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1. INTRODUCTION 

For both theoretical and computational reasons, it is usually desirable to 
represent spline functions as linear combinations of B-splines (cf. 
de Boor [ 11). In the bivariate setting when the grid partition is “uniform” one 
could consider linear combinations of triangular splines of Fredrickson [i’], 
splines supported on equilateral triangles constructed by Sablonniere [8], or, 
more generally, the box splines introduced by de Boor and Hollig [2]. Three 
important algebraic questions arise immediately: (1) Are the translates of 
these locally supported spline functions enough to generate all spline 
functions of the same degree and satisfying the same smoothness conditions? 
(2) If so, in what convenient ways can we choose a basis from this possibly 
linearly dependent set of translates? (3) If not, what functions, preferably as 
smooth as possible and having “small” supports, should be included in the 
generating set? The purpose of this paper is to answer these questions for 
cubic and quartic splines on type-l triangulations. 

We begin with the necessary notation. The space of all polynomials of 
total degree d in two variables will be denoted by P,. Let 

where m and n are positive integers. The partition 

A ,,:x=i, Y =.A x-y=k, 
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i= l,..., m - l,j= l,..., n - 1, and k = -n + I,..., m - 1, will be called type-l 
triangulation of D as in [3]. Let p be a nonnegative integer. The space of all 
(spline) functions in C”(D) whose restrictions on the triangular cells in D 
determined by A,, are polynomials in Ip, will be denoted by 

SW,,) = SW,,, D). 

Since every (interior) grid-point in D is the intersection of exactly three lines 
from the grid partition A,,,,,, a necessary condition for the existence of a 
nontrivial locally supported spline function in S$(A,,) is that d must satisfy 
the inequality 

In practice, spline spaces in P(D) with the lowest possible degrees are more 
useful. Hence, the important spaces to study are 

S%4n,h S:(AA %4,,,)~ $(A,,)... . 

The space Sy(d,,,) is trivial from the mathematical point of view. In this 
paper, we will study the spaces S:(A,,) and S:(A,,). It will turn out that in 
S:(A,,) the collection of all translates of the two splines with smallest local 
supports spans the whole space but is linearly dependent on D. We will give 
criteria for choosing a basis for this space from this collection. In S:(A,,), 
however, the linear span ZS~(A,,) of all locally supported splines restricted 
to D turns out to be a proper subspace. We will give a basis of the space 
St(A,,) that consists of a basis of IS~(A,,,) and some truncated power 
functions that belong to C3(D). When locally supported splines are used as 
basis elements, only the ones with minimal supports are included. A brief 
discussion of such functions is included in the final section. 

2. THE SPACE OF BIVARIATE CUBIC SPLINES 

In this section we will discuss various local bases of the bivariate cubic 
spline space S:(A,,). We begin by considering a locally supported cubic 
spline function B’ introduced by P. 0. Fredrickson [7] given in baricentric 
coordinates as in the following. On a triangle with vertices A, B, and C, let a 
be the linear polynomial determined by a(A) = 1 and a(B) = a(C) = 0. The 
other two linear polynomials b and c are defined similarly. Hence. 
a + b + c = 1 and any two of the polynomials a, b, c can be used as 
independent variables in place of x and y. The support of B’ together with 
the grid-segments that divide B’ into polynomial pieces is given in Fig. 1, 
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FIGURE 1 

where some vertices are labelled. The polynomial pieces of B’ on these 
labelled triangles are: 

(corner) QABF = a3 

(edge) QABc = a’(a + 3c) 

(interior) QADc = 3(a + d)2 - 2(a3 + d3) - 3ad(a + d) 

(center) QADE = 1 + 3(a + d) - 3(a2 + d*) - 3ad(a + d). 

The other polynomial pieces are identical in barycentric coordinates, 
depending on what triangles they are defined on: corner, edge, interior, or 
center. However, to carry out the derivations in this paper, we need a more 
explicit representation of B’. In Fig. 2, we give the values of B’ at the 

FIGURE 2 
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geometric centers of the triangles (these values are placed inside the 
triangles) and also the values of B’, D,B’, D,B’, respectively (given by the 
triples [ . , . , . J), at the three vertices inside the support. These values 
completely determine B’ with the exception of a translation. To determine B’ 
uniquely, we place the vertex D in Fig. 1 at the origin. From B’, we define 
B2 by 

B2(x, y) = B’(-x. -y). 

