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Abstract

This thesis focuses on numerical methods that solve partial differential
equations. Our focal point is the finite difference method, which solves
partial differential equations by approximating derivatives with explicit fi-
nite differences. These partial differential equation solvers consist of stencil
computations on structured grids. Stencils for computing real-world practi-
cal applications are patterns often characterised by many memory accesses
and non-trivial arithmetic expressions that lead to high computational costs
compared to simple stencils used in much prior proof-of-concept work. In
addition, the loop nests to express stencils on structured grids may often be
complicated. This work is highly motivated by a specific domain of stencil
computations where one of the challenges is non-aligned to the structured
grid (”off-the-grid”) operations. These operations update neighbouring
grid points through scatter and gather operations via non-affine memory
accesses, such as A[B[i]]. In addition to this challenge, these practical
stencils often include many computation fields (need to store multiple grid
copies), complex data dependencies and imperfect loop nests.

In this work, we aim to increase the performance of stencil kernel
execution. We study automated cache-memory-dependent optimisations
for stencil computations. This work consists of two core parts with their
respective contributions.

The first part of our work tries to reduce the data movement in stencil
computations of practical interest. Data movement is a dominant factor
affecting the performance of high-performance computing applications.
It has long been a target of optimisations due to its impact on execution
time and energy consumption. This thesis tries to relieve this cost by
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applying temporal blocking optimisations, also known as time-tiling, to
stencil computations. Temporal blocking is a well-known technique to
enhance data reuse in stencil computations. However, it is rarely used in
practical applications but rather in theoretical examples to prove its efficacy.
Applying temporal blocking to scientific simulations is more complex.
More specifically, in this work, we focus on the application context of
seismic and medical imaging. In this area, we often encounter scatter and
gather operations due to signal sources and receivers at arbitrary locations
in the computational domain. These operations make the application of
temporal blocking challenging. We present an approach to overcome this
challenge and successfully apply temporal blocking.

In the second part of our work, we extend the first part as an automated
approach targeting a wide range of simulations modelled with partial
differential equations. Since temporal blocking is error-prone, tedious
to apply by hand and highly complex to assimilate theoretically and
practically, we are motivated to automate its application and automatically
generate code that benefits from it. We discuss algorithmic approaches
and present a generalised compiler pipeline to automate the application of
temporal blocking. These passes are written in the Devito compiler. They
are used to accelerate the computation of stencil kernels in areas such as
seismic and medical imaging, computational fluid dynamics and machine
learning. Devito is a Python package to implement optimised stencil
computation (e.g., finite differences, image processing, machine learning)
from high-level symbolic problem definitions. Devito builds on SymPy
and employs automated code generation and just-in-time compilation to
execute optimised computational kernels on several computer platforms,
including CPUs, GPUs, and clusters thereof.

We show how we automate temporal blocking code generation without
user intervention and often achieve better time-to-solution. We enable
domain-specific optimisation through compiler passes and offer temporal
blocking gains from a high-level symbolic abstraction. These automated
optimisations benefit various computational kernels for solving real-world
application problems.
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Chapter 1

Introduction

Increasing the performance of numerical methods for partial differential
equations is challenging. Cache-related optimisations are tedious to apply
by hand. This task is even more challenging when targeting real-world
problems. By raising the abstraction level, we show how to apply cache
optimisations for various partial differential equations automatically.

1.1. Overview

Numerous scientific fields, including computational fluid dynamics, seis-
mic and medical imaging, computational electromagnetics, finance, epi-
demic spread modelling, and others employ partial differential equations
to model phenomena. Numerical techniques, such as the finite differ-
ence, finite element and finite volume method, are widely employed to
approximate the solutions for these phenomena.

Structured grids, also referred to as structured meshes, are employed
to discretise the computational domain. The solution is approximated
by applying suitable numerical operations, or kernels, to the points or
cells of the grid. On clusters of multi-core processor nodes, usually, a
kernel is executed in a shared-memory parallel fashion in a node. At the
same time, distributed-memory parallelism is employed to decompose the
solution domain to different nodes or processors. This is a widely-adopted
execution model for many real-world applications and frameworks.

When applying numerical kernels, we aim to compute simulations:

1. within a specific time limit, to have answers at a specific point in time
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2. within a specific margin of adequate accuracy to be confident about
the reliability of the answers

To get more reliable answers, we could try some obvious solutions, such
as increasing the discretisation order for which we solve partial differential
equations or increasing the grid resolution. Higher discretisation order
leads to longer execution times as mathematical expressions get more
complex to compute. The higher the grid resolution, the higher the number
of grid points in which the equation domain must be discretised. The
equation domain needs to be discretised into a significant number of
points to obtain a satisfactory solution approximation. This number is
usually of the order of billions, as in Bauer et al. [2015].

Nevertheless, most simulations often have a strict time or resource limit
to yield results. Obviously, to increase accuracy, we often compromise by
spending more resources, time included.

Weather forecasts often use the above compromise to trade off accuracy
for prediction range. Scientists aim for high accuracy for short-range
forecasts, less accuracy for medium-range forecasts and even less accuracy
for longer-range predictions. More specifically, in the case of the UK Met
Office, weather forecasting is updated every 60 minutes [Brown et al., 2012]
for a detailed forecast of the next 6 hours. Seismic imaging mandates
high accuracy within a reasonable cost. The cost is valued at millions of
US dollars for an oil and gas company to request 3D acquisition of 3D
seismic data. The cost of processing data is around an order of magnitude
less than acquiring it. Naturally, state-of-the-art methods focus more on
data reprocessing than new acquisitions. Consequently, inefficient kernels
may have a high impact on incurred costs. Medical imaging also requires
fast results and high accuracy for evident reasons of accurate medical
predictions. It is expensive, and results are needed as soon as possible to
protect lives. The work of Guasch et al. [2019] presents an example for
brain and chest imaging. Overall, efficient kernels have a direct scientific
payoff in higher resolution and, therefore, more accurate forecasts in less
time.

This work explores automated performance optimisations of numerical
methods based on finite-difference structured grids. More specifically, we
explore optimisations related to efficiently scheduling computations to
benefit from reusing data stored in the cache.
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The performance optimisation of numerical methods based on structured
grids is a challenging task that requires knowledge of the computational
domain and expertise in computer architecture and software engineer-
ing. This burden can be relieved by raising the abstraction level. We
express applications through domain-specific languages while automating
optimisations through high-level compilers and run-time support. With
high-performance, structured, and extensible software being developed,
researchers maximise their productivity.

This thesis shows that we can apply advanced performance optimisations
without user intervention by using domain-specific languages to express
a class of numerical methods based on structured grids. Compilers often
improve the performance of computational kernels by translating the prob-
lem specification into low-level code (e.g., C) and applying sophisticated
transformations. Compilers abstract away these transformations from the
user side. In a world of low-quality or non-optimising compilers, the user
would need to manually write, specialise, and tune each application for
each architecture. This, however, would be unrealistic, as all fundamental
concerns of software engineering, including maintainability, extendibility,
and modularity, would be compromised.

As this thesis shall demonstrate, improving the performance of appli-
cations via domain-specific compiler optimisations delivers significant
benefits:

1. Simplicity: The high-level symbolic syntax captures both the program
structure and domain properties, facilitating the compiler’s job.

2. Portability: The user can write once and run everywhere. Multiple
platforms can be supported without requiring user changes in the
code written in the domain-specific language. The compiler drives
the code generation according to the target architecture.

3. Separation of concerns. Application specialists focus on modelling
applications using a symbolic notation close to the mathematics
of textbooks. In contrast, performance optimisation is hidden in
the lower abstraction layers where computer scientists can focus on
their domain and ignore the higher levels of mathematics or physics.
Productivity in interdisciplinary teams is improved.
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1.2. Thesis outline, state-of-the-art and contributions

1.2.1. Thesis Outline

This section briefly introduces the outline of this thesis and familiarises
the reader with the class of problems that this thesis is focused on and the
contributions offered.

This thesis focuses on applying temporal blocking, a cache locality opti-
misation, to stencil computations that form part of expensive pipelines in
seismic and medical imaging. Temporal blocking is complicated to apply
manually, and we aim to generalise it as an automated optimisation pass
within the Devito Domain-Specific Language and compiler framework.
Practical simulations in imaging problems differentiate from standard sten-
cil kernels as they usually have additional complexities mainly stemming
from the application domain. These complexities stem from sources inject-
ing waves and receivers that collect traces in positions not aligned to the
structured finite-difference grid.

1.2.2. Related work

This section positions the context of the related work within the more
general scientific topics discussed in this thesis. Here we only briefly refer
to the related work that has influenced our work, and we mainly categorise
this work into three parts:

1. We are working within a Devito [Luporini et al., 2020], a DSL and
compiler framework that aims to automate the solution of PDEs and
apply automated optimisations. We also discuss other frameworks
that aim to solve PDEs from high-level abstractions and help facilitate
optimisation passes as in Rathgeber et al. [2017], Reguly et al. [2018],
Jacobs et al. [2017], Balay et al. [2015], Ragan-Kelley et al. [2017].
These frameworks and others will be discussed in more detail in
Section 2.2.2.

2. Secondly, we are working on cache-related optimisations for stencil
computations that stem from solving PDEs through the FD method.
Since we focus on temporal blocking, we are reviewing the state
of the art in applying temporal blocking optimisations as in Won-
nacott [2000], Guohua Jin et al. [2001], Wonnacott [2004], Wellein
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et al. [2009], Strzodka et al. [2011], we specially discuss the wavefront
method [Yount and Duran, 2016], and additionally, more sophisti-
cated variants such as diamond temporal blocking [Bertolacci et al.,
2015, Bandishti et al., 2012, Malas et al., 2015, Muranushi and Makino,
2015, Levchenko and Perepelkina, 2017, Akbudak et al., 2020] and
Wang and Chandramowlishwaran [2020]. Finally, in Table 2.2, we will
be summarising a number of frameworks based on their attributes.
More details on stencil-related frameworks and their optimisation
can be found in Sections 2.4.2, 2.4.5 and 3.1.

3. Since we are aiming to automate temporal blocking within larger
frameworks, as in answering how past research tried to automate
works from item 2 in frameworks such as the ones mentioned in item
1. Notable work on automating the application of temporal blocking
variants within larger frameworks can be found in Holewinski et al.
[2012], Yount et al. [2017], Bertolacci et al. [2015], Kuroda et al. [2017]
and others. More related work and discussion can be found in Section
4.2.1.

Again, here we only aim to provide a ”map” of the related work in
this thesis, and we kindly recommend that the reader focuses on the
corresponding sections in every Chapter.

1.2.3. Thesis Contributions

Summarising, this thesis offers original contributions in two areas:

1. the application of temporal blocking or time tiling to a class of non-trivial
finite difference kernels involving sources and receivers - operators
that inject and interpolate signals at points not aligned with the grid.

2. the generalisation of temporal blocking as an automated compiler trans-
formation, whose aim is to improve data locality in time-stepping
iterative solvers and benefit performance

Both topics span the following research directions:

• automating temporal blocking as a loop transformation for a broad
scope of PDE-dominated solvers expressed through a high-level DSL
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• exploring temporal blocking effectiveness as a hardware-agnostic
transformation, evaluating it on a number of CPUs with different
characteristics

• providing infrastructure towards facilitating the adoption of other
temporal blocking schemes such as split or diamond temporal block-
ing

The thesis comprises five chapters, including the present introductory
chapter and the conclusions. Chapter 2 establishes the foundation for
the contributions in the subsequent chapters. It includes the necessary
knowledge to familiarise the reader with the topic of this thesis and refers
to the state-of-the-art related work from the literature. The essential theory
of the finite difference method is discussed, and the transition from PDEs
to stencils is presented. We refer to the frameworks that facilitate this
transition to stencils. Afterwards, we present stencil-related optimisations,
focusing specifically on loop blocking. These optimisations are demanding
and challenging to apply by hand. In the last decade, notable work
has been done to automate these optimisations for many reasons, which
will be discussed later. The frameworks that work towards automated
optimisations are presented and discussed.

Chapters 3 and 4, which respectively treat the aforementioned topics 1
and 2, represent the core contributions of this thesis, as detailed next:

Chapter 3 In this chapter, we present a scheme to enable temporal blocking
to finite-difference stencil kernels with the presence of sparse non-
aligned to the structured grid operators [Bisbas et al., 2021]. These
kernels are common when modelling wave-propagation kernels that
require the presence of scattering (sources that emit waves) and gath-
ering operations (receivers that interpolate values). These operators
are non-trivial, and their inherent structure makes applying temporal
blocking schemes such as wavefront temporal blocking challenging.
This work was co-authored by Fabio Luporini (Imperial College Lon-
don, Devito Codes Ltd.); Mathias Louboutin (Georgia Tech, Atlanta,
USA); Rhodri Nelson (Imperial College London); Gerard J. Gorman
(Imperial College London) and supervised by Paul H.J. Kelly (Im-
perial College London). This thesis’s author entirely performed the
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algorithm’s design and implementation to enable temporal blocking
for sparse operations non-aligned to the structured grid.

Chapter 4 We extend and complement the work [Bisbas et al., 2021] pre-
sented in Chapter 3 to fully automating temporal blocking as a
compiler pass in the Devito DSL Luporini et al. [2020]. Users can
benefit from the enhanced cache locality of temporal blocking with-
out writing this technique’s manually tedious and error-prone code
structures. We present experimental results showing performance
gains for various PDE operators on several CPUs.

This thesis advances state-of-the-art automated cache optimisations by
introducing a generalised way to automate temporal blocking code gen-
eration. We exploit compiler technology to automate new performance
optimisations for structured grid computations. We emphasise stencil ker-
nels deriving from the finite difference method and automatically produced
through Devito.

1.3. Dissemination

The work implemented for this thesis is released under open-source li-
censes. The underlying theory has been exposed to the scientific commu-
nity through the following publications and presentations:

Publications From this thesis derives one main publication; a further pub-
lication is planned for the most recent achievements in automated
temporal blocking.

• G. Bisbas, F. Luporini, M. Louboutin, R. Nelson, G. J. Gorman,
and P.H.J. Kelly. Temporal blocking of finite-difference stencil oper-
ators with sparse “off-the-grid” sources (IPDPS), 2021 (Bisbas et al.
[2021]). Available online. This conference paper, presented in
Chapter 3, describes the work on scheduling temporal blocking
for non-aligned to the structured grid operators.

The author of this thesis has also been involved in other works which
do not directly contribute to the thesis.

7

https://ieeexplore.ieee.org/abstract/document/9460483/


• Mathias Louboutin, Fabio Luporini, Philipp Witte, Rhodri Nel-
son, George Bisbas, Jan Thorbecke, Felix J. Herrmann, and
Gerard Gorman. 2020. Scaling through abstractions high-
performance vectorial wave simulations for seismic inversion
with Devito. (2020). Available online

• Rhodri Nelson, Fabio Luporini, Mathias Louboutin, George
Bisbas, Gerard Gorman (2020). TheMatrix: An automated cross-
platform benchmarking suite. Submitted to The Journal of Open
Source Software, Available online

Presentations A number of formal and informal presentations were given
at various conferences, workshops, and meetings. The most relevant,
in chronological order, are:

• G. Bisbas, F. Luporini, M. Louboutin, R. Nelson, G. J. Gorman,
and P.H.J. Kelly. Temporal blocking of finite-difference stencil oper-
ators with sparse “off-the-grid” sources (IPDPS), 2021 (Bisbas et al.
[2021]). Oral presentation, IPDPS 2021 (IPDPS21). [Video]

• Accelerating real-world stencil computations using temporal block-
ing: handling sparse sources and receivers. Poster presentation,
Supercomputing Conference 2019 (SC19). [Poster]

• G. Bisbas, F. Luporini, M. Louboutin, R. Nelson, G. Gorman,
P.H.J. Kelly Temporal blocking for wave propagation with sparse off-
the-grid sources Presented at Rice Oil and Gas HPC (OGHPC
2021) conference. [Slides] [Video]

• G. Bisbas, F. Luporini, M. Louboutin, R. Nelson, G. Gorman,
P.H.J. Kelly Temporal blocking of finite-difference stencil operators
with sparse “off-the-grid” sources Presented at the 21st Workshop
on Compilers for Parallel Computing (CPC21, Porto) conference.

• Temporal blocking of finite-difference stencil operators with sparse non-
grid-aligned sources and receivers in Devito Presented at Domain-
Specific Languages in High-Performance Computing 2020. [Slides]
[Video]

• Automated Temporal Blocking in the Devito Compiler Presented at
Stencil Computation for Scientific Applications MinisymposIum,
held with SIAM CSE23
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In preparation The following work is under preparation, and we aim to
submit it in the near future. It is mostly the work described in
Chapter 4.

• G. Bisbas, F. Luporini, G. J. Gorman, and P.H.J. Kelly. Automated
temporal blocking code generation from high-level abstractions, 202x.

Software The research described in this thesis has contributed towards
improving the Devito framework.

• Devito, GitHub repository [Luporini et al., 2021]
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Chapter 2

Background and Related Work

This chapter establishes the necessary scientific background for the main
chapters of this thesis. In Section 2.1, we present the mathematical theory
establishing the finite difference (FD) method. We discuss the theory of
how the FD method lowers the solution of partial differential equations to
stencil kernels. Some of the most commonly used examples for educational
purposes are presented to the reader.

In Section 2.2 we use the Devito framework to model these partial
differential equation problems and automatically generate high-performing
code. We primarily present FD software abstractions used for solving
partial differential equations, however we also briefly present a few FE,
FV and other frameworks. These abstractions may have a lower-level API
compared to Devito. By lower-level APIs, we describe those APIs that are
closer to the final generated C code. The level of an API, may be relative
to the framework, as an abstraction in some framework may be either an
IR description or DSL anstraction. For this reason we distinguish them in
categories based on the semantics they describe.

The next step for the efficient solution of partial differential equations is
accelerating their execution. Several techniques facilitate this, one of the
most prominent ones being cache optimisations. The following Section
2.3 is focused on a subset of these optimisations, namely cache blocking,
and more specifically in temporal blocking, which will be discussed in
Section 2.3.3. We focus on conventional and advanced loop blocking
techniques. We briefly discuss other non-cache-related loop optimisations.
We observe that manually handling these optimisations is challenging;
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thus, automating them is essential. For this purpose, several frameworks
have been developed.

Most of the frameworks presented in subsections 2.2.2 and 2.2.3 have
machinery to efficiently lower the high-level DSL specification to machine
executable code. In addition, some tools primarily focus on applying and
automating optimisations at different levels of abstraction. In Section
2.4, we review these frameworks and the state-of-the-art literature in
performance optimisation, focusing on frameworks that aim to automate
compiler optimisations. We present automatically generated optimised
code from Devito and discuss domain-specific optimisations that influenced
this work and tools supporting a great variety of optimisations.

Finally, in Section 2.5, we briefly refer to the terminology adopted
throughout the thesis.

2.1. The Finite Difference Method

The finite difference method (FDM) [LeVeque, 2007, Smith, 1985] is used
in various domains to approximate the solution of partial differential
equations (henceforth, PDEs). It helps solve various linear, non-linear,
time-dependent and independent problems. It is considered one of the
oldest and simplest methods to solve differential equations dating back to
the 18th century in the works of L. Euler and C. Runge. Scientists started
to use finite difference methods more heavily in the early 1950s. At the
same time, their wider adoption was prompted by the development of
computer systems that offered a pathway to solve simulation problems
more efficiently. Nowadays, FDM is considered one of the most common
approaches to numerical solutions of PDEs, along with finite element
methods [Zienkiewicz et al., 1977]. Both methods apply to boundary value
problems. FDM is mostly used for problems with regular geometries and
simpler boundary conditions. In these cases, FDM is the recommended
approach and can provide efficient solutions. FEM can handle better
irregular geometries, i.e. complex shapes more naturally [Collatz, 2012].

Over the last decades, the accuracy, stability and convergence of the
FDM method have been firmly established. In this Chapter, we review the
essential theoretical background for understanding the contributions in
Chapters 3 and 4. The content and the notation used in this section are
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inspired by LeVeque [2007], Langtangen and Linge [2017], Smith [1985],
and Peirce [2018]. For a more comprehensive review of the subject, the
reader is invited to refer to Levy and Lessman [1992] and Thomas [2013].

2.1.1. Finite Difference Approximations

Finite difference methods approximate solutions to differential equations
(henceforth DE). This solution is a discrete approximation to the DE and
should satisfy a given relationship between any expression of derivatives
defined over some given region of space and time, with boundary con-
ditions along the edges of this domain and initial conditions along the
domain [LeVeque, 2007]. Usually, this is a complex problem, and finding
an analytic formula for the solution is a challenging task that may even
be impossible. By replacing the derivatives in the differential equations
with finite difference approximations, we yield a large but finite algebraic
system of equations. This system can then be solved numerically.

We approximate a function’s derivatives by using only values of the
function itself at discrete points. We will now present how to derive simple
one-sided and centered approximations.

Let f (x) be a one-variable function defined over x ∈ X assumed to be
smooth. Being smooth means that f (x) has continuous derivatives, and
each derivative is a well-defined bounded function over a domain X′ ⊆ X
that contains a particular point of interest x̄ ∈ X′. Let us approximate f ′(x̄)
by finite differences using only values of f at a finite number of points near
x.

We start with a one-sided approximation to f ′ since f is evaluated only
at values of x ≥ x̄ for some small value of h.

∆+ f (x̄) ≡ f (x̄ + h)− f (x̄)
h

(2.1)

This is motivated by the standard definition of the derivative as the
limiting value of this expression as h → 0. Note that ∆+ f (x̄) is the slope
of the line interpolating f at the points x̄ and x̄ + h (see Figure 2.1).

The expression 2.1 is a one-sided approximation to f ′ since f is evaluated
only at values of x ≥ x̄. Another one-sided approximation would be

∆− f (x̄) ≡ f (x̄)− f (x̄ − h)
h

(2.2)
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Figure 2.1.: Various approximations to f ′(x̄) interpreted as the slope of secant lines.
Adapted and edited from LeVeque [2007]

Both 2.1 and 2.2 are first order accurate approximations to f ′(x̄). First-
order accurate means that the size of the error is roughly proportional to h
itself.

Other than one-sided approximations, we can use the centered approxi-
mation:

∆0 f (x̄) ≡ f (x̄ + h)− f (x̄ − h)
2h

=
1
2
(∆+ f (x̄) + ∆− f (x̄)) (2.3)

The centered approximation is the slope of the line interpolating f at
x̄ − h and x̄ + h and is simply the average of the two one-sided approxi-
mations 2.1, 2.2. From Figure 2.1, it should be clear that we would expect
∆0 f (x̄) to give a better approximation than either of the one-sided approx-
imations. This gives a second-order accurate approximation as the error
is proportional to h2. Since h → 0, h2 is much smaller than the error h in
each first-order approximation.

By approximating using more points, we can increase the order of
accuracy. We briefly refer to a third-order accurate approximation:

∆3u(x̄) ≡ 1
6h

[2u(x̄ + h) + 3u(x̄)− 6u(x̄ − h) + u(x̄ − 2h)] (2.4)

The error in the third-order accurate approximation is proportional to
h3 when h → 0 is small. Assuming C is a constant and p is the order of
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accuracy if we approximate with even more points, the error follows:

E(h) ≈ Chp,

then

log |E(h)| ≈ log |C|+ p log h.

So on a log-log scale, the error behaves linearly with a slope equal to p.
An example of deriving the size of errors in finite difference approxima-

tions, as well as the log-log scale is shown in Appendix A.1.

2.1.2. Derivation from Taylor’s polynomial

This subsection will use Taylor’s theorem to derive finite difference approx-
imations and look into their truncation errors. We start by trying to derive
Equation 2.1 by using Taylor series. The derivative of a function f at the
point x is defined as the limit of an approximation of the derivative f ′(x).
The smaller the h, the better the approximation of the derivative of f is:

f ′(x) = lim
h→0

f (x + h)− f (x)
h

(2.5)

We will now use the Taylor series to derive an appropriate formula for a
finite difference approximation to f ′(x̄) based on some given set of points.
We start by expanding each function value of f in a Taylor series about the
point x̄. This expansion is considered a standard approach to analysing the
error in a finite difference approximation. Taylor’s theorem with remainder
gives the following Taylor series expansion:

f (x + h) = f (x) + h f ′(x) + h2 f ′′(ξ)
2!

(2.6)

where ξ ∈ (x, x + h). Rearranging terms we get:

f (x + h)− f (x)
h

− f ′(x) = h
f ′′(ξ)

2
(2.7)

Equation 2.7 shows that the error is proportional to h to the power of 1,

so
f (x + h)− f (x)

h
is said to be a ”first-order“ approximation (Similar to

2.1, 2.2).
If h > 0 is a finite (as opposed to infinitesimal) positive number, then:
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f (x + h)− f (x)
h

(2.8)

is called the first-order or O(h) forward difference of f ′(x) as in Equation
2.1. By combining different Taylor series expansions, we can obtain ap-
proximations of f ′(x) of various orders. For instance, subtracting the two
expansions:

f (x + h) = f (x) + h f ′(x) + h2 f ′′(x)
2! + h3 f ′′′(ξ1)

3! , ξ1 ∈ (x, x + h)
f (x − h) = f (x)− h f ′(x) + h2 f ′′(x)

2! − h3 f ′′′(ξ2)
3! , ξ2 ∈ (x − h, x)

gives

f (x + h)− f (x − h) = 2h f ′(x) + h3 ( f ′′′ (ξ1) + f ′′′ (ξ2))

6

so that

f (x + h)− f (x − h)
2h

− f ′(x) = h2 ( f ′′′ (ξ1) + f ′′′ (ξ2))

12

Hence
f (x + h)− f (x − h)

2h
is an approximation of f ′(x) whose error is

proportional to h2. It is called the second-order or O(h2) centered difference
approximation of f ′(x) as in Equation 2.3

If we use expansions with more terms, higher-order approximations can
be derived, e.g. consider

f (x + h) = f (x) + h f ′(x) + h2 f ′′(x)
2!

+ h3 f ′′′(x)
3!

+ h4 f (4)(x)
4!

+ h5 f (5) (ξ1)

5!

f (x − h) = f (x)− h f ′(x) + h2 f ′′(x)
2!

− h3 f ′′′(x)
3!

+ h4 f (4)(x)
4!

− h5 f (5) (ξ2)

5!

f (x + 2h) = f (x) + 2h f ′(x) + 4h2 f ′′(x)
2!

+ 8h3 f ′′′(x)
3!

+ 16h4 f (4)(x)
4!

+ 32h5 f (5) (ξ3)

5!

f (x − 2h) = f (x)− 2h f ′(x) + 4h2 f ′′(x)
2!

− 8h3 f ′′′(x)
3!

+ 16h4 f (4)(x)
4!

− 32h5 f (5) (ξ4)

5!

By taking 8 × ( f (x + h)− f (x − h))− ( f (x + 2h)− f (x − 2h)) we cancel
out the h2 and h3 terms. Then by rearranging, we get a fourth-order O(h4)

centered difference approximation of f ′(x). Approximations of higher
derivatives f ′′(x), f ′′′(x), f (4)(x) etc. can be obtained in a similar manner.
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For example, adding

f (x + h) = f (x) + h f ′(x) + h2 f ′′(x)
2!

+ h3 f ′′′(x)
3!

+ h4 f (4)(ξ1)

4!
. . .

f (x − h) = f (x)− h f ′(x) + h2 f ′′(x)
2!

− h3 f ′′′(x)
3!

+ h4 f (4)(ξ2)

4!
. . .

and by rearranging terms, we get:

f (x + h)− 2 f (x) + f (x − h)
h2 − f ′′(x) = h2 ( f (4)(ξ1) + f (4)(ξ2))

24

Hence,
f (x + h)− 2 f (x) + f (x − h)

h2 is a second-order centered differ-
ence approximation of the second derivative f ′′(x). Here are some com-
monly used second- and fourth-order finite difference formulas for approx-
imating first and second derivatives of f ′(x):

O(h2) centered difference approximations (which are approximations often
used for discretisations in the physical space):
f ′(x) : { f (x + h)− f (x − h)}/(2h)
f ′′(x) : { f (x + h)− 2 f (x) + f (x − h)}/h2

O(h2) forward difference approximations (which are approximations often
used for time discretisation):
f ′(x) : {−3 f (x) + 4 f (x + h)− f (x + 2h)}/(2h)
f ′′(x) : {2 f (x)− 5 f (x + h) + 4 f (x + 2h)− f (x + 3h)}/h3

O(h2) backward difference approximations :
f ′(x) : {3 f (x)− 4 f (x − h) + f (x − 2h)}/(2h)
f ′′(x) : {2 f (x)− 5 f (x − h) + 4 f (x − 2h)− f (x − 3h)}/h3

O(h4) centered difference approximations :
f ′(x) : {− f (x + 2h) + 8 f (x + h)− 8 f (x − h) + f (x − 2h)}/(12h)
f ′′(x) : {− f (x+ 2h)+ 16 f (x+ h)− 30 f (x)+ 16 f (x− h)− f (x− 2h)}/(12h2)

It is clear from the above equations that higher derivatives and hence
smaller approximation errors need more terms for the approximation.
Consequently, they have higher computational costs.

There are often problems in science and engineering where an exact
formula for f (x) is unknown. We may only have a set of data points
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(x1, y1), (x2, y2), . . . , (xn, yn) available to describe the functional depen-
dence y = f (x).

Suppose we need to estimate the rate of change of y with respect to
x in such a situation. We can use finite difference formulas to compute
approximations of f ′(x). Using a forward difference at the left endpoint
x = x1, a backward difference at the right endpoint x = xn, and centered
difference formulas for the interior points are appropriate.

