474 research outputs found

    Linear dependence of bivariate Minimal Support and Locally Refined B-splines over LR-meshes

    Get PDF
    The focus on locally refined spline spaces has grown rapidly in recent years due to the need in Isogeoemtric analysis (IgA) of spline spaces with local adaptivity: a property not offered by the strict regular structure of tensor product B-spline spaces. However, this flexibility sometimes results in collections of B-splines spanning the space that are not linearly independent. In this paper we address the minimal number of B-splines that can form a linear dependence relation for Minimal Support B-splines (MS B-splines) and for Locally Refinable B-splines (LR B-splines) on LR-meshes. We show that the minimal number is six for MS B-splines, and eight for LR B-splines. The risk of linear dependency is consequently significantly higher for MS B-splines than for LR B-splines. Further results are established to help detecting collections of B-splines that are linearly independent

    Characterization of bivariate hierarchical quartic box splines on a three-directional grid

    Get PDF
    International audienceWe consider the adaptive refinement of bivariate quartic C 2-smooth box spline spaces on the three-directional (type-I) grid G. The polynomial segments of these box splines belong to a certain subspace of the space of quar-tic polynomials, which will be called the space of special quartics. Given a bounded domain Ω ⊂ R 2 and finite sequence (G ℓ) ℓ=0,...,N of dyadically refined grids, we obtain a hierarchical grid by selecting mutually disjoint cells from all levels such that their union covers the entire domain. Using a suitable selection procedure allows to define a basis spanning the hierarchical box spline space. The paper derives a characterization of this space. Under certain mild assumptions on the hierarchical grid, the hierarchical spline space is shown to contain all C 2-smooth functions whose restrictions to the cells of the hierarchical grid are special quartic polynomials. Thus, in this case we can give an affirmative answer to the completeness questions for the hierarchical box spline basis

    On the dimension of spline spaces on planar T-meshes

    Get PDF
    We analyze the space of bivariate functions that are piecewise polynomial of bi-degree \textless{}= (m, m') and of smoothness r along the interior edges of a planar T-mesh. We give new combinatorial lower and upper bounds for the dimension of this space by exploiting homological techniques. We relate this dimension to the weight of the maximal interior segments of the T-mesh, defined for an ordering of these maximal interior segments. We show that the lower and upper bounds coincide, for high enough degrees or for hierarchical T-meshes which are enough regular. We give a rule of subdivision to construct hierarchical T-meshes for which these lower and upper bounds coincide. Finally, we illustrate these results by analyzing spline spaces of small degrees and smoothness

    Unstructured spline spaces for isogeometric analysis based on spline manifolds

    Full text link
    Based on spline manifolds we introduce and study a mathematical framework for analysis-suitable unstructured B-spline spaces. In this setting the parameter domain has a manifold structure, which allows for the definition of function spaces that have a tensor-product structure locally, but not globally. This includes configurations such as B-splines over multi-patch domains with extraordinary points, analysis-suitable unstructured T-splines, or more general constructions. Within this framework, we generalize the concept of dual-compatible B-splines, which was originally developed for structured T-splines. This allows us to prove the key properties that are needed for isogeometric analysis, such as linear independence and optimal approximation properties for hh-refined meshes

    Trivariate Spline Representations for Computer Aided Design and Additive Manufacturing

    Get PDF
    Digital representations targeting design and simulation for Additive Manufacturing (AM) are addressed from the perspective of Computer Aided Geometric Design. We discuss the feasibility for multi-material AM for B-rep based CAD, STL, sculptured triangles as well as trimmed and block-structured trivariate locally refined spline representations. The trivariate spline representations support Isogeometric Analysis (IGA), and topology structures supporting these for CAD, IGA and AM are outlined. The ideas of (Truncated) Hierarchical B-splines, T-splines and LR B-splines are outlined and the approaches are compared. An example from the EC H2020 Factories of the Future Research and Innovation Actions CAxMan illustrates both trimmed and block-structured spline representations for IGA and AM.Comment: 30 pages, 14 figures. This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement No 68044
    corecore