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ABSTRACT
Revision control mechanisms are a crucial part of informa-
tion systems to keep track of changes. It is one of the key
requirements for industrial application of technologies like
Linked Data which provides the possibility to integrate data
from different systems and domains in a semantic informa-
tion space. A corresponding semantic revision control sys-
tem must have the same functionality as established systems
(e.g. Git or Subversion). There is also a need for branch-
ing to enable parallel work on the same data or concurrent
access to it. This directly introduces the requirement of sup-
porting merges.
This paper presents an approach which makes it possible
to merge branches and to detect inconsistencies before cre-
ating the merged revision. We use a structural analysis of
triple differences as the smallest comparison unit between
the branches. The differences that are detected can be ac-
cumulated to high level changes, which is an essential step
towards semantic merging. We implemented our approach
as a prototypical extension of the revision control system
R43ples to show proof of concept.

Categories and Subject Descriptors
H.2.8 [Database Management]: Database Application-
scategoryH.3.3Information Storage and RetrievalInformation
Search and Retrieval; H.3.4 [Information Storage and
Retrieval]: Systems and Software—Information networks;
H.4 [Information Systems Applications]: Miscellaneous
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1. INTRODUCTION
The use of Linked Data technologies offers the possibility

to integrate data from different systems and domains into
a semantic information space. Several problems must be
considered regarding client-side access to this information
space, for example a restricted bandwidth or a temporary
deficiency of the network connection. A common approach
is the replication of data, so that a client can work without
being dependent on a network connection. However, mo-
bile clients only have limited capacity for storing and pro-
cessing, so that local replication of the whole data set is
not feasible [13]. Only necessary data is queried, mostly
by using SPARQL queries against a corresponding triple
store. After the local data has been changed, synchroniza-
tion must follow, taking into account the possibility of con-
current changes by other clients. This raises the need for
change traceability. Revision control systems have not been
integrated into the semantic web very well [4]. Beside the
revision control tasks, conflict detection and resolution in a
merge is a crucial part of such a system. The need for hu-
man intervention should be minimized or the best possible
assistance provided.

2. MOTIVATION

2.1 Revision Control for Triples
Revision control for triples is derived from current revi-

sion control systems like Git1, Subversion2, CVS3 or mer-
curial4. The main difference is that triple sets do not have
line ordering. However, the functionalities are very similar.
A semantic web revision control system should also support
data access through revisions. Each revision is identified by
a unique identifier referencing an unambiguous state of the
repository. Branches which are used for parallel develop-
ment and the merge of those diverged branches are features
to provide too. For example, a merge is required if various
clients starting from an initial revision add different features.
After they have finished, their changes should be incorpo-
rated in the final revision [18]. Such revision control systems

1http://git-scm.com/
2https://subversion.apache.org/
3http://www.cvshome.org/
4https://www.mercurial-scm.org/
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can enhance the traceability of existing approaches like for
example [21].

2.2 Related Work
Redmond et al. [11] presented the initial design and corre-

sponding requirements of a version control system for a Web
Ontology Language (OWL). The authors introduced differ-
ent conflict management possibilities. In general the concur-
rent access on data can be divided into two main techniques
which are either optimistic or pessimistic. In the following
we give a brief overview of the main aspects of these ap-
proaches and their use in current work regarding semantic
revision control systems.

2.2.1 Pessimistic approaches
Pessimistic approaches use a Lock-Modify-Write/ Unlock

mechanism. Looking at file based version control, a user
first has to lock all the files to be changed. These can then
be modified and when the modification is finished the locks
must be released. A user is not able to change a file while
another user has a lock on it. So there is no need for merging
of diverged versions.

There are several approaches in literature using such a
pessimistic strategy. For example Scheglmann et al. [14]
proposed a locking-based approach which allows the simul-
taneous execution of independent transactions against an
ontology. Transactions which would influence other transac-
tions are blocked. Seidenberg et al. [15] had provided a suit-
able methodology. The strategy which is presented in the
corresponding paper aims to mitigate errors in a multi-user
ontology editing environment through the usage of locks.