It can be shown by using the “conformality conditions” of bivariate splines 
(cf. 14, lo]) that the supports of B’ and B* are minimal. They will be called 
fundamental splines in Section 4. We now translate B’ and B’ to obtain 
(various) bases of S:(d,,). That is, we consider 

Bfj(x, y) = Bp(x - i, y -j), p= 1.2. 

To facilitate our presentation, we introduce the index sets 

R, = ((i,j): B$ does not vanish identically on D } 

and 

.R,(i, J, ;...; i,,j,) = fJ,\{(i, ,j,L G,,j,)l. 

It is clear that the cardinality of Q, U Q, is 2(m $ 2)(n + 2) - 2. From 19 
we also know that the dimension of S:(d,,) is 

dim S:(d,,) = 2(m + 2)(n + 2) - 5. (2.1 

Hence the collection 

.d = (Bfj: (i,j) E Q,) U {Bij: (i,j) E LIZ} 

must be linearly dependent on D. We will first show in Theorem 2.1, 
however, that .z?’ spans S:(d,,). Theorem 2.2 will give the three linearly 
dependent relationships satisfied by the spline functions in 9, and in 
Theorem 2.3 we will give criteria to determine which three elements can be 
deleted from .;Ip to give a (local) basis of S:(d,,,). 

THEOREM 2.1. The algebraic span of .9 is all of S:(A,,,). 

We will prove a stronger result, namely: the collection 

,~,=(Bt,Bf,:(i,j)E~,(m,n+l), 

(s,t)ELqm+ 1,n;mt l,n- l)} (2.2) 
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is linearly independent on D. Write 

F(X, y) = )J CijBt(X9Y) + C dijBfj(xTY) 

(i,j)EflI (idED 

where c~,~+~=O and d,+l,,=d,,,+I,,-,=O. We have to show that if 
F(X,JJ) = 0 for all (x, y) E D, then all the other Cu)S and d,‘s are equal to 
zero. Let 

D,= [i, i+ l] 0 [j- l,j] 

and assume that F z 0 on D,. Then using the equations 

F(i,j)=F(i,j- l)=F(i+ l,j- l)=F(i+ l,j) 

= D,F(i,j) = D,F(i,j - 1) 

= D,F(i + 1,j - 1) = D,F(i + l,j) = D,F(i,j) 

= D,F(i,j - 1) = D,F(i + 1,j - 1) 

= D,F(i + 1,j) = F(i + &j - 3) 

=F(i+f,j-i-:)=0, 

and the values in Fig. 2, we can arrive at the following linear System: 

ci-l,j-l 

ci,j- 1 

ci+ l,j- 1 

ci-l,j 

ci,j 

Ci+ lj 

ci j+l 

di:j- 2 

di+l,./-* 

di,j- 1 

di+l,j-l 

di,j 

di+l,j 

7 -4 lo- 

4 -3 6 

1 -2 2 

7 -3 9 

4 -2 5 

1 -1 1 

4-l 4 

-6 4 -9 

-3 3 -5 

-6 3 -8 

-3 2 -4 

-6 2 -7 

-3 1 -3 

“i+l,j+* 

d i+l.j-1 

di+l,j I (2.3) 
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This linear system can be transformed into the system 

ci-l,j-I- 
ci-l,j 

ci,j- I 

ci+l,j-l 

di.j-1 

di,j- 1 

di.j 

di+l,j-2 

di+l,j-1 

di+ l,.i 

di+z,j-1 

ci+ 1.j 

ci..i 

-6 -9 4- 

-3 -5 3 

-6 -8 3 

-6 -7 2 

7 2 -4 

4 6 -3 

1 2 -2 

7 9 -3 

4 5 -2 

1 1 -1 

4 4 -1 

-3 -3 1 

--3 -4 2 

di+*,j 
tit I,j+l 1 (2.4) 

ci,jt I 
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Now assume that F z 0 on D so that (2.3) and (2.4) hold for 
i = O,..., m - 1 andj= l,..., n. Hence, using (2.3) and (2.4) for all i and j, we 
have 

Cm-i,n-j+l=(3i+ l)~,,,+,-(i+j)d,,,,.~,+(4i+j)d,+,,. (25) 

d mtl-i.n-j= -3ic m,n+,+(i+j)d,+l,,-,-(4i+j-1)d,+l,, ’ 

for all i, j, where (m - i, n -j + 1) E Q, and (m + 1 - i, n -j) E .R,. Since 
c m,nt 1 =Lld-I =dmtl,n= 0, all the cij and d, are zero, or the collection 
.8, in (2.2) is linearly independent on D, completing the proof of the 
theorem. 

