84 research outputs found

    Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines

    Get PDF
    Image processing pipelines combine the challenges of stencil computations and stream programs. They are composed of large graphs of different stencil stages, as well as complex reductions, and stages with global or data-dependent access patterns. Because of their complex structure, the performance difference between a naive implementation of a pipeline and an optimized one is often an order of magnitude. Efficient implementations require optimization of both parallelism and locality, but due to the nature of stencils, there is a fundamental tension between parallelism, locality, and introducing redundant recomputation of shared values. We present a systematic model of the tradeoff space fundamental to stencil pipelines, a schedule representation which describes concrete points in this space for each stage in an image processing pipeline, and an optimizing compiler for the Halide image processing language that synthesizes high performance implementations from a Halide algorithm and a schedule. Combining this compiler with stochastic search over the space of schedules enables terse, composable programs to achieve state-of-the-art performance on a wide range of real image processing pipelines, and across different hardware architectures, including multicores with SIMD, and heterogeneous CPU+GPU execution. From simple Halide programs written in a few hours, we demonstrate performance up to 5x faster than hand-tuned C, intrinsics, and CUDA implementations optimized by experts over weeks or months, for image processing applications beyond the reach of past automatic compilers.United States. Dept. of Energy (Award DE-SC0005288)National Science Foundation (U.S.) (Grant 0964004)Intel CorporationCognex CorporationAdobe System

    Halide: a language and compiler for optimizing parallelism, locality, and recomputation in image processing pipelines

    Get PDF
    Image processing pipelines combine the challenges of stencil computations and stream programs. They are composed of large graphs of different stencil stages, as well as complex reductions, and stages with global or data-dependent access patterns. Because of their complex structure, the performance difference between a naive implementation of a pipeline and an optimized one is often an order of magnitude. Efficient implementations require optimization of both parallelism and locality, but due to the nature of stencils, there is a fundamental tension between parallelism, locality, and introducing redundant recomputation of shared values. We present a systematic model of the tradeoff space fundamental to stencil pipelines, a schedule representation which describes concrete points in this space for each stage in an image processing pipeline, and an optimizing compiler for the Halide image processing language that synthesizes high performance implementations from a Halide algorithm and a schedule. Combining this compiler with stochastic search over the space of schedules enables terse, composable programs to achieve state-of-the-art performance on a wide range of real image processing pipelines, and across different hardware architectures, including multicores with SIMD, and heterogeneous CPU+GPU execution. From simple Halide programs written in a few hours, we demonstrate performance up to 5x faster than hand-tuned C, intrinsics, and CUDA implementations optimized by experts over weeks or months, for image processing applications beyond the reach of past automatic compilers.United States. Dept. of Energy (Award DE-SC0005288)National Science Foundation (U.S.) (Grant 0964004)Intel CorporationCognex CorporationAdobe System

    Automatic scheduling of image processing pipelines

    Get PDF

    Automatic scheduling of image processing pipelines

    Get PDF

    Decoupling algorithms from schedules for easy optimization of image processing pipelines

    Get PDF
    Using existing programming tools, writing high-performance image processing code requires sacrificing readability, portability, and modularity. We argue that this is a consequence of conflating what computations define the algorithm, with decisions about storage and the order of computation. We refer to these latter two concerns as the schedule, including choices of tiling, fusion, recomputation vs. storage, vectorization, and parallelism. We propose a representation for feed-forward imaging pipelines that separates the algorithm from its schedule, enabling high-performance without sacrificing code clarity. This decoupling simplifies the algorithm specification: images and intermediate buffers become functions over an infinite integer domain, with no explicit storage or boundary conditions. Imaging pipelines are compositions of functions. Programmers separately specify scheduling strategies for the various functions composing the algorithm, which allows them to efficiently explore different optimizations without changing the algorithmic code. We demonstrate the power of this representation by expressing a range of recent image processing applications in an embedded domain specific language called Halide, and compiling them for ARM, x86, and GPUs. Our compiler targets SIMD units, multiple cores, and complex memory hierarchies. We demonstrate that it can handle algorithms such as a camera raw pipeline, the bilateral grid, fast local Laplacian filtering, and image segmentation. The algorithms expressed in our language are both shorter and faster than state-of-the-art implementations.National Science Foundation (U.S.) (Grant 0964004)National Science Foundation (U.S.) (Grant 0964218)National Science Foundation (U.S.) (Grant 0832997)United States. Dept. of Energy (Award DE-SC0005288)Cognex CorporationAdobe System

    Automated cache optimisations of stencil computations for partial differential equations

    Get PDF
    This thesis focuses on numerical methods that solve partial differential equations. Our focal point is the finite difference method, which solves partial differential equations by approximating derivatives with explicit finite differences. These partial differential equation solvers consist of stencil computations on structured grids. Stencils for computing real-world practical applications are patterns often characterised by many memory accesses and non-trivial arithmetic expressions that lead to high computational costs compared to simple stencils used in much prior proof-of-concept work. In addition, the loop nests to express stencils on structured grids may often be complicated. This work is highly motivated by a specific domain of stencil computations where one of the challenges is non-aligned to the structured grid ("off-the-grid") operations. These operations update neighbouring grid points through scatter and gather operations via non-affine memory accesses, such as {A[B[i]]}. In addition to this challenge, these practical stencils often include many computation fields (need to store multiple grid copies), complex data dependencies and imperfect loop nests. In this work, we aim to increase the performance of stencil kernel execution. We study automated cache-memory-dependent optimisations for stencil computations. This work consists of two core parts with their respective contributions.The first part of our work tries to reduce the data movement in stencil computations of practical interest. Data movement is a dominant factor affecting the performance of high-performance computing applications. It has long been a target of optimisations due to its impact on execution time and energy consumption. This thesis tries to relieve this cost by applying temporal blocking optimisations, also known as time-tiling, to stencil computations. Temporal blocking is a well-known technique to enhance data reuse in stencil computations. However, it is rarely used in practical applications but rather in theoretical examples to prove its efficacy. Applying temporal blocking to scientific simulations is more complex. More specifically, in this work, we focus on the application context of seismic and medical imaging. In this area, we often encounter scatter and gather operations due to signal sources and receivers at arbitrary locations in the computational domain. These operations make the application of temporal blocking challenging. We present an approach to overcome this challenge and successfully apply temporal blocking.In the second part of our work, we extend the first part as an automated approach targeting a wide range of simulations modelled with partial differential equations. Since temporal blocking is error-prone, tedious to apply by hand and highly complex to assimilate theoretically and practically, we are motivated to automate its application and automatically generate code that benefits from it. We discuss algorithmic approaches and present a generalised compiler pipeline to automate the application of temporal blocking. These passes are written in the Devito compiler. They are used to accelerate the computation of stencil kernels in areas such as seismic and medical imaging, computational fluid dynamics and machine learning. \href{www.devitoproject.org}{Devito} is a Python package to implement optimised stencil computation (e.g., finite differences, image processing, machine learning) from high-level symbolic problem definitions. Devito builds on \href{www.sympy.org}{SymPy} and employs automated code generation and just-in-time compilation to execute optimised computational kernels on several computer platforms, including CPUs, GPUs, and clusters thereof. We show how we automate temporal blocking code generation without user intervention and often achieve better time-to-solution. We enable domain-specific optimisation through compiler passes and offer temporal blocking gains from a high-level symbolic abstraction. These automated optimisations benefit various computational kernels for solving real-world application problems.Open Acces
    • …
    corecore