Some drawbacks arise when using a pessimistic strategy.
A user may have to wait to execute changes until another
user releases the locks. If there is a deficiency of the network
connection a user will not be able to release locks on data or
get new locks in order to modify data. We want to consider
situations where central repository access is not granted but
nevertheless the user should have the possibility to modify
the data.

2.2.2 Optimistic approaches
Optimistic approaches use a Copy-Modify-Merge mecha-

nism. Looking at file based version control, users can si-
multaneously change files, which have to be merged after-
wards. The merge can either be done manually or (semi-
)automatically. The advantage of the independent modifi-
cation of data comes with an increased complexity when a
merge must be executed. Merging needs the knowledge of
differences and conflicts which may result between two re-
visions. Below we introduce some current work which uses
optimistic approaches to permit revision control in the se-
mantic web context or provide technologies for difference
detection.

SemVersion is the implementation of an Resource Descrip-
tion Framework (RDF)-centric approach for structurally and
semantically revising RDF models and RDF-based ontology
languages (e.g. Resource Description Framework Schema
(RDFS)). The revising takes place at the RDF level. With
the help of the additional definition of an ontology level se-
mantic diffs can be supported. Blank Nodes are facilitated
too through a so called blank node enrichment those nodes
are unambiguously identifiable [19]. Delta is an ontology de-
scribing differences between RDF graphs. The related pa-

per shows the problem of comparing different RDF graphs.
It describes how differences can be generated and how a
graph can be updated using them. Differences are distin-
guished in a weak patch (context-sensitive) and strong patch
(context-free) [1]. Schandl [13] introduces the replication of
RDF graph parts on (mobile) clients for which computing
power, network connectivity and storage capacity are lim-
ited. In offline phases, the client therefore works on local
replicated sub graphs before submitting changes in the next
online phase. A mobile semantic collaboration platform is
presented by Ermilov et al. [2]. OntoWiki Mobile is based on
the OntoWiki framework extended by advanced replication
and conflict resolution mechanisms for RDF content. The
approach is partly based on the EvoPat method presented
in [12]. It uses patterns for the evolution and refactoring of
knowledge bases. In [10] and [9] a language L is proposed
which allows the description of high level changes in RDFS.
A corresponding change contains conditions which have to
be fulfilled to detect a high level change. As a result the
authors identified 132 different changes, capturing modifica-
tions like for example additions, deletions or renamings.

Papavasileiou et al. [9] said that revision control systems
should generate deltas in a manner which is interpretable for
humans and machines. Machine processing demands that
changes are described in a consistent and deterministic man-
ner. Each change correspond with exactly one delta. The
interpretability by humans includes that single changes are
depicted intuitive and concise reflecting the intention of a
change (see also [6] and [16]).

The approaches mentioned above are partly technology
dependent which means the concept works for example only
with RDFS or there are only diffs mentioned without looking
at merge management. Overall there is no common conflict
detection and resolution strategy.

2.2.3 Conflict detection
Lippe et al. [7] distinguish between two kinds of con-

flict detection. State-based merging use only initial and final
states and omit the rest of the revision information. It is fast
and easy to implement. However, there are several disadvan-
tages, for example the possibility of detecting unnecessary
or incorrect conflicts. Also it is possible that conflicts cannot
be detected. In contrast, operation-based merging analyses
conflicts between revisions on the basis of the operations
performed. This offers advantages such as the detection of
unnoticed conflicts in a state-based process and more ade-
quate merge results. It provides more support for conflict
resolution and is more consistent from the point of view of
the user.

Semantic web revision control systems revise triple sets
which have no internal line ordering. Thus, structural diffs
are generated by the set-theoretic difference of the corre-
sponding RDF triple sets [19]. An essential aspect of merg-
ing is the possibility to automatically resolve conflicts and
to provide meaningful support to a user when doing a man-
ual merge. Operation-based merging will better support the
desired features because of the advantages described and the
more general approach.