From the above result, we know that the spanning set 9 of Sk@,,,) must 
satisfy three dependent relationships. They are given by the following iden- 
tities. 

THEOREM 2.2. The bivariate spline functions in C2 satisfy the following 
identities : 

x Bt(& Y) - (i ,:I, Bfj(X, Y) = O, (2.6) 
(i,j)eR, 

2 (i+$)B:j(x,y)- x (i-+)Bi(x,y)=O, (2.7) 
(i..i)ER1 (i,j)ERZ 

2 (j-f)Bt(x,y)- x (j++)Bfj(x,y)=O (2.8) 
(i,j).efl, (i,j)Ea, 

where (x, y) E D. 
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To prove this theorem, we again prove a stronger result. Let VP be the 
“variation diminishing” operators that map C(D) into S:(d,,) defined by 

(fT)(x, Y> = c f(4.i) ej(x, Y) 
(i,j)ER P 

p = 1,2. Equations (2.6), (2.7), and (2.8) are consequences of the following 

LEMMA 2.1. Vp(f)=ffor allfE P, andp= 1,2. 

We remark that the above lemma does not hold for f(x, y) = x2, xy, and 
y*, and that for f(x, y) = 1 it was already observed by P. 0. Fredrickson in 
[ 71. Since a polynomial in ip, on a triangle with vertices A, B, C vanishes 
identically if its values at A, B, C, and (A + B + C)/3 and the values of its 
two first partial derivatives at A, B, and C are all equal to zero, the result 
follows by verifying that V’(f) -f, fE [Pi, satisfies these ten conditions on 
each triangular cell of the partition A,,,,. This can be shown by using the 
values given in Fig. 2. 

From Theorem 2.1, we know that the set .9 of 2(m + 2)(n + 2) - 2 locally 
supported functions spans the space S:(A,,) of bivariate cubic splines with 
dimension 2(m + 2)(n + 2) - 5. We also know that 9, is a basis of S:(A,,). 
In the following, we will give a criterion to determine in general which three 
functions could be deleted from .Q to give a basis for S:(A,,). This result is 
important in the study of dimensions of subspaces of S:(A,,) that satisfy 
certain boundary conditions as in [3] and in interpolation problems, etc. 

Let 

,9’(il J, ; i,, j,; i3,j3) 

= {B,$, Bz,: (i,j) E 0 (i j * i j * i j ) (s, t) E Q,}, 1 1, 1, 2, 2, 39 3 3 

.B'(i,, j, ; i, ,j, ; i, ,j3) 

= (BZ> B:,: (i, j) E Sz,, (s, t) E Q,(i, ,j, ; i,,j,; i, ,j3)L 

~‘(i,,j,;i2,j2;i3,j3) 

= {Bt, Bi,: (i,j) E fl,(i,,j,; i2,j2), (s, t)E fi,(i,,j,)/, 

and 

= {Bb, Bf,: (i,j) E R,(i,, j,), (s, t) E Qz(i2,j2; ixYj3)l- 

We have the following result. 

THEOREM 2.3. (a) For p= 1,2, LP’(i,,jl;i2,j2;i3,j3) is a basis of 
S:(A,,) if and only if the points (i,, j,), (i2, j2), and (i,, j,) are noncolinear. 
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(b) ,@‘(i, ,jI ; iz, j, ; i,, j,) is a basis of S:(A,,) if and only if (i, ,j,), 
(iz, j,), and (i, - {, j, + i) are noncolineur. 

(c) @“(iI ,j, ; i, ,j, ; i, J,) is a basis of S.:(A,,) ifund onlv tf (i, + i. 
j, - $), (iz, j2), and (i,, j,) are noncolineur. 

The results (b) and (c) above have simple consequences. namely: 

COROLLARY 2.1. (a) rf (il JJ and G, A are distinct but lie on the same 
grid line x = i, y = i, or x-y = i for some i. then for any (i3, j3), 
.P’(il,j,; i,,j,; i,, j,) is a basis of S:(A,,). 