2.1.3. Finite Difference stencil derivation

In this section, we use the Taylor expansions from Section 2.1.2 to show how
we compute finite-difference PDE approximations. We use the definition of
the derivative and Taylor series to derive finite difference approximations to
a function’s first and second derivatives. We then use these finite difference
quotients to approximate the heat, the Laplace and the wave equation
derivatives. We show how the PDE solution leads to stencil computation.
Stencil kernels are computational update patterns that are functions of
the nearest neighbouring point values. In a more general definition, a
stencil defines the iterative computation of an element in an n-dimensional
spatial grid at time t as a function of neighbouring grid elements (space
dependencies) at time t − 1, . . . , t − k (time dependencies).

The following sections of this Chapter will present several stencils. A
typical stencil update in the context of a scientific simulation has a three-
dimensional spatial iteration space and a one-dimensional temporal it-
eration space. Figure 2.2 illustrates a 1D stencil and its flow dependen-
cies. Each point is updated using values from the previous (one or more)
timestep-(s) and its right and left neighbours. Arrows illustrate the flow
dependencies. The points that are at the edge of the computational domain
need to read from positions that are outside of the computational domain.
We extend the domain by the stencil radius size with read-only points to
satisfy this dependency. These points are not being updated as they do not
need to be. Figure 2.2 shows this setup.

In the literature, the term “stencil” refers to cases where the access
rule is an affine function. This is the case of computational methods
based on structured grids, such as the finite difference method. Given
an element i in the structured mesh, a stencil is a vector-valued function
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Figure 2.2.: A 1D-3pt Jacobi stencil update. Arrows show the data flow dependencies. Grey
points indicate the read-only points that extend the domain.

f (i) = [ f1(i), f2(i), ..., fn(i)] which fetches the n elements that need to
be accessed when updating i. Wider stencils in 3D and their respective
data dependencies are illustrated in Figure 2.3. A function f j is affine
and usually takes the form f j(i) = i ∗ h + o, with h, o ∈ N. Usually, the
accessed elements are within the neighbouring area of an element i.

Figure 2.3.: A 6th-order, 3D-19pt stencil update. A point (red) at the edge of a block (blue)
depends on a three-point deep halo of neighbouring points which extends outside the
block.

The following Sections will detail how we derive finite-difference stencils
starting from the PDEs. The scientific background presented in this section
has been influenced by lecture notes from Peirce [2018].
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2.1.3.1. The Heat equation

We start by considering the following initial-boundary value problem for
the heat equation

∂u
∂t

=α2 ∂2u
∂x2 0 < x < 1, t > 0 (2.9)

Boundary conditions : u(0, t) = 0 u(1, t) = 0 (2.10)

Initial conditions : u(x, 0) = f (x) (2.11)

We replace the derivatives in the heat equation with difference quotients.
We regard the relationships between u at (x, t) and its neighbours at a
distance ∆x apart and at a time ∆t later. Similarly to the difference quotient
approximations introduced in Section 2.1.2, we use the Taylor series to
derive the forward difference in time and the central differences in space.

The Forward Difference in Time is:

u(x, t + ∆t) = u(x, t) + ∆t
∂u
∂t

(x, t) +
∆t2

2!
∂2u
∂t2 (x, t) + · · ·

Moreover, by re-arrangement and division by ∆t, we get:

u(x, t + ∆t)− u(x, t)
∆t

=
∂u
∂t

(u, t) + O(∆t) (2.12)

The Central Differences in Space (right and left respectively) are:

u(x + ∆x, t) = u(x, t) + ∆x
∂u
∂x

(x, t) +
∆x2

2!
∂2u
∂x2 (u, t) +

∆x3

3!
∂3u
∂x3 (x, t)+

∆x4

4!
∂4u
∂x2 (x, t) + · · ·

u(x − ∆x, t) = u(x, t)− ∆x
∂u
∂x

(x, t) +
∆x2

2!
∂2u
∂x2 (x, t)− ∆x3

3!
∂3u
∂x3 (x, t)+

∆x4

4!
∂4u
∂x4 (x, t) + · · ·

Furthermore, by adding and re-arrangement, we get:
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u(x + ∆x, t)− 2u(x, t) + u(x − ∆x, t)
∆x2 =

∂2u
∂x2 (x, t) + O

(
∆x2) (2.13)

By substituting 2.12 and 2.13 into 2.9 we obtain:

u(x, t + ∆t)− u(x, t)
∆t

= α2
(

u(x + ∆x, t)− 2u(x, t) + u(x − ∆x, t)
∆x2

)
+O

(
∆t, ∆x2)

and by rearranging, we get:

u(x, t + ∆t) = u(x, t) + α2
(

∆t
∆x2

) (
u(x + ∆x, t)− 2u(x, t) + u(x − ∆x, t)

)
(2.14)

We subdivide the spatial interval [0, 1] into N + 1 equally spaced sample
points xn = n∆x. The time interval [0, T] is subdivided into M + 1 equal
time levels tk = k∆t. At each of these space-time sample points, we
introduce approximations.

Figure 2.4.: The 1D heat stencil. Figure adapted and edited from Peirce [2018]

Assuming uk
n ≃ u(xn, tk), Eq. 2.14 translates to:

uk+1
n = uk

n + α2
(

∆t
∆x2

)(
uk

n+1 − 2uk
n + uk

n−1

)
and Figure 2.4 shows schematically the update pattern. How is this update
pattern expressed in pseudocode? The following listing shows some
pseudocode of how this iterative update translates to code for execution in
a computer by a low-level language.

Listing 2.1: C-like pseudocode for the 1D heat stencil.

1 for(k = 1; k < nt; k++){
2 for(n = 1; n < N; n++){
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3 u[k+1, n] = u[k, n]
4 + pow(a, 2) * (dt / pow(dx, 2)) *
5 (u[k, n+1] - 2u[k, n+1] + u[k, n-1]);
6 }
7 }

Implementing Derivative Boundary Conditions: Let’s assume that the
boundary conditions in Equation 2.10 are changed to

Boundary conditions : u(0, t) = 0,
∂u
∂x

(1, t) = 0.

Consider a central difference approximation to ∂u
∂x (1, t), where xN =

N∆x = 1,

u (xN + ∆x, t)− u (xN − ∆x, t)
∆x

= 0.

Rearranging, we obtain:

u (xN + ∆x, t) = u (xN − ∆x, t) (2.15)

We notice that since xN = 1, xN + ∆x refers to a position that is outside
the computational domain. To accommodate this, we introduce an extra
column uN+1. This extra column holds the same values of uN−1. We can
now proceed in applying the same difference approximation for the heat
equation to the column xN :

uk+1
N = uk

N + α2
(

∆t
∆x2

)(
uk

N+1 − 2uk
N + uk

N−1

)
(2.16)

while uk
N+1 = uk

N−1 (see Equation 2.15) since column uk
N−1 is copied to

column uk
N+1. Another way to implement this boundary condition without

introducing the additional column is by eliminating uN+1 from Equations
2.15 and 2.16:

uk+1
N = uk

N + 2α2
(

∆t
∆x2

)(
uk

N−1 − uk
N

)
(2.17)

If Equation 2.17 is implemented at xN there is no need for an extra
column uN+1 or to implement the difference equation given in Eq. 2.16 as
the derivative boundary condition is handled automatically.
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2.1.3.2. The Wave equation

We consider the following initial boundary value problem for the Wave
Equation:

∂2u
∂t2 = c2 ∂2u

∂x2 0 < x < L (2.18)

Boundary Conditions : u(0, t) =0; u(L, t) = 0 (2.19)

Initial Conditions : u(x, 0) = f (x) (2.20)

∂u
∂t

(x, 0) =g(x) (2.21)

We consider a finite difference structured grid where xn = n∆t, tk = k∆t
and let the corresponding grid point values be denoted by uk

n ≃ u(xn, tk).

Figure 2.5.: The 1D wave equation stencil. Adapted and edited from Peirce [2018]

By approximating derivatives using central finite differences both in
space and time, we obtain

uk+1
n − 2uk

n + uk−1
n

∆t2 = c2

(
uk

n+1 − 2uk
n + uk

n−1

∆x2

)
+ O

(
∆x2, ∆t2) (2.22)

Therefore, the update pattern yields:

uk+1
n = 2uk

n − uk−1
n +

(
c∆t
∆x

)2 (
uk

n+1 − 2uk
n + uk

n−1

)
(2.23)
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We notice that time dependencies extend back in time for more than
one grid point. We observe that the discrete Equation 2.24 involves three
distinct levels of time in which known data is transferred from steps k − 1
and k to step k + 1. To update for the most recent term in time, we have to
rearrange and compute:

uk+1
n︸︷︷︸

time level k+1

= r2uk
n+1 + 2

(
1 − r2) uk

n + r2uk
n−1︸ ︷︷ ︸

time level k

− uk−1
n︸︷︷︸

time level k−1

(2.24)

where r = (c∆t/∆x) and is known as the Courant Number.

The following listing shows some pseudocode of how this iterative
update translates to stencil code for execution in a computer by a low-level
language.

Listing 2.2: C-like pseudocode for the 1D wave equation stencil.

1 r = c * dt * dx
2 for(k = 1; k < nt; k++){
3 for(n = 1; n < N; n++){
4 u[k+1, n] = pow(r, 2) * u[k, n+1]
5 + 2*(1- pow(r,2)) * u[k, n]
6 + pow(r, 2) * u[k, n-1]
7 - u[k-1, n-1] ;
8 }
9 }

Initial Conditions - Starting the Solution In this problem, we have a
scheme with three levels of time. This scheme makes it challenging to
apply the initial conditions from Equation 2.20. If we imagine a row of
false mesh points at time t = −∆t = t−1, then the initial velocity condition
2.21 can be approximated using central differences as:

u1
n − u−1

n
2∆t

= g (xn) (2.25)

therefore

u−1
n = u1

n − 2∆tg(xn) (2.26)

Now we assume that the Discrete Wave Equation 2.24 also holds at t = 0
so that
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u1
n = r2u0

n+1 + 2
(
1 − r2) u0

n + r2u0
n−1 − u−1

n (2.27)

Substituting 2.26 into 2.27 and re-arranging we obtain:

u1
n =

1
2
(
r2u0

n+1 + 2
(
1 − r2) u0

n + r2u0
n−1
)
+ ∆tg(xn) (2.28)

Since u0
n = f (xn) and g (xn) are known, we are now capable of specifying

the first two rows of grid points. This is sufficient to start the recursion
2.24 for all subsequent steps.

Figure 2.6.: Initial conditions and the 1D wave equation stencil. The white nodes are used
to derive Eq. 2.28 but are not used in the computation. Adapted and edited from Peirce
[2018].

2.1.3.3. The Laplace equation

Let us consider the following boundary value problem:

∂2u
∂x2 (x, y) +

∂2u
∂y2 (x, y) = 0 0 < x, y < 1 (2.29)

BC : u(0, y) = 0; u(1, y) = 0; u(x, 0) = f (x); u(x, 1) = 0. (2.30)

Compared to the heat and the wave equation, this problem has an addi-
tional dimension in space. Figure 2.7 helps to visualise the computational
domain of the problem. As before, we replace the second derivatives in Eq.
2.29 with central difference quotients that are second-order accurate:

25



(a) Equations on the computational domain (b) The computational grid

Figure 2.7.: Equations on the domain and the computational grid

u(x + ∆x, y)− 2u(x, y) + u(x − ∆x, y)
∆x2 =

∂2u
∂x2 (x, y) + O

(
∆x2) (2.31)

u(x, y + ∆y)− 2u(x, y) + u(x, y − ∆y)
∆y2 =

∂2u
∂y2 (x, y) + O

(
∆y2) (2.32)

We partition the interval 0 ≤ x ≤ 1 into (N + 1) equally spaced grid
points xn = n∆x and the interval 0 ≤ y ≤ 1 into (M + 1) equally spaced
grid points ym = m∆y. Replacing the derivatives in Eq. 2.29 by the
difference quotients in Eq. 2.31 and Eq. 2.32, and representing the mesh
values at (xn, ym) by unm ≃ u (xn, ym) we obtain:

un+1,m − 2un,m + un−1,m

∆x2 +
un,m+1 − 2un,m + un,m−1

∆y2 =(
uxx + uyy

)
(xn,xm)

+ O
(
∆x2, ∆y2)

If we choose ∆x = ∆y, then we obtain

un+1,m + un−1,m + un,m+1 + un,m−1 − 4un,m = 0 (2.33)

where 1 ≤ n, m ≤ (N − 1), (M − 1)

Figure 2.8 shows the finite difference stencil that relates un,m to its four
nearest neighbours. This is a system of (N − 1) × (M − 1) unknowns
for the values of un,m in the interior of the computational domain. The
boundary values stemming from Equation 2.30 are already specified!
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Figure 2.8.: The Jacobi stencil. Adapted and edited from Peirce [2018]

Solving the System of Equations by Jacobi Iteration We will now solve
the system of Equations 2.33 by looping through each of the mesh points
and updating un,m according to Equation 2.33 under the assumption that
the nearest neighbours already have values close to the exact solution. We
will keep updating the point values until the difference between successive
iterations converges below a certain tolerance threshold.

To implement this iterative update pattern, we rewrite the discrete
Laplace Equation 2.33 in the form:

uk+1
n,m =

uk
n+1,m + uk

n−1,m + uk
n,m+1 + uk

n,m−1

4
(2.34)

Figure 2.9.: The update pattern of a Jacobi stencil. Adapted and edited from Peirce [2018]

The following listing shows some pseudocode of how this iterative
update translates to code for execution in a computer by a low-level
language.

Listing 2.3: C-like pseudocode for the 2D Laplace equation stencil.
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1 for(k = 1; k < nt; k++){
2 for(n = 1; n < N; n++){
3 for(m = 1; m < M; m++){
4 u[k+1, n, m] = 0.25 * (u[k, n+1, m] + u[k, n, m+1] + u[k, n

-1, m] + u[k, n, m-1] );
5 }
6 }
7 }

Thus, un,m is the average value of its (four) nearest neighbours. We
introduce a new superscript index k to represent the grid point values
at the k−th iteration. Each iteration can be viewed as taking successive
neighbour averages until the change value is below a certain threshold. At
this point, the value of un,m equals the average of the values at its mesh
neighbours.

This section showed how we derive stencils from partial differential equa-
tions through Taylor polynomials. The solution of PDEs can be described
through stencils operating on n-dimensional structured grids. Acceleration
of stencil computations is the end goal of the work in this thesis. The
following Section 2.2 will show how the process of deriving stencils can be
automated through several frameworks.

2.2. Automating PDE solutions through abstractions

The previous sections showed how by starting from a problem modelled
through a system of Partial Differential Equations (Section 2.1) we can
transition to stencil expressions (Section 2.1.3) that are used to update our
computational domain iteratively. In scientific simulations, this process
involves coordination and cooperation from interdisciplinary scientists.
Interdisciplinary teams must work together so that mathematicians, physi-
cists, geophysicists, and chemists can focus on the PDEs and the problem
modelling. In contrast, computer, software and compiler engineers can
focus on improving the execution of stencil computations on a plethora of
hardware. This practice enhances productivity as each scientist can work
on their domain where their expertise can be more helpful. However, it
is often impossible to form teams with all the skills required to efficiently
run the above pipeline from top to bottom.

The need to automatically lower the PDE math specification to stencil ex-
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pressions contributed to developing Domain-Specific Languages for PDEs.
As stated in Van Deursen et al. [2000]: A domain-specific language (DSL) is a
programming language or executable specification language that offers, through
appropriate notations and abstractions, expressive power is focused on and usually
restricted to a particular problem domain. According to this definition, the
critical characteristic of DSLs is their focused expressive power. The slow
and tedious development cycle of high-performing, robust, and portable
code for finite-difference solvers has stimulated academia and the industry
to develop approaches based on automated code generation. Domain-
specific languages were a pathway for bridging the communication gap
between interdisciplinary scientists. They also helped increase productivity
by helping scientists focus on their domain rather than other non-domain
tasks that reduced their available time.

Several efforts in the past tried to separate the concerns of modelling
PDEs over stencil computation. For this objective, several frameworks
have been implemented. These frameworks provide the infrastructure to
model PDEs, optimise, and compute stencil expressions through several
steps. This subsection refers to the software frameworks that focus on
automating the Finite Difference Method. We start with Devito and review
other notable projects.

2.2.1. Automating finite differences with Devito

The Devito project [Luporini et al., 2020] is a representative example of
success in the context of automating the solution of PDEs through explicit
finite differences. Devito was initially influenced by Firedrake [Rathgeber
et al., 2017]. We will refer to Firedrake in Section 2.2.3. In Devito, a domain-
specific language helps formulate a problem’s mathematics at a high level
of abstraction. Subsequently, the Devito compiler infrastructure manip-
ulates the mathematical, symbolic representation. It transforms it into a
finite-difference stencil representation with the help of SymPy [Meurer
et al., 2017]. This transformation takes place through a compilation process
that involves several steps. Compilation passes operate in the lowered
stencil representation to reduce the arithmetic cost of the mathematical ex-
pressions. We often use the term flop-reduction for this process. This stencil
representation is then lowered to a new representation of loop-iterative
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stencil computation. Subsequently, the compiler performs loop-related op-
timisations to this new intermediate representation (IR). Devito is written
in Python to simplify the analysis of the top-level domain-specific language
and synthesis of the IR towards the automatic generation of C code. After-
wards, the compiler translates the representation into C code. The C code is
then just-in-time compiled and executed (see Figure 2.10). Throughout this
thesis, we focus on Devito. The algorithms and the techniques presented
here have been developed and integrated within this framework, though
all the ideas potentially apply in other contexts and frameworks.

Operator

.cpp .so

Runtime

Figure 2.10.: Devito automatically generates C/C++ code from a high-level abstraction.
Refer to Figure 4.1 for a detailed figure of the Devito compiler architecture.

Problem Specification Devito uses a symbolic mathematical language
based on SymPy [Meurer et al., 2017] to allow concise expression of finite-
difference stencil operations. Although the Devito DSL is used primarily
to build PDE solvers, its rich DSL also describes other operations, such as
tensor linear algebra operations, classic linear operators (e.g., convolutions),
tensor contractions, boundary conditions, interpolations, etc.

Here we review some of the most prominent Devito API objects. In order
to construct a simple finite-difference solver, some of the objects needed are
Grid, Function/TimeFunction, Eq and Operator. More objects are
available to support modelling in Devito DSL (see devitoproject.org). In all
of the following examples, keywords of the language are shown in orange.
For more details, the reader is referred to the Devito API Reference.
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Grid The Grid object represents a discrete cartesian computational grid
on which we can define parameters and equations. It is defined as a
Grid(shape) object, where shape is the number of grid points in each
spatial dimension. Over a Grid we can discretise a Function or/and a
TimeFunction. A Grid encapsulates the topology and geometry infor-
mation of the computational domain that a Function can be discretised on.
It defines and provides the physical coordinate information of the logical
cartesian grid underlying the discretised Functions.

Listing 2.4: Defining a two-dimensional Grid in Devito with 10 points per dimension.

1 >>> from devito import Grid
2 >>> grid = Grid(shape=(10, 10))
3 >>> grid
4 Grid[extent=(1.0, 1.0), shape=(10, 10), dimensions=(x, y)]

Function/TimeFunction A Function represents a discrete function in
symbolic equations. This object carries multi-dimensional data and pro-
vides operations to create FD approximations. A Function is defined on
an existing Grid. A Function encapsulates space-varying data; for data
that also varies in time, we use TimeFunction. A TimeFunction repre-
sents a discrete function that is both spatially varying and time-dependent.
Similarly to a Function, a TimeFunction is defined on an existing
Grid.

Listing 2.5 shows how we can define a Function and a TimeFunction
on a Grid. We can see how TimeFunction differs in its dimensions
compared to a Function having t as an additional TimeDimension (object
subclassing a Dimension) representing a time dimension.

Listing 2.5: Defining a Function and a TimeFunction over a Grid in Devito.

1 >>> from devito import Grid, TimeFunction
2 >>> grid = Grid(shape=(10, 10))
3 >>> u = Function(name='u', grid=grid)
4 >>> u
5 u(x, y)
6 >>> f = TimeFunction(name='f', grid=grid)
7 f(t, x, y)
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Eq An Eq object represents a mathematical equation in symbolic notation.
We can define an equal relation between two objects, the left-hand and
right-hand sides. The Devito compiler digests this relation in the form
of an assignment. In the following example, we write an equation Eq to
update the values of Function by one.

Listing 2.6: An example of defining a mathematical equation (Eq) in Devito. All values of
f (x, y) are incremented by 1.

1 >>> from devito import Grid, Function, Eq
2 >>> grid = Grid(shape=(4, 4))
3 >>> f = Function(name='f', grid=grid)
4 >>> Eq(f, f + 1)
5 Eq(f(x, y), f(x, y) + 1)

Operator An Operator performs three fundamental tasks: compilation
of high-level code to low-level code, just-in-time (JIT) compilation of the
low-level code, and execution. An Operator accepts one or more symbolic
equations as arguments. In the following example, Listing 2.7, we see how
to construct and execute an Operator for the equation shown in Listing
2.6. We print the data held by f before and after executing the unary
increment Operator.

Listing 2.7: Example of an Operator in Devito, where all values of f (x, y) are incremented
by 1. The data in Function f is printed before and after the generation and execution of the
Operator.

1 >>> from devito import Grid, Function, Eq, Operator
2 >>> grid = Grid(shape=(2, 2))
3 >>> f = Function(name='f', grid=grid)
4 >>> eq = Eq(f, f + 1)
5 >>> f.data
6 Data([[0., 0.],
7 [0., 0.],], dtype=float32)
8 >>> op = Operator([eq])
9 >>> op.apply()

10 >>> f.data
11 Data([[1., 1.],
12 [1., 1.],], dtype=float32)

The Operator is working in the background to produce the automat-
ically generated code. In Listing 2.8, we see a snippet of the code auto-
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Listing 2.8: Part of the C code generated directly from Devito for the unary increment. The
user has specified only the PDEs through the DSL. The code in this Listing is automatically
generated.

1 for(int x = x_m; x <= x_M; x += 1)
2 {
3 for(int y = y_m; y <= y_M; y += 1)
4 {
5 f[x + 1][y + 1] = f[x + 1][y + 1] + 1;
6 }
7 }

matically generated from Devito for the unary increment Operator. The
code in Listing 2.8 can be further optimised with parallelism and other
optimisations.

So far, this subsection has illustrated how the user can work with the
Devito API to model a simple problem. In the following examples, we
will now look into how we can express the three problems presented in
subsections 2.1.3.1, 2.1.3.2, 2.1.3.3 using the Devito DSL. Instead of deriving
the stencil by hand, equation by equation, as shown in Section 2.1 we will
only define the PDE in Devito DSL and let the framework do the rest of
the work for us.

2.2.1.1. The Heat equation with Devito

Listing 2.9 shows the modelling of the heat equations 2.1.3.1 using the
Devito DSL. We implement the heat equation 2.9 along with the boundary
conditions 2.10, 2.11. Listing 2.9 introduces some additional parts of
the Devito API. The space order argument defines the discretisation
order of the space derivatives. The solve function helps to algebraically
solve an equation given the left and right-hand sides. The stepping dim

property returns the iterator used for time-buffering. The apply call
tells the compiler to just-in-time compile the C-code and executes the
computational kernel.

The Operator in Listing 2.9 automatically generates the stencil code for
the heat equation in C language. A snippet of it is shown in Listing 2.10.

Listing 2.10 shows the time-iterative stencil update along with the ap-
plied boundary conditions.
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Listing 2.9: Devito specification of the Heat equation as defined in Section 2.1.3.1.

1 from devito import Grid, TimeFunction, Eq, Operator, solve
2
3 # Some variable declarations
4 nx, nt = 10, 10
5 dx = 2. / (nx - 1)
6 sigma = .2
7 dt = sigma * dx
8
9 grid = Grid(shape=(nx, ), extent=(1.,))

10 u = TimeFunction(name='u', grid=grid, space_order=2)
11
12 eq = Eq(u.dt, u.dx2, grid=grid)
13 stencil = solve(eq, u.forward)
14
15 # Boundary conditions
16 t = grid.stepping_dim
17 bc_left = Eq(u[t + 1, 0], 0.)
18 bc_right = Eq(u[t + 1, nx-1], 0.)
19
20 op = Operator([Eq(u.forward, stencil), bc_left, bc_right])
21 op.apply(time_M=nt, dt=dt)

A note on time-buffering We notice that the time loop is successively
interchanging the values of t0 and t1. In time-iterative stencils, keeping
a copy of the grid in memory for every timestep is often useless. Time
buffering is a standard implementation technique to reduce memory re-
quirements. This is a generally adopted practice, keeping in memory
only the necessary time slices needed to compute the next one. Devito
automatically applies the time-buffering to time-iterative stencils.

In Listing 2.10, we need two copies of the grid to compute the problem.
Assuming that t0 indicates the first slice to read from and t1 the first slice
to write to, we keep iterating accesses over these grids in a fashion similar
to write: t0, read: t1, write: t1, read: t0, write: t0, read: t1. This technique
is so standard in stencil optimisations that over the last years, it is not even
considered an optimisation. Figure 2.11 shows a schematic representation
of the time buffering technique.

2.2.1.2. The Wave equation with Devito

Listing 2.11 shows the modelling of the Wave equation as described in
Section 2.1.3.2. We implement the wave equation 2.18 along with the
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Figure 2.11.: The time buffering technique. Having a dependency of one point in time, only
two copies of the grid are needed to compute the stencil updates.

Listing 2.10: Part of the C code generated directly from Devito for the heat equation. The
stencil and the boundary condition updates are illustrated.

1 float r0 = 1.0F/dt;
2 float r1 = 1.0F/(h_x*h_x);
3
4 for (int time = time_m, t0 = (time)%(2), t1 = (time + 1)%(2); time

<= time_M; time += 1, t0 = (time)%(2), t1 = (time + 1)%(2))
5 {
6 for (int x = x_m; x <= x_M; x += 1)
7 {
8 u[t1][x + 2] = dt*(r0*u[t0][x + 2] + r1*u[t0][x + 1] + r1

*(-2.0F*u[t0][x + 2]) + r1*u[t0][x + 3]);
9 }

10 u[t1][2] = 0.0F;
11 u[t1][11] = 0.0F;
12 }

boundary conditions shown in Equations 2.19, 2.20 and 2.21.

The Operator in Listing 2.11 automatically generates the stencil code
for the wave in C language. A snippet of it is shown in Listing 2.12.
Listing 2.12 shows the time-iterative stencil update along with the applied
boundary conditions.
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Listing 2.11: Devito specification of the Wave equation as defined in Section 2.1.3.2.

1 # Some variable declarations
2 nx, nt = 10, 10
3 dx = 2. / (nx - 1)
4 sigma = .2
5 dt = sigma * dx
6
7 grid = Grid(shape=(nx, ), extent=(1.,))
8 u = TimeFunction(name='u', grid=grid, space_order=2)
9

10 eq = Eq(u.dt2, u.dx2, grid=grid)
11 stencil = solve(eq, u.forward)
12
13 # Boundary conditions
14 t = grid.stepping_dim
15 bc_left = Eq(u[t + 1, 0], 0.)
16 bc_right = Eq(u[t + 1, nx-1], 0.)
17
18 op = Operator([Eq(u.forward, stencil), bc_left, bc_right])
19 op.apply(time_M=nt, dt=dt)

Listing 2.12: Part of the C code generated directly from Devito for the wave equation. The
stencil and the boundary condition updates are illustrated.

1 float r0 = 1.0F/(dt*dt);
2 float r1 = 1.0F/(h_x*h_x);
3
4 for (int time = time_m, t0 = (time)%(3), t1 = (time + 2)%(3), t2 =

(time + 1)%(3); time <= time_M; time += 1, t0 = (time)%(3),
t1 = (time + 2)%(3), t2 = (time + 1)%(3))

5 {
6 for (int x = x_m; x <= x_M; x += 1)
7 {
8 float r2 = -2.0F*u[t0][x + 2];
9 u[t2][x + 2] = (dt*dt)*(-r0*r2 - r0*u[t1][x + 2] + r1*r2 + r1*

u[t0][x + 1] + r1*u[t0][x + 3]);
10 }
11 u[t2][2] = 0.0F;
12 u[t2][11] = 0.0F;
13 }

2.2.1.3. The Laplace equation with Devito

Listing 2.13 shows the modelling of the Laplace equation (see 2.29) as
shown in Section 2.1.3.3 and its implementation along with the bound-
ary conditions in Equation 2.30. We use two Functions for pseudo-time-
stepping for the one and only update we perform. Another difference
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Listing 2.13: Devito specification of the Laplace equation as defined in Section 2.1.3.3.

1 from devito import Grid, Function, Eq, Operator, solve
2 # Some variable declarations
3 nx, ny = 10, 10
4 dx, dy = 2./(nx-1) , 2./(ny-1)
5
6 grid = Grid(shape=(nx, ny), extent=(1., 1.))
7 x, y = grid.dimensions
8
9 # Create two explicit buffers for pseudo-time-stepping

10 p = Function(name='p', grid=grid, space_order=2)
11 pn = Function(name='pn', grid=grid, space_order=2)
12
13 # Create the Laplace equation based on `pn`
14 eqn = Eq(pn.laplace, subdomain=grid.interior)
15 # Let SymPy solve for the central stencil point
16 stencil = solve(eqn, pn)
17 # Now, we let our stencil populate our second buffer `p`
18 eq_stencil = Eq(p, stencil)
19
20 # Boundary conditions
21 bc_left = Eq(p[0, y], 0.)
22 bc_right = Eq(p[nx, y], 0.)
23
24 bc_top = Eq(p[x, 0], 0.)
25 bc_bottom = Eq(p[x, ny], x)
26
27 op = Operator([eq_stencil, bc_left, bc_right, bc_top, bc_bottom])
28 op.apply()

compared to the example in Section 2.1.3.3 is that we use x in place of
f (x) for the bottom boundary condition. The Operator in Listing 2.13
generates the stencil code shown in Listing 2.14. Listing 2.14 shows the
stencil update along with the applied boundary conditions.