2.2.4 R43ples
R43ples (Revisions for Triples, pronounced as /’rIp9ls/)

[4] is a revision control system which is provided as open



source5andcanbeattachedtoexistingtriplestores. It
partlybasesontheworkofvanderSandeetal.[18]andex-
tendstheirconcepttofullysemanticrevisionmanagement.
TherevisioninformationisstoredusingRDFgraphs.Each
commitisassociatedwithanADD-setandDEL-setwhich
storestheaddedordeletedtriplesinagraph. Thecon-
nectionsbetweenrevisions,correspondingADD-andDEL-
setsandadditionalrevisioninformationisstoredwithinone
RDFgraph.
AdditionalSPARQLkeywordshavebeendefinedinorder

toprovidetherevisionmanagementfunctionalitymakingit
possibletoquery,update,tagandbranchdifferentrevisions
ofnamedgraphs.R43plesreceivesthequeries,extractsthe
revisioninformationandreformulatesthequeries.Then,it
passesthemtoanexistingSPARQLendpointlikeVirtuoso6,
Stardog7oraJenaTDB8database.R43plesitselfdoesnot
storeanyinformation.Ingeneralitusesanoptimisticstrat-
egyforcollaborativeworkbecausetheinformationstored
inarevisedgraphcanbeconnectedwithotherinformation
spreadovertheglobalLinkedDatacloud.Theusageofpes-
simisticapproacheswouldimplyalockingofthewholenet-
work,whichisimpossible. However,R43plesaspresented
in[4]doesnotyetsupportthemergeofdifferentbranches
inanappropriatemanner.Inthispaperwearepresenting
anapproachtoovercomethisdrawback.

2.3 Contributions
Weproposeamethodologyforconflictdetectionandres-

olutioninsemanticrevisioncontrolsystemsasafirststep
towardstechnologyindependentsemantic merge manage-
ment. Existingapproacheslike[20]donotusethehistory
ofchangestocomputethedeltabetweentwoRDFmodels.
Ourapproachisbasedonastructuralanalysisofdifferences
usinganoperation-based methodologywhichincludesthe
historyofchangestodetectfurtherconflicts(definitionfor
conflictsisgiveninsection3.5.1). Theenrichedstructural
dataallowstheidentificationofasubsetofhighlevelchanges
analogto[9].
Forevaluationpurposes,theapproachwasimplemented

asanextensionofR43ples.AdditionalSPARQLextensions
provideauniform mergeinterfaceand makeuseofinte-
gratedmergemodels.Theautomationlevelofconflictreso-
lutioncanbespecifiedthroughdifferentmergemethodsby
theuser.Thestructuralconflictanalysisisexecutedonthe
serversidetorelievetheclient.Furthermore,aclientappli-
cationisimplementedtosupportdifferentlevelsofdetailor
informationaccumulation.

3. APPROACH

3.1 OverallArchitecture
Theoverallarchitectureofthemergeprocessconsistsof

theinteractionofaclientandaserver. First,theclient
initiatesaThree-Way-Merge.Theserverreceivesthemerge
queryandcreatesrevisionprogressesforbothbranchesstart-
ingwiththecommonpredecessorasdescribedinsection3.3.
Thisinformationisusedtogeneratestructuraldifferences
betweenthebrancheswhichispresentedinsection3.4.If

5https://github.com/plt-tud/r43ples
6http://virtuoso.openlinksw.com/
7http://stardog.com/
8https://jena.apache.org/documentation/tdb/

therearenoconflictsasdefinedinsection3.5.1theserver
mergesthebranchesautomaticallyotherwisetheresulting
modelissenttotheclient.Theclientnowhasthepossibility
toenrichthereceivedmodelstructurallyandsemantically.
Themanuallydefinedconflictresolutionisthensenttothe
serverwithinanewmergequerytoexecutethemerge.