(b) If (4 &I and (4 A> are distinct but lie on the same grid line x = i. 
y=i,orx-y=iforsomei, thenforuny(i,,j,),.z?*(i,,j,;i2,jZ;i3,j3)isu 
basis of S:(A,,). 

To prove Theorem 2.3, it is suffkient to verify the case p = 1. Let (iI, j,), 
(iz, jz), and (i,, j,) be noncolinear. That is, 

1 i, j, 
1 i, j, # 0. 

1 4 .A 

Hence. we also have 

1 i,++ j,-4 

1 i, + f j, - f f 0, 

1 i,+f j,-f 

so that from (2.6), (2.7), and (2.8), B!,,j,, B,!,j,. and Bf3,j3 can be written as 
linear combinations of the other B$‘s in .A?. Since .J8 spans S:(A,,) by 
Theorem 2.1, so does ~%‘~(i,, j, ; i,, j, ; i,, j, ), and since the cardinality of this 
set is the same as the dimension of S:(A,,), it is a basis of this spline space. 
Conversely, suppose that (il, jr), (i,, jz), and (i,, j,) are colinear. Let 

\‘ CijBt(X, .,V) + “ 
&R, Ci.jt;R, 

d,B;(x, y) = 0, (x, y) E D. (2.9) 

From the proof of Theorem 2.1, it follows that (2.9) is equivalent to 
the relationships (2.5). However, if Ci,,j, = Ci,,j, = Ci,,j, = O, where 

(4 - i,)(j, -j,) = (4 - M.& -jlh simple linear algebra shows that the first 
half of (2.5) with (m - i, n -j + 1) = (iI, jr),..., (i3,j3) has a nontrivial 
solution of (c~,~+ r, d, + ,,“- r, d, + r,,). This means that the collection 
d’(i, ,j, ; i, ,A ; i, ,j3) is linearly dependent and cannot be a basis of 

%CmJ. 
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The proof of Theorem 2.3(b), (c) is similar by using (2.5~(2.8) and 
elementary linear algebra. 

3. THE SPACE OF BIVARIATE QUARTIC SPLINES 

In this section we will discuss the bivariate quartic spline space S:(d,,). 
As discussed in Section 1, the degree 4 is the smallest integer d such that 
S&l,,) has a nontrivial locally supported function. However, unlike 
S@,,,), we will see that S&l,,) does not have a local basis. In fact the 
subspace of all functions which are restrictions on D of the locally supported 
ones has codimension 2(m + n). We begin by considering a quartic spline 
function B introduced by P. 0. Fredrickson [7] given in baricentric coor- 
dinates. (Note that there is a misprint in [7].) Note also that B is a box 
spline introduced by C. de Boor and K. Hollig [2]. The support of B, 
together with the grid-segments that divide B into polynomial pieces, is given 
in Fig. 3, where some vertices are labelled. The polynomial pieces of B on 
these labelled triangles in barycentric coordinates are: 

(edge) 

(interior) 

(center) 

RBD, = b3(b + 2d) 

R,,. = 2(b + c)’ - (b4 + c4) - 2(b3c + bC3) 

R,,c = 6 - 12(b* + bc + c*) + 8(b3 + c’) 

+ 12(b*c + bc*) - (b4 + c4) - 2(b3c + bc3). 

The other polynomial pieces are identical in barycentric coordinates 
depending on whether they are defined on the edge, interior, or center 
triangles. As in S:(d,,), we need explicit values of B. In Fig. 4, the vertices 
inside the support of B are labelled A i ,..., A,, and the values of B, D,B, 

FIGURE 3 
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AZ: (A, - ;-, - $ 0, +, 0) 

Aj: 
11 

(5, 3. - 
1 1 
a> 1, - 2, 0) 

Ah: (iv 0, 0, -2, 1, -2) 

A5: (A, - f, +, 1, - ;-, 0) 

A6: 
1 11 

(12, 6, 6. 0, >, 1 0) 

A,: 
1 

(12, 
11 1 

- a, 7, 0. - 2, 1) 

FIGURE 4 

D,B, D:B, D:,B, DZB, respectively, at these vertices are also given as 6- 
tuples. We also assume that A, is located at the origin. It is clear that the 
location of A, and the given values in Fig. 4 uniquely determine B. Next we 
consider 

Bij(x, y) = B(x - i, y -j), 

and the index set 

Q = { (i,j): B, does not vanish identically on D). 