Abstracting away the mathematics from the C code is valuable for au-
tomating our work. This section illustrated some typical stencil examples
using the Devito DSL. We only looked at the first and last block of Figure
2.12. The middle block, which contains all the compiler machinery and the
compiler architecture, will be presented later in this thesis in Chapter 4.
We will see how the arithmetic operations are optimised and more details
on how the Devito compiler automatically generates optimised stencil code
starting from the high-level abstraction.
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Listing 2.14: Example of the C code generated directly from Devito for the Laplace Equation.
The user has specified only the PDEs through the DSL and automatically gets the code
shown in this Figure.

1 float r0 = 1.0F/(h_x*h_x + h_y*h_y);
2 for (int x = x_m; x <= x_M; x += 1)
3 {
4 for (int y = y_m; y <= y_M; y += 1)
5 {
6 p[x + 2][y + 2] = 5.0e-1F*r0*((h_x*h_x)*(pn[x + 2][y + 1] + pn

[x + 2][y + 3]) + (h_y*h_y)*(pn[x + 1][y + 2] + pn[x + 3][
y + 2]));

7 }
8 }
9

10 for (int y = y_m; y <= y_M; y += 1)
11 {
12 p[2][y + 2] = 0.0F;
13 p[12][y + 2] = 0.0F;
14 }
15
16 for (int x = x_m; x <= x_M; x += 1)
17 {
18 p[x + 2][2] = 0.0F;
19 p[x + 2][12] = x;
20 }

Operator

the Devito Compiler

.cpp .so

Runtime

Optimize numerical
computations Loop optimizations

Cache
optimizations

Shared- and
Distributed-memory

Parallelism

Figure 2.12.: Devito gets user input in its symbolic API, the compiler is doing all the hard
work, the user again enjoys high-performing automatically generated C/C++ code from
a high-level abstraction. For more details on the Devito compiler architecture, the reader
should refer to Figure 4.1.

2.2.2. Finite Difference frameworks

Apart from Devito there are other notable frameworks to facilitate the
abstraction of the FD method. Most of these frameworks have a lower-
level API compared to Devito. As lower-level APIs, we describe APIs that
use notation that resembles closer to the final generated C code. This
subsection refers to these frameworks by focusing on their modelling
abstraction. Later in this Chapter, we dive into their supported automated
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optimisations.

The Oxford Parallel library for Structured mesh solvers (OPS) [Reg-
uly et al., 2018] is a domain-specific language offering a C/C++/Fortran
domain-specific API. The OPS API is not starting from the PDEs but rather
from a lower-level language stencil specification using C language. OPS,
similarly to other DSLs, separates high-level code from low-level implemen-
tation. This separation of concerns helps domain scientists write high-level
code and automatically benefit from low-level optimisations.

OpenSBLI [Jacobs et al., 2017] is another high-level Python-based DSL
to model differential equations. Domain scientists can express differential
equations in Einstein notation. OpenSBLI may solve any set of equations
written in Einstein notation. OpenSBLI mainly focuses on the compressible
Navier-Stokes equations with application to shock-boundary layer inter-
actions (SBLI) but is not limited to this. OpenSBLI translates the problem
specification to C code with the help of the OPS library [Reguly et al.,
2018].

Exastencils [Lengauer et al., 2014] is a code generation framework that
processes input in its multi-layered domain-specific language (DSL). This
DSL, named ExaSlang, helps to compose highly optimised and massively
parallel geometric multigrid solvers on (block-)structured grids. ExaSlang
offers a Latex-like syntax to express the continuous formulation of the
problem and to discretise using Finite Differences (FD), Finite Volume (FV)
or Finite Elements (FE), depending on the domain.

Exastencils can support several backends based on MPI, OpenMP, CUDA
and combinations thereof, targetting CPUs, GPUs and hybrid architectures.

STELLA [Gysi et al., 2015] is a domain-specific language targetting
weather applications. STELLA is a production-grade language that de-
scribes PDE operators with a concise syntax similar to the discretised
mathematical description. The DSL increases readability by hiding the
complexity of loops and hardware-dependent optimisations. STELLA
helped port the COSMO model to NVIDIA GPUs, providing performance
portability while retaining a single source code.

The GridTools library [Afanasyev et al., 2021] started as an effort to
generalise Stella. Gridtools consists of a set of libraries and utilities to
develop performance-portable weather, climate (and other stencil-like) ap-
plications [Thaler et al., 2019]. The core component of GridTools is the
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stencil composition module that implements a C++-embedded DSL for
stencils and stencil-like patterns. The user code is written in a higher-level
form which is then lowered and optimised for a given architecture at
compile time, achieving performance portability. The GridTools framework
is used with great success to accelerate the dynamic core of the COSMO
model. It demonstrates the library’s production quality and feature com-
pleteness for models on latitude-longitude grids. GridTools offers an API
to support the definition of boundary conditions.

Simflowny [Palenzuela et al., 2021] is an open platform that automati-
cally generates efficient parallel code for scientific dynamical models for
different simulation frameworks. Simflowny differentiates from the other
frameworks by offering a graphical user interface combined with a seman-
tic DSL based on XML to automatically generate code for several PDEs.
Simflowny offers automatic code generation. It offers PDE abstraction for
Navier-Stokes and Einstein equations, can discretise them using the finite-
difference method and automatically generates parallel code. However,
it is not considered a compiler-based framework such as the previously
mentioned ones.

2.2.3. Other frameworks for automated code-generation

Partial differential equations may also be solved using the finite element
method (FEM) [Zienkiewicz et al., 1977], the finite volume method (FVM)
[Eymard et al., 2000], the spectral element method (SEM) [Patera, 1984],
flux reconstruction methods [Huynh, 2007] or others.

Two of the most prominent frameworks that automate the finite element
method are FEniCS [Logg et al., 2012] and Firedrake [Rathgeber et al., 2017].
FEniCS enables users to express scientific models at a high-level abstraction
and automatically translate them to high-performing finite element code.
FEniCs specifies weak variational forms via the Unified Form Language
(UFL) [Alnæs et al., 2014]. UFL is an embedded domain-specific language
for defining variational forms for finite element discretisation. More pre-
cisely, it defines a flexible interface for choosing finite element spaces and
defining expressions for weak forms in a notation close to mathematical
notation [Alnæs et al., 2014, Alnæs et al., 2016]. FEniCS offers high-level
Python and C++ interfaces and runs on platforms ranging from laptops to
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high-performance clusters. Similarly to FEniCS, Firedrake [Rathgeber et al.,
2017] automates the solution of partial differential equations through the
finite element method (FEM). Firedrake uses UFL from the FEniCS project
to express PDEs and uses sophisticated code generation to provide mathe-
maticians, scientists, and engineers with enhanced productivity towards
sophisticated and high-performing simulations. The assembled operators
are using the Portable, Extensible Toolkit for Scientific Computation library
(PETSc library) [Balay et al., 2015]. PETSc is entirely implemented in
C; however, it offers petsc4py [Firedrake, 2016] to interfere with Python
frameworks (e.g. Firedrake).

PETSc is a notable open-source project, a parallel linear and non-linear
solver framework with a collection of data structures and routines for
scalable solutions for scientific applications modelled by partial differ-
ential equations. Many of its functionalities are built on top of existing
libraries (e.g., BLAS). PETSc libraries aim to accelerate large-scale applica-
tion projects.

Firedrake uses PyOP2 [Rathgeber et al., 2016] to apply computational
kernels over the discretised equation domain. PyOP2 is a DSL embedded in
Python and relies on just-in-time (JIT) compilation and execution. Among
others, it supports the parallel application of kernels over unstructured
meshes, an essential requirement for the finite element method. It also
provides global data structures, such as sparse matrices, essential for
solving linear systems.

OP2 [Mudalige et al., 2012] is a high-level embedded domain-specific
language for writing unstructured mesh algorithms with automatic par-
allelisation on multi-core and many-core architectures. OP2 uses source-
to-source translation and compilation to transform code written in the
OP2 API to target different backend platforms. The main target is the
performance portability of CFD applications for CPUs, GPUs, and clusters
thereof.

Other tools help the solving PDEs in various ways, e.g. by providing
their own DSL, like FreeFEM [Hecht, 2012] or for example by helping
to model physics for 2D or 3D problems while taking advantage of an
extensive list of finite elements usable in the continuous and discontinuous
Galerkin method framework. MFEM [Anderson et al., 2021] is a FEM
toolbox providing building blocks to facilitate the development of FEM
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algorithms. It has a lower-level API written in C++ to help model the
problem. Another one is HighPerMeshes [Alhaddad et al., 2020], a domain-
specific programming and target-platform-aware compiler infrastructure
for algorithms on unstructured grids and Liszt [DeVito et al., 2011], a
high-level language interface to construct mesh-based solvers.

An example of a framework to solve PDEs using the Flux Reconstruction
method is PyFR [Witherden et al., 2014]. PyFR is an open-source framework
written in Python, offers a template-like DSL and can successfully target
clusters of CPUs and GPUs.

2.3. Cache blocking optimisations in numerical
kernels

In the previous Section 2.2.2, we presented frameworks that automate sev-
eral computational methods. Quite a few of these computational methods
heavily depend upon cache-related optimisations. This section provides
the necessary background on cache-related optimisations. This section will
pave the path towards Section 2.4, where we will present frameworks that
automate cache-blocking optimisations.

Over the last few decades, researchers have put considerable effort into
cache-friendly algorithms to improve stencil performance. In most stencil
applications of interest, kernels have low operational intensity and are
memory bandwidth bound. The reason is that they have few floating-point
operations per byte of data accessed (aka low arithmetic intensity (see
Section 2.5)). This section presents the related work on cache-blocking
optimisations. Blocking data accesses to organise better how data fits in
the cache is a well-known algorithmic approach to enhance performance.
Blocking optimisations reschedule the order of computations towards
increased cached memory reuse. The throughput is increased as memory
bandwidth boundedness issues are alleviated. The overarching aim is to
fill the cache with a data set subset and then work to the highest degree
possible with this data set loaded in the cache memory. The more our
program works with the data loaded in the cache, the less often the need
to fetch data from the main memory arises. As a result, the memory
bandwidth pressure is reduced.
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To appreciate the importance of cache optimisations, one must be familiar
with the terms “locality of reference”, “spatial”, and “temporal” locality.

Locality of reference The term “Locality of reference”, also known as the
principle of locality, describes a computer program’s tendency to perform
similar memory accesses for a particular time period. Locality is a com-
monly expected behaviour in computer systems. When a system exhibits a
good locality of reference, cache optimisations are strong candidates for
performance optimisation. There are two main types of reference locality,
spatial and temporal locality.

Temporal Locality Temporal locality refers to current data fetched and may
be needed again soon. A reasonable thing to do is store that data
fetched in the cache memory to bypass searching in the main memory
for the same data again. When the CPU accesses the current main
memory location for fetching required data or instructions, this also
gets stored in the cache. It is stored in the cache because we work
under the hypothesis that the same data or instruction may be needed
again shortly. This kind of locality is known as temporal locality.

Spatial Locality Spatial locality refers to accessing data elements within
relatively close storage locations. Data that is near the current fetched
memory location may be soon needed in the future. When referring to
spatial locality, we are talking about nearly located memory locations,
while in the temporal locality, we are talking about the actual memory
location being fetched.

Spatial locality Temporal locality

Figure 2.13.: In spatial locality, items close in memory tend to be referenced together. In
temporal locality, a referenced item may be referenced again shortly.
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The following subsection presents the necessary background and related
work for cache blocking to enhance spatial and temporal locality and other
optimisations.

Note: It is important to note that throughout the following Sections,
we refer to loop blocking, standard loop blocking or spatial blocking
as the blocking that happens only along dimensions that represent and
describe space in stencil computations. For example, x, y, z in a 3D
cartesian system. Every reference to temporal loop blocking includes
schemes where the time loop of time-iterative simulations is blocked.
In the context of time-iterative stencils, loop blocking offers enhanced
spatial and temporal reuse over the “flat” iteration. As the stencil update
sweeps over the iteration space, the read-write stencil accesses overlap.
Consequently, we exploit both spatial and temporal reuse. Both spatial
and temporal blocking enhance temporal locality.

2.3.1. Loop blocking

Loop Blocking, also known as loop tiling, is one of the most studied and
influential transformations in the category of cache optimisations [Unat
et al., 2017]. The fundamental idea is to partition the iteration space of a
loop nest into blocks of a predefined shape.

Loop tiling is primarily used to enhance data locality. In addition, it
is often combined with parallelisation. This iteration space partitioning
required additional loops in the code structure, as shown in Listing 2.15.
In Listing 2.15, square-shaped tiles of size b × b are employed to increase
data reuse along the dimensions iterated by N and M.

Loop tiling was presented in the early studies of Wolfe [1989], Wolf
and Lam [1991], Ramanujam and Sadayappan [1991], Ramanujam and
Sadayappan [1992]. As loop tiling often requires considerable effort to
write additional loops and control their bounds, more recent works have
tackled the automation challenge. In addition, several works have pre-
sented methods to improve tiling algorithms, such as Bondhugula et al.
[2008b], Acharya and Bondhugula [2015], Klöckner [2015]. These tools,
often utilising the polyhedral model, will be discussed in more detail in
Section 2.4. Tile shape can significantly impact the tiling performance, as
it depends on the architecture of the underlying cache. Krishnamoorthy
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Listing 2.15: Illustration of classical rectangular loop tiling in a classic Jacobi-like update
kernel similar to 2.3. The matrices are square-shaped of size N × N. Data reuse can be
achieved if b is chosen small enough to fit some cache level.

1 // Original implementation
2
3 for k = 1 to nt, 1
4 for n = 1 to N, 1
5 for m = 1 to M, 1
6 u[k+1][n][m] = 0.25 (u[k][n+1][m] + u[k][n][m+1] + u[k][n

-1][m] + u[k][n][m-1]);
7
8
9 // Loop blocking implementation

10
11 for k = 1 to nt, 1
12 for n0 = 1 to N, b
13 for m0 = 1 to M, b
14 for n = n0 to min(n0+b-1, N)
15 for m = m0 to min(m0+b-1, M)
16 u[k+1][n][m] = 0.25 (u[k][n+1][m] + u[k][n][m+1]

+ u[k][n-1][m] + u[k][n][m-1]);

et al. [2007] and Grosser et al. [2014b] have investigated, among others,
the impact of tile shape.

Tiling is very popular, and it is an essential performance optimisation
in the context of stencils. However, the effort needed to implement it
is non-trivial. The iteration space of visiting the finite-difference grids
is decomposed into tiles, and computations benefit from cache blocking
as illustrated in Wolfe [1989], Wolf and Lam [1991], Ramanujam and
Sadayappan [1992], Xue [1997], Frigo and Strumpen [2005, 2006], Datta
et al. [2008], Tang et al. [2011], Frigo et al. [2012]. In a more general context
regarding time-iterative simulations, the non-time iteration space blocks
can be executed in a parallel fashion within each time iteration. Figure 2.14
shows a symbolic example of this partitioning along with block execution
order.

The same idea applies to unstructured grids, though this requires more
sophisticated algorithms to create efficient schedules [Luporini et al., 2019].
Loop blocking optimisations have been extended to GPUs. Related work
includes several schemes such as automated split tiling with trapezoids
[Grosser et al., 2013a], hybrid hexagonal tiling [Grosser et al., 2014a] and
automated HPC GPU code [Schäfer and Fey, 2011, Holewinski et al., 2012,
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Figure 2.14.: In standard, time-iterative space loop blocking partitions are executed in
parallel for every timestep.

Listing 2.16: Illustration of loop interchange in a simple mathematical computation.

1 // Original implementation
2
3 for m = 1 to M, 1
4 for n = 1 to N, 1
5 a[n][m] = b[n][m] + c[n][m];
6
7 // Loop interchange implementation facilitating row-by-row

accesses for better vectorisation of the innermost loop
8
9 for n = 1 to N, 1

10 for m = 1 to M, 1
11 a[n][m] = b[n][m] + c[n][m];

Rawat et al., 2018].

2.3.2. Loop reordering transformations

Loop reordering transformations mainly focus on techniques for improving
data locality in loop nests. Characteristic examples of loop reordering
transformations are:

Interchange This transformation [Allen and Kennedy, 1984] consists of
exchanging the position of two loops in a nest. Possible objectives
include exposing a vectorisable dimension or increasing the temporal
and spatial locality in a loop. A simple example is shown in Listing
2.16.

Skewing Loop skewing, aims to improve data reuse and expose parallelism
in wavefront computations. In these computations, one or more
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arrays are updated at every loop iteration, and the updates propagate
in a wave fashion over the subsequent iterations (e.g., A[i][j] =

f(A[i-1][j], A[i][j-1])). This wave-like propagation occurs
due to diagonal dependencies. Skewing leads to non-rectangular tiles,
as shown in Figure 2.15. We expand on loop skewing and wavefront
temporal blocking in Chapter 3.

Figure 2.15 shows the order of computing mesh points in space-time
partitions. Parallelism can also be applied among points within a group of
execution and with the same time index. Parallelism opportunities are not
shown in Figure 2.15.

X

T

Figure 2.15.: Traditional loop skewing. Parallelism can also be applied among points within
a group of execution and with the same time index.

2.3.3. Temporal loop blocking

This subsection aims to introduce temporal loop blocking to the reader.
Earlier in this section, we discussed temporal locality (see Section 2.3).
Later, Section 3.1.4.1 will present its historical evolution and focus on
discussing work related to its application in stencils.

The central idea behind temporal blocking is to further enhance temporal
locality compared to classical loop blocking by reducing cache misses.
Some simulations often have another dimension, time, and the extension
of loop blocking in the time dimension seems natural. For this purpose,
several time-blocking methods have been developed to take advantage of
cache reuse in an additional dimension. Temporal blocking often consists
of loop reordering transformation when applied to already loop blocked
code.
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This section briefly introduces temporal blocking as a loop transforma-
tion. In Section 3.1.4.1, we will focus on prior attempts to apply temporal
blocking to stencils and in Section 4.2 we will discuss prior attempts at
automating this procedure.

In iterative simulations, data dependencies span different iterations.
Examples in Section 2.1.3 show iterative stencils where data dependencies
span different time steps. Rectangular tiles are not enough. Tiling in
the time dimension is more complex than in space dimensions, mostly
due to these dependencies. Iteration space partitioning cannot happen
similarly to spatial blocking, as data dependencies will be violated. These
dependencies complicate the application of temporal blocking, so the block
shapes in temporal blocking are often irregular and multidimensional,
only sometimes straightforward to visualise and comprehend. In order to
preserve the validity of execution for temporal blocking, several methods
of iteration space partitioning have been devised and will be discussed in
more detail in Section 2.3.3.1.

We utilise computed values in a block to update grid point values at the
next timestep where possible. While one or more timesteps for a given
block’s values are stored in the cache, we start computing the next timestep
for this block, not depending on the requirement to compute all the blocks
of a given grid for previous timesteps. Often, spatial and temporal reuse are
combined into hybrid models to harness the advantages of both methods
[Zohouri et al., 2018]. Plenty of research has been conducted in designing
and evaluating temporal blocking schemes. Some of these schemes are
presented in Section 2.3.3.1. There is a notable amount of work spanning
cache-optimising approaches without using loop blocking in time dimen-
sion schemes such as Wolfe [1986] to several temporal blocking schemes
in Wonnacott [2000], Guohua Jin et al. [2001], Wonnacott [2004], Wellein
et al. [2009], Strzodka et al. [2011] and wavefront [Yount and Duran, 2016],
and then, to more sophisticated such as diamond Bertolacci et al. [2015],
Bandishti et al. [2012], Malas et al. [2015], Muranushi and Makino [2015],
Levchenko and Perepelkina [2017], Akbudak et al. [2020] and Wang and
Chandramowlishwaran [2020]. Temporal blocking has historically been
applied to several stencil codes; however, it may not be a good fit for real-
world problem loop structures. Examples of applying temporal blocking
to real-world applications are shown in Chapter 3. Regarding performance
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gains, while narrow (low space discretisation order) stencil kernels exhibit
good temporal locality, temporal blocking profits decrease with wider
stencils. In problems with high discretisation order, the temporal locality
is limited. While narrow stencil kernels exhibit good temporal locality,
temporal blocking gains decrease when space-order increases. Higher
space order problems limit temporal locality as wide update dependencies
in space require more grid points to be known in order to update one value
in the time dimension.

Reuse level for medium space discretisation order stencils
Spatial locality Temporal locality

Flat Low Low
Loop blocking High Medium
Temporal Loop blocking High High

Table 2.1.: Overview of a “conceptual” degree of data reuse level for spatial and temporal
locality

2.3.3.1. Temporal loop blocking schemes

This section presents a short overview of some temporal tiling schemes.
Several schemes have been implemented concerning temporal blocking.
Most of these schemes are named after the shape of tiles that they end
up computing. These schemes vary in the degree of parallelism and
synchronisation, their efficiency on lower or higher space discretisation
order and their ratio of computation and communication overlap. Some of
these schemes are briefly described here.

Overlapped tiling Different tiles share subsets of iterations. A shared iter-
ation is “owned” by only one tile and is executed redundantly by
the set of overlapping tiles. These tiles store intermediate values in
“ghost” regions of memory. This approach removes the requirement
for a partial execution ordering at the price of redundant computa-
tion.

Wavefront temporal blocking Wavefront temporal blocking (WTB) extends
standard loop blocking with loop skewing and interchange to exploit
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Figure 2.16.: Overlapped temporal blocking. Temporal locality is enhanced but with the
trade-off of redundant computation.

locality in the time dimension. The grid points are updated in a
diagonal space-time plane, aiming to increase the number of cache
hits compared to standard loop blocking.

X

T

Figure 2.17.: Wavefront temporal blocking. Traditional loop skewing (Figure 2.15) is
enhanced with space and time blocking for improved spatial and temporal locality.

In this thesis, wavefront temporal blocking is an essential background
for the contributions presented in Chapter 3.1.1. We provide more
details on the update patterns in wavefront temporal blocking to
get more familiar with the space-time updates of temporal blocking.
Space-time wavefronts traverse our domain in wavefront temporal
blocking, diagonally updating grid point values. As illustrated ear-
lier in Figure 2.17, these diagonals describe the order of grid point
updates. For naming convention, as used in Yount and Duran [2016],
we will use the term “block” for spatial-only grouping and “tile”
when multiple temporal updates are allowed. Figure 2.18 shows grid
point updates in wavefront temporal blocking.

The green point is updated using the values from the red points.
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t=0

t=1

t=2

t=3

t=4

X

T

Legend

Value already known

Value not yet known  

Known value used as input 

Value being computed  

Value replaced in buffer 

Highest x-value that may be computed for
t=4 due to the dependencies on t=3 values

Tile ends here for t=0

Only two buffered values for each point are
kept in memory, the blue value (t-1) is
being replaced by the green one (t+1)

Figure 2.18.: Illustration of stencil kernel update in wavefront temporal blocking. The
green point is updated using the red values. This stencil kernel has a space order of 4,
thus allowing a margin of 2 points on the right not to violate data dependencies. Only two
timesteps are kept in memory, as the stencil depends on values of the previous timestep
only, so the green value substitutes the blue one. Figure partially adapted from Yount and
Duran [2016].

This stencil has a radius of size two. Thus a margin of two points
is required to preserve data dependencies. Only two timesteps are
stored in memory, as the stencil depends on values of the previous
timestep only, so the green value substitutes the yellow one in the
buffer. Keeping two timesteps in memory is a standard technique to
minimize the memory requirements (see Paragraph 2.2.1.1).

The stencil radius affects the wavefront angle (i.e. the ratio of spatial
indices needed to update one point in the next time step). The angle
gets steeper with a higher stencil radius.

WTB can also be applied to staggered grids as illustrated in Figure
2.19b. In a typical example, in this case, we have more than one
grids that are updated with stencils that read data from another grid.
Assuming we have a grid p and a grid v, we may need to compute
both p and v as a function of p and v at the previous timestep. A
simple pseudocode example for such a case is shown in 1. A real-
world example that ends up in similar stencils is presented later in
Section 3.3.3.
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ALGORITHM 1: A typical time-stepping loop nest structure where multiple fields are
being updated, reading from one another and their selves

1 for t = 1 to nt do
2 for x = 1 to nx do
3 for y = 1 to ny do
4 for z = 1 to nz do

5 p[t, x, y, z] = p[t-1, x, y, z] + v[t-1, x, y, z] + ∑r=so/2
r=1 wr

(
v[t-1, x - r, y, z] + v[t-1,

x + r, y, z] + v[t-1, x, y - r, z] + v[t-1, x, y + r, z] + v[t-1, x, y, z - r] + v[t-1, x, y, z +

r]
)

;

6 for x = 1 to nx do
7 for y = 1 to ny do
8 for z = 1 to nz do

9 v[t, x, y, z] = v[t-1, x, y, z] + p[t-1, x, y, z] ∑r=so/2
r=1 wr

(
p[t-1, x - r, y, z] + p[t-1, x +

r, y, z] + p[t-1, x, y - r, z] + p[t-1, x, y + r, z] + p[t-1, x, y, z - r] + p[t-1, x, y, z + r]
)

;

In this case, two or more grids may be updated, often having inter-
dependencies [Yount and Duran, 2016]. It is then necessary to shift
the wavefront angle (allow more margin to preserve dependencies)
by an amount, depending on the stencil radius of data dependencies
in each loop, as shown in Figure 2.19b compared to Figure 2.19a.
Figure 2.19b shows an example where we have two fields, namely
t p and t v, who read from one another and their self using a stencil
of the same radius. As a result, an update in t p needs two times the
stencil radius to be updated.

t=0

t=1

t=2

t=3

t=4

X

T

Tile 3

Tile 2

Tile 1

(a) The figure shows multiple wavefront tiles
evaluated sequentially, partially adapted
from Yount and Duran [2016].

t_p=0

t_v=0

t_p=1

t_v=1

t_p=2

X

T

Tile 3

Tile 2
Tile 1

(b) The figure shows multiple wavefront
tiles evaluated sequentially in stencil codes
with multiple fields.

Figure 2.19.: Wavefront updates for single- and multi-field stencil updates.

Split (Diamond/Hexagonal) tiling We assemble tiles to satisfy all data depen-
dencies and execute them in a partial order. Many split tiling schemes
have been studied for structured stencil codes. These schemes are
usually named after the tile shape they end up producing (such as
hexagonal or diamond tiling). They mainly differ in the achieved
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trade-off between parallelism and data locality. We can visualise a
tile’s geometrical shape by plotting the fused iteration space and
grouping iterations according to the tile they belong to. Diamond
tiling is mainly regarded as an advanced temporal blocking technique.
It is considered a split tiling technique. The tile slope depends on
the stencil’s semi-bandwidth. Diamond tiling has several advantages
[Malas et al., 2015, Bertolacci et al., 2015]. First, it allows maximum
data reuse. Secondly, it allows better concurrency in updating tiles
and increased parallelism.

X

T

Figure 2.20.: Hexagonal/Diamond loop tiling. Grid points are grouped in space-time
hexagons.

Cache-oblivious tiling In cache-oblivious tiling, we aim to benefit from
cache memory without explicitly knowing the size of the cache.
Cache-oblivious tiling aims to perform well on different-sized caches
and with different memory hierarchies. Cache-oblivious tiling may
also be substituted with block-size autotuning by paying the price of
the additional experiments needed to find the optimal block shape
combination.

Hybrid tiling Hybrid tiling does not take a particular shape or form of
tiling. It can take several forms by combining different tiling vari-
ants. Usually, it combines several forms of space and time tiling or
different shapes along space dimensions. For example, it may use
diamond tiling along x and rectangular tiling along y, or alternatively,
hierarchical loop tiling and time skewing.

Stencil-shape aware tiling schemes Often blocking optimisation for stencils
does not distinguish between stencils with different shapes. There are
techniques aiming to optimise performance concerning the stencil’s
shape. Stencil tesselation [Yuan et al., 2019] is new cache-related
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optimisation that handles box and star stencils differently.

Some of these strategies have been reviewed in Grosser et al. [2013b].
We already noted in Chapter 1 that this thesis aims to deliver techniques
to facilitate the automated application of wavefront temporal blocking.
Nevertheless, the theory of this approach aims to include every other
temporal blocking scheme (i.e. the advanced ones) like split, overlapped
and diamond.

2.3.4. Other loop optimisations

Apart from tiling-related optimisations, there are also other loop optimisa-
tions that aim to enhance code performance. Most of these optimisations
are supported by modern general compilers and compiler frameworks (like
Devito). Such loop optimisations include:

Fission/Distribution Sometimes called loop distribution, loop fission breaks
a loop into a sequence of multiple loops. The new loops have the
same iteration space as the original but include only a subset of
statements. The aim is to break down a possibly large loop body into
smaller “chunks” to achieve better data locality.

