96 research outputs found

    Circumnavigation of an Unknown Target Using UAVs with Range and Range Rate Measurements

    Full text link
    This paper presents two control algorithms enabling a UAV to circumnavigate an unknown target using range and range rate (i.e., the derivative of range) measurements. Given a prescribed orbit radius, both control algorithms (i) tend to drive the UAV toward the tangent of prescribed orbit when the UAV is outside or on the orbit, and (ii) apply zero control input if the UAV is inside the desired orbit. The algorithms differ in that, the first algorithm is smooth and unsaturated while the second algorithm is non-smooth and saturated. By analyzing properties associated with the bearing angle of the UAV relative to the target and through proper design of Lyapunov functions, it is shown that both algorithms produce the desired orbit for an arbitrary initial state. Three examples are provided as a proof of concept.Comment: To appear in IEEE Conference on Decision and Control, 201

    Optimal control of nonlinear partially-unknown systems with unsymmetrical input constraints and its applications to the optimal UAV circumnavigation problem

    Full text link
    Aimed at solving the optimal control problem for nonlinear systems with unsymmetrical input constraints, we present an online adaptive approach for partially unknown control systems/dynamics. The designed algorithm converges online to the optimal control solution without the knowledge of the internal system dynamics. The optimality of the obtained control policy and the stability for the closed-loop dynamic optimality are proved theoretically. The proposed method greatly relaxes the assumption on the form of the internal dynamics and input constraints in previous works. Besides, the control design framework proposed in this paper offers a new approach to solve the optimal circumnavigation problem involving a moving target for a fixed-wing unmanned aerial vehicle (UAV). The control performance of our method is compared with that of the existing circumnavigation control law in a numerical simulation and the simulation results validate the effectiveness of our algorithm

    Bearing angle based cooperative source localization

    Full text link
    © 2014 IEEE. This paper deals with the cooperative source localization problem with the goal of having an accurate estimate of the coordinate of the source cooperatively by a group of unicycle-type mobile agents. Neither absolute positioning information nor a common sense of direction is shared by the agents. Each agent gets its estimate about the source's coordinate in its own local frame based on the bearing measurements about its neighbors (that may or may not include the source) together with its own linear and angular speed information. A continuous time estimation scheme and a distributed fusion scheme are proposed for this goal such that the source's relative coordinate can be estimated at any time by each agent no matter whether it can directly detect the source or not. The globally asymptotic convergence of the estimation scheme and the fusion scheme is rigorously analyzed. Simulation results are also provided to verify the effectiveness of the proposed algorithms

    Bearing rigidity theory and its applications for control and estimation of network systems: Life beyond distance rigidity

    Get PDF
    Distributed control and location estimation of multiagent systems have received tremendous research attention in recent years because of their potential across many application domains [1], [2]. The term agent can represent a sensor, autonomous vehicle, or any general dynamical system. Multiagent systems are attractive because of their robustness against system failure, ability to adapt to dynamic and uncertain environments, and economic advantages compared to the implementation of more expensive monolithic systems

    Target capture and station keeping of fixed speed vehicles without self-location information

    Get PDF
    The final publication is available at Elsevier via https://dx.doi.org/10.1016/j.ejcon.2018.06.003 © 2018. This manuscript version is made available under the CC-BY-NC-ND 4.0 license https://creativecommons.org/licenses/by-nc-nd/4.0/Target capture and station keeping problems for an autonomous vehicle agent have been studied in the literature for the cases where the position of the agent can be measured. Station keeping refers to moving the agent to a target whose distances are predefined from a set of beacons that can be stations or other agents. Here we study the target capture and station keeping problems for a nonholonomic vehicle agent that does not know its location and can measure only distances to the target (to the beacons for station keeping). This sensing limitation corresponds to consideration of unavailability of GPS and odometry in practical UAV settings. For each of the target capture and station keeping problems, we propose a control algorithm that uses only agent-target (agent-beacon for station keeping) range and range rate information. We show the stability and convergence properties of our control algorithms. We verified the performance of our control algorithms by simulations and real time experiments on a ground robot. Our algorithms captured the target in finite time in the experiments. Therefore, our algorithms are efficient in scenarios where GPS is unavailable or target identification by vision algorithms is unreliable but continuous agent-target range measurements are available.King Abdullah University of Science and Technolog