Clearly, G= ((i,j)#(-1, n+ l), (m+ l,-l):i=-l,..., mf 1; j=-l,..., 
n + 1 } and the cardinality of a is (m + 3)(n + 3) - 2. Since we know that 

dim S:(d,,) = (m + 5)(n + 5) - 18 

(cf. [9] or, more generally, [5]), {Bij: (i, j) E Q} cannot be a spanning set of 
all of S&l,,). We have the following result. 

THEOREM 3.1. A basis of S:(A,,) is given by 

,~={Bij,(X-p)4,,(Y-q)4+,(X-~-rr)41: 

(i,j) E Q,p = 0 ,..., m - 1, q = 0 ,..., n - 1, 

and r = +I,..., m - 1 }. 

Since the cardinality of ,D is the same as the dimension of S:(A,,), it is 
sufficient to prove that .B is a linearly independent set on D. To do so, we 
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first note that a polynomial P in P, vanishes identically if and only if P and 
its first and second partial derivatives D,P, D,,P, D;P, D&P, and D:P, 
vanish at three noncolinear points. Let 

m-1 n-1 

F(X, v) = 2 bijBij + x ci(x - i)“, + C dj(Y -j>“, 

(i,i)ER i=O j=O 

m-1 

+ c atc?Y-t)4, 
I=--n 

vanish on [0, l] @ [n - 1, n]. Then by solving the equations 

F’(P, 4) = D,F(P, 9) = D,J’(p, 4) = D:F(P, 4) = D$F(P, 4) 

= D;F(p, q) = 0 

at the four vertices (0, IZ - l), (1, IZ - l), (1, n), (0, n) of the square [0, 1 ] @ 
[n - 1, n] and using the values in Fig. 4, it can be shown that 

b, = 0 for i = -l,..., 2 and j= n - 2,..., n + 1, 

(4 j) # (-1, n + 1) 

co = 0, do = 0, and a-,=0. 

Similarly, working on the squares [j,j+ l] @ [n-j- 1, 12 -j], j= I,..., 
p - 1 (where p: = min(m, n)), along the diagonal, and then on the squares 
[p,p+ l] @ [0, l] ,..., [m- l,m] @ [0, l] or the squares [m - 1, m] 0 
[n -p - 1, 12 -PI,..., [m- l,m]@ [0, l] depending onp=n or p=m, we 
have ci, dj, a, = 0 for all i, j, t. To prove that the rest of the b, are also zero 
from the assumption FE 0 on D, we simply work on the rest of the squares. 

As a consequence of the above theorem, we see that the proper subspace 

IS&l,,) := span{Bij: (i, j) E f2) 

is of dimension (m + 3)(n + 3) - 2, the cardinality of 0. It is also important 
to know if there are other locally supported splines that can be used in place 
of some of the basis elements (x -p)“, , (y - q): , (x -y - r)“, in the basis 
9 of S&l,,). The answer to this question is negative. To see this, we first 
note that IS@,,) can also be considered as a subspace of the space 

lot s&l, W) 

of all C* quartic bivaritate spline functions on R* with the grid 
partition d: x = i, y = i, x - y = i, i = . . . . -1, 0, l,..., which vanish identically 
outside some bounded sets containing D. A spline s in S&l,,) will be called 
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locally supported relative to D if s is the restriction on D of some function in 
lot Si(d, in’). We have the following result. 

THEOREM 3.2. lS:(A,,) is the space of all functions in S:(A,,) which 
are locally supported relative to D. Furthermore, {Bij: (i, j) E Q) is a basis of 

~%LJ~ 

In a private communication, Professor C. de Boor informed us that he and 
Professor K. Hollig have recently shown that even under a more general 
setting, every locally supported spline is a linear combination of the box 
splines. To prove our theorem, we need the following result which is related 
to the problem studied in [3]. Let a, b, c, d be integers with b - a, d - c > 4 
and E = [a, b] @ [c. d], and consider the subspace 

lot S;(A, E) 

of all functions in lot Si(A, R*) whose supports lie in E. We have the 
following: 

LEMMA 3.1. The space lot S:(A, E) is of dimension (b -a - 3) X 
(d - c - 3) and has a basis given by 

V = ( Bi,i: i = a + 2 ,.,., b - 2 and j = c + 2 ,..., d - 2 }. 