Fusion A sequence of loops can be fused or “merged” to improve data
locality and reduce the loop overhead. In the most straightforward
instance, all loops in a sequence have the same iteration space. Given
S1 a statement in a first loop and S2 a statement in a subsequence
loop, S2 does not modify any data read by S1. Applying loop fusion
is straightforward in such a case since no data dependencies are
violated. In general, loops can have different bounds, and the data
dependencies in (a set of) statements may be non-trivial. In these
cases, loop fusion becomes more challenging or simply not feasible.
This challenge has been formally tackled by Darte [2000]. Loop fusion
is only sometimes beneficial and can lead to slower execution times
or increased memory usage. It is essential to carefully analyse the
program and evaluate the potential benefits of loop fusion before
applying it. Additionally, loop fusion can make code more complex
and harder to read and maintain, so it should be used judiciously.
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Loop invariant code motion Often loops compute expressions whose result
is the same for every loop iteration (i.e., a loop-invariant quantity).
To improve efficiency, we can move this computation from the inside
to the outside of the loop. Instead of computing the expression for
every loop iteration, we only compute it once.

(Auto-) Parallelization Often loops are restructured in order to run effi-
ciently on multiprocessor systems. This may be accomplished either
automatically, through compilers with automatic parallelisation or
manually by inserting parallel directives (e.g. OpenMP pragmas).

(Auto-) vectorisation Similar to (Auto-)Parallelization, but instead, loop it-
erations are scheduled to run efficiently on a SIMD system. They
are often used in tandem with (Auto-) Parallelisation. Vectorisation
is a well-known paradigm that generalises scalar computation to
vector computation. That is, arrays of contiguous elements. A single
instruction, multiple data (SIMD) computation employs vectorisation
to carry out a sequence of instructions. SIMD architectures, ubiq-
uitous nowadays, emit vector code in two circumstances. The first
case is when program sections are explicitly vectorised (e.g., through
high-level libraries, intrinsic instructions, or assembly code);. The
second case is when a compiler transforms scalar code into vector
code. The latter is called auto-vectorisation since SIMD instructions
are generated without user intervention. Auto-vectorisation should
be preferred over explicit vectorisation for portability reasons when
possible and if demonstrated to be effective. Autovectorisation is typi-
cally applied to inner loops, although more advanced compilers (e.g.,
Intel’s) also support block vectorisation [Larsen and Amarasinghe,
2000].

Unrolling Loop unrolling (or unwinding) increases program efficiency by
reducing or removing loop control and test instructions. This tech-
nique aims to decrease the number of times the loop condition is
evaluated and the number of jumps, which may degrade perfor-
mance by impairing the instruction pipeline. Completely unrolling
a loop eliminates all overhead but requires that the number of iter-
ations is known at compile time. We should ensure that multiple
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re-calculation of indexed variables has a manageable overhead than
advancing pointers within the original loop.

2.4. Compilers and Libraries for Automated
Optimisations

In this section, we review state-of-the-art compilers and libraries for loop
optimisation. Some of the frameworks already mentioned in Section 2.2
also support automated optimisations through built-in compiler infrastruc-
ture. However, most frameworks today for automating loop optimisations
do not have a high-level symbolic mathematical language. Most of these
compilers are based on the polyhedral model [Bastoul, 2004, Verdoolaege,
2010] to express an Intermediate Representation (IR). Other compilers,
frameworks or source-to-source translators are based on analysing the
source code, applying rewrite rules, and producing another IR. An IR is a
graph-like data structure (e.g., the static single assignment form, or SSA,
in the LLVM compiler) used internally by a compiler to represent source
code. This review discusses tools that fall into the categories mentioned
here and have influenced our work. This section provides the necessary
context for the contributions presented in Chapters 3 and 4.

The polyhedral model The polyhedral model provides an abstraction for
performing high-level transformations such as loop-nest optimisa-
tion and parallelisation on affine loop nests [Griebl et al., 1998]. In
the context of the polyhedral model, loop nests are represented as
polyhedra. Every loop iteration within nested loops as lattice points
inside polyhedra. In polyhedral representations, loop bounds and
array indices must be affine expressions in the enclosing loop indices,
and polyhedral transformations are a combination of several one-
dimensional affine transformations. An affine transformation can be
explained as transforming a convex polyhedron into another convex
polyhedron. The compilers based on the polyhedral model (hence-
forth, polyhedral compilers) target parallelism and data locality by
composing affine scheduling functions. Once the polyhedron is avail-
able, different scheduling functions can be compared and applied.
A schedule defines the order in which the statement instances of a
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loop nest are executed; a scheduling function can change the original
order. This work focuses on structured stencil codes with sparse,
non-aligned to the structured grid points operators. These operators
render the loop nests non-affine, precluding polyhedral compilers’
adoption. There have been efforts to extend the polyhedral model
to non-affine loops [Venkat et al., 2014a]. However, the applicability
to real-world applications has yet to be established. In Chapter 3,
we discuss why we cannot use a polyhedral approach for temporal
blocking with sparse off-the-grid operators.

Intermediate representations (IRs) Compilers often use IRs to optimise code.
IRs should be accurate and well-defined and include all the necessary
information to represent the semantics of the source code. Some of
these IR-based compiler frameworks have automated or/and pre-
defined optimisation processes. In contrast, others may offer some
form of control over the optimisation process. IR-based transfor-
mations are often asserted through data dependence analysis. The
impact of the transformations on performance is often evaluated
using cost models. The cost model is expected to answer questions
like: Should we optimise loops using fusion and then CSE or the
other way round?

Furthermore, this chapter further categorises frameworks based on the
characteristics of the DSL and their intermediate representations. More
specifically, we often use the following terms as features of each framework.

The features that are included are:

Symbolic math DSL Support for a high-level domain-specific language that
can support problem setups in a notation close to textbook mathe-
matics.

Stencil-level DSL Support for a domain-specific language where users can
set up their problem using stencils and loops, but not mathematics
or physics.

Scheduling language Support for a user-defined schedule to set the order
and the nature of the already available optimisations within a larger
optimisation context.
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Graph/Tree-based IR Framework actively uses an IR capable of being trans-
formed or rewritten. The IR is not a text-like representation but
rather a graph-like/tree data structure.

Polyhedral Framework is based upon the Polyhedral model, supporting
polyhedral transformations.

2.4.1. Automated cache blocking, the example of Devito

Section 2.3 introduced the reader to space loop blocking, one of the most
prominent optimisations regarding stencil computations. More specifically,
Listing 2.15 illustrated a code snippet of a standard non-blocked implemen-
tation to a loop-blocked, cache-optimised implementation. This optimised
implementation requires significant manual effort. Optimising by hand
should be reduced, which is where automating optimisations come to
the rescue. This subsection will show an example of an automatically
generated code output. We aim to showcase the ease of optimising code
from a user perspective. The answer to how this is done will be presented
in Chapter 4.

We will use a time iterative Laplacian 3D stencil example. Listing
2.17 shows the DSL code to model such an example and shows how to
generate two different Operators. A non-optimised one named op0 and
an optimised one named op1.

In Listing 2.17, we observe that the only change between op0 and op1

is one keyword. The underlying compiler takes care of the optimisation
level (given as an argument when constructing an operator) and produces
optimised code. The stencil code snippet from the unoptimised version is
shown in Listing 2.18. Now let us see the optimised version of this code. In
Listing 2.19, we notice the additional generated loops that facilitate cache
blocking, as previously seen in Section 2.3 and more specifically in Listing
2.15. The generated code also has other optimisations, like loop invariant
code motion (also known as lifting dimension-invariant expressions) or
common sub-expression elimination. Applying all these optimisations by
hand is tedious and error-prone. We must carefully maintain the iteration
space’s properties and correctness and avoid falling into any arithmetic
mistakes. Frameworks like Devito ease our life when it comes to these
optimisations. The following subsections review frameworks that work
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Listing 2.17: Generation of two kernels for a Laplacian time-iterative model. Unoptimised
(op0) and optimised (op1). Optimised code generation is attained with a single argument
in the Operator construction.

1 # Some variable declarations
2 nt, nx, ny, nz = 50, 10, 10, 10
3 dx = 2. / (nx - 1)
4 dy = 2. / (ny - 1)
5 dz = 2. / (nz - 1)
6 sigma = .25
7 nu = .5
8 dt = sigma * dx * dy * dz / nu
9

10
11 # Grid initialisation
12 grid = Grid(shape=(nx, ny, nz))
13 u = TimeFunction(name='u', grid=grid, space_order=2)
14
15 # Initialise u
16 init_value = 6.5
17 u.data[:, :, :] = init_value
18
19 a = Constant(name='a')
20 eq = Eq(u.dt, a*u.laplace + 0.1, subdomain=grid.interior)
21 stencil = solve(eq, u.forward)
22 eq0 = Eq(u.forward, stencil)
23
24 op0 = Operator(eq0, opt=('noop'))
25 op1 = Operator(eq0, opt=('advanced'))

towards this direction and have influenced both Devito and this thesis.

2.4.2. DSL frameworks with builtin compiler

In Section 2.2, we discussed several frameworks that offer stencil modelling
from a higher or lower-level abstraction. Some of these frameworks do not
only abstract away the symbolic nature of modelling. They also abstract
away stencil-related optimisations.

Devito offers a built-in compiler that automatically applies a plethora of
optimisations to stencil computations. Apart from cache-blocking optimisa-
tions, as seen in Section 2.4.1, Devito can support the generation of highly
optimised parallel code supporting SIMD vectorisation, CPU and GPU par-
allelism via OpenMP and OpenACC, and multi-node parallelism via MPI.
Additionally, it offers cache blocking, aggressive symbolic transformations
for FLOP reduction and distributed arrays over multi-node (MPI) domain

59

https://github.com/devitocodes/devito
https://github.com/devitocodes/devito


Listing 2.18: A non-optimised version of Devito generated code for a Jacobi-like Laplacian
stencil.

1 for (int time = time_m, t0 = (time)%(2), t1 = (time + 1)%(2); time
<= time_M; time += 1)

2 {
3 /* Begin section0 */
4 START_TIMER(section0)
5 for (int x = x_m; x <= x_M; x += 1)
6 {
7 for (int y = y_m; y <= y_M; y += 1)
8 {
9 for (int z = z_m; z <= z_M; z += 1)

10 {
11 u[t1][x + 2][y + 2][z + 2] = dt*(a*(u[t0][x + 1][y + 2][z

+ 2]/pow(h_x, 2) - 2.0F*u[t0][x + 2][y + 2][z + 2]/pow
(h_x, 2) + u[t0][x + 3][y + 2][z + 2]/pow(h_x, 2) + u[
t0][x + 2][y + 1][z + 2]/pow(h_y, 2) - 2.0F*u[t0][x +
2][y + 2][z + 2]/pow(h_y, 2) + u[t0][x + 2][y + 3][z +
2]/pow(h_y, 2) + u[t0][x + 2][y + 2][z + 1]/pow(h_z,

2) - 2.0F*u[t0][x + 2][y + 2][z + 2]/pow(h_z, 2) + u[
t0][x + 2][y + 2][z + 3]/pow(h_z, 2)) + 1.0e-1F + u[t0
][x + 2][y + 2][z + 2]/dt);

12 }
13 }
14 }
15 STOP_TIMER(section0,timers)
16 /* End section0 */
17 }

decompositions, inspection and customisation of the generated code, au-
totuning framework to ease performance tuning and smooth integration
with popular Python packages such as NumPy, SymPy, Dask, and SciPy
and machine learning frameworks such as TensorFlow and PyTorch.

OPS [Reguly et al., 2018] uses a source-to-source translator to automati-
cally parallelise and apply loop-blocking optimisations to structured grid
stencils targetting multi- and many-core architectures. Additionally, as
benefited in OpenSBLI [Jacobs et al., 2017], the OPS library then optimises
the code. It targets specific hardware backends, such as MPI/OpenMP
execution on CPUs and CUDA/OpenCL execution on GPUs.

Exastencils [Lengauer et al., 2014] code generation framework consists
of a source-to-source compiler that, among others, includes vectorisation,
common subexpression elimination, polyhedral loop transformations and
loop unrolling. Exastencils can support several backends based on MPI,
OpenMP, CUDA and combinations thereof, targeting CPUs, GPUs and
hybrid architectures.
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Listing 2.19: An optimised version of Devito generated code for a Jacobi-like Laplacian
stencil.

1 float r0 = 1.0F/dt;
2 float r1 = 1.0F/(h_x*h_x);
3 float r2 = 1.0F/(h_y*h_y);
4 float r3 = 1.0F/(h_z*h_z);
5
6 for (int time = time_m, t0 = (time)%(2), t1 = (time + 1)%(2); time

<= time_M; time += 1)
7 {
8 /* Begin section0 */
9 START_TIMER(section0)

10 for (int x0_blk0 = x_m; x0_blk0 <= x_M; x0_blk0 += x0_blk0_size)
11 {
12 for (int y0_blk0 = y_m; y0_blk0 <= y_M; y0_blk0 +=

y0_blk0_size)
13 {
14 for (int x = x0_blk0; x <= MIN(x0_blk0 + x0_blk0_size - 1,

x_M); x += 1)
15 {
16 for (int y = y0_blk0; y <= MIN(y0_blk0 + y0_blk0_size - 1,

y_M); y += 1)
17 {
18 #pragma omp simd aligned(u:32)
19 for (int z = z_m; z <= z_M; z += 1)
20 {
21 float r4 = -2.0F*u[t0][x + 2][y + 2][z + 2];
22 u[t1][x + 2][y + 2][z + 2] = dt*(r0*u[t0][x + 2][y +

2][z + 2] + a*(r1*r4 + r1*u[t0][x + 1][y + 2][z +
2] + r1*u[t0][x + 3][y + 2][z + 2] + r2*r4 + r2*u[
t0][x + 2][y + 1][z + 2] + r2*u[t0][x + 2][y + 3][
z + 2] + r3*r4 + r3*u[t0][x + 2][y + 2][z + 1] +
r3*u[t0][x + 2][y + 2][z + 3]) + 1.0e-1F);

23 }
24 }
25 }
26 }
27 }
28 STOP_TIMER(section0,timers)
29 /* End section0 */
30 }

STELLA [Gysi et al., 2015] and GridTools library [Afanasyev et al., 2021]
with regards to automated optimisations, provide halo exchanges, data
management and bindings to C and Fortran. Besides the CPU backend,
they offer a CUDA GPU backend with improved performance versus the
current official version.
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2.4.3. Polyhedral compilers

These compilers enhance productivity by exploring a specific optimisation
space and searching for an optimal combination of all or a subset of the
available optimisation passes. This Section discusses several compilers that
fall within the polyhedral compilation area.

PENCIL [Baghdadi et al., 2015] aims to attain parallelism and perfor-
mance portability on accelerators. A strictly defined subset of GNU C99
is enriched with additional language constructs to produce highly opti-
mised code targeting accelerators. PENCIL can be regarded and used as
a portable implementation language for libraries and a target language
for DSL compilers. PENCIL incorporates sequential semantics, strictly
complies with C, and has a rich set of attributes and pragmas that en-
able static analysis. PENCIL can apply parallelism and advanced loop
transformations to non-static affine code and access patterns based on the
polyhedral model.

PLUTO [Bondhugula et al., 2008b,a] serves as an automatic paralleli-
sation tool for affine loop nests targetting coarse-grained parallelism and
data locality through a source-to-source transformation. The core transfor-
mation framework mainly searches for affine transformations for efficient
tiling, OpenMP parallelism and vectorisation. Although the schedule is
fully automatic (C to OpenMP C), users can still tune tile shapes, unroll
factors, and outer loop fusion structure before execution. PLUTO’s code
generation uses Cloog-ISL [Bastoul, 2004].

Polly [Grosser et al., 2012a] aims to seamlessly integrate the polyhedral
model into production-grade compilers, specifically, into LLVM. For this
purpose, Polly translates code to LLVM’s internal, low-level IR. Polly
introduces infrastructure for polyhedral optimisations on LLVM’s IR. By
identifying the section of codes that can be expressed as polyhedra, Polly
translates them to a Z-polyhedral representation. This representation is
further optimised, and then an optimised IR is generated. Afterwards,
parallelism is applied by generating SIMD and OpenMP code. Polly is also
bridged with PLuTo as an external optimiser and parallelizer.

Loo.py [Klöckner, 2014] is embedded in Python and mainly targets array-
type computations such as dense linear algebra, convolutions, n-body
interactions, finite difference and finite element computations. Loo.py

62



has a library of transformations that operate on a predefined data model
for array-type computations. Loo.py aims to provide user-friendly and
extensible IRs and retain a high-level interface. Loop tiling, vectorisation,
storage management, unrolling, instruction-level parallelism, and data-
layout transformations are among the transformations offered. Loo.py aims
to provide a smooth way to transit from the prototype to high-performance
implementation.

Tensor Comprehensions [Vasilache et al., 2018] is based on gener-
alised Einstein notation for computing on multi-dimensional arrays. TC
offers a DSL to express mathematics for deep learning and a polyhe-
dral Just-In-Time compiler to transform mathematical descriptions of a
deep-learning DAG into a CUDA kernel. TC library has been designed
to offer performance portability and machine-learning framework agnos-
tic. It only requires a tensor library with memory allocation, offloading
and synchronisation capabilities. TC’s syntax helps to simplify machine
learning framework implementations and can be efficiently translated to
high-performance computation kernels. TC tries to use other frameworks
when possible, avoiding reimplementing existing science. TC synthesises
high-performance machine learning kernels using Halide[Ragan-Kelley
et al., 2017], ISL[Bastoul, 2004], NVRTC 1 or LLVM [Lattner and Adve,
2004].

Other compiler frameworks are based on the polyhedral model or offer
users a scheduling language. This scheduling language provides the users
with the necessary infrastructure to explore the optimisation space and
fine-tune their applications.

A representative example of this class of frameworks is TIRAMISU [Bagh-
dadi et al., 2019]. TIRAMISU is a polyhedral compiler with a scheduling
language featuring novel commands for controlling data communication,
synchronisation, and mapping to different memory hierarchies, multicore
X86 CPUs, Nvidia GPUs, Xilinx FPGAs (Vivado HLS) and distributed
machines (using MPI). Tiramisu’s target applications are dense and sparse
deep learning and data-parallel algorithms. More specifically, optimising
recursive neural networks, image processing and scientific computing.
Its polyhedral nature helps perform complex loop transformations to
programs with cyclic data flow graphs. It also helps to represent non-

1https://docs.nvidia.com/cuda/nvrtc/index.html
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rectangular loops, affine transformations, and data layout transformations
and guarantees optimisations’ correctness through dependence analysis. A
simple C++ API is provided for expressing algorithms and scheduling their
optimisation pipeline. Tiramisu’s IR is divided into four layers to ease the
scheduling language implementation. These four layers manage algorithm
abstraction, computation, data, and communication management. Finally,
an abstract syntax tree leads to automated code generation. This four-
layer system allows portable and simply composable architecture-specific
lowering transformations.

AlphaZ [Yuki et al., 2013] differs from many existing tools in that it
tries to offer the user complete control of the transformations applied to
the code. Still a polyhedral framework that aims to act as an automatic
parallelizer. Users can experiment with new program optimisations that
similar tools may need to automate, as AlphaZ aims to offer a smooth
prototyping experience.

2.4.4. Other compiler frameworks

This subsection refers to other compiler frameworks not based on the
polyhedral framework. We discuss their structure and the features they
offer.

Such an example is The Open Earth Compiler [Gysi et al., 2021]. The
Open Earth Compiler follows the approach of domain-specific multi-Level
IR rewriting to target GPU-accelerated climate simulation. The core of
the Open Earth compiler consists of a set of MLIR dialects [Lattner et al.,
2020]. MLIR dialects are collections of domain-specific operations, transfor-
mations, and conversions between them. A stencil dialect helps define the
stencil at a higher level and covers a range of applications except climate
modelling (such as image processing and seismic imaging). Stencils are
lowered through a series of IRs featuring affine operations, structured con-
trol flow, and arithmetic operations starting from the stencil dialect. These
are available in MLIR and enhanced with loop- and value-level transforma-
tions such as unrolling or common subexpression elimination. The Open
Earth compiler IRs help to represent a structured loop abstraction. This
structure is used to design a generic GPU kernel dialect and implement
loop-to-kernel conversion using simple patterns. These patterns are based
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on the parallelism information preserved from the stencil level. Open Earth
transforms a high-level climate code into a fast target-specific binary as an
end-to-end compiler.

Lift [Steuwer et al., 2015, 2017] is a framework built on a level close
to the generated code compared to other high-level DSLs. Lift arose as
a promising performance portability framework based upon a small set
of reusable parallel primitives upon which DSLs can be built. Lift aims
to bridge the gap between the growing ecosystem of DSLs in order to
reduce the effort every DSL is making to support standard optimisations
such as parallelism. Lift encodes optimisations as a system of extensible
rewrite rules. These rules can then be used to explore the optimisation
space. The primary target computational kernels are linear algebra ones
and recently has been extended to stencil computations [Hagedorn et al.,
2018]. Lift is based upon semantic-preserving rewrite rules. Applications
employ a set of functional primitives, and optimisations are encoded
as rewrite rules. These rules form a space for exploring optimisations
and act as a foundation for alleviating programmers working on higher
abstraction levels tediously rewriting and tuning their implementations.
The rewrite passes optimisation space is automatically explored [Steuwer
et al., 2016] for each target architecture. To assemble an application, the
programmers can benefit from the high-level functional primitives (map,
reduce, scan). This functional primitive technique allows the expression
of multidimensional stencil kernels by composing and nesting intuitive
primitives. Furthermore, the rewrite rules help formalise algorithmic
and device-specific optimisations for performance portability. There is a
clear separation between the computation and the implementation of it.
High-level expressed computations are rewritten to lower-level expressions,
which are still functional and encode parallelism and cache-related aspects
for optimisation.

YASK [Yount, 2015, Yount and Duran, 2016, Yount et al., 2017] is yet
another framework to generate high-performance stencil code efficiently.
YASK has heavily influenced the work in this thesis. It can support mod-
elling boundary conditions and staggered-grid stencils and has APIs for
C++ and Python. The generated code offers various optimisations, includ-
ing vector-folding to increase data reuse via non-traditional data layout
and shared- and distributed-memory parallelism supporting computa-
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tion/communication overlap. It also supports temporal tiling in multiple
dimensions to increase cache locality further compared to space blocking,
which we will discuss in Section 4.2.1. Both traditional loop blocking and
temporal blocking can be autotuned.

Apache TVM [Chen et al., 2018] is an open-source machine learning
compiler framework for CPUs, GPUs, and machine learning accelerators.
It aims to enable machine learning engineers to optimise and run com-
putations efficiently on any hardware backend by providing end-to-end
compilation. TVM offers a compiler stack to bridge the gap between pro-
ductivity and efficiency, focused on deep learning frameworks and their
hardware backends. It is another project that targets teams of interdisci-
plinary scientists. TVM compiles deep learning models into minimum
deployable modules and infrastructure to automatically generate and opti-
mise models on more backends with better performance.

Delite [Sujeeth et al., 2014] compiler provides components to ease the
process of DSL development on top of it. These components, such as
parallel patterns, optimisations, and code generators, can be reused in the
DSL ecosystem. Delite is embedded in Scala but uses metaprogramming
to construct an IR layer of user programs and compile to multiple targets
(including C++, CUDA, and OpenCL). Delite offers automatic paralleli-
sation and heterogeneous platform execution for machine learning, data
querying, graph analysis, and scientific computing.

PATUS [Christen et al., 2011] is a code generation tool for stencil com-
putations. It provides a software infrastructure targetting automatic code
generation for architecture-specific (CPUs, GPUs) stencil kernels. Stencil
specification at a higher level incorporates domain-specific knowledge to
optimise the computation further. In addition, it serves as an experimen-
tation toolbox for parallelism and optimisation strategies. Patus DSL is
small and predefined strategies can be employed to schedule the kernel
optimisations and parallelism. Custom user schedules also make it possible
to experiment with other algorithms or better map to the hardware.

Pochoir [Tang et al., 2011] is a notable work in this area and consists
of three main components: an embedded domain-specific language in
native C++ for stencil specification, a C++ template run-time library, and
a domain-specific compiler to optimise the performance at compile time.
In Pochoir, a compiler translates the high-level specification into cache-

66



oblivious algorithms for multi-core CPUs using the Cilk language.

Other frameworks that contributed to the scientific community are briefly
referred to here. Unified Representation Universal Kernel (URUK) [Gir-
bal et al., 2006] which is based upon the polyhedral compiler. The Bricks
framework [Zhao et al., 2018a,b] is primarily working with data layout
transformations for performance portability across multiple architectures.
It generates code with optimised blocking and efficient halo exchanges for
domain decomposition. POET [Yi, 2012] a script-driven transformation
engine for source-to-source transformations aiming to expose parameter-
ized transformations via scripts. SBLOCK [Brandvik and Pullan, 2010], a
Python framework for structured grid stencil computations. Mint [Unat
et al., 2012] a framework based on pragma directives targeting GPUs. It has
been used to accelerate 3D earthquake simulations. PPCG [Verdoolaege
et al., 2013], a polyhedral compiler, source-to-source translator targetting
GPU code generation for affine loops. NOVA [Collins et al., 2014], a func-
tional language and compiler for multi-core CPUs and GPUs offering a
polymorphic, statically-typed functional language with a suite of higher-
order functions that are used to express parallelism. NOVA compiler is
stand-alone and can be easily used as a target for higher-level or domain-
specific languages or embedded in other applications. It generates code
for a variety of target platforms and is performance-portable. Composable
High-Level Loop (CHiLL) [Chen et al., 2007] is another high-level transfor-
mation and parallelisation framework using the polyhedral model. CHiLL
supports a wide variety of loop transformations for loop nests. These
transformations can be pipelined and applied in sequence. SDSLc [Hen-
retty et al., 2013] is a compiler for the Stencil-DSL (SDSL), embedded in C,
C++ and MATLAB. The SDSL compiler targets performance portability for
CPUs, GPUs and FPGAs.

Other structured stencil code-generation frameworks worth mention-
ing and aiming to increase the performance of the generated code were
presented in Zhang and Mueller [2012], Datta et al. [2008], Henretty et al.
[2013], Zhao et al. [2018a], Hawick and Playne [2013].

Note: Although it is unclear whether some of these works are being employed
in production codes, they paved the pathway to generalising several approaches
towards high-performance code generation. Some of these frameworks have been
discontinued, but some are still maintained as part of other larger projects.
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2.4.5. Domain-Specific Abstractions and Optimisations

General-purpose or polyhedral compilers aim to abstract away optimi-
sations from the users. This abstraction often targets broad classes of
problems trying to apply general-purpose optimisations to the maximum
possible subset of these problems. The trade-off of this approach is that
we often miss optimisation opportunities that apply to only a narrow class
of problems. Specific mathematic properties of the problem may often
not be accounted towards these specific optimisations. This section briefly
reviews some domain-specific optimisation systems that target narrow
classes of problems and inspire our work. We review some high-level
compiler frameworks that are not targetting finite differences; however,
they have a notable compiler infrastructure that has influenced our work.

Halide [Ragan-Kelley et al., 2013, 2017] introduced Halide, a high-level
language for expressing image processing and tensor kernels. Halide is
embedded in C++ and is portable on many CPU and GPU architectures.
Halide is proven to be successful in practical applications. It is currently
employed to develop production code by several companies such as Google
and Adobe.

Image processing kernels are often a sequence of interconnected stages.
Most people have often used a gaussian blur, greyscaling, brightening,
and contrast to edit an image. Each of these operations is a numerical
computation kernel over an image. This image can be conceived as a tensor
or array. There are often practical applications where image processing
pipelines can be very complex and consist of several stages of the order of
tens.

Halide is based on separating the underlying algorithm from its schedule.
It allows programmers to express many optimisation combinations given a
space of schedules. The Halide compiler uses the schedule to express many
possible algorithm organisations. Halide supports a range of optimisations.
Some are cache locality optimisations, loop reordering transformations,
shared- and distributed memory parallelism, and SIMD vectorisation. The
optimisation space is explored and auto-tuned at runtime. The optimisation
strategy selected does not affect the correctness of the program. The
resulting performance has been demonstrated to match or outperform
state-of-the-art manually written and optimised codes.
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PolyMage [Mullapudi et al., 2015] is a domain-specific language and
optimising code generator. Similarly to Halide, Polymage seeks to optimise
image processing pipelines automatically. The user expresses an image pro-
cessing pipeline in a high-level Python-embedded language. Polymage gets
this pipeline as input and generates optimised and parallelised C++ code
to target multicore CPUs. In contrast to Halide, PolyMage’s optimiser is
primarily polyhedral-based for parallelism and data locality optimisations.

Forma [Ravishankar et al., 2015] is a DSL and compiler framework to
generate C code for multicore CPUs and NVIDIA GPUs automatically.
Forma targets image processing pipelines and is an excellent example of
abstracting problem modelling from low-level optimisations. Forma DSL
offers a rich stencil-level DSL and automatically handles, among others,
memory management, parallelisation, vectorisation, fusion and tiling.

The Tensor Contraction Engine (TCE), now part of NWChem [Apra
et al., 2020], is a domain-specific language for quantum chemistry. Chemists
express computations in a high-level language, and TCE optimises their
computation. TCE uses algebraic transformations to reduce the cost of
computational kernels [Hartono et al., 2006, 2009] and tunes the kernel
by exploring the most suitable trade-off between redundant computation
and data movement [Lam et al., 2011]. TCE employs several optimisations,
such as loop fusion and optimal evaluation for dynamically allocated
intermediate arrays. Recomputation can be traded for data locality and
storage requirements. Other optimisations improve the communication
cost for multi-processor CPUs and minimise the time needed to fetch data
by reducing data movement. Finally, the Fortran code is generated. Many
of these optimisations exploit the mathematical structure inherent in tensor
contractions.