3.2 Mathematicalbackground
Basically,atripleconsistsofasubject,apredicateandan

object.Soitcanbedefinedascombinationoftwodisjoint
infinitesetsU(representingallpossibleURIs)andL(rep-
resentingallpossibleliterals)[10].Equation1presentsthe
mathematicaldefinitionofthesetofalltriplesT. Tosup-
portblanknodes,apriorSkolemizationshouldtakeplace.
Mergingdifferentsourceswhichincludeblanknodeswould
considerablyincreasethecomplexity[5].Inthiscasethe
junctionofrevisionswouldleadtoagraphisomorphism
problem[1]. CurrentlytheSkolemizationmustbedoneby
theclientasR43plesdoesnotyetsupportitbyitself.This
functionalityshouldbeaddedtotheserversidewithinfu-
turework. Finally,equation2definesthesetofanRDF
graphVasasubsetofT[10].Equation1and2arethefun-
damentaldefinitionsoftriplesets.Equation3showssome
furtherbasicdefinitionsusedinthispaper.

T:=U×U×(U∪L) (1)

V⊆T (2)

X,Xi,X
+
j ∈T

a,d,n∈N
(3)

3.3 Revisionprogresscreation

3.3.1 Mathematicaldescription
Thebasicdefinitionsfortheoperation-basedapproach

usedtoidentifystructuraldifferencesarelistedinequa-
tion4.Kdescribesthesetofallfourpossiblestatesofa
tripleinarevision. Astateidentifiesthelastchangeofa
specifictriplerelatedtothestartrevisionoftheanalysis.
Thesimplestcasewouldbethatanot-existingtriplecan
beaddedandanalreadyexistingonecanbedeleted. But
thereisalsothepossibilitythatanalreadyexistenttriple
wasdeletedandafterwardsaddedorannot-existenttriple
wasaddedandlaterdeleted. Anexamplerevisiongraph
whichincludessuchchangesislaterpresentedinfigure2.
Thestatesdonotincludethealterationtimeofthetriple
becausethecommittimestamp maynotbethesameas
therealtimestampofthetriplemodification. Forexam-
ple,theclientmighthavenonetworkconnectiontocommit
thechanges. Asthestateidentifiesthelastperformedop-
erationregardingaspecifictriplethestates−,0and+are
self-explanatory.Thelaststate∅isnecessaryforthediffer-
encemodelgenerationdescribedinsection3.4.

K:={−=“Deletionoftriple”,

0 =“Triplewasnotchangedsincestartrevision”,

+=“Additionoftriple”

∅=“Tripleisnotincluded”}

g,h∈K

(4)

https://github.com/plt-tud/r43ples
http://virtuoso.openlinksw.com/
http://stardog.com/
https://jena.apache.org/documentation/tdb/


Ωisasetoftuplescontainingatripleanditscorresponding
state.InstartsetΩStartalltriplesofthestartingrevision
havethestate0regardlessoftheirprevioushistory,aspre-
sentedinequation5.

ΩStart:={(X,0)∈(T×K)|X∈V} (5)

Equations6and7definetheAddfunctionandtheDelfunc-
tionthatspecifyhowatriplestatecanbeupdated.

Add(Ω,X):P(T×K)×T →P(T×K):

Ω→ (Ω\{(X,−),(X,0)})∪{(X,+)}
(6)

Del(Ω,X):P(T×K)×T →P(T×K):

Ω→ (Ω\{(X,+),(X,0)})∪{(X,−)}
(7)

FunctionRdescribesthecombinedexecutionoftheAdd-
andDel-functionrelatedtotheADD-andDELETE-setof
onerevision.TheΩsetofthepreviousrevisionisrequiredto
generatetheΩofthecurrentrevision.Equation8specifies
theexecutionononerevisionwithanADD-setwithatriples
andaDELETE-setwithdtriples.

R=Add(...(Add(Del(...(Del(Ω,X0),...),Xd 1),X
+
0),...),X

+
a 1)

(8)
ThecompositionoftheseparateR-functionstakesplace
alongtherevisionpathwhichcontainsnrevisions. ΩStart
designatesthesetofthestartingrevisionalreadydefinedin
equation5.Equation10specifiestheresultofthecomposi-
tion(generaldefinitionisexposedinequation9).

