the IDEAS interoperability framework [47], amongst 

others. 

 

Secondly, this work has specified a formal ontology of generic manufacturing concepts from 

which individual design and manufacture domains can be extended. Together with the 

experimented ontological mechanisms notably semantic constraints, subsumption, mappings 

and knowledge verification constraints, the feasibility in the timely feedback of knowledge 

from the manufacturing stages into design stages has been shown. This, therefore, tackles the 

second research question (see section 2.1) addressed in this article. 

 

It is, nevertheless, understood that not all knowledge can be captured in computational form. 

Thus, the investigated approach does not intend to replace the engineer’s final decision but 

exists as a means of supporting the exchange of general, agreed and recurrent knowledge at 

different points throughout the product lifecycle. Furthermore, the implications of how to 

maintain formal knowledge over time has fallen outside the scope of this work, thereby 

implying a need to address ontology and knowledge maintenance. There is also an ongoing 



need to drive the feedback of service knowledge, in addition to design and manufacturing 

knowledge, as there are clear and related challenges that still need to be overcome [45].  

 

The IMKS approach has also demonstrated, within its scope and experimental boundaries, 

that a progression towards more rigorous semantic-based approaches can be of benefit for 

tackling the challenges in managing the ability to share product, process and resource 

knowledge. However, a confined scenario of process and resource knowledge affecting 

product parameters has been implemented, leading to the relatively limited achievement in 

tackling the third research question (see section 2.1). Hence, further scenarios have to be 

identified and experimented so as to meet the needs towards approaches for the improvement 

of product, process and resource lifecycle management [44]. 

 

From a usability perspective, the development of the ontologies presently requires a 

knowledge architect who also needs to be familiar with the domain to be modelled (see 

Figure 8). It would be helpful to subsequently consider the implications of having intelligent 

interfaces for more intuitive ways of allowing non-ontology experts to interact with 

ontologies and generating manufacturability constraints and rules. Moreover, the 

‘interpretation and sharing’ functional block of the approach (see Figure 2G) would require 

more effort for improving the workflows in the knowledge sharing module and the design of 

GUIs that participate in that module. 

 

In addition to this, the implementation of the IMKS approach has portrayed appropriate 

interfacing capabilities across a set of vendor-specific applications. From the perspective of 

adaptability to different PLM and CAD systems, it is understood that the interfacing 



requirements across dissimilar platforms can be met, as long as the required APIs are 

documented and made available for the implicated PLM, CAD and ontology environments. 

 

 

6. Conclusions 

 

The adoption of methods similar to the IMKS approach shall provide imminent positive 

impact on the way that multiple product lifecycle applications interact for delivering 

knowledge sharing capability at the right place and time. 

 

However, it should not be forgotten that there exists a number of areas which deserve further 

attention, e.g., change management of current information-driven systems into knowledge-

driven systems, ontology management, knowledge maintenance and through-life engineering 

knowledge feedback. Opportunities are also present for extending the current Manufacturing 

Core Ontology into a much richer model with structures to capture, e.g., assembly, shop-floor 

and service knowledge. 

 

Finally, based on the understanding displayed in this work, it is possible to extrapolate that 

there are two main directions for further exploiting the IMKS approach. Firstly, it can be 

utilised as a short term solution, targeting an incremental improvement, that supplements 

existing PLM systems with an expressive ontological basis to provide meaning to PLM 

concepts and to harvest the benefits of semantic definitions and rule-bases. 

 

The other possibility, which is for longer term prospect with radical improvement, would be 

to utilise the IMKS approach as a method to deliver PLM system development from scratch. 



Instead of data and information models, the emphasis would be on logic-based knowledge 

models for system design and implementation. Regardless of the pursued direction, the 

advantages of knowledge over information and data would be gained, which is especially 

pertinent to complex manufacturing-centric ecosystems that generate product, process, 

resource and service knowledge. 
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Appendix 1: Abbreviations 

API  Application Programming Interface 

CAD  Computer Aided Design 

CAE  Computer Aided Engineering 

CAM  Computer Aided Manufacturing 

CLIF  Common Logic Interchange Format 

dsn  Design (ontology context) 

GUI  Graphical User Interface 

HPC  High Pressure Compressor 

IC  Integrity Constraint 

IMKS  Interoperable Manufacturing Knowledge Systems 

IODE  Integrated Ontology Development Environment 

KFL   Knowledge Frame Language 

mfg  Manufacturing (ontology context) 

MLO  Middle Level Ontology 

OP  Operation 

OWL  Web Ontology Language 

PF  Part Family 

PLM  Product Lifecycle Management 
 
STEP  Standard for the Exchange of Product Model Data 
 
ULO  Upper Level Ontology 
 
UML  Unified Modelling Language 
 
XML  Extended Markup Language 
 