ARTEMIS, [Rawat et al., 2018], is another code generation framework tar-
getting stencil computations on GPUs that abstracts away code generation
concepts from the users. ARTEMIS offers a stencil-level DSL and supports
optimisation scheduling and bottleneck analysis to tune the performance
of applications. By stencil-level DSL, we refer to languages that specify
computations in a stencil-like language.

Other DSL and code generation frameworks that will be further dis-
cussed later in this thesis (see Section 4.2) is AN5D, [Matsumura et al.,
2020], and Formura DSL, [Muranushi et al., 2016, Tanaka et al., 2018].
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The Spiral project [Püschel et al., 2005, Franchetti et al., 2018] is a pi-
oneering project on automated code generation targetting digital signal
processing transforms, including the discrete Fourier transform and other
trigonometric, filter, and discrete wavelet transforms. Starting from a
high-level specification of a mathematical problem, Spiral generates high-
performing, performance-portable, tuned code through a set of rewrite
rules (see also 2.4.4). The mathematical formulae are turned into an IR, en-
abling explicit parallelism and vectorisation. Afterwards, the IR is lowered
to low-level code for compilation and execution. Spiral is different from
other projects in employing a feedback-driven optimiser. This feedback
enables further optimisations that map better to the underlying microar-
chitectural details.

Computations in engineering, finance, and scientific computing are often
reduced to linear algebra operations. The cost of these computations is
often high due to the number of linear algebra operations, the input size,
or both. Academics or vendors have developed a considerable number of
math libraries to facilitate the need to reduce this cost. Significant efforts
have been made to improve the performance of these libraries to ensure
high performance for the scientific applications that use these libraries.
Some of the libraries that are worth to be mentioned in this thesis are
presented here.

Intel’s Math Kernel Library [Wang et al., 2014] is one of the fastest
and most famous libraries targetting Intel-based systems. Main Intel
MKL interfaces include vector, matrix-vector, and matrix-matrix operations
(BLAS [Blackford et al., 2011]), operations on sparse vectors and matrices
(Sparse BLAS [Duff et al., 2002]), systems of linear equations, least-square
problems, eigenvalue and singular value problems [Anderson, 1987] and
others. Nvidia’s cuBLAS library is highly optimised for performance on
NVIDIA GPUs. It leverages tensor cores to accelerate low and mixed-
precision matrix multiplication [NVIDIA, 2022].

Other libraries include LIBXSMM [Heinecke et al., 2016] and BLIS [Van
Zee and van de Geijn, 2015]. The field of linear algebra libraries is of
interest to us because cache-level abstractions are interesting for our work
presented in this thesis in Chapter 4.
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2.4.6. Frameworks Overview

Finally, we present an overview of the majority of frameworks mentioned in
this Chapter. Table 2.2 illustrates the features that can shortly characterize
these frameworks.

2.5. On the Terminology Adopted

In this section, we expand on the terminology used throughout this thesis.
The terminology used is standard and close to the one used in reference
textbooks such as Hennessy and Patterson [2017]. We review the relevant
keywords and provide a brief reference for each. We consider this review
to guide the reader when discussing performance evaluation metrics. We
encourage the reader to refer to this section, primarily when performance
evaluation is discussed throughout this thesis. Some of these terms are
commonly used in similar works in the extended area of computer archi-
tecture, domain-specific languages and HPC [Rathgeber, 2014, Luporini,
2016].

Compilers

General-purpose compiler We generically refer to any open-source or com-
mercial compilers capable of translating low-level source code (e.g.,
Fortran, C, C++) into lower-level machine code (e.g. assembly/ob-
ject/machine code). Examples are the GNU (gcc, g++), Intel (icc),
LLVM (clang), Cray (cce) and NVIDIA (nvc, nvc++) compilers. By
“general-purpose,” we aim to differentiate these compilers from all
other higher-level compilers, such as those based on the polyhedral
model or those used for translating domain-specific languages (see
Section 2.4 ).

Source-to-source compiler By source-to-source compiler or source-to-source
translator, we mostly refer to compilers whose input and output have
a similar level of abstraction as opposed to traditional compilers that
start from a higher and end to a lower level of abstraction.
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Table 2.2.: Overview of notable stencil-related DSL/compiler frameworks and their features
in literature

Features
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Devito ✓ ✓ ✓ ✓
OPS/OP2 ✓ ✓
Exastencils ✓ ✓ ✓
GridTools ✓ ✓
Stella ✓
Simflowny ✓
PENCIL ✓ ✓
PLUTO ✓
Polly ✓ ✓ ✓
Loo.py ✓ ✓ ✓ ✓
TIRAMISU ✓ ✓ ✓ ✓
Halide ✓ ✓ ✓
Forma ✓ ✓
Polymage ✓ ✓ ✓
Tensor CE ✓ ✓
Lift ✓ ✓
ChiLL ✓ ✓
Bricks ✓
ARTEMIS ✓ ✓
Formura ✓ ✓
AN5D ✓ ✓
OpenSBLI ✓ ✓
Apache TVM ✓ ✓
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Performance Metrics and Cost Models

Data locality Data locality indicates how close the distance between where
data is and where this data needs to be processed. The shorter the
distance, the better the data locality is [Unat et al., 2017].

(High) Memory pressure This is often used to emphasise the fact that one or
more levels of the memory hierarchy (e.g., RAM, caches, registers) are
stressed by a relatively large number of load/store instructions. High
memory pressure is often responsible for performance degradation.

Operational intensity This parameter defines the ratio of total operations
to total data movement (bytes) between the DRAM and the cache
hierarchy for a given code section. The operational intensity helps
to “predict the DRAM bandwidth needed by a kernel on a particular
computer“. A computational kernel is primarily compute-bound with
high operational intensity and memory-bound with low operational
intensity.

Memory- and compute-boundedness A code section can be compute-bound
or memory-bound on a specific platform. In the former case, the
performance achieved is limited by the operation throughput of the
CPU; in the latter case, the memory bandwidth or the memory latency
is the limiting factor. Cache-level optimisations such as space blocking
and temporal blocking increase data locality, thus tackling memory-
boundedness by maximising the cache hit ratio, thus reducing latency
and memory pressure. Many domain-specific optimisations, such
as flop reduction techniques, target compute-boundedness instead;
for example, several Devito optimisations manipulate mathematical
formulae to reduce the operation count of the resulting kernels.

Arithmetic intensity Sometimes, arithmetic intensity is used instead of op-
erational intensity. There are mainly two differences. First, only the
fraction of arithmetic operations emitted is considered instead of all
operations. Secondly, we work under the hypothesis that the total
data movement occurs between the CPU and the last cache level.
We explicitly distinguish it in our metrics whenever we do not work
under this hypothesis (see item 2.5 - The roofline model).
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The roofline model The operational intensity is helpful to derive roofline
plots [Williams et al., 2009]. A roofline plot is particularly helpful
for studying a program’s computational behaviour since it provides
insight into the performance bottlenecks and, therefore, the most
valuable optimisations. A roofline model mainly comprises two
lines, a line with a slope that depicts memory-bandwidth limitations
and a flat line depicting compute-bound limitations. For cache-
related limitations, multiple sloped lines can be added to depict these
limitations for every cache level. More information on the roofline
model can be retrieved from [Williams et al., 2009] and [Ilic et al.,
2014].

There are two main roofline models we can use for cache-related
benchmarking.

• The Classical roofline, introduced by [Williams et al., 2009]. Here,
the arithmetic intensity is determined by measuring traffic from
DRAM.

• The Cache-Aware roofline, introduced by [Ilic et al., 2014]. Here,
we measure memory traffic from any given level in the memory
hierarchy (L1, L2, L3).

This thesis often uses roofline models to indicate performance im-
provement from cache-related optimisations.

Non-uniform memory architecture and locality issues Non-Uniform Memory
Architecture separates RAM and memory management units asso-
ciated with CPU sockets. Often a processor living in a socket needs
to access memory from another socket. There is additional latency
overhead compared to accessing local memory in this case. In order
to increase data locality, it is good to avoid remote memory access.
Proper data placement increases the overall bandwidth and improves
the latency to memory [Lameter, 2013]. These are called NUMA
issues, and for more details on how we resolve them when running
benchmarks, see Paragraph 3.4.
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Miscellanea

Real-world applications Throughout the thesis, we often use the term “real
world” or “practical applications” to emphasise that we evaluate our
models based on equations, numerical methods, and datasets used
in scientific applications in academia or industry. This practice pro-
vides compelling evidence about our contributions’ effectiveness and
applicability to the optimisations presented. Often, people evaluate
against simplistic benchmarks that do not comprise the challenges
existing in real-world problems.

2.6. Summary

In this Chapter, we reviewed the essential scientific background for this the-
sis. Section 2.1 presented the mathematical theory for the finite-difference
method and how this translates from PDEs to stencil kernels. We present
simple examples to help the reader progress through a smooth transition.

In Section 2.2, we introduce frameworks that automate the finite dif-
ference method. We showcase Devito to model these partial differential
equation problems and automatically generate high-performing code. We
discuss FD software abstractions used for solving partial differential equa-
tions via lowering to stencils. Additionally, we briefly mention other
frameworks for solving PDEs with other methods.

Section 2.3.1 shows that stencils can be highly optimised with several
optimisations. We primarily focus on cache-related optimisations like loop
blocking 2.3.1. We also discuss temporal blocking, an essential part of this
thesis. These optimisations are challenging to apply by hand. The need to
automate optimisations is obvious.

Automating optimisations has been a research target for several years.
In Section 2.4, we review these frameworks and the state-of-the-art in
performance optimisation, focusing on frameworks that aim to automate
compiler optimisations. Specific focus is given in Devito.

Finally, Section 2.5 briefly refers to the terminology adopted throughout
the thesis.
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Chapter 3

Wavefront temporal blocking of
finite-difference stencil
operators with sparse
“off-the-grid” sources

As discussed in Chapter 2 and more particularly in Section 2.3.1, cache
optimisations help reduce the required memory bandwidth of stencil com-
putations by reusing data from the cache. Similarly, temporal blocking,
another cache optimisation presented in Section 2.3.3, enhances this reuse
in the time dimension. However, even though the efforts of the frameworks
presented in Section 2.4 are notable, there are still real-world problem cases
where cache optimisations are hard to apply. This chapter introduces an
approach to applying wavefront temporal blocking to a class of stencil
kernels with loop structures more complex than the stencils commonly
studied in the literature. This complexity makes the application of cache
optimisations far from straightforward. This chapter will focus on scientific
applications with stencils on structured meshes that consist of sources and
receivers, resulting in non-typical loop structures with additional complex-
ities. These loop structures stem from practical applications and consist
of sparsely located operators not aligned with the computational grid.
From now on, we refer to these positions as “off-the-grid” positions [Yan
et al., 2015, Poon and Peyré, 2019]. More details on the “off-the-grid” posi-
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tions will be presented in Section 3.1.1. We explain why these loops pose
challenges to temporal blocking and how our approach overcomes these
challenges. To overcome these challenges, we introduce a methodology to
inspect complex data dependencies arising from “off-the-grid” operators
and reorder the computation, leading to performance gains in stencil codes
where temporal blocking has not been applicable. We use the wavefront
temporal blocking scheme to showcase the successful application of our
methodology approach.

We implement this novel methodology in the Devito domain-specific
compiler toolchain. We evaluate the potential improvement and the limits
to applicability using standard benchmarks in industrial seismic imaging
such as the isotropic acoustic, anisotropic acoustic, and isotropic elastic
wave propagators. We compare this wavefront temporal blocking model
over highly-optimised, spatially-blocked vectorised code. Performance
evaluation after auto-tuning shows that our contributions unlock substan-
tial speed-up ranging from 1.1x to 1.6x for space discretisation orders of 4
and 8.

3.1. Motivation and Related Work

Often the stencil kernels benchmarked in the literature about cache-blocking
optimisations for FD codes do not resemble scientific simulations. These
stencils often neither simulate real-world phenomena nor resemble part
of practical studies. These benchmarks, as in Wonnacott [2000], Guohua
Jin et al. [2001], Wonnacott [2004], Wellein et al. [2009], Strzodka et al.
[2011], Schäfer and Fey [2011], Holewinski et al. [2012], Bandishti et al.
[2012], Grosser et al. [2013a, 2014a], Bertolacci et al. [2015], Muranushi
and Makino [2015], Levchenko and Perepelkina [2017], Rawat et al. [2018],
Zohouri et al. [2018], Wang and Chandramowlishwaran [2020] are more
“theoretic rather than practical,” meaning that they are closer to textbook
examples rather than simulations of industrial interest. Characteristic
examples are PDEs similar to the Heat and the Laplace equations (see
subsections 2.1.3.1 and 2.1.3.3). To model scientific simulations, textbook
examples need to be enriched with more equations to assist in modelling,
such as initial and boundary conditions or external operators affecting the
computation. Our interest only focuses on the prementioned specific class
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of sparse “off-the-grid” operators.

Temporal blocking has proven beneficial for stencil kernels, improving
cached data reuse. However, published benchmarks rarely widen their
focus beyond the stencil kernel, resulting in a disconnect between reported
results and real-world applications, which often need more equations
to assist modelling, such as damping equations, initial and boundary
conditions or external operators that may be affecting the computation.

These additional factors affect its complexity and, therefore, its computa-
tional cost. This complexity may impede the application of optimisations,
as this Chapter will describe in Section 3.1.1. Our aim in this thesis is to
apply temporal blocking to building blocks of real-world scientific simu-
lations. More specifically, our approach is evaluated using the wavefront
temporal blocking scheme.

The work presented in this chapter is motivated by applying temporal
blocking to practical problems in which source injections result in wave-
fields that must be measured at receivers by interpolation from the gridded
wavefield. This setup is prevalent in seismic and medical imaging. Espe-
cially in seismic imaging, solvers for isotropic acoustic [Levander, 1988],
anisotropic acoustic [Zhang et al., 2011, Duveneck and Bakker, 2011] and
elastic [Virieux, 1986] wave propagation kernels using explicit finite differ-
ences are commonplace. These wave propagation kernels are responsible
for a significant computational part of forward and backward modelling in
seismic applications. Characteristic examples of such applications include
full-waveform inversion (FWI) [Virieux and Operto, 2009] and reverse
time migration (RTM) [Baysal et al., 1983, Chang and McMechan, 1990].
The following subsections describe an example of a scientific application
with sources and receivers, how we iterate over them, the additional data
dependencies induced, and a description of wavefront temporal blocking,
one of the many available temporal blocking schemes.

3.1.1. Sparse “off-the-grid” operators

As discussed earlier, this work is highly influenced by real-world problems,
mainly in the area of wave propagators. Sources that inject waves and
receivers that collect traces are required to model seismic and medical
imaging problems. It is a common pattern to have sparse “off-the-grid”
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operators together with structured grid operations. These operators are
sparsely placed within the computational domain and non-aligned to
the structured FD grid. Usually, we need to model the scattering or
gathering of data at positions non-aligned to the structured grid. These
operations interpolate values and are treated differently than a classical
PDE-stencil update. We call the scattering of data a “source operation” and
the gathering of data a “receiver operation”. These sources and receivers
are commonly present in real-world applications. Figure 3.1 shows an
example of bilinear interpolation, where 4 points are affected in 2D space.
Subfigure 3.1a resembles a source injection of a wave, while subfigure 3.1b
resembles a receiver collecting traces by interpolation.

(χ, y+δy) (χ+δχ, y+δy)

(χ, y) (χ+δχ, y)

(χs, ys)

(a) An off-the-grid source injects values to
neighbouring grid points.

(χ, y+δy) (χ+δχ, y+δy)

(χ, y) (χ+δχ, y)

(χr, yr)

(b) An off-the-grid receiver interpolates val-
ues from neighbouring grid points.

Figure 3.1.: A source injection and a receiver measurement interpolation at off-the-grid
positions in a 2-D FD-grid. We assume linear interpolation.

The bilinear interpolation is the weighted average of the values at the
four corners of the rectangle (χ, y), (χ, y + δy), (χ + δχ, y + δy), (χ + δχ, y).
The weights are specified regarding the distance from (χr, yr). Conse-
quently, assuming w1, w2, w3, and w4 are respectively the weights based
on these distances, the value at (χr, yr) is computed from an equation of
the following form:

f (χr, yr) = w1 ∗ f (χ, y) + w2 ∗ f (χ, y + δy) + w3 ∗ (χ + δχ, y + δy)+

w4 ∗ (χ + δχ, y)

(3.1)
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Subfigure 3.1a shows a “source” injecting at position (χs, ys) and values
being scattered to the neighbouring grid-aligned positions. On the other
hand, Figure 3.1b shows a gather operation where values from the neigh-
bouring points are accumulated through bilinear interpolation to (χr, yr).
Similarly, in three-dimensional problems, we use tri-linear interpolation.

An example of sparse “off-the-grid” operators in a real-world application
This paragraph will briefly showcase an example of sparse “off-the-grid”
operators in the context of seismic imaging. Before focusing on the sparse
“off-the-grid” operators, we quickly refer to seismic surveys and their
importance.

Seismic surveys provide a way to capture detailed images of geologi-
cal/subsurface structures. Using such images, we can interpret subsurface
structure to determine the geological history and setting: essential consid-
erations when prospecting for valuable minerals such as oil and gas. In
seismic imaging, an airgun or explosives are used to produce pulses which
reflect off and refract through layers in the subsurface, with the returned
signal recorded using sensors called geophones (a process analogous to an
ultrasound scan or sonar survey). Accurate imaging yields improved geo-
logical understanding, reducing the chances of unsuccessful exploratory
drilling. Unsuccessful exploratory drilling may cost hundreds of thousands
of dollars without any benefit. In land settings, sources and geophones are
laid out in a grid arrangement or towed behind the vessel as a streamer
at sea. These pulses are then picked up by the geophones attached to
the lines towed by a ship. The information collected can subsequently
be used for three-dimensional models of the subsurface. Geologists and
geophysicists analyse these models to identify structures that imply the
target resource’s presence. As a result, high-quality imaging is critical for
target identification and de-risking the drilling process.

Figure 3.2 shows a 2D slice of a 3D seismic imaging survey. Figure 3.3
shows the discretised computational domain of a 2D slice in a 3D seismic
imaging survey. We can see the equally spaced points where we compute
the PDE stencil updates and the sparse “off-the-grid” operators (sources
and receivers) that are not aligned to the computational grid.

The following paragraph explains how we iterate over sparse operators
and apply their effect on structured grid problems.
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Figure 3.2.: A seismic imaging survey. A vessel’s sources inject pulses, and geophones’
receivers take measurements. Adapted from open.edu

.

Figure 3.3.: Structured grid setup in a slice of a 3D seismic imaging survey. The geophones
(red) and the receivers (yellow) are not aligned to the structured grid. Original background
image: open.edu

Iterating over sparse operators Sources and receivers are both sets of
sparsely-distributed off-the-grid points. We iterate over these sparsely-
located sets through indirect accesses (A[B[i]]). Their effect is applied to
the grid points just after iterating the three dimensions of the grid for each
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timestep to update the points with the stencil kernel. Listing 2 illustrates
a loop nest structure with source injection through indirection (see line
8). nt is the number of time steps; nx, ny, and nz are the number of grid
points along the x, y, and z dimensions respectively, A(t, x, y, z) is the
stencil kernel update, and finally, so is the space discretisation order. The
src is of size nt × len(sources) holding the wavefield for each timestep for
every source, where sources is the structure holding the information for
modelling source injection. Variable np accounts for the number of points
affected by a source, and f is the function defining the type of interpolation
(e.g., bilinear, trilinear). The sources set shown in Listing 2 provides
the sparse off-the-grid coordinates for the injection. We iterate this set of
coordinates that determine the affected neighbouring points. The wave
amplitude is scattered to these affected points.

ALGORITHM 2: A typical time-stepping loop nest structure for a stencil update with
source injection. This stencil has one temporal and three spatial dimensions.

1 for t = 1 to nt do
2 for x = 1 to nx do
3 for y = 1 to ny do
4 for z = 1 to nz do

5 A(t, x, y, z) ≡ u[t, x, y, z] = u[t-1, x, y, z] + ∑r=so/2
r=1 wr

(
u[t-1, x - r, y, z] + u[t-1, x

+ r, y, z] + u[t-1, x, y - r, z] + u[t-1, x, y + r, z] + u[t-1, x, y, z - r] + u[t-1, x, y, z + r])
;

6 foreach s in sources do // For every source
7 for i = 1 to np do // Get the points affected
8 xs, ys, zs = map(s, i) // through indirection
9 u[t, xs, ys, zs] + = f (src(t, s)) // add their impact on the field

Note: Computing the source injection after the PDE stencil computation
is an implementation option. We could very well apply source injection
before the PDE stencil update with only minor changes in the “time”
accesses of the code.

More complex data dependencies In Figures 3.1a, 3.1b and Listing 2
it can be observed that in addition to data dependencies stemming from
sparse operators (see Figures 2.2, 2.3), practical applications such as seismic
wave modelling introduce additional dependencies owing to the interpola-
tion of data not directly associated with grid points into the model (e.g.,
scatter/gather operations for interpolation). These dependencies stem
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from positions that are not aligned with the grid points. These positions
are sparsely-distributed “off-the-grid” positions.

Applying classic time-tiling schemes to codes with “off-the-grid” opera-
tors without further adjustments would violate data dependencies. This
violation will be explained in more detail in Section 3.1.2. When interacting
with the space-time update patterns of temporal blocking schemes, these
dependencies violate the correctness of our models as data dependencies
are not honoured. To the best of our knowledge, there is no straightforward
approach in the literature to solve this problem.

3.1.2. Problem overview: a running example

In this subsection, we aim to explain in simple terms why temporal block-
ing and sparse operators pose a challenging issue. Space blocking [Wolfe,
1989, Wolf and Lam, 1991] can be applied with no issues in computational
patterns similar to Listing 2. The effect of sparse operators is applied after
all the grid points of the domain have been updated for a specific time
step. Consequently, separating the FD grid into blocks and computing grid
point updates and “off-the-grid” operators within the same time step does
not violate any data dependencies. As illustrated in Figure 3.4, we can first
execute pairs of green-red or yellow-blue blocks and then apply the effect
of sparse operators. Red diamonds indicate the “off-the-grid” coordinates
of sparse operators. The red arrows that start from diamonds show the
grid points affected by these sparse operators.

X

T

t=0

t=1

t=2

t=3

0
 

1 52 3 4

Figure 3.4.: Rectangular space blocking. All grid points can be updated in parallel at a
specific time step. Sparse operators fit within the context of space blocking as their effect
is imposed after all points have been updated for a specific time step. The existence of
“off-the-grid” operators does not violate data dependencies in space blocking.

Applying temporal blocking to “pure stencil loops”, i.e. problems with
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only a PDE computation update and without the presence of sparse op-
erators, has long been exercised. It requires manual and tedious work.
However, it is valid, feasible and highly profitable for performance. Algo-
rithm 3 shows the 2.5D blocking strategy followed by Devito. Pseudocode
shows source injection alongside loop blocking, which is valid.

ALGORITHM 3: Algorithm shows the 2.5D blocking strategy that is followed from Devito.

1 for t to nt do
2 OpenMP parallelism - collapse(2)
3 for xblk to nx do
4 for yblk to ny do
5 for x to xblk do
6 for y t0 yblk do
7 # SIMD vectorisation
8 for z = 1 to nz do
9 A(t, x, y, z);

10 for s in sources do
11 for i = 1 to np do
12 xs, ys, zs = map(s, i);
13 u[t, xs, ys, zs] + = f (src(t, s))

On the other hand, applying temporal blocking to stencils with sparse
operators is challenging, as we illustrate with a 1-D example in Figure 3.5.
In contrast to space blocking, temporal blocking is not an easy fit with
“off-the-grid” operators.

Additional data dependencies are introduced when a sparse operator
is encountered at an off-the-grid position. These data dependencies affect
points that may often belong to different blocks in any spatial or temporal
loop blocking variant. While this is not a problem for spatial blocking,
as described earlier in this Section and shown in Figure 3.4, things are
particularly problematic when it comes to applying temporal blocking.

The space-diagonals seen in Figure 3.5 cannot guarantee that the effect of
sparse operators is applied at the space and time required for the affected
grid points. Consequently, as we proceed in time, we often miss the
effect of injections or interpolations, thus generating erroneous results that
propagate within the computation.

In other words, the violation occurs because updates in space may pause
for a particular time step, and computation will proceed in time rather
than space. Consequently, a sparse operator update may be computed, and
points that have not yet been updated through the stencil kernel updates

85



may be affected. Similarly, a point may be erroneously updated due to
a forward move in time but may miss an injection from a neighbouring
off-the-grid operator due to space-time block constraints. Similar violations
emerge in other variants of temporal blocking, such as diamond temporal
blocking [Bertolacci et al., 2015], [Malas et al., 2015]. All temporal blocking
methods include space-time diagonals to honour the stencil update data
dependencies; thus, there is no clear strategy for executing sparse operators.

X

T

0
 

1 52 3 4

t=0

t=1

t=2

t=3

Figure 3.5.: Skewed/Wavefront temporal blocking. Grid points are updated in waves.
During a wavefront update, we compute grid point values for multiple timesteps. Applying
sparse operators in the space boundary may lead to erroneous updates since source injection
may precede the stencil update for a particular timestep. We have a data dependency
violation.

Because of the sparsity and the indirect nature of the accesses, the loops
generated in Listing 2 by modelling source injection consisting of non-affine
accesses (due to indirections, e.g. A[B[i]]) as illustrated in Listing 2.

Applying polyhedral transformations to stencil kernels with non-affine
accesses is not straightforward. As a consequence, this is a problem
for polyhedral tools as well. There have been works trying to tackle this
challenge, as in Venkat et al. [2014b] where the authors present a framework
to represent and transform computations with non-affine index arrays in
loop bounds and subscripts via a new interface between compile-time
and run-time abstractions. However, this model has yet to be inherited
to simulation-level stencils to the best of our knowledge. There have also
been other works such as [Strout et al., 2018, Rodrı́guez and Pouchet, 2018],
however, primarily used in sparse linear algebra.

Polyhedral tools such as PLUTO [Bondhugula et al., 2008b, Bondhugula,
2013], Polly [Grosser et al., 2012b], Loopy [Klöckner, 2014], and CLooG
[Bastoul, 2004] have indeed proved themselves to do noteworthy work
in the stencil context only. They manage to deal with transformations
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of the stencil update. However, they cannot deal with transforming the
non-affine nature of the source injection loop nests. Additional machinery
is needed to represent the sparse loops and the indirections and apply the
transformations through inspector/executor schemes. The sparse off-the-
grid nature of the source operator, combined with the non-affine nature of
our loop structure, is blocking the application of time-tiling.

3.1.3. Contributions

We aim to overcome the prementioned limitations through our contribu-
tions in this chapter. The methodology presented in Section 3.2 is our
approach in this direction. In summary, the contributions of our work in
this chapter are:

• We propose a scheme that precomputes the off-the-grid sparse op-
erators’ effect, allowing to reorder the computations for FD wave
propagators, thus enabling the application of temporal blocking to
stencil codes consisting of sparse operators such as source injection
and measurement interpolation. Our scheme is cost-efficient, adding
a negligible overhead compared to the measured gains.

• We implement the scheme directly on top of the Devito DSL, har-
nessing the power of automated code generation, thus providing a
pathway to express any similar operator in a form that exploits the
benefits of time tiling with only minimal coding effort. In future
work, we aim to deliver these optimisations as a fully automated
workflow. This will be presented in Chapter 4.

• We evaluate our scheme using 3D stencils encountered in wave
propagation applications (isotropic acoustic, isotropic elastic, and
anisotropic acoustic (TTI)). Each stencil has varying memory and
computation requirements.

• We achieve performance gains ranging from 15% to 60% for space
orders 4 and 8 for isotropic acoustic and elastic and anisotropic
acoustic, as well as 5% to 10% gains for elastic and TTI cases at space
order 12.
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3.1.4. Related work

This section will mainly discuss works on applying temporal blocking on
stencil codes. We present related work on the history of temporal blocking,
its variants, and benchmarking of temporal blocking codes. We primarily
discuss works that have manually applied temporal blocking in standalone
codes and benchmarks. This part will consist of works that apply temporal
blocking without trying to automate it as a compiler pass. In Section
4.2, we will focus more on the efforts to automate temporal blocking as a
transformation.

3.1.4.1. Temporal blocking for stencils

Temporal blocking as optimisation has long been applied to stencil kernels.
Ideas around loop skewing to derive the wavefront method started more
than 50 years ago Karp et al. [1967] and further consolidated later [Wolfe,
1986]. At that time, the wavefront method did not involve the tiling of
iteration spaces until this was introduced a few years later from Wolfe
[1989]. Two years later [Wolf and Lam, 1991], the idea of temporal blocking
initially started as an extension of traditional loop skewing, from non-time-
iterative to time-iterative loops. Tiling shapes were explored more, and the
first adoption within a compiler happened.

Later on, Wonnacott [2004, 2000] was one of the first to generalise time
skewing for multiprocessor architectures and multilevel caches. Guohua
Jin et al. [2001] extended time skewing to a prismatic time skewing variant
and showed substantial improvement for large-scale scientific applications.

