25,052 research outputs found

    Low-frequency sound source localization as a function of closed acoustic spaces

    Get PDF
    Further development of an emerging generalized theory of low-frequency sound localization in closed listening spaces is presented that aims to resolve the ambiguities inherent in previous research. The approach takes a robust set of equations based on source/listener location, reverberation time and room dimensions and tests them against a set of evaluation procedures to explore image location against theoretical expectations. Phantom imaging is germane to the methodology and its match within the theoretical framework is investigated. Binaural recordings are used to inspect a range of closed environments for localization clues each with a range of source-listener placements. A complementary series of small-scale listening tests are included for perceptual validation

    Localization and Rendering of Sound Sources in Acoustic Fields

    Get PDF
    DisertačnĂ­ prĂĄce se zabĂœvĂĄ lokalizacĂ­ zdrojĆŻ zvuku a akustickĂœm zoomem. HlavnĂ­m cĂ­lem tĂ©to prĂĄce je navrhnout systĂ©m s akustickĂœm zoomem, kterĂœ pƙiblĂ­ĆŸĂ­ zvuk jednoho mluvčího mezi skupinou mluvčích, a to i kdyĆŸ mluvĂ­ současně. Tento systĂ©m je kompatibilnĂ­ s technikou prostorovĂ©ho zvuku. HlavnĂ­ pƙínosy disertačnĂ­ prĂĄce jsou nĂĄsledujĂ­cĂ­: 1. NĂĄvrh metody pro odhad vĂ­ce směrĆŻ pƙichĂĄzejĂ­cĂ­ho zvuku. 2. NĂĄvrh metody pro akustickĂ© zoomovĂĄnĂ­ pomocĂ­ DirAC. 3. NĂĄvrh kombinovanĂ©ho systĂ©mu pomocĂ­ pƙedchozĂ­ch krokĆŻ, kterĂœ mĆŻĆŸe bĂœt pouĆŸit v telekonferencĂ­ch.This doctoral thesis deals with sound source localization and acoustic zooming. The primary goal of this dissertation is to design an acoustic zooming system, which can zoom the sound of one speaker among multiple speakers even when they speak simultaneously. The system is compatible with surround sound techniques. In particular, the main contributions of the doctoral thesis are as follows: 1. Design of a method for multiple sound directions estimations. 2. Proposing a method for acoustic zooming using DirAC. 3. Design a combined system using the previous mentioned steps, which can be used in teleconferencing.

