2,348 research outputs found

    Robotic Wireless Sensor Networks

    Full text link
    In this chapter, we present a literature survey of an emerging, cutting-edge, and multi-disciplinary field of research at the intersection of Robotics and Wireless Sensor Networks (WSN) which we refer to as Robotic Wireless Sensor Networks (RWSN). We define a RWSN as an autonomous networked multi-robot system that aims to achieve certain sensing goals while meeting and maintaining certain communication performance requirements, through cooperative control, learning and adaptation. While both of the component areas, i.e., Robotics and WSN, are very well-known and well-explored, there exist a whole set of new opportunities and research directions at the intersection of these two fields which are relatively or even completely unexplored. One such example would be the use of a set of robotic routers to set up a temporary communication path between a sender and a receiver that uses the controlled mobility to the advantage of packet routing. We find that there exist only a limited number of articles to be directly categorized as RWSN related works whereas there exist a range of articles in the robotics and the WSN literature that are also relevant to this new field of research. To connect the dots, we first identify the core problems and research trends related to RWSN such as connectivity, localization, routing, and robust flow of information. Next, we classify the existing research on RWSN as well as the relevant state-of-the-arts from robotics and WSN community according to the problems and trends identified in the first step. Lastly, we analyze what is missing in the existing literature, and identify topics that require more research attention in the future

    Effect of Location Accuracy and Shadowing on the Probability of Non-Interfering Concurrent Transmissions in Cognitive Ad Hoc Networks

    Get PDF
    Cognitive radio ad hoc systems can coexist with a primary network in a scanning-free region, which can be dimensioned by location awareness. This coexistence of networks improves system throughput and increases the efficiency of radio spectrum utilization. However, the location accuracy of real positioning systems affects the right dimensioning of the concurrent transmission region. Moreover, an ad hoc connection may not be able to coexist with the primary link due to the shadowing effect. In this paper we investigate the impact of location accuracy on the concurrent transmission probability and analyze the reliability of concurrent transmissions when shadowing is taken into account. A new analytical model is proposed, which allows to estimate the resulting secure region when the localization uncertainty range is known. Computer simulations show the dependency between the location accuracy and the performance of the proposed topology, as well as the reliability of the resulting secure region
    corecore