Wellein et al. [2009] present a more efficient wavefront temporal blocking
where wavefronts follow a pipelined fashion of execution. Strzodka et al.
[2011] presented an algorithm to reduce multi-dimensional problems to
one-dimensional wavefront traversals and to break memory-bandwidth
limits for a few benchmarks. Yount [2015], Yount and Duran [2016] whose
work on YASK has highly influenced this thesis, extended wavefront tem-
poral blocking to be more effective for high-bandwidth memory caches, as
in Intel Knights Landing. The optimisations presented include data layout
transformations and enhanced vectorisation. YASK, formerly integrated
with Devito, can automatically convert stencil code to an automatically
temporally blocked implementation (discussed in Chapter 4). It has heavily
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influenced this thesis through its work on wavefront temporal blocking
[Yount and Duran, 2016]. However, YASK’s temporal blocking does not
support sparse “off-the-grid” operators. YASK was eventually removed
from Devito due to several software engineering incompatibilities and
challenges that undermined software maintenance. However, YASK’s ideas
and optimisations can be in the future roadmap of Devito without trying
to reinvent the wheel.

Spatial and temporal reuse are often fused into hybrid models (equidis-
tant locality) to harness the advantages of both methods Zohouri et al.
[2018]. Apart from wavefront methods, there have been other temporal
blocking variants, mostly named after the shape of the wave patterns.

One of the main reasons driving research for better tile shapes and
sizes is the non-concurrent start-up of wavefront setups. In Bondhugula
et al. [2008b], authors initially introduced diamond time-tiling for 1D sten-
cils. Then Bandishti et al. [2012] discussed the load balance issue and
presented variants to maximise parallelism and increase concurrency in
tile computations. Malas et al. [2015] was the first to combine multicore
wavefront temporal blocking and diamond tiling (MWD-TB). The new
stencil update schemes showed significant reductions in memory pres-
sure compared to existing approaches. Later on, Akbudak et al. [2020]
applied MWD-TB to real-world seismic applications. Muranushi and
Makino [2015] explored the state-of-the-art temporal blocking methods in
temporal blocking and introduced a tiling with “parallelotopes in Tilted
Cube Hierarchy”. This scheme showed improved throughput over its
predecessors. Later, Levchenko and Perepelkina [2017] introduced another
diamond variant called DiamondTetris, aiming for more efficient use of
SIMD parallelism and increasing the parallel execution levels. Yuan et al.
[2019] introduced a new algorithm for “tesselating” star and box stencils
aiming again to enhance data reuse. In other related works, [Grosser et al.,
2014a,c] diamond-shaped tiles influenced the adoption of other shapes,
such as 2D hexagons and 3d truncated octahedra.

Related work in Section 4.2 discusses frameworks that aim to automate
temporal blocking as a loop transformation.

The contribution presented in this chapter aims to enable such schedules
to be used in applications with off-the-grid operators. The rest of this
chapter is organised as follows: Section 3.2 presents our methodology,
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proposed algorithm, and approach to solve our problem. Section 3.3
introduces the mathematics and physics to model the wave-propagation
kernels to be evaluated. Section 3.4 presents an experimental evaluation
of the applicability and impact of the approach. Finally, in Section 3.5, we
discuss and summarise our work and briefly refer to our plans for future
work.

3.2. Methodology and implementation

This section describes our approach that enables temporal blocking for
wave propagators with sparse operators. We describe the individual steps
and present the details of our implementation. The whole precomputation
workflow benefits from the power of the Devito DSL [Luporini et al., 2020,
Louboutin et al., 2019] to automatically generate code and the data struc-
tures our scheme requires in its DSL. Afterwards, we manually transform
the generated loops to implement wavefront temporal blocking (WTB)
Wonnacott [2004], Ramanujam and Sadayappan [1991], Lamport [1974], a
representative temporal blocking schedule.

The scheme presented in this section aims to precompute the source
injection effect on the neighbouring affected grid points. It is modelled
using the Devito API. The basic idea behind this scheme is to save the effect
of sparse operators in data structures containing the necessary information
to perform an equivalent computation using operations aligned to the grid
points.

3.2.1. Source injection precomputation

A sparse operator performing source injection consists of the following
parameters:

• The number of sources (a scalar number)

• The coordinates of each source in the 2D/3D space (a 2D/3D vector)

• The wavelet time series of each source (a 1xnt vector, where nt is the
number of timesteps for the injected wavelet)

These parameters and interpolation type are enough to precompute their
effect on the neighbouring grid points.
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Figure 3.6.: Sources have, among others, data and coordinates. Through a mapping
function, we inject the data into the grid points that are near the corresponding physical
coordinates.

We are working under the assumption that the sources’ coordinates are
constant across our models’ time domain though this may only sometimes
happen. However, Devito’s API could support the moving sources’ case,
and our algorithm is independent of it.

In order to inject the data of each source, we are using a mapping to
match the grid points closest to the physical coordinates. Figure 3.6 shows
the data src.data and the positions src.positions. The positions are mapped
to the nearest grid points in the discretised domain to perform the source
injection. This mapping process uses indirections of the form A[B[i]] as
described in more detail in Section 3.2.1.1.

3.2.1.1. Iterate over the sources’ coordinates and store the indices of
affected points

Initially, we iterate over each source and inject it into a grid initialised with
zero values for one timestep, assuming the wavefield amplitude is not zero
at the first timestep. If the wavefield is zero at the first timestep, we may
inject for more timesteps. The source wavefields used in the experiments
have non-zero values at the first timesteps. The pseudocode for this
“short” injection is presented in Algorithm 4. We use Devito to model and
automatically generate code for this step. This scheme is independent of the
injection and interpolation type (e.g., non-linear injection) because Devito
automatically handles the mathematical difference of the interpolation type.
The next step is to store the grid coordinates where values are non-zero
after the injection.
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ALGORITHM 4: Source injection to an empty grid. No PDE stencil update is happening.

1 for t = 1 to 2 do
2 foreach s in sources do
3 for i = 1 to np do
4 xs, ys, zs = map(s, i);
5 u[t, xs, ys, zs] + = f (src(t, s))

3.2.1.2. Generate sparse binary mask and unique IDs

Using the non-zero indices, we populate two arrays. The first array (Fig.
3.7b) is a binary integer mask of our grid with ones at indices where u
is non-zero. We call this array SM. Ones are shown as filled bullet circles
with a green background (see Fig. 3.7b). The second one (see Fig. 3.7c)
has the same shape and is populated with unique ascending values for
each unique point affected, and we name it SID. It is common to encounter
points affected by more than one source. Figures show an x-y plane (z-slice)
of the 3D grid.

3.2.1.3. Decompose wavefields

Knowing the unique positions affected and their coordinates, we now
use Devito’s source injection mechanism to decompose the off-the-grid
positioned wavefields to grid-aligned point wavefields. Using the SID

structure, we perform an indirection and decomposition of the sources’
wavefields to per-affected-point wavefields. This results in more source
wavefields than the original ones. The pseudocode for that workflow is
presented in Listing 5. src dcmp holds now the data necessary for source
injection, replacing src in our source injection computations. Instead of
having sources at off-the-grid positions, as in Figure 3.7a, we now have
new, decomposed sources aligned to the grid points, as in Figure 3.7d.

ALGORITHM 5: Decomposing the source injection wavefields.

1 for t = 1 to nt do
2 foreach s in sources do
3 for i = 1 to np do
4 xs, ys, zs = map(s, i);
5 src dcmp[t, SID[xs, ys, zs]] + = f (src(t, s);
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(b) Identify unique points affected (SM).
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(d) npts sources are now aligned with grid
point coordinates.

Figure 3.7.: Illustration of the four steps through which source impact is aligned to the
computational grid. The figures show an x-y plane slice of the 3D grid.

3.2.1.4. Fuse iteration spaces

Using the structure src dcmp, which contains the necessary data to per-
form injection aligned to the grid points, we can fuse the source injection
loop inside the kernel update iteration space. There is no loop over
sources as sparse data can be expressed in 3D coordinates. We fuse
the source injection loop at the same loop level as the stencil update z

loop. The source mask SM acts as a binary mask and is used to add (if
1) or not (if 0) the source impact while SID is used to access the impact
values indirectly as we iterate over the grid dimensions. The resulting loop
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structure is illustrated in the following pseudocode in Listing 6 and offers
SIMD vectorisation opportunities over the z2 loop.

ALGORITHM 6: Stencil kernel update with fused source injection.

1 for t = 1 to nt do
2 for x = 1 to nx do
3 for y = 1 to ny do
4 for z = 1 to nz do
5 A(t, x, y, z, s);
6 for z2 = 1 to nz do
7 u[t, x, y, z2] + = SM[x, y, z2] * src dcmp[t, SID[x, y, z2]];

3.2.1.5. Reducing the iteration space size

The 3D structures, introduced in 3.2.1.2 that are used to iterate through
sources (SM and SID) in the z2 loop are, in the general case, massively
sparse. Multiplications by zero dominate the computations, accounting
for a significant percentage of all operations. We should compute just the
necessary iterations in the z dimension to alleviate this redundancy. Our
approach for this is the following: We aggregate non-zero occurrences
along the z-axis of SM, recording them in a structure named nnz mask.
Then, we reduce the size of SID, cutting off z-slices where all elements
are zero. We name the new structure for the convention as Sp SID. These
structures reduce the iteration space size of z2 to perform only the nec-
essary computations. Listing 7 illustrates the pseudocode for the new
iteration structure. The opportunity to reduce the iteration space applies
to most problems in seismic wave propagators that we evaluated in our
approach. The reason is that in the general case, sparse operations are
located along a slice of the 3D domain, (near surface of the 3D domain, see
Figure 3.2). Nevertheless, even for cases where this may not be true, we
show that the benefits of this iteration space reduction are not limited (see
Section 3.4.5).

The decomposition of the sparse sources’ effect to aligned effect leads to
more sources that naturally have less amplitude per source. Assuming the
decomposition of a source as in Figure 3.1a, we see in Figure 3.9 a simple
example of the amplitude of a 2D, 4 point decomposed non-aligned source
along with the new and aligned sources.
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Figure 3.8.: We aggregate non-zero occurrences along the z-axis, keeping count of them.
The size of SID is reduced by cutting off z-slices where all elements are zero.

ALGORITHM 7: Stencil kernel computation with source injection. nnz mask[x][y]

helps to iterate over a reduced size iteration space for source injection.

1 for t = 1 to nt do
2 for x = 1 to nx do
3 for y = 1 to ny do
4 for z = 1 to nz do
5 A(t, x, y, z, s);
6 for z2 = 1 to nnz mask[x][y] do
7 I(t, x, y, z) ≡{ zind = Sp SID[x, y, z2];
8 u[t, x, y, z2] += src dcmp[t, SID[x, y, zind]]; }
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Figure 3.9.: The original non-aligned source wavelet and the aligned on the grid-point
wavelets.
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3.2.2. Applying wavefront temporal blocking

As a result of the work presented in the previous subsections, source
injection is now precomputed. The data dependencies are now aligned
to the grid points. Figure 3.10 shows the new data dependencies. The
indirections are now hidden in the red diamonds.

X

T

0
 

1 52 3 4

t=0

t=1

t=2

t=3

Figure 3.10.: Sparse operations are now aligned with the grid points. Data dependencies
do not span anymore in different space-time tiles.

Since the problem of having data dependencies interfering with space-
time updates is not present anymore, we can now apply wavefront temporal
blocking over our stencil with source injection. Listing 7 illustrates code
with manually applied temporal blocking. The automated application of
this transformation is the main contribution of Chapter 4.

Applying temporal blocking is now feasible. We split the time-space
iteration space into tiles, as shown in Figure 2.19a. Each tile is then
partitioned into space blocks. By applying the transformations required
from wavefront temporal blocking to Listing 6, we now have the loop
structure in Listing 8. This structure is a time-tiled wavefront scheme
computing a stencil kernel update with source injection.

The following Section 3.3 provides details about the evaluated kernels,
their data dependencies, and their inherent loop structure.

3.3. Structure of wave-propagation kernels

To illustrate our technique, we selected three representative kernels im-
plementing explicit FD methods for wave propagation. The chosen ker-
nels significantly differ in the operational intensity and working set size
Louboutin et al. [2017]. The kernels are implemented and validated in the
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ALGORITHM 8: Algorithm shows the wavefront temporal loop blocking structure after
applying our proposed scheme.

1 for t tile in time tiles do
2 for xtile in xtiles do
3 for ytile in ytiles do
4 for t in t tile do
5 OpenMP parallelism - collapse(2)
6 for xblk in xtile do
7 for yblk in ytile do
8 for x in xblk do
9 for y in yblk do

10 # SIMD vectorisation
11 for z = 1 to nz do
12 A(t, x − time, y − time, z);
13 for z2 = 1 to nnz mask[x][y] do
14 I(t, x − time, y − time, z2);

Devito framework. The Devito compiler generates a C implementation for
each kernel given a symbolic specification expressed with the Devito DSL.

3.3.1. Isotropic acoustic

The first equation we consider is the most straightforward and generally
known wave equation in an anisotropic acoustic medium. This equation is
a single scalar PDE with a Jacobi-like stencil. The acoustic wave equation
for the square slowness m, defined as m = 1

c2 , where c is the speed of
sound in the given physical media, and a source q is given by:

m(x) ∂2u(t,x)
∂t2 − ∆u(t, x) = δ(xs)q(t)

u(0, .) = ∂u(t,x)
∂t (0, .) = 0

d(t, .) = u(t, xr).

(3.2)

where u(t, x) is the pressure wavefield, xs is the point source position,
q(t) is the source time signature, d(t, .) is the measured data at positions
xr and m(x) is the squared slowness. This equation can be written in
only a few lines with the Devito symbolic API in Listing 3.1. We only
show the equation definition part and where we omit the Grid, Function,
TimeFunction constructions as shown earlier in Section 2.2.1:

The discretised acoustic wave equation is generally memory-bound due
to the low operational intensity of the standard Laplacian [Louboutin et al.,
2017, Williams et al., 2009].
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Listing 3.1: Symbolic definition of the wave-equation

1 from devito import ... solve, Eq, Operator ...
2 ...
3 eq = m * u.dt2 - u.laplace
4 update = Eq(u.forward, solve(eq, u.forward))
5 ...

3.3.2. Anisotropic acoustic (TTI)

The second wave equation we consider is the most commonly used in
industrial applications for subsurface imaging (RTM, FWI) [Zhang et al.,
2011, Louboutin et al., 2018, Duveneck and Bakker, 2011, Alkhalifah, 2000,
Bube et al., 2016] as it captures the effects of layered geological strata. This
is a pseudo-acoustic anisotropic equation consisting of a coupled system
of two scalar PDEs. Unlike the most simple acoustic isotropic equation,
this formulation considers direction-dependent propagation speeds that
translate into the discretised equation into a rotated anisotropic Laplacian.
Such a kernel increases the operation count drastically [Louboutin et al.,
2017]. For example, the first dimension x component of the Laplacian is
defined as:

Gx̄x̄ = DT
x̄ Dx̄

Dx̄ = cos(θ) cos(ϕ)
∂

∂x
+ cos(θ) sin(ϕ)

∂

∂y
− sin(θ)

∂

∂z
.

(3.3)

where θ is the (spatially dependent) tilt angle (rotation around z), and
ϕ is the (spatially dependent) azimuth angle (rotation around y). A more
detailed description of the physics and discretisation can be found in
Zhang et al. [2011], Louboutin et al. [2018].

For a brief description, the resulting stencils in the TTI case are computed
by updating two groups of fields having more complex data dependencies.
After optimisation, the first group of stencil computes fields of temporaries
depending upon single timestep values of TimeFunction fields while the
second group of stencil computations uses those temporaries to more
efficiently compute the TTI equation stencil updates.

Unlike what we saw in Figure 2.19b, the first group update does not
need additional skewing as the updates do not depend on neighbouring
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points of the previous group of fields. Thus, to give a more accurate
representation of the dependencies of the TTI wave propagation stencils,
we modify Figure 2.19b to Figure 3.11.

temp_t=0

t_uv=0

temp_t=1 

t_uv=1

temp_t=2 

X

T

Tile 3 

Tile 2 
Tile 1 

Figure 3.11.: The figure shows multiple wavefront tiles evaluated sequentially to describe
TTI-like stencil updates. The additional data dependencies do not require additional
skewing for the second set of loops.

An example of the stencil complexity of TTI wave propagation is shown
in the Appendix Section A.1. More stencils need to be computed, and there
is additional data movement along with computational intensity.

3.3.3. Isotropic elastic

Finally, we consider the isotropic elastic equation, which encapsulates com-
plete elastic physics, supporting compressional and shear waves. Unlike
the two previous acoustic approximations, this equation has two significant
properties. First, this is a first-order system in time, which allows us to
extend our work to a smaller range of local data dependency over time.
Second-order in time systems require three buffers to store the necessary
dependencies, while first-order systems only require one. Consequently,
we demonstrate that the benefits of time-blocking and our implementation
of it are not limited to a single pattern along the time dimension. Second,
this equation is a coupled vectorial and a tensorial PDE system, which
drastically increases the data movement. While the isotropic acoustic has
one or two state parameters, the isotropic elastic has nine on the wavefield
and contains non-scalar expressions of the source and receiver expressions
that involve multiple wavefields.

The isotropic elastic wave-equation, parametrised by the Lamé parame-
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ters λ, µ and the density ρ, is defined as Virieux [1986]:

1
ρ

∂v
∂t

= ∇.τ

∂τ

∂t
= λtr(∇v)I + µ(∇v + (∇v)T)

(3.4)

where v is a vector-valued function with one component per cartesian
direction, and the stress τ is a symmetric second-order tensor-valued
function.

The resulting stencil has cross-loop data dependencies, as we have two
sets of loops that compute stencils depending on values computed at the
other loop.

An example of the stencil complexity of the elastic wave propagation is
shown in the Appendix Section A.2. The working set in the elastic wave
propagation is higher than Acoustic and TTI and uses nine fields.

t_p=0

t_v=0

t_p=1

t_v=1

t_p=2

X

T

Tile 3

Tile 2
Tile 1

Figure 3.12.: The figure shows multiple wavefront tiles evaluated sequentially to describe
elastic-like stencil updates. The additional data dependencies require additional skewing
for the second set of loops.

An example of the stencil complexity of the Elastic wave propagation is
shown in the Appendix Section A.2.

In the following section, we consider these three wave equations for
varying spatial discretisation orders to verify and analyse our temporal
blocking method.

3.4. Experimental Evaluation

We outline in Section 3.4.1 the experimental setup followed for performance
evaluation. Section 3.4.2 discusses more details about the setup of the test
cases for the physics discussed in Section 3.3. We aim to demonstrate the
performance improvement achieved by our approach, illustrate its potential
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for impact on key applications, and probe its applicability limits.

Evaluating the performance of stencil computations is a task that should
be conducted carefully, as there are quite a few factors that may affect the
performance of stencils. Therefore, we must detail the settings and practices
followed for the conducted experiments. In the following paragraphs, we
refer to a few crucial points when conducting benchmarking.

GPoints/s versus GFlops/s Often in the literature, we encounter works
that benchmark their optimisations using the metric of GFlops/s. Although
this is correct when comparing the performance of a cache-optimised ver-
sus a non-cache implementation, it makes it more challenging to compare
across different implementations of stencils that describe the same math-
ematical equations. Therefore GFlops/s is not a safe metric to compare
stencil implementations and draw conclusions about the time required to
compute a stencil kernel. A characteristic example of such a misconception
occurs when a mathematically non-optimised stencil is compared against
a mathematically optimised stencil. Examples of non-optimised versus
optimised mathematical kernels were shown in Listings 2.18 and 2.19 re-
spectively and discussed with more detail in Section 2.4.1. In this case, a
mathematically non-optimised stencil kernel may score higher GFlops/s
than the mathematically optimised ones. However, the time-to-completion,
the GPoints/s metric, may not be better than the mathematically optimised
one. Such an example is shown in the roofline model in Figure 3.13.

Figure 3.13 shows a roofline with two benchmarked stencil kernels. The
green circle is a kernel where all math and loop optimisations have been
applied, while the red square is a kernel with only loop blocking applied
without any other optimisations. We use a cache-aware roofline model on
the left-hand side of the diagram, while on the right-hand side, we use
the traditional roofline mode. The unoptimised kernel performs at around
82.46GFlops/s, requiring 10.14 seconds to complete. On the other hand,
the optimised kernel stands lower in the roofline model with only 65.31
GFlops/s! However, it is more efficient as it completes execution in 9.03
secs. To summarise, we may have 26% more GFlops/s but 12% more time
to the solution, which translates to higher resource costs.
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Advanced opts:
9.03secs, 65.31GFlops/s

 Loop blocking only:
10.14secs, 82.46GFlops/s   Legend:

Traditional

CARM

Figure 3.13.: Traditional (left-hand ellipsis) and cache-aware (right-hand ellipsis) roofline
model. The unoptimised kernel stands higher in the roofline space. However, it takes a
worse time-to-solution complete.

The impact of Devito optimisations in the kernel operational intensity
The table presented in this section shows the Devito compiler optimisa-
tions’ impact on the kernels’ operational intensity. This reduction is not
work done in the frame of this thesis but is necessary to illustrate that
temporal blocking is applied on highly-optimised code thanks to the work
of Luporini et al. [2020], Louboutin et al. [2017].

Assuming we apply a polynomial regression model on the flops required
before and after applying optimisations, we can notice that the flops for
some discretisation order x for the Acoustic model are reduced from
y = 6x + 26 to y = 3.5x + 17, the flops for some discretisation order x for
the Elastic model are reduced from y = 54x + 81 to y = 26.44x + 54.51,
and finally, the flops for some discretisation order x for the TTI model are
(approximately) reduced from y = 18x2 + 92x + 63 to y = −0.28x2 + 18x +

34. It is evident that there is a big difference in flops required before and
after applying the mathematical optimisations, thus yielding the need for
much less data movement.
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Floating point operations per stencil
SDO a Unoptimised Optimised OIb

Acoustic 2 38 24 1.16
4 50 31 1.51
8 74 45 2.02
12 98 59 2.44
16 122 73 2.79

Elastic 2 189 103 1.04
4 297 164 1.65
8 513 268 2.59
12 729 372 3.50
16 945 476 4.30

TTI 2 NA NA NA
4 743 102 1.70
8 1999 164 3.44
12 3831 223 5.33
16 6239 282 7.64

Table 3.1.: Floating point operations per wave propagator stencil and space order

aSpace discretisation order.
bOperational Intensity
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Figure 3.14.: Flop reduction in popular operators using the Devito optimisations
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On the importance of optimisations working smoothly in tandem Sten-
cil computations are subject to several optimisations. This thesis does
not aim to explain these optimisations but only refers to their potential
impact on a finite-difference kernel. These optimisations include, among
others, mathematical optimisations to reduce the number of operations,
cache-related optimisations to exploit locality, and shared- and distributed-
memory parallelism. This paragraph showcases a simple example of why
it is required to smoothly integrate all these optimisations and make the
best out of each one. We often need to find a schedule for incrementally
applying optimisations effectively in computational problems. Finding
this schedule is essential for complex non-trivial computational codes and
requires extra software engineering work to find the proper schedule. In
the area of finite-difference stencils, heuristic schedules work well enough;
however, this is a topic with lots of research (e.g. Milepost GCC in Fursin
et al. [2011]) as we discussed in Section 2.4 with regards to the frameworks
supporting a scheduling language. Applying temporal blocking to a sten-
cil with optimised data movement can yield more significant gains than
applying it to a non-optimised one. Temporal blocking performance gains
are not benefiting the same memory-bound and compute-bound problems.

Figure 3.15 shows the throughput of an anisotropic acoustic wave-
propagation kernel after incrementally applying optimisations. Cross-
iteration redundancies elimination, common sub-expression elimination,
parallelism and others progressively reduce the time needed to execute the
kernel. Note: Time reduction for some optimisation passes is not indicative
for other kernels and target platforms.

The order in which optimisations are applied is important, and their im-
pact may differ depending on when applied to the kernel. An optimisation
may unlock some space for other optimisations, or there are often cases
where one optimisation can be applied twice. Figure 3.16 provides a brief
example of this and uses a CARM to show the impact of temporal blocking
when applied to a kernel with arithmetically reduced operations. For refer-
ence, we use a Laplacian stencil kernel with a space discretisation order of
4 on an i7-10700KF CPU (see characteristics of the platform in table 4.1).
We reduce execution time to 20 seconds instead of 33 seconds by applying
temporal blocking to a mathematically optimised kernel. A mathematically
non-optimised kernel requires even more data movement and is even more
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Figure 3.15.: TTI kernel execution time by incrementally adding optimisations to the
baseline implementation. Optimisations are added as we move to the right-hand side.
The figure shows the incrementally improved execution time in seconds. Evaluated on an
i7-10700KF CPU (see characteristics of the platform in table 4.1). Note: Time reduction for
some optimisation passes is not indicative for other kernels and target platforms.

memory-bandwidth bound than an optimised one. Temporal blocking
has almost the same effect as space blocking, as seen with the square and
triangle dots on the left-hand side. As cache-blocking optimisations help
optimise for cache hits, we are more bound from the L3 cache roof on the
left than on the right. This improvement is primarily due to having more
space to get higher on the roofline model instead of being bounded by the
L3 bandwidth.

Thread pinning The performance of stencil computations is heavily
dependent on the cooperation of threads working in parallel to access
memory locations and compute. These threads share cache resources and
often compete when accessing data. Therefore the correct placement of
threads within the execution of a problem is essential. We control thread
pinning through environment variables. Erratic thread pinning affects the
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Figure 3.16.: Temporal blocking can be even more effective when combined with other
optimisations. This roofline shows that temporal blocking can provide even higher per-
formance with already reduced data movement. Evaluated on an i7-10700KF CPU (see
characteristics of the platform in table 4.1).

performance and the reproducibility of computational kernels. We pin
thread to the physical threads of a core through the environment variables
‘OMP PROC BIND=close, OMP PLACES=threads‘ for the GCC compiler.

NUMA issues NUMA issues (see Paragraph 2.5) may emerge when
running on CPUs with more than one NUMA region, and memory accesses
may not be uniform. The distance a processor needs to access memory
in a different NUMA region is bigger, leading to delays in accessing data.
Thus, placing the data close to the processing units is essential. In our
experiments, we use ‘numactl –cpubind=0 –membind=0‘ to allocate the
memory in the same partition as the cores running the simulation.

Why not compare against an MPI implementation One of the main
limitations of this thesis is that the temporal blocking model presented is
for shared-memory parallelism only. Temporal blocking performs better
when cores access data stored in proximity to them. We only evaluate
our model in one NUMA node. Extending execution to more than one
NUMA region (see Paragraph 3.4) may only increase performance in a
few rare cases. However, this is not a preferred practice when distributed-
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memory parallelism (through MPI or others) implementation is available
to our codes. Performance is expected to fall behind compared to MPI
decomposition as we are only limited to single NUMA-node execution.
Providing support for MPI and temporal blocking in tandem is a work in
progress, and more details are provided in Section 5.2. Thus, we compare
our contributions against highly efficient shared-memory parallel and
vectorised implementations running in a single NUMA node. Domain
decomposition techniques are only sometimes used in production. There
are legacy codes that do not use domain decomposition. There are real-
world problems that indeed fit in a single NUMA node. To conclude, our
contribution here is helpful for legacy codes even though there is support
for temporal blocking with MPI. This remains as future work.

Temporal blocking and high-order stencils Temporal blocking is an
optimisation that has reduced performance gains for high-order stencils.
By default, when the space order gets larger, the behaviour of temporal
blocking converges to standard space blocking. Asymptotically if space
order converges to +∞, temporal blocking decomposes to standard loop
blocking. As the stencil radius gets more extensive, the amount of data
that can be reused in time is limited. Figure 3.17 depicts how the amount
of data that can be computed by starting from the number of known points
is reduced as space order increases. For example, the known cells of Figure
3.17a are enough to compute a larger area than the one in Figure 3.17b and
a much larger one compared to 3.17c.
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Figure 3.17.: High-order stencils limit the number of grid point updates that can be
performed within wave for a number of time steps. Thus resulting in reduced temporal
reuse. Spatio-Temporal waves are shown with different colours.

Most real-world applications at production give satisfactory results using
a space discretisation order of 8. This thesis is another work that validates
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the hypothesis that temporal blocking performance gains for high space
orders are limited. However, the nature of the applications we work for
can benefit even from lower gains. Gains for seismic imaging can be
translated to thousands of dollars. A more helpful end goal is medical
imaging applications, where dropping execution times could have a more
significant impact on saving lives.

3.4.1. Compiler and system setup

To evaluate the optimised kernels, we used Virtual Machines in Microsoft
Azure cloud computing services 1. We evaluated two architectures: Intel®
Xeon® Processor E5 v4 Family (formerly called Broadwell) and Intel®
Xeon® Scalable Processors (formerly called Skylake 8171M). Access was
granted on VMs (courtesy of Microsoft Azure), namely Standard E16s v3
and Standard E32s v3, running Ubuntu 18.04.4. The first system, E16s v3,
has an 8-core Intel Broadwell E5-2673 v4 single-socket CPU with AVX2
support. Each Intel Broadwell CPU has three cache levels: L1 (32KB) and
L2 (256KB) caches private to each core and a 50MB L3 cache shared per
socket. The second system has a 16-core IntelSkylake Platinum 8171M
single-socket CPU with AVX512 support. Each Intel Skylake CPU has three
cache levels: L1 (32KB) and L2 (1MB) caches private to each core and a
35.75MB L3 cache shared per socket.

The compilers used were GCC 7.5.0* and ICC 2021.1. We used OpenMP
shared-memory parallelism with dynamic scheduling and SIMD vectori-
sation. Thread pinning was enabled using the environment variables
OMP PROC BIND (for GCC) and KMP AFFINITY (for ICC) running ex-
periments on a single socket, single NUMA region, physical threads only.
Experiments were built with Devito v.4.2.3. The experimentation frame-

1https://azure.microsoft.com/en-gb/
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work and instructions on reproducibility are available in Section 3.4.6.