    Formation Control for Moving Target Enclosing via Relative Localization

    Full text link
    In this paper, we investigate the problem of controlling multiple unmanned aerial vehicles (UAVs) to enclose a moving target in a distributed fashion based on a relative distance and self-displacement measurements. A relative localization technique is developed based on the recursive least square estimation (RLSE) technique with a forgetting factor to estimates both the ``UAV-UAV'' and ``UAV-target'' relative positions. The formation enclosing motion is planned using a coupled oscillator model, which generates desired motion for UAVs to distribute evenly on a circle. The coupled-oscillator-based motion can also facilitate the exponential convergence of relative localization due to its persistent excitation nature. Based on the generation strategy of desired formation pattern and relative localization estimates, a cooperative formation tracking control scheme is proposed, which enables the formation geometric center to asymptotically converge to the moving target. The asymptotic convergence performance is analyzed theoretically for both the relative localization technique and the formation control algorithm. Numerical simulations are provided to show the efficiency of the proposed algorithm. Experiments with three quadrotors tracking one target are conducted to evaluate the proposed target enclosing method in real platforms.Comment: 8 Pages, accepted by IEEE CDC 202

    Autonomous vehicle guidance in unknown environments

    Get PDF
    Gaining from significant advances in their performance granted by technological evolution, Autonomous Vehicles are rapidly increasing the number of fields of possible and effective applications. From operations in hostile, dangerous environments (military use in removing unexploded projectiles, survey of nuclear power and chemical industrial plants following accidents) to repetitive 24h tasks (border surveillance), from power-multipliers helping in production to less exotic commercial application in household activities (cleaning robots as consumer electronics products), the combination of autonomy and motion offers nowadays impressive options. In fact, an autonomous vehicle can be completed by a number of sensors, actuators, devices making it able to exploit a quite large number of tasks. However, in order to successfully attain these results, the vehicle should be capable to navigate its path in different, sometimes unknown environments. This is the goal of this dissertation: to analyze and - mainly - to propose a suitable solution for the guidance of autonomous vehicles. The frame in which this research takes its steps is the activity carried on at the Guidance and Navigation Lab of Sapienza – Università di Roma, hosted at the School of Aerospace Engineering. Indeed, the solution proposed has an intrinsic, while not limiting, bias towards possible space applications, that will become obvious in some of the following content. A second bias dictated by the Guidance and Navigation Lab activities is represented by the choice of a sample platform. In fact, it would be difficult to perform a meaningful study keeping it a very general level, independent on the characteristics of the targeted kind of vehicle: it is easy to see from the rough list of applications cited above that these characteristics are extremely varied. The Lab hosted – even before the beginning of this thesis activity – a simple, home-designed and manufactured model of a small, yet performing enough autonomous vehicle, called RAGNO (standing for Rover for Autonomous Guidance Navigation and Observation): it was an obvious choice to select that rover as the reference platform to identify solutions for guidance, and to use it, cooperating to its improvement, for the test activities which should be considered as mandatory in this kind of thesis work to validate the suggested approaches. The draft of the thesis includes four main chapters, plus introduction, final remarks and future perspectives, and the list of references. The first chapter (“Autonomous Guidance Exploiting Stereoscopic Vision”) investigates in detail the technique which has been deemed as the most interesting for small vehicles. The current availability of low cost, high performance cameras suggests the adoption of the stereoscopic vision as a quite effective technique, also capable to making available to remote crew a view of the scenario quite similar to the one humans would have. Several advanced image analysis techniques have been investigated for the extraction of the features from left- and right-eye images, with SURF and BRISK algorithm being selected as the most promising one. In short, SURF is a blob detector with an associated descriptor of 64 elements, where the generic feature is extracted by applying sequential box filters to the surrounding area. The features are then localized in the point of the image where the determinant of the Hessian matrix H(x,y) is maximum. The descriptor vector is than determined by calculating the Haar wavelet response in a sampling pattern centered in the feature. BRISK is instead a corner detector with an associated binary descriptor of 512 bit. The generic feature is identified as the brightest point in a sampling circular area of N pixels while the descriptor vector is calculated by computing the brightness gradient of each of the N(N-1)/2 pairs of sampling points. Once left and right features have been extracted, their descriptors are compared in order to determine the corresponding pairs. The matching criterion consists in seeking for the two descriptors for which their relative distance (Euclidean norm for SURF, Hamming distance for BRISK) is minimum. The matching process is computationally expensive: to reduce the required time the thesis successfully explored the theory of the epipolar geometry, based on the geometric constraint existing between the left and right projection of the scene point P, and indeed limiting the space to be searched. Overall, the selected techniques require between 200 and 300 ms on a 2.4GHz clock CPU for the feature extraction and matching in a single (left+right) capture, making it a feasible solution for slow motion vehicles. Once matching phase has been finalized, a disparity map can be prepared highlighting the position of the identified objects, and by means of a triangulation (the baseline between the two cameras is known, the size of the targeted object is measured in pixels in both images) the position and distance of the obstacles can be obtained. The second chapter (“A Vehicle Prototype and its Guidance System”) is devoted to the implementation of the stereoscopic vision onboard a small test vehicle, which is the previously cited RAGNO rover. Indeed, a description of the vehicle – the chassis, the propulsion system with four electric motors empowering the wheels, the good roadside performance attainable, the commanding options – either fully autonomous, partly autonomous with remote monitoring, or fully remotely controlled via TCP/IP on mobile networks - is included first, with a focus on different sensors that, depending on the scenario, can integrate the stereoscopic vision system. The intelligence-side of guidance subsystem, exploiting the navigation information provided by the camera, is then detailed. Two guidance techniques have been studied and implemented to identify the optimal trajectory in a field with scattered obstacles: the artificial potential guidance, based on the Lyapunov approach, and the A-star algorithm, looking for the minimum of a cost function built on graphs joining the cells of a mesh over-imposed to the scenario. Performance of the two techniques are assessed for two specific test-cases, and the possibility of unstable behavior of the artificial potential guidance, bouncing among local minima, has been highlighted. Overall, A-star guidance is the suggested solution in terms of time, cost and reliability. Notice that, withstanding the noise affecting information from sensors, an estimation process based on Kalman filtering has been also included in the process to improve the smoothness of the targeted trajectory. The third chapter (“Examples of Possible Missions and Applications”) reports two experimental campaigns adopting RAGNO for the detection of dangerous gases. In the first one, the rover accommodates a specific sensor, and autonomously moves in open fields, avoiding possible obstacles, to exploit measurements at given time intervals. The same configuration for RAGNO is also used in the second campaign: this time, however, the path of the rover is autonomously computed on the basis of the way points communicated by a drone which is flying above the area of measurements and identifies possible targets of interest. The fourth chapter (“Guidance of Fleet of Autonomous Vehicles ”) stresses this successful idea of fleet of vehicles, and numerically investigates by algorithms purposely written in Matlab the performance of a simple swarm of two rovers exploring an unknown scenario, pretending – as an example - to represent a case of planetary surface exploration. The awareness of the surrounding environment is dictated by the characteristics of the sensors accommodated onboard, which have been assumed on the basis of the experience gained with the material of previous chapter. Moreover, the communication issues that would likely affect real world cases are included in the scheme by the possibility to model the comm link, and by running the simulation in a multi-task configuration where the two rovers are assigned to two different computer processes, each of them having a different TCP/IP address with a behavior actually depending on the flow of information received form the other explorer. Even if at a simulation-level only, it is deemed that such a final step collects different aspects investigated during the PhD period, with feasible sensors’ characteristics (obviously focusing on stereoscopic vision), guidance technique, coordination among autonomous agents and possible interesting application cases

