872 research outputs found

    A Robust Zero-Calibration RF-based Localization System for Realistic Environments

    Full text link
    Due to the noisy indoor radio propagation channel, Radio Frequency (RF)-based location determination systems usually require a tedious calibration phase to construct an RF fingerprint of the area of interest. This fingerprint varies with the used mobile device, changes of the transmit power of smart access points (APs), and dynamic changes in the environment; requiring re-calibration of the area of interest; which reduces the technology ease of use. In this paper, we present IncVoronoi: a novel system that can provide zero-calibration accurate RF-based indoor localization that works in realistic environments. The basic idea is that the relative relation between the received signal strength from two APs at a certain location reflects the relative distance from this location to the respective APs. Building on this, IncVoronoi incrementally reduces the user ambiguity region based on refining the Voronoi tessellation of the area of interest. IncVoronoi also includes a number of modules to efficiently run in realtime as well as to handle practical deployment issues including the noisy wireless environment, obstacles in the environment, heterogeneous devices hardware, and smart APs. We have deployed IncVoronoi on different Android phones using the iBeacons technology in a university campus. Evaluation of IncVoronoi with a side-by-side comparison with traditional fingerprinting techniques shows that it can achieve a consistent median accuracy of 2.8m under different scenarios with a low beacon density of one beacon every 44m2. Compared to fingerprinting techniques, whose accuracy degrades by at least 156%, this accuracy comes with no training overhead and is robust to the different user devices, different transmit powers, and over temporal changes in the environment. This highlights the promise of IncVoronoi as a next generation indoor localization system.Comment: 9 pages, 13 figures, published in SECON 201

    Advanced real-time indoor tracking based on the Viterbi algorithm and semantic data

    Get PDF
    A real-time indoor tracking system based on the Viterbi algorithm is developed. This Viterbi principle is used in combination with semantic data to improve the accuracy, that is, the environment of the object that is being tracked and a motion model. The starting point is a fingerprinting technique for which an advanced network planner is used to automatically construct the radio map, avoiding a time consuming measurement campaign. The developed algorithm was verified with simulations and with experiments in a building-wide testbed for sensor experiments, where a median accuracy below 2 m was obtained. Compared to a reference algorithm without Viterbi or semantic data, the results indicated a significant improvement: the mean accuracy and standard deviation improved by, respectively, 26.1% and 65.3%. Thereafter a sensitivity analysis was conducted to estimate the influence of node density, grid size, memory usage, and semantic data on the performance

    A Review of Hybrid Indoor Positioning Systems Employing WLAN Fingerprinting and Image Processing

    Get PDF
    Location-based services (LBS) are a significant permissive technology. One of the main components in indoor LBS is the indoor positioning system (IPS). IPS utilizes many existing technologies such as radio frequency, images, acoustic signals, as well as magnetic sensors, thermal sensors, optical sensors, and other sensors that are usually installed in a mobile device. The radio frequency technologies used in IPS are WLAN, Bluetooth, Zig Bee, RFID, frequency modulation, and ultra-wideband. This paper explores studies that have combined WLAN fingerprinting and image processing to build an IPS. The studies on combined WLAN fingerprinting and image processing techniques are divided based on the methods used. The first part explains the studies that have used WLAN fingerprinting to support image positioning. The second part examines works that have used image processing to support WLAN fingerprinting positioning. Then, image processing and WLAN fingerprinting are used in combination to build IPS in the third part. A new concept is proposed at the end for the future development of indoor positioning models based on WLAN fingerprinting and supported by image processing to solve the effect of people presence around users and the user orientation problem

    A Fast-rate WLAN Measurement Tool for Improved Miss-rate in Indoor Navigation

    Full text link
    Recently, location-based services (LBS) have steered attention to indoor positioning systems (IPS). WLAN-based IPSs relying on received signal strength (RSS) measurements such as fingerprinting are gaining popularity due to proven high accuracy of their results. Typically, sets of RSS measurements at selected locations from several WLAN access points (APs) are used to calibrate the system. Retrieval of such measurements from WLAN cards are commonly at one-Hz rate. Such measurement collection is needed for offline radio-map surveying stage which aligns fingerprints to locations, and for online navigation stage, when collected measurements are associated with the radio-map for user navigation. As WLAN network is not originally designed for positioning, an RSS measurement miss could have a high impact on the fingerprinting system. Additionally, measurement fluctuations require laborious signal processing, and surveying process can be very time consuming. This paper proposes a fast-rate measurement collection method that addresses previously mentioned problems by achieving a higher probability of RSS measurement collection during a given one-second window. This translates to more data for statistical processing and faster surveying. The fast-rate collection approach is analyzed against the conventional measurement rate in a proposed testing methodology that mimics real-life scenarios related to IPS surveying and online navigation

    Wi-Fi Location Determination for Semantic Locations

    Get PDF
    In Wi-Fi location determination literature, little attention is paid to locations that do not have numeric, geometric coordinates, though many users prefer the convenience of non-coordinate locations (consider the ease of giving a street address as opposed to giving latitude and longitude). It is not often easy to tell from the title or abstract of a Wi-Fi location determination article whether or not it has applicability to semantic locations such as room-level names. This article surveys the literature through 2011 on Wi-Fi localization for symbolic locations

    Wi-Fi Fingerprinting for Indoor Positioning

    Get PDF
    Wireless Fidelity (Wi-Fi) Fingerprinting is a remarkable approach developed by modern science to detect the user’s location efficiently. Today, the Global Positioning System (GPS) is used to keep track of our current location for outdoor positioning. In GPS technology, satellite signals cannot reach indoor environments as they are shielded from obstructions so that indoor environments with a lack of Line of Sight (LoS) do not provide enough satellite signal accuracy. Since indoor environments are very difficult to track, thus, a wide variety of techniques for dealing with them have been suggested. The best way to offer an indoor positioning service with the current technology is Wi-Fi since the most commercial infrastructure is well equipped with Wi-Fi routers. For indoor positioning systems (IPS), Wi-Fi fingerprinting approaches are being extremely popular. In this paper, all the approaches for Wi-Fi fingerprinting have been reviewed for indoor position localization. Related to Wi-Fi fingerprinting, most of the algorithms have been interpreted and the previous works of other researchers have been critically analyzed in this paper to get a clear view of the Wi-Fi fingerprinting process

    RFID Localisation For Internet Of Things Smart Homes: A Survey

    Full text link
    The Internet of Things (IoT) enables numerous business opportunities in fields as diverse as e-health, smart cities, smart homes, among many others. The IoT incorporates multiple long-range, short-range, and personal area wireless networks and technologies into the designs of IoT applications. Localisation in indoor positioning systems plays an important role in the IoT. Location Based IoT applications range from tracking objects and people in real-time, assets management, agriculture, assisted monitoring technologies for healthcare, and smart homes, to name a few. Radio Frequency based systems for indoor positioning such as Radio Frequency Identification (RFID) is a key enabler technology for the IoT due to its costeffective, high readability rates, automatic identification and, importantly, its energy efficiency characteristic. This paper reviews the state-of-the-art RFID technologies in IoT Smart Homes applications. It presents several comparable studies of RFID based projects in smart homes and discusses the applications, techniques, algorithms, and challenges of adopting RFID technologies in IoT smart home systems.Comment: 18 pages, 2 figures, 3 table
    • …
    corecore