CPU characterstics

Azure codename E16s v3 E32s v3

CPU model E5-2673 v4 Platinum 8171M

Architecture Broadwell Skylake

CPU(s) 16 32

Thread(s) per core: 2 2

Core(s) per socket: 8 16

Socket(s): 1 1

NUMA node(s): 1 1

L1d cache: 32KiB 32KiB

L1i cache: 32KiB 32KiB

L2 cache: 256KiB 1 MiB

L3 cache: 50MiB 35.75MiB

ISA AVX2 AVX512F

3.4.2. Test case setup

We evaluate the performance of operators relevant to seismic imaging.
We model three different wave propagation kernels: isotropic acoustic,
anisotropic acoustic (TTI) and isotropic elastic. The isotropic acoustic and TTI
wave equations are discretised with second order in time while isotropic
elastic with first order in time, and we study varying space orders of 4,
8, and 12. Experiments were executed with 32-bit single precision. No
64-bit double precision experiments were executed. We use zero initial
conditions and damping fields with absorbing boundary layers (ABCs)
for all test cases. Waves are injected into the subsurface model using a
time-dependent, spatially localised seismic source wavelet. We benchmark
velocity models of 5123 grid points, with a grid spacing of 10 meters for
isotropic and elastic and 20 meters for TTI. Wave propagation is modelled
in single precision for 512ms, resulting in 228 timesteps for isotropic
acoustic, 436 for isotropic elastic, and 587 for anisotropic acoustic. The
time-stepping interval is selected regarding the Courant-Friedrichs-Lewy
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(CFL) condition Courant et al. [1967], ensuring the explicit time-stepping
scheme’s stability is determined by the subsurface model’s highest velocity
and the grid spacing.

3.4.3. Autotuning temporally blocked code

It should be noted that the parameter space for temporal blocking schemes
is extensive. We report results obtained by following the guidance and
experience from the state-of-the-art codes and literature Wittmann et al.
[2010]. Simulation codes are hard to generalise in terms of performance
as multiple configurations may be used from case to case. An operator’s
performance depends upon many factors, such as grid shape, discretisa-
tion space order, tile and block shapes, number of other fields, number
of timesteps, platforms, and others. To tune our C code for the underly-
ing hardware, we swept over the whole parameter space regarding our
implementation’s tile and block shapes. We compare the global perfor-
mance maxima of both spatial and temporal blocking implementations. We
executed our experiments using the best-performing tile and block sizes,
ensuring a fair comparison versus Devito ’s flop-optimised, aggressively
tuned spatially-blocked and vectorised code. Algorithm 3 shows the algo-
rithm corresponding to the blocking strategy used by Devito, where 2.5D
blocking is automatically applied alongside flop reduction and mathemati-
cal optimisations. The best-performing tile sizes found after auto-tuning
for temporal blocking are reported in Table 3.2.

tilex, tiley, blockx, blocky
Problem Broadwell Skylake

Acoustic O(2,4) 32, 32, 8, 8 64, 64, 8, 8
Acoustic O(2,8) 64, 64, 8, 8 64, 64, 8, 8

Acoustic O(2,12) 256, 256, 8, 8 128, 128, 8, 8
Elastic O(1,4) 32, 32, 8, 8 32, 32, 8, 8
Elastic O(1,8) 32, 32, 8, 8 64, 56, 8, 12

Elastic O(1,12) 256, 256, 8, 8 256, 256, 8, 8
TTI O(2,4) 40, 32, 4, 4 48, 48, 8, 8
TTI O(2,8) 32, 32, 8, 8 64, 64, 8, 8

TTI O(2,12) 256, 256, 8, 8 256, 256, 8, 8

Table 3.2.: Optimal tile-block shapes after tuning wavefront temporal blocking
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3.4.4. Results discussion

Figure 3.18 illustrates the throughput (GPoints/s) speedup achieved for
each of the three wave propagation kernels for space order discretisations
of 4, 8, and 12 on two different machines (see Subfigures 3.18a and 3.18b).
The evaluation shows speedup for space order four discretisation on both
platforms. The acoustic wave propagation kernel benefits the most with
around 1.6x, and TTI follows with around 1.44x. Elastic wave propagation
is accelerated by 1.3x on Broadwell and 1.22x on Skylake. Concerning
space order 8, a commonly used practice in industrial applications, we
observe speedups of 1.13x or more for acoustic on both platforms, elastic on
Broadwell and acoustic, and TTI on Skylake. No significant performance
gains are observed for space order 12, excluding gains of around 5% on
Broadwell with isotropic elastic and TTI.
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Figure 3.18.: Throughput speedup of temporal blocking kernels versus highly-optimised
vectorised spatially-blocked code in Intel Xeon architectures, Broadwell and Skylake.

Figure 3.19 shows the isotropic acoustic kernels’ roofline performance
for the Broadwell microarchitecture. The roofline is a cache-aware roofline
model representing cumulative (L1+L2+LLC+DRAM) traffic-based Arith-
metic Intensity for application kernels 2. We showcase improvement for
the acoustic model breaking the ceiling of the L3 cache.

2https://software.intel.com/content/www/us/en/develop/articles/integrated-
roofline-model-with-intel-advisor.html
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Figure 3.19.: Cache-aware roofline model on Broadwell for isotropic acoustic model space
order 4 (triangles), 8 (circles), and 12 (squares). Red markers show the performance
of spatially blocked vectorised kernels, while yellow ones show our temporal blocking
scheme’s performance.

3.4.5. Corner cases

Although our test cases use a single source, exploring how our model
performs in the presence of more off-the-grid operators is interesting. Each
source is decomposed into its surrounding grid points, so the overhead
increases due to the number of initial sources and the number of grid
points affected. We evaluate the overhead induced for two cases:

1. an increasing number of sparsely located sources: in this case, we
have an increasing number of sources located at an x-y plane slice of
the 3D grid, a scenario which can be of practical interest

2. an increasing number of sources densely and uniformly located all
over the 3D grid.

Figure 3.20 shows that the increasing number of sources does not Faf-
fect performance gains for the isotropic acoustic wave propagation. The
higher the density of the located sources, the less the scheme benefits from
dealing with the structure sparsity. Still, we observe gains of around 1.4x
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Figure 3.20.: Throughput speedup for an isotropic acoustic operator for space discretisa-
tional order 4 (four) over an increasing number of sparsely and densely located sources.

compared to 1.55x previously. We evaluate starting from 1 source up to 105

sources uniformly distributed at a z-slice within the 5123-point grid. The
higher density analogy of sources compared to grid points on the z-slice is
105/5122 ≈ 38%.

3.4.6. Code availability

The implementation of the methods described in this chapter is available
in a Devito fork repository under the MIT open-source license available at
DOI: 10.5281/zenodo.7472534. See the README.md for instructions on
how to see the code used and reproduce the results in the chapter.

3.5. Conclusions and Future work

3.5.1. Conclusions

This chapter introduced a mechanism to enable temporal blocking in sten-
cil computations involving sparse off-the-grid operators as encountered,
for example, with sources and receivers in seismic inversion problems.
These operators complicate the application of temporal blocking by scatter-
ing and gathering operations that interpolate values from and points in
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structured grids. We overcame this limitation by proposing an approach
to avoid interpolations and perform operations at every point. Owing to
this contribution, we applied wavefront temporal blocking to wave prop-
agators commonly used in practical applications. These kernels range
from isotropic acoustic to more advanced, such as isotropic elastic and
anisotropic acoustic (TTI). We evaluated the effect of temporal blocking on
these kernels and compared them against highly-optimised, loop-blocked,
vectorised implementations. This chapter’s evaluation results are mainly
motivated by the seismic imaging domain; however, the target applications
are not limited to this scope. Experimental evaluation showed that the
optimised kernels on Broadwell and Skylake microarchitectures showed
compelling evidence of substantial acceleration of at least 1.5x for low and
at least 1.1x for medium space order wave-propagation kernels.

3.5.2. Future work

Achieving performance improvement with high-space order kernels re-
quires further research. Methods such as stencil retiming [Stock et al.,
2014] have shown promise in alleviating this performance bottleneck, and
a possible combination with temporal blocking may be promising. Another
promising solution can be data layout transformations [Yount, 2015]. Near-
term plans include evaluating our scheme on more diverse architectures
(e.g., ARM) and accelerators (e.g., GPUs), mainly to explore whether differ-
ent cache-memory hierarchies can help squeeze more performance out of
this implementation. This work’s next step and the natural consequence is
the complete automation and integration in the Devito DSL and compiler
framework [Luporini et al., 2020]. This work on automating the application
of temporal blocking is discussed in the next Chapter 4. We aim to deliver
automated, scalable optimisations on generated code beyond our kernels’
current roofline performance limit.
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Chapter 4

Automated temporal blocking
through compiler technology

Temporal blocking is a performance optimisation targetting stencil kernels
that aims to reuse data from the cache for multiple time steps. It can be
expressed in various schemes, each scheme having intrinsic properties,
advantages and disadvantages. Today a range of scientific applications,
including computational fluid dynamics, seismic and medical imaging,
image processing, and neural networks, could harness the benefits of
temporal blocking, but they are not. There are several reasons:

1. Writing HPC code is challenging. Manually writing temporal block-
ing code is especially hard, tedious and error-prone. There needs to
be more compiler technology to automate temporal blocking. The
software engineering effort required to combine all the pieces to
achieve automated temporal blocking from high-level symbolic ab-
stractions is considerable.

2. Real-world applications often include complexities that pose addi-
tional challenges to applying temporal blocking compared to simpler
stencil benchmarks.

3. Existing state-of-the-art technology to generate temporal blocking,
such as the polyhedral model, cannot handle these complexities.

Our work aims to automatically generate temporal blocking code for
a wide range of PDEs solved through the FD method and stemming
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from practical applications. We aim to generate temporal blocking code
automatically, starting from a sequence of symbolic equations as input
from the user. We propose a compiler approach that, through compiler
passes, helps to automatically generate wavefront temporal blocking code
from a high level of abstraction. We present a compiler workflow to use
temporal blocking in tandem with other stencil optimisations. Performance
evaluation of the generated code shows benefits over highly-optimised
vectorised spatially-blocked code. Our work is open-source and available
online.

4.1. Introduction

This chapter focuses on generalising the concept of wavefront temporal
blocking automation as a compiler pass. We present a strategy to integrate
temporal blocking in the Devito compiler pipeline. As shown in Section
3.4, temporal blocking performs better when applied in tandem with other
optimisations. Thus, we aim to accomplish the task of integrating it in a
production-ready optimising compiler pipeline. We present a strategy for
this task and show results that test and support the hypothesis of achieving
improved performance alongside other optimisations. We designed a
compiler pass within the Devito DSL and compiler framework based
on Devito’s IR. This compiler pass transforms the content of the IR. It
helps to apply wavefront temporal blocking to commonly encountered
stencil kernels and a variety of non-trivial industry-level simulation codes
targetting CPUs. Consequently, we offer a complete compiler pipeline
to automatically generate high-performing temporal blocking code from
a high-level abstraction in the Devito DSL. Regarding GPUs, supporting
kernels with sparse operators is currently a work in progress (see Section
4.7).

This chapter makes the following contributions:

• We present a generalised compiler pass that can operate on the IR of
a compiler. Furthermore, it can effectively generate code optimised
with wavefront temporal blocking (see Section 3.2.2).

• We implement this compiler pass in the Devito DSL and compiler
framework, offering automated generation of temporal blocking code
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from a high-level symbolic abstraction for a wide range of PDE-
modelled simulations. To the best of our knowledge, this is the first
approach to offering an end-to-end solution starting from symbolic
maths to automatically generated HPC code with temporal blocking.

• We evaluate our scheme using low to high discretisation order 3D
stencils encountered in computational fluid dynamics (heat diffusion)
and wave propagation applications (isotropic acoustic and anisotropic
acoustic (TTI)). The evaluated stencils have different memory and
computation requirements, covering a wide range of cases.

• We explore the performance achieved on different applications with
different characteristics and CPU architectures. We achieve perfor-
mance gains ranging from 1.10x to 3.3x for a space discretisation
order of 4 and up to 1.90x for a space discretisation order of 8 de-
pending on the kernel and the hardware platform against highly
optimised spatially blocked and vectorised code (2.5D blocking). We
validate our hypothesis about the effective interaction of our method
in tandem with the already existing optimisations.

• All contributions presented are open source and available online
(hyperlinks available in Section 4.7.1).

4.2. Related work

This section discusses attempts to automate temporal blocking code genera-
tion for stencil computations. Most of the frameworks presented in Section
2.3.3 apply temporal blocking but not in an automated way. Here, we
discuss approaches to integrating temporal blocking within larger frame-
works and automating code generation for various simulation problems.
We discuss and detail frameworks where their code generation either starts
from a higher abstraction or may be source-to-source translators. Some
of these frameworks have already been presented earlier in Section 2.4.2;
however, the focus was mainly on their general capability to generate
optimised code and less on their skillset concerning temporal blocking.
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4.2.1. DSL and compiler frameworks supporting temporal
blocking

Integrating temporal blocking within larger DSL and compiler frameworks
is a challenging task. It requires not only significant software engineering
effort but also interdisciplinary teamwork. This section discusses efforts
from the literature that target the automation of temporal blocking code
generation.

Holewinski et al. [2012] introduced automatic code generation for over-
lapped time-tiled code. The authors use a stencil-level DSL to model a
complete stencil program targetting massively threaded GPU architectures.

SDSL [Henretty et al., 2013] is another stencil DSL to specify stencils and
automatically generate code with locality and vectorisation. It supports
several loop and data layout transformations to achieve locality and paral-
lelism. SDSL compiler can support automatic code generation for hybrid
space-time tiling. Later on, SDSLc [Rawat et al., 2015] extended the work
of Henretty et al. [2013] to target GPUs and FPGAs.

YASK employs wavefront temporal blocking, mainly targeting Intel
Knights Landing hardware. This hardware benefits from high-bandwidth
memory, facilitating additional performance for problems that expose
cache locality. YASK can automatically combine several blocking strategies,
SIMD vectorisation, and advanced data layout transformations, namely
vector folding [Yount, 2015]. YASK [Yount, 2015, Yount and Duran, 2016,
Yount et al., 2017], formerly integrated with Devito as discussed in Section
3.1.4.1, can convert stencil code to an automatically temporally blocked
implementation.

Bertolacci et al. [2015] tried to tackle the need for compiler technology for
automating and tuning diamond temporal blocking. Instead of providing
a fully automatic solution, they presented a library for parametrised time-
tiling execution. Thanks to Chapel Parallel Iterators, the authors provide
a solution to express the execution schedule and the complicated code-
generation challenges automatically.

Bondhugula et al. [2017], introduced automated tiling transformations
through the polyhedral model using a source-to-source translation through
Pluto [Bondhugula et al., 2008b]. This work provided the conditions for
concurrent tile start-up and evaluated diamond tiling over state-of-the-art
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approaches. The methodology was based on the polyhedral model, and
the target was computations with affine accesses only. As such, non-affine
accesses of sparse “off-the-grid” operators cannot be supported in Pluto as
they cannot be supported in other polyhedral frameworks.

Kuroda et al. [2017] proposed an automated directive-based compiler ap-
proach for temporal blocking. They extended the polyhedral compilation
in the Polly/LLVM framework [Grosser et al., 2012a], with a loop trans-
formation mechanism to introduce temporal blocking and automatically
execute OpenMP parallel codes. This work presented a compiling toolchain
to facilitate code transformations for temporal blocking and autotuning
these codes.

STENCILGEN, introduced from Rawat et al. [2018], is another DSL to
specify stencils from a higher-level abstraction. STENCILGEN’s abstraction
is at the stencil level. STENCILGEN targets code generation for GPUs, and
among other optimisations such as GPU streaming, it supports overlapped
temporal blocking. Rawat et al. [Rawat et al., 2018] additionally explore
the relation of the “machine balance” parameter (peak machine DP-FP
performance to peak global memory bandwidth) for achieving close-to-
peak performance with stencils and discussing good practices to achieve
efficiency in GPUs for stencil computations through a DSL.

Tanaka et al. [2018] introduced Formura DSL [Muranushi et al., 2016]
to automate the generation of finite-difference stencils from a higher-level
mathematic abstraction. Formura falls in the category of DSLs that support
problem description from a higher-level symbolic mathematic abstraction
(see Table 2.2). The authors automate temporal blocking code generation
and evaluate their approach to many-core systems. In addition, Formura
also supports MPI domain decomposition. The problems targeted are
large-scale CFD simulations on systems based on the PEZY-SC2 many-core
processor.

Matsumura et al. [2020] proposed AN5D to automatically transform and
optimise stencil patterns in a given C source code. The source-to-source
transformer automatically generates CUDA code from a C source code.
This work targets GPUs. Spatial and temporal blocking optimisations are
offered in tandem with other low-level optimisations. It can help generate
code, offering novel optimisation strategies to reduce shared memory
and register pressure compared to existing implementations. The AN5D
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framework is publicly available.

4.3. Background

The aim of this section is twofold. First, it helps the reader better under-
stand the Devito compiler and get more familiar with the lowering process
from symbolic math to HPC code. Second, we provide the necessary intro-
duction for the loop blocking machinery in Devito. This introduction will
be beneficial for presenting our temporal blocking contributions in Section
4.4.

4.3.1. A deeper look in the Devito Compiler

Section 2.2.1 briefly introduced parts of the Devito compiler. This section
includes a more detailed look at the Devito compiler and its IR layers. An
overview of the Devito Compiler and its IR layers are shown in Figure 4.1.

Equations lowering 
Input Equations →Lowered Equations

Clustering 
Lowered Equations →Clusters

Symbolic optimization 
Clusters →Clusters

Schedule tree lowering 
Clusters →ScheduleTree 

Meta-data for MPI parallelism 
Derive sections for perf-profiling 

Group expressions into clusters

Add guards for conditional
clusters

Analysis  
Detect properties such as parallelism

Loop blocking 
Improve data locality via loop blocking
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Clusters Fusion

CIRE + Lift 
Hoist and optimize Dimension-invariant
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ScheduleTree →IET 

 

Flush denormals
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IET analysis 
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Distributed Memory parallelism 

SIMD vectorization

Shared memory parallelism Synthesis 
IET →CGen AST →C/C++ string 

JIT Compilation 
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Hoist prodders

Declarations, headers, globals,
macros

Profiling instrumentation

Figure 4.1.: An overview of the Devito DSL and compiler framework architecture.
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More specifically, we will see how the compiler automates space blocking.
Understanding this methodology is a prerequisite to discussing how we
synthesise temporal blocking later.

4.3.1.1. Elements of the Intermediate Representation

In Section 2.2.1, we presented how we can use the rich API of the Devito
DSL to express PDEs and introduce the essential API elements. In addition,
this rich API can express scatter/gather operations, conditional execution
of expressions, subdomains and others. In this section, we will examine the
Devito IR’s main elements. We look into how we use these IR elements to
apply transformations through compilation passes. We start by presenting
some early stages of the Devito compiler by briefly showing how the input
mathematical expressions (see Section 2.2.1) are expressed when lowered
to stencil expressions. To detail some of the IR parts, we will use Listing
4.1, which models a simple Laplacian-like kernel (see 2.1.3.1), as a running
example to illustrate the lowering process within the compiler.

Listing 4.1: An example of a 3D Laplacian kernel using Devito

1 from devito import Grid, Eq, TimeFunction, Operator, Constant,
solve

2 # Define variables for the problem setup
3 nx, ny, nz = 100, 100, 100
4 nu = .5
5 dx, dy, dz = 2./(nx - 1), dy = 2./(ny - 1), dz = 2./(nz - 1)
6 sigma = .25
7 dt = sigma * dx * dz * dy / nu
8 # Define grid and field
9 grid = Grid(shape=(nx, ny, nz))

10 u = TimeFunction(name='u', grid=grid, space_order=2)
11 # Initialise field data
12 u.data[:, :, :] = 0.2
13 # Create an equation with second-order derivatives
14 a = Constant(name='a')
15 eq = Eq(u.dt, a*u.laplace, subdomain=grid.interior)
16 stencil = solve(eq, u.forward)
17 eq0 = Eq(u.forward, stencil)
18 op = Operator(eq0)
19 op.apply(time_M=10, dt=dt, a=nu)
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Derivatives and discretised expressions The input Equations from the
symbolic DSL specification are given as arguments to the Operator in
Listing 4.1. At the early stages of the compiler (see orange coloured
“Clustering” area in Figure 4.1), the equations from Listing 4.1 are lowered
to a Derivative representation as shown in Listing 4.2. This lowering
happens with the help of SymPy Python package [Meurer et al., 2017].

Listing 4.2: The equations that were passed as arguments to the Operator are lowered to
Derivative expressions

1 (Pdb) expressions
2 (Eq(u(t + dt, x, y, z), dt*(a*(Derivative(u(t, x, y, z), (x, 2)) +

Derivative(u(t, x, y, z), (y, 2)) + Derivative(u(t, x, y, z),
(z, 2))) + u(t, x, y, z)/dt)),)

Derivatives in Listing 4.2 are further lowered to their stencil form expres-
sion. After indexification and alignment to the computational domain, the
stencils are lowered to a stencil representation as illustrated in Listing 4.3.
In Listing 4.3, we see the first formulation of the discretised mathematical
expression as a stencil.

Listing 4.3: Stencil-like expressions

1 (Pdb) expressions
2 [Eq(u[t + 1, x + 2, y + 2, z + 2], dt*(a*(u[t, x + 1, y + 2, z +

2]/h_x**2 - 2.0*u[t, x + 2, y + 2, z + 2]/h_x**2 + u[t, x + 3,
y + 2, z + 2]/h_x**2 + u[t, x + 2, y + 1, z + 2]/h_y**2 -

2.0*u[t, x + 2, y + 2, z + 2]/h_y**2 + u[t, x + 2, y + 3, z +
2]/h_y**2 + u[t, x + 2, y + 2, z + 1]/h_z**2 - 2.0*u[t, x + 2,
y + 2, z + 2]/h_z**2 + u[t, x + 2, y + 2, z + 3]/h_z**2) + u[

t, x + 2, y + 2, z + 2]/dt))]

It is noteworthy to mention that before they are lowered to a stencil rep-
resentation, derivatives undergo preliminary optimisation for performance
improvement. The linearity of finite differences is exploited to collect
Derivative objects of the same type. For example, an expression similar
to u.dx.dx + u.dy.dx would typically lead to two temporaries, one for u.dx
and one for u.dy. Devito factorises the outer .dx derivative, leading to
(u.dx + u.dy).dx. A minimal example of this is shown in Listing 4.4 where
we have the unoptimised initial derivative “expressions” and the optimised
“processed” expressions.
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Listing 4.4: Collecting derivatives to optimise expressions

1 (Pdb) expressions # initial -- unoptimised expressions
2 (Eq(u(t + dt, x, y),
3 dt*(Derivative(Derivative(u(t, x, y), x), x) + Derivative(

Derivative(u(t, x, y), y), x) + u(t, x, y)/dt)),)
4 (Pdb) processed # processed -- optimised expressions
5 [Eq(u(t + dt, x, y), u(t, x, y) + Derivative(dt*Derivative(u(t, x,

y), x) + dt*Derivative(u(t, x, y), y), x))]

Cluster (of expressions) The expressions in Listing 4.3 are afterwards
analysed for their data dependencies using built-in machinery based on a
theoretic background presented in Lamport [1974]. First, they are grouped
according to several properties and are part of a Cluster of expressions.
Next, they are grouped according to the iteration space they belong. This
part may not be more detailed in this thesis. This section will guide us
through the Cluster as part of the Devito compiler.

The Cluster (of expressions) is one of the most critical parts of the
Devito compiler. It primarily consists of a group, an ordered sequence of
expressions. Listing 4.5 shows a Cluster holding a single expression. Later
in this section, we will see clusters holding more than one expression and
dive more into grouping expressions according to common properties.

Listing 4.5: A Devito Cluster. Here we only see a group of a single stencil expression.

1 (Pdb) clusters
2 (Cluster([Eq(u[t1, x + 2, y + 2, z + 2], dt*(a*(u[t0, x + 1, y +

2, z + 2]/h_x**2 - 2.0*u[t0, x + 2, y + 2, z + 2]/h_x**2 + u[
t0, x + 3, y + 2, z + 2]/h_x**2 + u[t0, x + 2, y + 1, z + 2]/
h_y**2 - 2.0*u[t0, x + 2, y + 2, z + 2]/h_y**2 + u[t0, x + 2,
y + 3, z + 2]/h_y**2 + u[t0, x + 2, y + 2, z + 1]/h_z**2 -
2.0*u[t0, x + 2, y + 2, z + 2]/h_z**2 + u[t0, x + 2, y + 2, z
+ 3]/h_z**2) + u[t0, x + 2, y + 2, z + 2]/dt))]),)

We saw in the previous paragraph that the partial differential equations
are initially discretised to finite-difference expressions. These expressions
are then grouped based on their iteration space and data dependencies.
The expressions in this sequence share the same IterationSpace, same
control flow and no dimension-carried “true” anti-dependencies among them [Lu-
porini et al., 2020]. A Cluster , apart from the expressions, owns essential
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metadata, such as the IterationSpace, the directions of the Cluster di-
mensions and the properties. Figure 4.2 shows a brief class diagram with
the relationship between the Cluster and IterationSpace classes.

Cluster

expressions

IterationSpace

properties

dimensions

IterationSpace

intervals

sub_iterators

dimensions

directions

Figure 4.2.: A class Diagram to explain the relationship of a Cluster to an IterationSpace.
Most of the optimisation passes rebuild an IterationSpace and then rebuild a Cluster since
the IterationSpace is a property of the Cluster class.

The IterationSpace describes the iteration space in which the sten-
cil belongs (i.e. the dimensions that are used as indices in the stencil
expression). The properties are relevant computational properties (e.g. par-
allelism) produced when doing data dependency analysis. This analysis
helps us build knowledge of properties such as parallelism and affinity.
Directions indicate the direction in which this dimension is iterating (++
for forward or - - for backward). Listing 4.6 shows the information of a
cluster of expressions. The info is accessed as class members.

Listing 4.6: A Cluster holds important information for the enclosing expressions. Some of
them are ispace, dimensions and properties

1 (Pdb) clusters[0].dimensions
2 {y, t, z, x, time}
3 (Pdb) clusters[0].ispace
4 IterationSpace[time[0,0]++, x[0,0]++, y[0,0]++, z[0,0]++]
5 (Pdb) clusters[0].properties
6 <frozendict {time: {affine, sequential}, x: {affine, parallel}, y:

{affine, parallel}, z: {affine, parallel}}>
7 (Pdb) clusters[0].directions
8 <frozendict {time: ++, x: ++, y: ++, z: ++}>

The dimensions show the accesses used in the expressions. We can also
see the IterationSpace, the properties corresponding to each dimension
of the IterationSpace, and the directions of every dimension. Later
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on in the compilation, all this info will be used to construct loops and
guide the correct placement of expressions within these loops. Listing 4.7
shows the most critical components of an IterationSpace. These are
the “dimensions”, the “relations”, the “intervals,” and the “subiterators”.

Listing 4.7: The IterationSpace of a Cluster is holding important metadata for the
expressions. The IterationSpace holds, among others, the dimensions, the relations,
the intervals and the subiterators

1 (Pdb) clusters[0].ispace.dimensions
2 (time, x, y, z, t0, t, t1)
3 (Pdb) clusters[0].ispace.relations
4 {(t, x, y, z), (), (time, t), (time, x, y, z)}
5 (Pdb) clusters[0].ispace.intervals
6 IntervalGroup[time[0,0], x[0,0], y[0,0], z[0,0]]
7 (Pdb) clusters[0].ispace.sub_iterators
8 <frozendict {time: (t0, t1), x: (), y: (), z: ()}>

To define a valid ordering of a Cluster’s dimensions within an iteration
space, metadata such as the relations define a partial ordering of the di-
mensions involved in a Cluster. The relations are extracted after parsing
the order in which dimensions appear in the mathematical expressions.
The relations are used as vertices, and the dimensions are used as edges to
build an acyclic graph that explicitly defines the order in which dimensions
should appear as loops when constructing the loop structure. Let us look at
a simple example: Assuming the expression Eq(u[x + 1, y + 1, z + 1], 0.0),
the initial relations are formed with a set of dimensions of the following
ordering: (x, y, z).

By using the expression deriving from the running example (see Listing
4.1) used in this Chapter, assuming the discretised stencil expression is:
Eq(u[t + 1, x + 2, y + 2, z + 2], (−(−2.0 ∗ u[t, x + 2, y + 2, z + 2]/dt ∗ ∗2 +

u[t − 1, x + 2, y + 2, z + 2]/dt ∗ ∗2)/vp[x + 2, y + 2, z + 2] ∗ ∗2...)..), The
relations extracted from the dimension ordering of the above expression
are: (t, x, y, z), (x, y, z)

The intervals of the IterationSpace describe the dimensions used
and any possible offsets that are added to the start and end bounds of a
dimension. Finally, the subiterators show other additional variables that
may be used to access indices. Subiterators are very niche in their use. A
typical example of subiterators are t0 and t1 used along the time dimension
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to implement the time buffering technique, (see Paragraph 2.2.1.1 for more
details on time-buffering).

The cluster in Listing 4.7 has the following set of relations: (t, x, y, z),
(), (time, t), (time, x, y, z). The DAG that is formed from these relations
before the topological sorting is shown in Figure 4.3a. The result of the
topological sorting is shown in Figure 4.3b.

