3,640 research outputs found

    The essence of P2P: A reference architecture for overlay networks

    Get PDF
    The success of the P2P idea has created a huge diversity of approaches, among which overlay networks, for example, Gnutella, Kazaa, Chord, Pastry, Tapestry, P-Grid, or DKS, have received specific attention from both developers and researchers. A wide variety of algorithms, data structures, and architectures have been proposed. The terminologies and abstractions used, however, have become quite inconsistent since the P2P paradigm has attracted people from many different communities, e.g., networking, databases, distributed systems, graph theory, complexity theory, biology, etc. In this paper we propose a reference model for overlay networks which is capable of modeling different approaches in this domain in a generic manner. It is intended to allow researchers and users to assess the properties of concrete systems, to establish a common vocabulary for scientific discussion, to facilitate the qualitative comparison of the systems, and to serve as the basis for defining a standardized API to make overlay networks interoperable

    Knowledge Discovery on the Grid

    Get PDF

    DECENTRALIZED NETWORK BANDWIDTH PREDICTION AND NODE SEARCH

    Get PDF
    As modern computing becomes increasingly data-intensive and distributed, it is becoming crucial to effectively manage and exploit end-to-end network bandwidth information from hosts on wide-area networks. Inspired by the finding that Internet bandwidth can be represented approximately in a tree metric space, we focus on three specific research problems. First, we have designed a decentralized algorithm for network bandwidth prediction. The algorithm embeds the bandwidth information as distance in an edge-weighted tree, without performing full n-to-n measurements. No central and fixed infrastructure is required. Each joining node performs a limited number of sampling measurements. Second, we designed a decentralized algorithm to search for a centroid node that has high-bandwidth connections with a given set of nodes. The algorithm can find a centroid accurately and efficiently using the bandwidth data produced by the prediction algorithm. Last, we have designed another type of decentralized search algorithm to find a cluster of nodes that have high-bandwidth interconnections. While the clustering problem is NP-complete in a general graph, our algorithm runs in polynomial time with the bandwidth data predicted in a tree metric space. We provide proofs that our algorithms for bandwidth prediction and node search have perfect accuracy and high scalability when a network is modeled as a tree metric space. Also, experimental results with real-world data sets validate the high accuracy and scalability of our approaches

    EVNet: An Explainable Deep Network for Dimension Reduction

    Full text link
    Dimension reduction (DR) is commonly utilized to capture the intrinsic structure and transform high-dimensional data into low-dimensional space while retaining meaningful properties of the original data. It is used in various applications, such as image recognition, single-cell sequencing analysis, and biomarker discovery. However, contemporary parametric-free and parametric DR techniques suffer from several significant shortcomings, such as the inability to preserve global and local features and the pool generalization performance. On the other hand, regarding explainability, it is crucial to comprehend the embedding process, especially the contribution of each part to the embedding process, while understanding how each feature affects the embedding results that identify critical components and help diagnose the embedding process. To address these problems, we have developed a deep neural network method called EVNet, which provides not only excellent performance in structural maintainability but also explainability to the DR therein. EVNet starts with data augmentation and a manifold-based loss function to improve embedding performance. The explanation is based on saliency maps and aims to examine the trained EVNet parameters and contributions of components during the embedding process. The proposed techniques are integrated with a visual interface to help the user to adjust EVNet to achieve better DR performance and explainability. The interactive visual interface makes it easier to illustrate the data features, compare different DR techniques, and investigate DR. An in-depth experimental comparison shows that EVNet consistently outperforms the state-of-the-art methods in both performance measures and explainability.Comment: 18 pages, 15 figures, accepted by TVC
    corecore