From Theorem 3.1, we already know that V is a linearly independent set 
cn D. Hence, it is sufficient to show that lot S:(A, E) has the correct 
dimension. To do so, we again use Theorem 3.1 to write every s in 
lot Si(A, E) as a linear combination of 

(Bi,,(x-p)l,(y-q)t,(x-y-r)l:i=a-1 ,..., b+l; 

j=c- 1 ,..., d+l;(i,j)#(a-l,d+l),(b+l,c-1); 

p = a ,..., b - 1; q = c,.. ., d - 1; r = a - d ,..., b - c - 1 I 

which is a linearly independent set on E. By solving the equations 
s(i, j) = D,s(i,j) = D,s(i, j) = D:s(i, j) = D$(i,j) = D:s(i, j) = 0 for (i, j) = 
(a - 1, P), (a, p), (b, p), (b + 1, P), (9, c - I>, (9, c>, (q74, and (a d + 11, 
where p = c - l,..., d + 1 and q = a + l,..., b - 1, s becomes a linear 
combination of $7. This completes the proof of the lemma. 

To prove Theorem 3.2, we note that if s is in lS:(A,,) it is the restriction 
on D of some function t in lot S:(A, R*). If the support of t lies in 
[a, b] @ [c, d], then by Lemma 3.1 t is in the linear span of g. Hence, s is in 
the linear span of .%‘, restricted on D. 
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4. FUNDAMENTAL SPLINES WITH GRID PARTITIONA 

As in the above section, let d be the grid partition of R2 consisting of the 
lines x = i, y = i, and x -y = i, i = . . . . -1, 0, l,.... The space of all functions 
in C’(lR*) whose restrictions on each of the triangular cells determined by 
the grid partition d are polynomials in P, will be denoted by 

S” = S$ = SZ(A, W) 

where d is the smallest integer satisfying 

Hence, So x Sy, S’ = S:, S2 = S:, S3 = Si,.... The space So is trivial while 
the spaces S’ and S* have been treated in the above sections. The splines B’ 
and B* in the space S’ and B in S* have “minimal support” as can be 
proved by using the conformality conditions satisfied by bivariate spline 
functions [4, lo], and they generate other locally supported spline functions 
as discussed in the above sections. Let us be more precise in the notation of 
“minimal support.” Every curve we consider from now on will be a 
polygonal Jordan curve consisting of segments of the grid partition A. The 
collection of all such curves will be denoted by IY A curve in r will be called 
a local supporting curve, and the region it encloses will be called a local 
support, of an s E S”, if s vanishes everywhere outside y. We will use the 
notation yi < y2, where yi, y2 E r, if yi # y2 and the region enclosed by y, is 
also enclosed by y2. Also y E r will be called a minimal local supporting 
curve for P, and the region it encloses will be called a minimal local 
support for S“, if it is a local supporting curve of some nontrivial s E S, and 
for every yi < y, y, is not a local supporting curve of any nontrivial s E P. 
If y is a minimal local supporting curve for S” and is a local supporting 
curve of a nontrivial B E S’, say, we will call B a fundamental spline of S”. 

Two curves y1 and y2 are said to be congruent to each other if yi can be 
obtained from y2 by some translation x -+ x - a and y +y - b. Hence, all 
curves in r that are congruent to some y form an equivalence class, and will 
be considered as the same curve y. Similarly, if two fundamental splines have 
the same (minimal) supporting curve and one is a constant multiple of the 
other, we will call them equivalent; and if all fundamental splines with the 
same supporting curve y are equivalent, we will say that y supports only 
“one” fundamental spline B, say. Let n@) denote the number of (equivalence 
classes of) minimal supporting curves for S”. We have the following result. 

PROPOSITION 4.1. n(0) = 1, n(1) = 2, n(2) = 1, and the minimal 
supporting curves for So, S’, S* denoted by yo, y:, y:, y2 are given in 
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(a) (b) Cc) Cd) 

FIGURE S 

Figs. 5a, b, c, d, respectively. Each of these curves supports only “one” 
fundamental spline, and all fundamental splines are of one sign and generate 
all other locally supported spline functions. 

In [6 1 we conjectured that the above result generalizes to any SW. 
p = 3, 4,...; and in particular, n(u) = 1 if p is even and n@) = 2 if ,u is odd. 
For even integers ,D the fundamental splines in S should be the box splines 
introduced by de Boor and Hollig (2 1. In a manuscript under preparation. 
de Boor and Hollig have also established many interesting results related to 
this conjecture. 
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