(f◦g)(x)=f(g(x)) (9)

ΩEnd=(Rn 1◦Rn 2◦...◦R0)(ΩStart) (10)

ThegenerationofΩEndofthebranchestobemergedmakes
itpossibletodetectstructuralconflicts. Thenearestcom-
monpredecessorofthebranchestobemergedwillbeused
asthestartingrevision.

3.3.2 LinkedDataModel
Toformalizethemathematicaldescriptioninasemantic

wayweprovidethe Merge ManagementOntology(MMO).
Thefirstpartshowninfigure1describestherevisionprogress
ΩEnd. TheincludedRevisionProgress containsalltriple
statesofonerevisionpath.Thedefinitionandtheuseofthe
childelementsoftheobjectpropertystatementarebasedon
[8]asanextensionof[17].Thereferencebetweentherevi-
sionwherethestatuschangetookplaceandthetripleisde-
finedbyanotherobjectpropertyforexamplermo:references
(relatingtoourproofofconceptimplementation).Further,
thetriplesarestoredanalogouslyto[8].Allnecessaryinfor-
mationisstoredinonegraphinordertofacilitateasubse-
quenttransferofthedatatoaclient.

Figure1: MMOvisualizationofrevisionprogress
part(notationof[3])

3.3.3 Example
Theexamplerevisiongraphshowninfigure2isusedto

illustrateourapproach.Itconsistsofsixrevisionsorganized
inthreebranches(MASTER,B1,B2).Eachrevisionhasa
correspondingADD-andDELETE

B
R
A
N
C
H 
B1

B
R
A
N
C
H 
B2

1

ADD: D,E

DEL : A

3

ADD: G

DEL : D

2

ADD: D,H

DEL : C

4

ADD: I

DEL : -

0

ADD: A,B,C

DEL : -

5

ADD: J

DEL : -

M
AS
TE
R

-set. Forasimplified
illustrationonlycharactersareusedtorepresentatriple
composedofsubject,predicateandobject.

Figure2:Examplerevisiongraph

Ifwewantto mergebranchB1intoB2,revisionpro-
gressesofbothbrancheshavetobecreated.Theircommon
predecessorisrevision0. Table1showstheapplicationof
themathematicaldefinitionsupdatingthetriplestatealong
therevisionpath.Statechangesbetweentworevisionsare
markedgray. Thelastcolumnofrevisionthreeandfive
representsthelastrevisionofthecorrespondingbranchand
containstheretracedrevisionpathhistory.Thesetworevi-
sionprogressesarethestartingpointforconflictdetection
andresolutiondescribedinthefollowingsections.

3.4 Differencemodelgeneration

3.4.1 Mathematicaldescription
Thefirststepistodefinedifferencesandderivedconflicts.

Adifferenceisregardedasatriplecontainedinbothrevi-
sionprogresseswithadifferingstate.Thefollowingdefini-
tionsinvolvetwodivergedbranchesAandBformerging.
Weassumethattherevisionprogresscreationwasalready
finished. Differencedetectionbetweenthebranchestakes
place. Equation11describesthefilteringoutofalltriples
withoutdifferences. Theresultingsetsonlycontainingdif-
feringtriples.

DA=ΩEnd(A)\(ΩEnd(A)∩ΩEnd(B))

DB =ΩEnd(B)\(ΩEnd(A)∩ΩEnd(B))
(11)

ThecardinalityofDAandDB isnotequal.Forthispurpose
weextendeachsetwithalltriplesonlyincludedintheother
set(equation12)assigningthestateofnotIncludedtothem.
Afterwardsthecardinalityofbothsetsisequal. Thisisa
preconditionfortheapplicationofequation13whichisused
forthefurtheranalysisofdifferencesbetweenthebranches
tomerge.