    Adaptive Formation Control of Cooperative Multi-Vehicle Systems

    Get PDF
    The literature comprises many approaches and results for the formation control of multi-vehicle systems; however, the results established for the cases where the vehicles contain parametric uncertainties are limited. Motivated by the need for explicit characterization of the effects of uncertainties on multi-vehicle formation motions, we study distributed adaptive formation control of multi-vehicle systems in this thesis, focusing on different interrelated sub-objectives. We first examine the cohesive motion control problem of minimally persistent formations of autonomous vehicles. Later, we consider parametric uncertainties in vehicle dynamics in such autonomous vehicle formations. Following an indirect adaptive control approach and exploiting the features of the certainty equivalence principle, we propose control laws to solve maneuvering problem of the formations, robust to parametric modeling uncertainties. Next, as a formation acquisition/closing ranks problem, we study the adaptive station keeping problem, which is defined as positioning an autonomous mobile vehicle AA inside a multi-vehicle network, having specified distances from the existing vehicles of the network. In this setting, a single-integrator model is assumed for the kinematics for the vehicle AA, and AA is assumed to have access to only its own position and its continuous distance measurements to the vehicles of the network. We partition the problem into two sub-problems; localization of the existing vehicles of the network using range-only measurements and motion control of AA to its desired location within the network with respect to other vehicles. We design an indirect adaptive control scheme, provide formal stability and convergence analysis and numerical simulation results, demonstrating the characteristics and performance of the design. Finally, we study re-design of the proposed station keeping scheme for the more challenging case where the vehicle AA has non-holonomic motion dynamics and does not have access to its self-location information. Overall, the thesis comprises methods and solutions to four correlated formation control problems in the direction of achieving a unified distributed adaptive formation control framework for multi-vehicle systems
    • …
    corecore