7,185 research outputs found

    Locally optimal controllers and globally inverse optimal controllers

    Full text link
    In this paper we consider the problem of global asymptotic stabilization with prescribed local behavior. We show that this problem can be formulated in terms of control Lyapunov functions. Moreover, we show that if the local control law has been synthesized employing a LQ approach, then the associated Lyapunov function can be seen as the value function of an optimal problem with some specific local properties. We illustrate these results on two specific classes of systems: backstepping and feedforward systems. Finally, we show how this framework can be employed when considering the orbital transfer problem

    A State-Space Approach to Parametrization of Stabilizing Controllers for Nonlinear Systems

    Get PDF
    A state-space approach to Youla-parametrization of stabilizing controllers for linear and nonlinear systems is suggested. The stabilizing controllers (or a class of stabilizing controllers for nonlinear systems) are characterized as (linear/nonlinear) fractional transformations of stable parameters. The main idea behind this approach is to decompose the output feedback stabilization problem into state feedback and state estimation problems. The parametrized output feedback controllers have separation structures. A separation principle follows from the construction. This machinery allows the parametrization of stabilizing controllers to be conducted directly in state space without using coprime-factorization

    A receding horizon generalization of pointwise min-norm controllers

    Get PDF
    Control Lyapunov functions (CLFs) are used in conjunction with receding horizon control to develop a new class of receding horizon control schemes. In the process, strong connections between the seemingly disparate approaches are revealed, leading to a unified picture that ties together the notions of pointwise min-norm, receding horizon, and optimal control. This framework is used to develop a CLF based receding horizon scheme, of which a special case provides an appropriate extension of Sontag's formula. The scheme is first presented as an idealized continuous-time receding horizon control law. The issue of implementation under discrete-time sampling is then discussed as a modification. These schemes are shown to possess a number of desirable theoretical and implementation properties. An example is provided, demonstrating their application to a nonlinear control problem. Finally, stronger connections to both optimal and pointwise min-norm control are proved

    Quasi-optimal robust stabilization of control systems

    Full text link
    In this paper, we investigate the problem of semi-global minimal time robust stabilization of analytic control systems with controls entering linearly, by means of a hybrid state feedback law. It is shown that, in the absence of minimal time singular trajectories, the solutions of the closed-loop system converge to the origin in quasi minimal time (for a given bound on the controller) with a robustness property with respect to small measurement noise, external disturbances and actuator noise

    Robust output stabilization: improving performance via supervisory control

    Full text link
    We analyze robust stability, in an input-output sense, of switched stable systems. The primary goal (and contribution) of this paper is to design switching strategies to guarantee that input-output stable systems remain so under switching. We propose two types of {\em supervisors}: dwell-time and hysteresis based. While our results are stated as tools of analysis they serve a clear purpose in design: to improve performance. In that respect, we illustrate the utility of our findings by concisely addressing a problem of observer design for Lur'e-type systems; in particular, we design a hybrid observer that ensures ``fast'' convergence with ``low'' overshoots. As a second application of our main results we use hybrid control in the context of synchronization of chaotic oscillators with the goal of reducing control effort; an originality of the hybrid control in this context with respect to other contributions in the area is that it exploits the structure and chaotic behavior (boundedness of solutions) of Lorenz oscillators.Comment: Short version submitted to IEEE TA

    Robust stabilization of nonlinear systems via stable kernel representations with L2-gain bounded uncertainty

    Get PDF
    The approach to robust stabilization of linear systems using normalized left coprime factorizations with H∞ bounded uncertainty is generalized to nonlinear systems. A nonlinear perturbation model is derived, based on the concept of a stable kernel representation of nonlinear systems. The robust stabilization problem is then translated into a nonlinear disturbance feedforward H∞ optimal control problem, whose solution depends on the solvability of a single Hamilton-Jacobi equation
    • 

    corecore