446 research outputs found

    Human Motion Trajectory Prediction: A Survey

    Full text link
    With growing numbers of intelligent autonomous systems in human environments, the ability of such systems to perceive, understand and anticipate human behavior becomes increasingly important. Specifically, predicting future positions of dynamic agents and planning considering such predictions are key tasks for self-driving vehicles, service robots and advanced surveillance systems. This paper provides a survey of human motion trajectory prediction. We review, analyze and structure a large selection of work from different communities and propose a taxonomy that categorizes existing methods based on the motion modeling approach and level of contextual information used. We provide an overview of the existing datasets and performance metrics. We discuss limitations of the state of the art and outline directions for further research.Comment: Submitted to the International Journal of Robotics Research (IJRR), 37 page

    Generalized Video Anomaly Event Detection: Systematic Taxonomy and Comparison of Deep Models

    Full text link
    Video Anomaly Detection (VAD) serves as a pivotal technology in the intelligent surveillance systems, enabling the temporal or spatial identification of anomalous events within videos. While existing reviews predominantly concentrate on conventional unsupervised methods, they often overlook the emergence of weakly-supervised and fully-unsupervised approaches. To address this gap, this survey extends the conventional scope of VAD beyond unsupervised methods, encompassing a broader spectrum termed Generalized Video Anomaly Event Detection (GVAED). By skillfully incorporating recent advancements rooted in diverse assumptions and learning frameworks, this survey introduces an intuitive taxonomy that seamlessly navigates through unsupervised, weakly-supervised, supervised and fully-unsupervised VAD methodologies, elucidating the distinctions and interconnections within these research trajectories. In addition, this survey facilitates prospective researchers by assembling a compilation of research resources, including public datasets, available codebases, programming tools, and pertinent literature. Furthermore, this survey quantitatively assesses model performance, delves into research challenges and directions, and outlines potential avenues for future exploration.Comment: Accepted by ACM Computing Surveys. For more information, please see our project page: https://github.com/fudanyliu/GVAE

    The S-HOCK dataset: Analyzing crowds at the stadium

    Get PDF
    The topic of crowd modeling in computer vision usually assumes a single generic typology of crowd, which is very simplistic. In this paper we adopt a taxonomy that is widely accepted in sociology, focusing on a particular category, the spectator crowd, which is formed by people \u201cinterested in watching something specific that they came to see\u201d [6]. This can be found at the stadiums, amphitheaters, cinema, etc. In particular, we propose a novel dataset, the Spectators Hockey (S-HOCK), which deals with 4 hockey matches during an international tournament. In the dataset, a massive annotation has been carried out, focusing on the spectators at different levels of details: at a higher level, people have been labeled depending on the team they are supporting and the fact that they know the people close to them; going to the lower levels, standard pose information has been considered (regarding the head, the body) but also fine grained actions such as hands on hips, clapping hands etc. The labeling focused on the game field also, permitting to relate what is going on in the match with the crowd behavior. This brought to more than 100 millions of annotations, useful for standard applications as people counting and head pose estimation but also for novel tasks as spectator categorization. For all of these we provide protocols and baseline results, encouraging further research

    Hierarchical representations for spatio-temporal visual attention: modeling and understanding

    Get PDF
    Mención Internacional en el título de doctorDentro del marco de la Inteligencia Artificial, la Visión Artificial es una disciplina científica que tiene como objetivo simular automaticamente las funciones del sistema visual humano, tratando de resolver tareas como la localización y el reconocimiento de objetos, la detección de eventos o el seguimiento de objetos....Programa Oficial de Doctorado en Multimedia y ComunicacionesPresidente: Luis Salgado Álvarez de Sotomayor.- Secretario: Ascensión Gallardo Antolín.- Vocal: Jenny Benois Pinea

    From mindless masses to small groups: Conceptualizing collective behavior in crowd modeling.

    Get PDF
    Computer simulations are increasingly used to monitor and predict behavior at large crowd events, such as mass gatherings, festivals and evacuations. We critically examine the crowd modeling literature and call for future simulations of crowd behavior to be based more closely on findings from current social psychological research. A systematic review was conducted on the crowd modeling literature (N = 140 articles) to identify the assumptions about crowd behavior that modelers use in their simulations. Articles were coded according to the way in which crowd structure was modeled. It was found that 2 broad types are used: mass approaches and small group approaches. However, neither the mass nor the small group approaches can accurately simulate the large collective behavior that has been found in extensive empirical research on crowd events. We argue that to model crowd behavior realistically, simulations must use methods which allow crowd members to identify with each other, as suggested by self-categorization theory

    Crowd Scene Analysis in Video Surveillance

    Get PDF
    There is an increasing interest in crowd scene analysis in video surveillance due to the ubiquitously deployed video surveillance systems in public places with high density of objects amid the increasing concern on public security and safety. A comprehensive crowd scene analysis approach is required to not only be able to recognize crowd events and detect abnormal events, but also update the innate learning model in an online, real-time fashion. To this end, a set of approaches for Crowd Event Recognition (CER) and Abnormal Event Detection (AED) are developed in this thesis. To address the problem of curse of dimensionality, we propose a video manifold learning method for crowd event analysis. A novel feature descriptor is proposed to encode regional optical flow features of video frames, where adaptive quantization and binarization of the feature code are employed to improve the discriminant ability of crowd motion patterns. Using the feature code as input, a linear dimensionality reduction algorithm that preserves both the intrinsic spatial and temporal properties is proposed, where the generated low-dimensional video manifolds are conducted for CER and AED. Moreover, we introduce a framework for AED by integrating a novel incremental and decremental One-Class Support Vector Machine (OCSVM) with a sliding buffer. It not only updates the model in an online fashion with low computational cost, but also adapts to concept drift by discarding obsolete patterns. Furthermore, the framework has been improved by introducing Multiple Incremental and Decremental Learning (MIDL), kernel fusion, and multiple target tracking, which leads to more accurate and faster AED. In addition, we develop a framework for another video content analysis task, i.e., shot boundary detection. Specifically, instead of directly assessing the pairwise difference between consecutive frames over time, we propose to evaluate a divergence measure between two OCSVM classifiers trained on two successive frame sets, which is more robust to noise and gradual transitions such as fade-in and fade-out. To speed up the processing procedure, the two OCSVM classifiers are updated online by the MIDL proposed for AED. Extensive experiments on five benchmark datasets validate the effectiveness and efficiency of our approaches in comparison with the state of the art
    corecore