D̃A={(X,∅)∈(T×K)|(X,g)∈DB∧(X,h)/∈DA;

g,harbitrary}∪DA

D̃B ={(X,∅)∈(T×K)|(X,g)∈DA∧(X,h)/∈DB;

g,harbitrary}∪DB

(12)



Revision Revision Revision Revision Revision Revision Revision

0 1 3 0 2 4 5

A 0 - - 0 0 0 0

B 0 0 0 0 0 0 0

C 0 0 0 0 - - -

D + - + + +

E + +

G +

H + + +

I + +

J +

States in B2

Triple

States in B1

Table 1: Triple state update of branches B1 and B2

On the base of the results of equation 12 the intersection of
both sets is shown in equation 13. Each triple has two states
corresponding to the states of the triple in each branch. The
resulting set is the starting point for the difference and con-
flict detection as described in section 3.5.

DDiff = {(X, kA, kB) ∈ (T × K ×K)}|

(X, kA) ∈ D̃A ∧ (X, kB) ∈ D̃B}
(13)

3.4.2 Linked Data Model
The second part of the MMO defines the structure of the

difference model DDiff which is composed of the main el-
ements DifferenceGroup and Difference (see Figure 3). A
DifferenceGroup groups all differences based on the same
triple state combination. The dedicated Difference elements
specify the triple and the referenced revision where the sta-
tus change took place. The triples are stored as previously
mentioned in RPO. Listing 1 shows an example of a differ-
ence model.

d i f f : de le ted−added a mmo: Di f ferenceGroup ;
mmo: ha sD i f f e r enc e [

a mmo: D i f f e r en c e ;
mmo: hasTr ip l e [

rd f : sub j e c t ex : t e s tS ;
rd f : p r ed i c a t e ex : testP ;
rd f : ob j e c t ”D”] ;

mmo: r e f e r ence sA <http :// testGraph−rev−3>;
mmo: r e f e r ence sB <http :// testGraph−rev−2>] ;

mmo: hasTrip leStateA mmo: Deleted ;
mmo: hasTr ip leStateB mmo: Added .

Listing 1: Part of an example difference model

3.4.3 Example
Based upon table 1 results corresponding to equation 13

are shown in table 2. The last column is explained in the
next section.

3.5 Conflict definition

3.5.1 Basic definition
Conflicts are based on triple state combinations. Table

3 shows all possible triple state combinations between two
revisions related to one specific triple. All cells of triple
state combinations which are not possible by definition are
marked black, equal triple states are marked gray, conflicts

triple state B1 state B2 conflicting

A - 0 no

B 0 0

C 0 - no

D - + yes

E + ∅ no

G + ∅ no

H ∅ + no

I ∅ + no

J ∅ + no

Table 2: Difference detection and conflict analysis

are crossed and all non-conflicting states are marked white
containing the resulting triple state. In general a conflict
occurs when the triple was added in one branch and remove
in the other one.

State ∅ - 0 +

∅ - + impossible by definition

- - - triple states are equal

0 - + conflict detected

+ + + +/-
difference detected (cell 

contains resulting triple state)

Triple state branch B

Tr
ip

le
 s

ta
te

 b
ra

n
ch

 A

Table 3: Triple state table

3.5.2 Conflict handling
On the base of the presented definitions in the previous

section a system can merge diverged branches either auto-
matically or semi-automatically. Differences can be solved
fully automatically as shown in table 3. For the resolution
of conflicts there are at least two possibilities. The first one
would be the definition of branch priorities. The triple state
of the branch with the higher priority will be the resulting
state of the triple in the merged revision. The second one is



Figure 3: RDO visualization (notation of [3])

use case specific. For example a user has to decide which is
the right state of the triple in the merged revision or there
are further rules defining it. The following section 4 presents
the application of our approach as an implementation exten-
sion of R43ples.

4. IMPLEMENTATION

4.1 SPARQL extensions
To test the feasibility of our approach, we implemented it

as an extension of R43ples, which already extends SPARQL
with additional keywords. Further additions are necessary
to support merging. A new merging process is launched by
a corresponding query executed against the revision control
system. For this, a new keyword MERGE is defined. The
user can merge the two leafs of different branches which are
identified by the branch names separated with INTO. The
branch name which follows after INTO declares the branch
on which the merged revision should be created.