    Spatial Identification Methods and Systems for RFID Tags

    Get PDF
    DisertačnĂ­ prĂĄce je zaměƙena na metody a systĂ©my pro měƙenĂ­ vzdĂĄlenosti a lokalizaci RFID tagĆŻ pracujĂ­cĂ­ch v pĂĄsmu UHF. Úvod je věnovĂĄn popisu současnĂ©ho stavu vědeckĂ©ho poznĂĄnĂ­ v oblasti RFID prostorovĂ© identifikace a stručnĂ©mu shrnutĂ­ problematiky modelovĂĄnĂ­ a nĂĄvrhu prototypĆŻ těchto systĂ©mĆŻ. Po specifikaci cĂ­lĆŻ disertace pokračuje prĂĄce popisem teorie modelovĂĄnĂ­ degenerovanĂ©ho kanĂĄlu pro RFID komunikaci. Detailně jsou rozebrĂĄny metody měƙenĂ­ vzdĂĄlenosti a odhadu směru pƙíchodu signĂĄlu zaloĆŸenĂ© na zpracovĂĄnĂ­ fĂĄzovĂ© informace. Pro Ășčely lokalizace je navrĆŸeno několik scĂ©náƙƯ rozmĂ­stěnĂ­ antĂ©n. Modely degenerovanĂ©ho kanĂĄlu jsou simulovĂĄny v systĂ©mu MATLAB. VĂœznamnĂĄ část tĂ©to prĂĄce je věnovĂĄna konceptu softwarově definovanĂ©ho rĂĄdia (SDR) a specifikĆŻm jeho adaptace na UHF RFID, kterĂĄ vyuĆŸitĂ­ bÄ›ĆŸnĂœch SDR systĂ©mĆŻ značně omezujĂ­. DiskutovĂĄna je zejmĂ©na problematika prĆŻniku nosnĂ© vysĂ­lače do pƙijĂ­macĂ­ cesty a poĆŸadavky na signĂĄl lokĂĄlnĂ­ho oscilĂĄtoru pouĆŸĂ­vanĂœ pro směơovĂĄnĂ­. PrezentovĂĄny jsou tƙi vyvinutĂ© prototypy: experimentĂĄlnĂ­ dotazovač EXIN-1, měƙicĂ­ systĂ©m zaloĆŸenĂœ na platformě Ettus USRP a antĂ©nnĂ­ pƙepĂ­nacĂ­ matice pro emulaci SIMO systĂ©mu. ZĂĄvěrečnĂĄ část je zaměƙena na testovĂĄnĂ­ a zhodnocenĂ­ popisovanĂœch lokalizačnĂ­ch technik, zaloĆŸenĂœch na měƙenĂ­ komplexnĂ­ pƙenosovĂ© funkce RFID kanĂĄlu. Popisuje ĂșzkopĂĄsmovĂ©/ĆĄirokopĂĄsmovĂ© měƙenĂ­ vzdĂĄlenosti a metody odhadu směru signĂĄlu. Oba navrĆŸenĂ© scĂ©náƙe rozmĂ­stěnĂ­ antĂ©n jsou v zĂĄvěru ověƙeny lokalizačnĂ­m měƙenĂ­m v reĂĄlnĂœch podmĂ­nkĂĄch.The doctoral thesis is focused on methods and systems for ranging and localization of RFID tags operating in the UHF band. It begins with a description of the state of the art in the field of RFID positioning with short extension to the area of modeling and prototyping of such systems. After a brief specification of dissertation objectives, the thesis overviews the theory of degenerate channel modeling for RFID communication. Details are given about phase-based ranging and direction of arrival finding methods. Several antenna placement scenarios are proposed for localization purposes. The degenerate channel models are simulated in MATLAB. A significant part of the thesis is devoted to software defined radio (SDR) concept and its adaptation for UHF RFID operation, as it has its specialties which make the usage of standard SDR test equipment very disputable. Transmit carrier leakage into receiver path and requirements on local oscillator signals for mixing are discussed. The development of three experimental prototypes is also presented there: experimental interrogator EXIN-1, measurement system based on Ettus USRP platform, and antenna switching matrix for an emulation of SIMO system. The final part is focused on testing and evaluation of described positioning techniques based on complex backscatter channel transfer function measurement. Both narrowband/wideband ranging and direction of arrival methods are validated. Finally, both proposed antenna placement scenarios are evaluated with real-world measurements.

    Emitter Location Finding using Particle Swarm Optimization

    Get PDF
    Using several spatially separated receivers, nowadays positioning techniques, which are implemented to determine the location of the transmitter, are often required for several important disciplines such as military, security, medical, and commercial applications. In this study, localization is carried out by particle swarm optimization using time difference of arrival. In order to increase the positioning accuracy, time difference of arrival averaging based two new methods are proposed. Results are compared with classical algorithms and Cramer-Rao lower bound which is the theoretical limit of the estimation error

    inTrack: High Precision Tracking of Mobile Sensor Nodes

    Get PDF
    Radio-interferometric ranging is a novel technique that allows for fine-grained node localization in networks of inexpensive COTS nodes. In this paper, we show that the approach can also be applied to precision tracking of mobile sensor nodes. We introduce inTrack, a cooperative tracking system based on radio-interferometry that features high accuracy, long range and low-power operation. The system utilizes a set of nodes placed at known locations to track a mobile sensor. We analyze how target speed and measurement errors affect the accuracy of the computed locations. To demonstrate the feasibility of our approach, we describe our prototype implementation using Berkeley motes. We evaluate the system using data from both simulations and field tests
    • 

    corecore