6,518 research outputs found

    CAIR: Using Formal Languages to Study Routing, Leaking, and Interception in BGP

    Full text link
    The Internet routing protocol BGP expresses topological reachability and policy-based decisions simultaneously in path vectors. A complete view on the Internet backbone routing is given by the collection of all valid routes, which is infeasible to obtain due to information hiding of BGP, the lack of omnipresent collection points, and data complexity. Commonly, graph-based data models are used to represent the Internet topology from a given set of BGP routing tables but fall short of explaining policy contexts. As a consequence, routing anomalies such as route leaks and interception attacks cannot be explained with graphs. In this paper, we use formal languages to represent the global routing system in a rigorous model. Our CAIR framework translates BGP announcements into a finite route language that allows for the incremental construction of minimal route automata. CAIR preserves route diversity, is highly efficient, and well-suited to monitor BGP path changes in real-time. We formally derive implementable search patterns for route leaks and interception attacks. In contrast to the state-of-the-art, we can detect these incidents. In practical experiments, we analyze public BGP data over the last seven years

    PROVIDE: hiding from automated network scans with proofs of identity

    Full text link
    Network scanners are a valuable tool for researchers and administrators, however they are also used by malicious actors to identify vulnerable hosts on a network. Upon the disclosure of a security vulnerability, scans are launched within hours. These opportunistic attackers enumerate blocks of IP addresses in hope of discovering an exploitable host. Fortunately, defensive measures such as port knocking protocols (PKPs) allow a service to remain stealth to unauthorized IP addresses. The service is revealed only when a client includes a special authentication token (AT) in the IP/TCP header. However this AT is generated from a secret shared between the clients/servers and distributed manually to each endpoint. As a result, these defense measures have failed to be widely adopted by other protocols such as HTTP/S due to challenges in distributing the shared secrets. In this paper we propose a scalable solution to this problem for services accessed by domain name. We make the following observation: automated network scanners access servers by IP address, while legitimate clients access the server by name. Therefore a service should only reveal itself to clients who know its name. Based on this principal, we have created a proof of the verifier’s identity (a.k.a. PROVIDE) protocol that allows a prover (legitimate user) to convince a verifier (service) that it is knowledgeable of the verifier’s identity. We present a PROVIDE implementation using a PKP and DNS (PKP+DNS) that uses DNS TXT records to distribute identification tokens (IDT) while DNS PTR records for the service’s domain name are prohibited to prevent reverse DNS lookups. Clients are modified to make an additional DNS TXT query to obtain the IDT which is used by the PKP to generate an AT. The inclusion of an AT in the packet header, generated from the DNS TXT query, is proof the client knows the service’s identity. We analyze the effectiveness of this mechanism with respect to brute force attempts for various strength ATs and discuss practical considerations.This work has been supported by the National Science Foundation (NSF) awards #1430145, #1414119, and #1012798

    Searching for a black hole in arbitrary networks

    Get PDF

    Security techniques for sensor systems and the Internet of Things

    Get PDF
    Sensor systems are becoming pervasive in many domains, and are recently being generalized by the Internet of Things (IoT). This wide deployment, however, presents significant security issues. We develop security techniques for sensor systems and IoT, addressing all security management phases. Prior to deployment, the nodes need to be hardened. We develop nesCheck, a novel approach that combines static analysis and dynamic checking to efficiently enforce memory safety on TinyOS applications. As security guarantees come at a cost, determining which resources to protect becomes important. Our solution, OptAll, leverages game-theoretic techniques to determine the optimal allocation of security resources in IoT networks, taking into account fixed and variable costs, criticality of different portions of the network, and risk metrics related to a specified security goal. Monitoring IoT devices and sensors during operation is necessary to detect incidents. We design Kalis, a knowledge-driven intrusion detection technique for IoT that does not target a single protocol or application, and adapts the detection strategy to the network features. As the scale of IoT makes the devices good targets for botnets, we design Heimdall, a whitelist-based anomaly detection technique for detecting and protecting against IoT-based denial of service attacks. Once our monitoring tools detect an attack, determining its actual cause is crucial to an effective reaction. We design a fine-grained analysis tool for sensor networks that leverages resident packet parameters to determine whether a packet loss attack is node- or link-related and, in the second case, locate the attack source. Moreover, we design a statistical model for determining optimal system thresholds by exploiting packet parameters variances. With our techniques\u27 diagnosis information, we develop Kinesis, a security incident response system for sensor networks designed to recover from attacks without significant interruption, dynamically selecting response actions while being lightweight in communication and energy overhead

    Forensic Evidence Identification and Modeling for Attacks against a Simulated Online Business Information System

    Get PDF
    Forensic readiness of business information systems can support future forensics investigation or auditing on external/internal attacks, internal sabotage and espionage, and business fraud. To establish forensics readiness, it is essential for an organization to identify which fingerprints are relevant and where they can be located, to determine whether they are logged in a forensically sound way and whether all the needed fingerprints are available to reconstruct the events successfully. Also, a fingerprint identification and locating mechanism should be provided to guide potential forensics investigation in the future. Furthermore, mechanisms should be established to automate the security incident tracking and reconstruction processes. In this research, external and internal attacks are first modeled as augmented attack trees based on the vulnerabilities of business information systems. Then, modeled attacks are conducted against a honeynet that simulates an online business information system, and a forensic investigation follows each attack. Finally, an evidence tree, which is expected to provide the necessary contextual information to automate the attack tracking and reconstruction process in the future, is built for each attack based on fingerprints identified and located within the system

    Structured P2P Technologies for Distributed Command and Control

    Get PDF
    The utility of Peer-to-Peer (P2P) systems extends far beyond traditional file sharing. This paper provides an overview of how P2P systems are capable of providing robust command and control for Distributed Multi-Agent Systems (DMASs). Specifically, this article presents the evolution of P2P architectures to date by discussing supporting technologies and applicability of each generation of P2P systems. It provides a detailed survey of fundamental design approaches found in modern large-scale P2P systems highlighting design considerations for building and deploying scalable P2P applications. The survey includes unstructured P2P systems, content retrieval systems, communications structured P2P systems, flat structured P2P systems and finally Hierarchical Peer-to-Peer (HP2P) overlays. It concludes with a presentation of design tradeoffs and opportunities for future research into P2P overlay systems
    corecore