The merge query starts with the definition of a user and a
message describing the current change. The corresponding
graph of the merge also has to be defined. After receiving
the query, the server collects and enriches all necessary infor-
mation to perform the merge process. At the beginning, the
nearest common predecessor revision is searched in the revi-
sion graph. The revision progress is generated then with the
help of the MMO. The result of the comparison is stored in
a difference model which is also based on the MMO. The fol-
lowing presentation of the different merge concepts is based
on the assumption of a completed model generation process.

4.1.1 MERGE query
Listing 2 shows a merge query. The query flow depends

on the difference detection. If there are no conflicts an au-
tomatic merge can take place and as a result of the query
the user receives the revision number of the merged revi-
sion. Otherwise no revision is generated and the user gets
the difference model in an RDF serialization.

USER ”shen s e l ”
MESSAGE ”Merge branches . ”
MERGE GRAPH <graphURI>

BRANCH ”B1” INTO ”B2”

Listing 2: MERGE query

4.1.2 MERGE query specifying conflict resolution
This query should be used after a MERGE has returned

the difference model in case of a detected conflict. The client
resolves all conflicts with the help of this model. The result
leads to a new MERGE query which is shown in listing 3.
Based on the dependency between difference model and re-
jected merge query, it must be ensured that the same revi-
sions are referenced. The branch names are not enough for
this, because another client could have made changes which
would result in a false merge. To avoid this problem and to
ensure the statelessness of the REST service, it is vital to
use concrete revision numbers on which the current differ-
ence model is based. The server now has the possibility to
reject queries which are executed against an obsolete data
status.

In addition to the merge query, the user can define all
triples out of the set of the conflicting triples which should be
in the merged revision within the WITH part. Triples which
are not included in this set are ignored and are not included
in the resulting revision. All non-conflicting differences are
resolved by the definitions in table 3. After the query has
been successfully executed, the client receives the revision
number of the merged revision.

USER ”shen s e l ”
MESSAGE ”Merge branches . ”
MERGE GRAPH <graphURI>

BRANCH ”28” INTO ”42” WITH { . . . }

Listing 3: MERGE query with conflict resolution
specification



4.1.3 Automatic MERGE query
The keyword AUTO allows a fully automatic merge. Pos-

sible conflicts will be resolved with the help of branch pri-
orities. The branch specified in front of the keyword INTO

indicates the resulting state. Listing 4 shows the structure
of this query which, after execution, returns the merged re-
vision number.

USER ”shen s e l ”
MESSAGE ”Merge branches . ”
MERGE AUTO GRAPH <graphURI>

BRANCH ”B1” INTO ”B2”

Listing 4: Automatic MERGE query

4.1.4 Manual MERGE query
The keyword MANUAL is used like AUTO. On the server side,

all triples specified in the WITH part of the query are used as
the whole revision content of the merged revision. In listing
5 the structure of a manual merge is shown. This query type
is needed if the user not only changes conflicting triples in
the difference model. In this case all triples of the resulting
revision must be specified.

USER ”shen s e l ”
MESSAGE ”Merge branches . ”
MERGE MANUAL GRAPH <graphURI>

BRANCH ”B1” INTO ”B2” WITH { . . . }

Listing 5: Manual MERGE query

4.2 Server/Client
The merge concept has been implemented as an extension

of R43ples and was tested with Virtuoso (version 7.0) and
Stardog (Version 4.0) as attached triple store. The corre-
sponding version of R43ples is open source and can be found
at https://github.com/plt-tud/r43ples/releases/tag/v0.8.8.
The implementation adds further information to the differ-
ence model additional to the mathematical definition. The
additional information helps the user to identify the correct
conflict resolution with the help of a reference to the revision
where the state change took place. The calculation of this
information would need more resources than a server-side
generation within the structural difference analysis.

In addition to the server extensions, there are currently
two implementations which are supporting the user to ap-
ply the improved merge functionalities. The web view pro-
vided by the server and the additional stand-alone client
implementation9 are offering a convenient method to exe-
cute merges. In addition to the merge query generation the
implementations are providing three different views to sup-
port the user resolving conflicts. These views show different
levels of detail or information accumulations. The first view
only shows structural differences on triple level. Secondly,
a view of individuals is provided which compares the whole
contents of the revisions to be merged at the level of RDF
individuals. The comparison is based on the RDF property
rdf:type. The last view enriches the structural difference
information on a high level in order to identify changing
literals.

9https://github.com/plt-tud/r43ples-merging-client/
releases/tag/v1.0.0

4.3 Performance evaluation
The current approach generates the revision progress for

each branch when it is needed. This works very well for
small graphs but for huge graphs where already the com-
mon predecessor revision contains a lot of triples this revi-
sion progress creation has some drawbacks. For the revision
progress creation we use temporary graphs which are filled
with content through SPARQL queries. These are mainly
COPY, INSERT and DELETE queries. A test shows that
the system needs 9.7 minutes to create ΩStart of a revision
which contains about 1.5 million triples (Stardog was used as
attached triple store). The performance of the further revi-
sion progress creation along the revision path of the branch
depends on the size of the change sets and the length of the
revision path.

A possible solution to overcome the performance draw-
backs is to store a revision progress for each branch which is
updated when a new commit to the branch is executed. If
a client initiates a merge the revision progresses are already
generated which will increase the performance of the system
significantly but will lead in a higher amount of storage.

5. DISCUSSION
The implementation of the approach presented here allows

a client to execute merge queries by uniform interfaces. The
server-side generation of the difference and conflict analysis
helps small clients with limited performance to process a
visualization and to generate the result.

In the current approach the automatic merge uses im-
plicit branch priorities. Merge definitions are only based on
a structural difference analysis at the triple level. A semantic
enrichment simply takes place on the client side. In particu-
lar small clients do not always have the performance to exe-
cute such an enrichment. Here, it could be better to perform
a pre-analysis on the server side for a better user support.
Afterwards it could be possible to merge at a semantic level
when the semantics are included in the difference model.
For example, a priority based merge at the level of individ-
uals would be possible. Thus, specific individuals may be
preferred and all their corresponding triples will be included
in the merged revision. Simple high level changes are de-
tectable independently from the vocabulary used. Complex
high level changes, e.g. changes of subclasses, are not de-
tectable in such a general approach. Further information is
needed to identify changes at this abstraction level.

In future work we will enrich structural diffs with infor-
mation dependent on the vocabulary. This offers the possi-
bility of full semantic merges. For example sub class changes
would be identifiable and the whole differences and conflicts
detection can also take place at a semantic level. Further-
more, we want to apply alternative merge approaches like
Fast-Forward or Rebase (both well established in Git) to
make the merge process more efficient. With the provided
web view we want to evaluate our approach with a wide user
base and real data to get further results regarding perfor-
mance and usability.

6. CONCLUSIONS
This paper presents an approach of the integration of

merges in semantic revision control systems. Through the
definition of SPARQL extensions and models, a uniform in-
terface was created to initiate merges and execute conflict

https://github.com/plt-tud/r43ples/releases/tag/v0.8.8
https://github.com/plt-tud/r43ples-merging-client/releases/tag/v1.0.0
https://github.com/plt-tud/r43ples-merging-client/releases/tag/v1.0.0


resolutions.
The advantage is the use of an operation-based approach

including the history of changes to detect further differences
and corresponding conflicts. Merges can be performed at
different automation levels. So the user is very free in the
execution of the merge but is supported as far as possible
by a preliminary server-side analysis. The implementation
of our concept as an extension of R43ples shows the appli-
cability in an already existing system. At once it was shown
that a semantic enrichment is possible to detect high level
changes in a general approach with the help of the client
implementation which uses the generated interfaces.

As already discussed in section 5 our approach still needs
further research to enrich the server-side analysis semanti-
cally and in the area of semantic merging as well as alterna-
tive merge methods.
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