(a) The Directed Acyclic Graph before topological sorting

(b) The Directed Acyclic Graph after topological sorting

Figure 4.3.: The Directed Acyclic Graph of relations shown in Listing 4.7 before and after
being topologically sorted.

From this section, it becomes clear that a Cluster as a core component
in the Devito intermediate representation holds essential metadata that
can be used to apply arithmetic and loop optimisations. Usually, when ap-
plying an optimisation, we alter and reconstruct the IterationSpace di-
mensions, their computational “properties”, and the “relations”.

The optimisation passes in Devito that use Clusters as an optimisation
target are often referred to as cluster-level optimisations or “cluster passes”.
Often in these passes, we optimise expressions according to the data from
their IterationSpace. In the later Section 4.3.1.1, we will go through
a simple example to show the differences in the information held from
Clusters before and after applying an optimisation. The optimisation which
will be used as an example is the Loop-Invariant code motion, a widely
known optimisation from compiler textbooks [Muchnick, 1997, Appel,
2004]. This optimisation pass in Devito is called Dimension-invariant
lifting. To visit a Cluster, we use a visiting pattern called “Queue,” which
we present in the next paragraph.

The Queue structure In this paragraph, we only briefly introduce the
Queue structure to help the reader get more familiar with the visitor
pattern used in most compiler optimisation passes that use Clusters as
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subjects. Most optimisations in Devito are being applied using a Queue
1, a special data structure to visit and process Clusters based on a divide-
and-conquer algorithm. A Queue is initialised with the dimensions of a
Cluster.

Visiting Queues There are two ways to visit (iterate over) the dimensions
of a Queue: the First-Divide-then-Apply strategy (FDTA) and the First-
Apply-then-Divide strategy (FATD). By default, we use the First-Divide-
then-Apply strategy, which we use as a running example in this paragraph.
In each visit, we pop the last dimension and process the Cluster’s metadata,
such as the properties, the relations, etc. In the typical workflow, we visit
each Cluster, and then we visit the dimensions of each Cluster in a
“pop-visit” fashion. This “pop-visit” fashion is why this was named a
Queue. We visit the dimensions, pop the last one, process and continue
until no dimensions are left in the queue.

x0

y0

z0

expr0

x1

y1

z1

expr1

time

(a) A DAG
with two
mathe-
matical
expressions
to compute

queue #1 queue #2

x0

y0

z0

expr0

x1

y1

z1

expr1

time

(b) The DAG
is split in
two queues
susceptible
to optimisa-
tions

(c) z0 is
processed
as the last
element of
the Queue

queue #1

x0

y0

z0

time

x1

y1

z1

expr1expr0

(d) y0 is
processed
as the last
element of
the Queue

queue #1

x0

y0

time

x1

y1

z1

expr1

z0

expr0

(e) x0 is
processed
as the last
element of
the Queue

Figure 4.4.: Figure 4.4a shows a DAG consisting of two Clusters. Each cluster is iterated
using a Queue, Figure 4.4b. These queues are used for optimisation using the First-Divide
then Apply strategy. Figures 4.4c, 4.4d, 4.4e progressively show the dimension that is
processed each time after being popped from the Queue. Figure progressively shows the
visiting pattern of the first Queue

Assuming a problem where the computations end up in expressions
computed in two different clusters, in different x, y, and z loops (let us
use (i) x0, y0, z0 (first Cluster) and (ii) x1, y1, z1 (second Cluster)). A

1 What is a Queue in Devito? For more information about a Queue class in Devito GitHub
repository queue.py.
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representative DAG of the structure of such a computation is shown in
Figure 4.4a. This is a typical example structure encountered in elastic wave
propagation (see Section 3.3.3). To express this better, this looks like two
back-to-back stencils where multiple fields are being updated in a similar
manner as in Algorithm 2. In this case, we have two clusters resulting in
two queues of interest. The dimensions of these clusters form Queues and
are considered optimisation candidates and can be seen within rectangles
in Figure 4.4b. We start by iterating over the queue deriving from the first
cluster. We starting from z0, then y0 and then x0. Then we continue to
the next queue, the one deriving from the second cluster, starting from z1,
then y1 and then x1.

Example: Loop-invariant code motion Loop-invariant code motion is a
well-known optimisation often referred to as Dimension-invariant Lifting
[Muchnick, 1997, Appel, 2004]. We use the same running example we used
in this Section, so before applying this optimisation, we only have one
Cluster as illustrated earlier in Listing 4.5.

We can see that there are mathematical expressions in the expression
shown in Listing 4.5 that are invariant to the dimensions of the Cluster’s
IterationSpace. For example, computing hx ∗ ∗2(≡ h2

x) is invariant to
the dimensions x, y, z. Consequently, this part of the expression can be com-
puted in some temporary variable in a new (empty) IterationSpace.
We now have two Clusters by lifting invariant computations, as the com-
putations can be grouped in two different iteration spaces. After lifting
the dimension-invariant expressions hx ∗ ∗2, hy ∗ ∗2, hz ∗ ∗2 out of their
previous iteration space, we now have two clusters, as seen in Listing 4.8.

The first Cluster contains the lifted dimension-invariant computations,
which now have an empty iteration space. The second Cluster keeps the
same IterationSpace as before, using the newly created temporaries to
compute the lifted dimension-invariant expressions.

4.3.2. Loop blocking in Devito

In this section, we will briefly present how Devito applies loop blocking.
The theoretical background behind loop blocking optimisations was in-
troduced in Section 2.3. Devito can automatically apply loop blocking
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Listing 4.8: After dimension-invariant lifting, we now have two Clusters. The first one
consists of dimension-invariant expressions and therefore has an empty IterationSpace .
The second one has expressions accessing time, x, y, z. These dimensions form the second
Cluster’s IterationSpace .

1 (Pdb) len(clusters)
2 2
3 (Pdb) clusters[0]
4 Cluster([Eq(r0, 1/dt)
5 Eq(r1, 1/(h_x*h_x))
6 Eq(r2, 1/(h_y*h_y))
7 Eq(r3, 1/(h_z*h_z))])
8 (Pdb) clusters[1]
9 Cluster([Eq(u[t1, x + 2, y + 2, z + 2], dt*(r0*u[t0, x + 2, y + 2,

z + 2] + a*(r1*u[t0, x + 1, y + 2, z + 2] + r1*(-2.0*u[t0, x
+ 2, y + 2, z + 2]) + r1*u[t0, x + 3, y + 2, z + 2] + r2*u[t0,
x + 2, y + 1, z + 2] + r2*(-2.0*u[t0, x + 2, y + 2, z + 2]) +
r2*u[t0, x + 2, y + 3, z + 2] + r3*u[t0, x + 2, y + 2, z + 1]
+ r3*(-2.0*u[t0, x + 2, y + 2, z + 2]) + r3*u[t0, x + 2, y +

2, z + 3])))])
10 (Pdb) clusters[0].ispace
11 IterationSpace[]
12 (Pdb) clusters[1].ispace
13 IterationSpace[time[0,0]++, x[0,0]++, y[0,0]++, z[0,0]++]

optimisations as discussed in Section 2.4.1. This section details how Devito
automatically applies loop blocking as a compiler pass in its optimisation
pipeline. The same First-Divide then Apply visiting pattern is used to
iterate over the dimensions of the clusters (see Figure 4.4). Similarly to
other optimisations, the loop blocking implementation uses a Queue visit-
ing pattern. The procedure is split into two parts, analysis and synthesis,
which are detailed in the following Sections 4.3.2.1 and 4.3.2.2.

4.3.2.1. Loop blocking analysis

Loop blocking analysis is primarily based upon a cluster’s iteration space
properties. We primarily depend upon preliminary analysis of compu-
tational properties (e.g. parallelism) to decide whether a loop should
be blocked. The Devito compiler performs data dependency analysis,
computes the distance vectors of data dependences and determines these
computational properties. These distances help assign properties to the
clusters. Here, we refer only to those properties of interest to loop blocking
analysis. Some of these properties are namely:
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• SEQUENTIAL: A Dimension is sequential

• AFFINE: A Dimension used to index into tensor objects only through
affine and regular accesses functions

• PARALLEL: A fully parallel Dimension

To derive the TILABLE property, that determines whether a loop should
be optimised with loop blocking, a critical condition is distinguishing
SEQUENTIAL and PARALLEL dimensions. If the PARALLEL condition
is satisfied, we attach the TILABLE property to the dimension of this
cluster. Users can use more heuristics to drive the tiling parameters that
are not detailed here. Heuristics affect tiling strategies and could improve
performance. By default, Devito uses heuristics empirically known to
deliver performance. Some of the rules to determine whether a cluster’s
dimension is suitable for tiling are:

1. It satisfies the PARALLEL and AFFINE properties. These properties
have been attached after preliminary data dependency analysis. Note:
Conceptually, parallelism is a sufficient but not necessary condition
for applying cache-blocking optimisations.

2. It is not innermost. Blocking the innermost dimensions is also possi-
ble. However, we prefer vectorising them, as it usually delivers better
performance. (Heuristic)

3. It is within a SEQUENTIAL dimension. Dimensions in Clusters
that are not within a SEQUENTIAL dimension (e.g. GEMM ker-
nels) may also be blocked; however, we now focus on time-iterative
computational kernels. (Empirical heuristic)

Algorithm 9 presents the pseudocode showing a part of how the loop
blocking analysis is implemented as a pass in the Devito compiler. Algo-
rithm 9 shows how we attach the TILABLE property after checking the
necessary conditions for this. Note that the pseudocode and the description
of the loop blocking analysis are only a simplified sketch of the complete
algorithm used in Devito. We aim to refer only to the critical points nec-
essary to understand this functionality. (For the full code see footnote 2).

2 The complete algorithm is included in v4.6.2/devito/passes/clusters/blocking.py.
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ALGORITHM 9: Pseudocode for part of loop blocking analysis. Heuristic options are
marked with ‘H:‘ in the comments
Input: clusters, prefix
Output: processed

1 d = prefix[-1].dim
2 for c in clusters do

// PARALLEL* and AFFINE are necessary conditions
3 if not PARALLEL* and AFFINE in c.properties[d] then
4 return clusters

// H:Innermost Dimensions may be ruled out a-priori
5 if not d is c.ispace[-1].dim then
6 return clusters

// H:TILABLE not worth it if not within a SEQUENTIAL Dimension
7 if not any ( SEQUENTIAL in in c.properties[d] for i in prefix[:-1] ) then
8 return clusters
// All good, ‘d‘ is actually TILABLE

9 processed = attach property(clusters, d, TILABLE) return processed

After completing the blocking analysis, we proceed to the loop blocking
synthesis, presented in Section 4.3.2.2.

4.3.2.2. Loop blocking synthesis

To synthesise blocking, we iterate in a bottom-to-top fashion over the
clusters’ dimensions using a Queue. Remember that the clusters have been
reconstructed in the loop blocking analysis phase (see Section 4.3.2.1). We
only apply loop blocking to a dimension if this has the TILABLE property.
The TILABLE property, if applicable, was attached during the analysis part
(see Algorithm 9).

The loop blocking pass can support multiple levels of blocking. By
default, it generates a single level of loop blocking per dimension. However,
the user can optionally control heuristics to decide the blocking strategy
to be followed. For example, Listing 4.9 shows how a user can control
temporal blocking options using arguments through an Operator at the
high level DSL.

Additionally, it shows how a user can specify several parameters to tune
blocking code generation heuristically. For example, if a user prefers to
block an innermost loop, an argument can be used to apply this heuristic
(see line 6 of Listing 4.9).

Algorithm 10 shows the pseudocode with how loop blocking synthesis
is implemented as a pass in Devito (see footnote 2).

131

https://github.com/devitocodes/devito


Listing 4.9: Users can drive the blocking optimisation strategy by simply tweaking a few
parameters.

1 # The default optimisation pipeline enables standard loop blocking
2 op = Operator(eq0, opt={"advanced"})
3 # Additionally, ask for two levels of loop blocking
4 op = Operator(eq0, opt={"advanced", {'blocklevels': 2}})
5 # Additionally, block the inner loop
6 op = Operator(eq0, opt={"advanced", {'blockinner': True}})
7 # Additionally, for two levels and inner loop blocking
8 op = Operator(eq0, opt={"advanced", {'blockinner': True, '

blocklevels': 2}})

ALGORITHM 10: Pseudocode for part of loop blocking synthesis.

Input: clusters, prefix, levels
Output: processed

1 d = prefix[-1].dim
// Return if no TILABLE dimensions exist

2 if not any(TILABLE in c.properties[d] for c in clusters) then
3 return clusters
4 block dims = generate block dims(d, levels)
5 for c in clusters do
6 if TILABLE in c.properties[d] then
7 ispace = decompose(c.ispace, d, block dims)
8 new c = c.rebuild(ispace)
9 processed.append(new c)

10 else
11 processed.append(c)

When a ‘TILABLE‘ dimension is encountered, we generate a new itera-
tion space and, therefore, a new Cluster. To construct a new IterationSpace we
call a specific routine to decompose the old iteration space to a new one.
Algorithm 11 shows the steps within the larger context of an iteration space
decomposition.

More specifically, we take the following steps for loop blocking synthesis:

1. We construct n new Dimensions, with their respective bounds, if
these dimensions are considered TILABLE (see Algorithm 10).

2. We generate a new set of IterationSpace intervals with the newly
created Dimensions (see Algorithm 11).

3. We generate a new set of relations to maintain a valid topological
order of the old and new dimensions (see Algorithm 11).

4. A new IterationSpace is constructed using the previously gener-
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ALGORITHM 11: Pseudocode showing the steps for IterationSpace decomposition.

Input: ispace, d, block dims
Output: ispace

1 - Step 1: Create the new Intervals
2 - Step 2: Create the new relations
3 — Step 2a: Add relation ‘bbd > bd > d‘
4 — Step 2b: Suitably replace ‘d‘ with all ‘bd‘s
5 — Step 2c: Make sure BlockDimensions at the same depth stick next to each other
// E.g., ‘(t, xbb, ybb, xb, yb, x, y)‘, and NOT e.g. ‘(t, xbb,

xb, x, ybb, ...)‘
6 - Step 3: Update intervals
7 - Step 4: Update sub iterators
8 - Step 5: Update directions
9 return IterationSpace(intervals, sub iterators, directions)

ated relations and intervals. (see Figure 4.2, Listing 4.11 and Algo-
rithm 11)

More specifically, n new BlockDimensions are created, where n can be
given through the user API and by default, it is one. Each block dimension
has its minimum and maximum bound and a symbolic step, usually equal
to one. A dimension that identifies itself as BlockDimension does also
have a symbolic step. Unlike the general case, where a symbolic step is
usually one (unit increment), the symbolic step of BlockDimensions is a
symbol. This symbol is a variable that can be used to parametrically tune
the blocked dimensions step in the compiler’s later stages. When creating
a new Dimension, several meta-data must be taken care of, such as the
IterationSpace , the relations, and sub-iterators. Care is taken for the
newly constructed dimensions to inherit valid properties and metadata.

Now we will show how the Algorithm 11 incrementally adds relations
when space blocking is applied: The input to the ispace decomposition
consists of the newly created BlockDimensions, the ‘d‘ dimension that
is about to be replaced and the current ispace. We initially append the
intervals and incrementally add the new relations that emerge from the
new BlockDimensions. We form the new relations in the following way:

1. block dims form a graph path ‘bbd > bd > d‘

2. Each Dimension ‘d‘ is suitably replaced with all Blocked Dimensions
‘bd‘’s in the already existing relations by avoiding, e.g. x > yb
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3. BlockDimensions at same depth stick next to each other, e.g., (t, xbb,
ybb, xb, yb, x, y), and NOT, e.g. (t, xbb, xb, x, ybb, ...). This could
occur when replacements from the previous step lead to dimensions
of a lower level appearing higher than ones with higher levels and is
achieved by dropping relations that violate this.

In Listing 4.10, we use the running example of Chapter 4.1, where
blocking happens for two dimensions (x and y) to showcase how we
incrementally form the new relations that are necessary for loop blocking.
We showcase only the newly added relations for every algorithm step
and how they evolve. The complete code of the algorithm can be seen in
footnote 2.

After we have found the new relations, we reconstrct the ispace. Listing
4.11 shows the iteration space before and after the loop blocking pass. We
can see the new iteration space that has two additional dimensions, the
x0 blk0[0, 0] and y0 blk0[0, 0].

4.3.2.3. The issue of main and remainder areas

The new dimensions progressively inherit loop bounds from their parent
dimension. By parent dimension, we refer to the dimension that led to
the birth of a new blocking level of a dimension. For example, x is the
parent of x0 blk0, and x0 blk0 is the parent of x0 blk1. We often use the
term “root” to refer to the origin of a dimension. E.g. x is also the root of
both x0 blk0 and x0 blk1. As an example, we can see how the loop bounds
look as soon as we generate the BlockDimensions. For example, the new
Dimension x0 blk0 inherits the minimum and maximum bounds of x and
has a new increment step, namely x0 blk0 size, and has x both as a parent
and a root. The next one, x0 blk1 which iterates within an increment step
of x0 blk0 has x0 blk0 as the minimum and x0 blk0 + x0 blk0 size − 1 as
maximum bounds, x is the root x0 blk0 is the parent. Its increment step is
namely x1 blk0 size, and x0 blk0 is the parent of x0 blk1.

However, the new loop bounds created (see Listing 4.12) are not perfect
divisors of the whole extent of the computation domain. As in the new
Iteration spaces that are created may not cover the whole computation
domain. We call this the main-remainder issue. One of the main challenges
when generating blocking dimensions is defining their loop bounds. The
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Listing 4.10: New BlockDimensions require updating the relations in the IterationSpace.

1 (Pdb) ispace.relations
2 {(t, x, y, z), (time, t), (), (time, x, y, z)}
3 (Pdb) block_dims
4 [y0_blk0, y]
5 (Pdb) print(d)
6 y
7 ---> Form a graph path from the existing block_dims
8 (Pdb) relations
9 [(y0_blk0, y)]

10 ---> Suitably replace `d` with all `bd`s in the already existing
relations and avoid, e.g. `x > yb`

11 (Pdb) relations
12 [..., (t, x, y0_blk0, z), ... (time, x, y0_blk0, z), ...)]
13 ---> BlockDimensions at the same depth stick next to each other, E

.g., `(t, xbb, ybb, xb, yb, x, y)`, and NOT e.g. `(t, xbb, xb,
x, ybb, ...).`

14 ---> Not affected at this stage
15 (Pdb) relations
16 [(y0_blk0, y), (t, x, y0_blk0, z), (t, x, y, z), (time, t), (), (

time, x, y0_blk0, z), (time, x, y, z)]
17 ---> Next ispace decomposition/ New BlockDimension
18 (Pdb) block_dims
19 [x0_blk0, x]
20 (Pdb) print(d)
21 x
22 ---> Form a graph path from the existing block_dims
23 (Pdb) relations
24 [(x0_blk0, x)]
25 ---> Suitably replace `d` with all `bd`s in the already existing

relations and avoid, e.g. `x > yb`
26 (Pdb) relations
27 [..., (time, x0_blk0, y, z), ..., (t, x0_blk0, y0_blk0, z), ..., (

t, x0_blk0, y, z), ..., (time, x0_blk0, y0_blk0, z)]
28 ---> BlockDimensions at the same depth stick next to each other, E

.g., `(t, xbb, ybb, xb, yb, x, y)`, and NOT e.g. `(t, xbb, xb,
x, ybb, ...).`

29 (Pdb) relations
30 [..., (y0_blk0, x)]
31 ---> Final relations
32 (Pdb) relations
33 [(x0_blk0, x), (time, t), (time, x0_blk0, y, z), (time, x, y, z),

(t, x0_blk0, y0_blk0, z), (y0_blk0, y), (t, x0_blk0, y, z), (t
, x, y, z), (time, x0_blk0, y0_blk0, z), (), (y0_blk0, x)]
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Listing 4.11: IterationSpace before and after loop blocking.

1 (Pdb) clusters[1].ispace
2 IterationSpace[time[0,0]++, x[0,0]++, y[0,0]++, z[0,0]++]
3 (Pdb) ---> clusters = blocking(clusters, sregistry, options)
4 (Pdb) clusters[1].ispace
5 IterationSpace[time[0,0]++, x0_blk0[0,0]++, y0_blk0[0,0]++, x

[0,0]++, y[0,0]++, z[0,0]++]

Listing 4.12: The symbolic bounds of newly created BlockDimensions. We block over the
x-Dimension, for two levels of blocking

1 (Pdb) block_dims
2 [x0_blk0, x0_blk1, x]
3 (Pdb) block_dims[0].symbolic_min
4 x_m
5 (Pdb) block_dims[0].symbolic_max
6 x_M
7 (Pdb) block_dims[0].symbolic_incr
8 x0_blk0_size
9 (Pdb) block_dims[1].symbolic_min

10 x0_blk0
11 (Pdb) block_dims[1].symbolic_max
12 x0_blk0 + x0_blk0_size - 1
13 (Pdb) block_dims[1].symbolic_incr
14 x0_blk1_size
15 (Pdb) block_dims[2].symbolic_min
16 x0_blk1
17 (Pdb) block_dims[2].symbolic_max
18 x0_blk1 + x0_blk1_size - 1
19 (Pdb) block_dims[2].symbolic_incr
20 1

block sizes used to iterate over these dimensions often do not perfectly
divide the computational domain. Consequently, special treatment is
needed to generate code that iterates the whole domain and avoids out-of-
bounds accesses. Defining the correct bounds is a challenging task. The
existence of subdomains, where a stencil is only executed at a specific
subset of points of the whole domain, complicates this task.

We may look at Figure 4.5 to better understand this issue. Here we have
a computational domain (white grid points, including blue points) and a
subdomain (blue points only).

Assuming we are using loop blocking over the x dimension with an
x0 blk0 size of 8 and the computational domain size is 20, as seen in Figure
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Figure 4.5.: The figure shows a computational domain with a subdomain. The points that
belong to the subdomain are in blue. Yellow and green-filled blocks show that blocks of
grid points do not perfectly cover the extent of the computational domain or the subdomain,
respectively.

4.5. Iterating over blocks leads to iterating over x0 blk0 + x0 blk0 size − 1
(i.e. 0, 8, 16, 24), however we cannot exceed xM which is 20. Consequently,
we must ensure that we iterate over an IterationSpace whose bounds
are defined by some constraints. In this example, the constraints are the
domain upper bound and the blocking dimension upper bound. Similar
action should be taken for the start of the loop as well. Assuming bl1max
is the upper bound of the x blocked loop, the loop’s upper bound should
be:

upper bound = min(bl1max, domain bound) (4.1)

which for our running example in Figure 4.5 translates to:

upper bound = min(x0 blk0 + x0 blk0 size − 1, x M) (4.2)

Similarly, for the subdomain (blue coloured in Figure 4.5), assuming
i0x0 blk0 max is the maximum of the block in subdomain, Equation 4.1
translates in:
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subdomain upper bound = min(i0x0 blk0 max, subdomain bound)
(4.3)

upper bound = min(i0x0 blk0 + i0x0 blk0 size − 1,−i0x rtkn + x M)

(4.4)

4.3.2.4. Valid but redundant code generation: hierarchical blocking

Additional constraints should be considered if more than one blocking
level is generated. These constraints stem from the new blocking levels
operating within the larger block shapes. Assuming bl2 max is the upper
bound of the second blocked loop for the x dimension (loop iterating
within the first blocked loop), the additional constraint adds to Eq. 4.1
which results in:

upper bound = min(domain bound, bl1 max, bl2 max) (4.5)

However, it is up to us to decide whether the inner block sizes are per-
fect divisors of the outer block shape. Perfect loop blocking divisors is a
standard implementation technique for hierarchical space blocking [Kim
et al., 2007]. Consequently, min(bl1 max, bl2 max) = bl1 max. However,
this will lead to redundant code generation as we do not need to com-
pute a more complex expression. Compilers often generate the expression
min(bl1 max, bl2 max), which is still valid. We aim to reduce the redun-
dant code generation and simplify things for better control over the loop
iterations.

4.4. Temporal blocking in Devito

The previous Section 4.3 introduced in detail the loop blocking pass cur-
rently in Devito. Here, we introduce our contributions to automating
temporal blocking by complementing and building upon Section 4.3.

This section describes the methodology followed to automate the gener-
ation of temporal blocking code within Devito. We add temporal blocking
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as a new pass at the end of the Devito optimisation pipeline. The method-
ology to generate temporal blocking code was split into three independent
Cluster passes in Devito. Figure 4.6 shows an overview of the introduced
optimisation pipeline, and these new Cluster optimisation passes are the
following:

1. A temporal blocking Cluster pass

2. A skewing pass

3. A bound-relaxing pass

Block time
Dimension/Interchange

Skew accesses and bounds

Relax bounds/ Manage main
remainder areas

Loop Fusion

Hoist and optimize Dimension-
invariant sub-expressions 

Loop blocking

Factorization 

Loop Fission

Optimize powers

Cross-iteration redundancies
elimination

Common sub-expressions
elimination

Temporal loop blocking

Figure 4.6.: The Devito compiler optimisation pipeline for arithmetic optimisation and loop
transformations. We add temporal blocking as an additional optimisation pass. Temporal
blocking consists of three sub-passes. (i) A pass for blocking a TimeDimension, (ii) a pass
for skewing accesses and loop bounds, (iii) a pass for managing the bounds for satisfying
main and remainder area requirements.

4.4.1. The time loop blocking pass

This Cluster pass is similar to the loop blocking pass presented in sub-
sections 4.3.2.1 and 4.3.2.2. The difference is that now we should allow the
compiler to generate blocking dimensions for SEQUENTIAL dimensions
and, more specifically, for dimensions that refer to “Time” iterations. We
care about “time” here because we can encounter other SEQUENTIAL
dimensions we do not want to block. Such an example is dimensions that
help to iterate over subdomains.
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Listing 4.13 shows the IterationSpace of the Cluster before and
after space and time blocking. The newly constructed TimeDimension gets
its position at the first place of the dimensions as the handling of relations
used is the same in the standard synthesis of loop blocking. To derive the
relations, we follow the same strategy used in space blocking and shown in
Listing 11. Listing 4.13 shows the IterationSpace of a Cluster where
temporal blocking was applied and the resulting relations.

Listing 4.13: The IterationSpace of a cluster before and after time loop blocking.

1 (Pdb) clusters[1].ispace
2 IterationSpace[time[0,0]++, x0_blk0[0,0]++, y0_blk0[0,0]++, x

[0,0]++, y[0,0]++, z[0,0]++]
3 (Pdb) ---> Synthesise temporal blocking
4 (Pdb) clusters[1].ispace
5 IterationSpace[time0_blk0[0,0]++, x0_blk0[0,0]++, y0_blk0[0,0]++,

time[0,0]++, x[0,0]++, y[0,0]++, z[0,0]++]
6 (Pdb) clusters[1].ispace.relations
7 {(time0_blk0, time), (y0_blk0, time), (time, y), (x0_blk0, y), (

time0_blk0, x0_blk0), (time, z), (x0_blk0, z), (time, x), (
time0_blk0, t), (time0_blk0, y), (x0_blk0, x), (time0_blk0, z)
, (y0_blk0, y), (t, x0_blk0, y0_blk0, z), (y0_blk0, z), (y, z)
, (time0_blk0, x), (y0_blk0, x), (x, y), (x, z), (x0_blk0,
y0_blk0), (time0_blk0, y0_blk0), (time0_blk0, x0_blk0, y0_blk0
, z), (x0_blk0, time), ()}

Figure 4.7 shows several snapshots of the relations that form a Directed
Acyclic Graph (DAG). Subfigure 4.7a shows a DAG after a single level
of loop blocking. The additional nodes (blocked dimensions) and the
new relations are added. The addition of the time-blocking loop and
the necessary relations that perform the interchange between space and
time loops are shown in Figure 4.7b. In wavefront temporal blocking,
we use two space-blocking levels as shown in Figure 4.7c. Finally, after
applying transitive reduction to the directed acyclic graph, we arrive at
Figure 4.7d, representing the final loop structure. This step marks the end
of the blocking phase, and the skewing phase follows.

4.4.2. The skewing pass

The skewing pass aims to help skew accesses and loop bounds of expres-
sions in a cluster. Skewed accesses and bounds are a prerequisite for
generating wavefront temporal blocking code.

140



time

y0_blk0

x0_blk0

y

t

x

z

(a) The DAG after one level of loop blocking
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(b) The DAG after time blocking and one-
level of loop blocking
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(c) The DAG after time blocking and two
levels of loop blocking

time0_blk0
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x0_blk0

y0_blk0

time

x0_blk1

y0_blk1

x

y
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(d) Flattened DAG after topological sorting
(Transitive reduction)

Figure 4.7.: Figure shows the Directed Acyclic Graph (DAG) of relations after applying a
level of blocking patterns. Loop interchange automatically occurs through the algorithm
defining relations in Listing 11. The final loop structure emerges after simplifying the
graph through several steps, such as transitive reduction. Within the Devito compiler, this
procedure is called topological sorting.
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Similar to the “blocking” pass, we also have an analysis and a synthesis
part in skewing. Both of them will be explained in the following subsections
4.4.2.1 and 4.4.2.2.

4.4.2.1. Loop skewing analysis

We consider a loop a candidate for skewing if it satisfies the PARALLEL
and AFFINE properties. The tiling analysis explained in Section 4.3.2.1 can
be reused to help with that. Since the TILABLE property has already been
removed for the blocked loops, we re-run the blocking analysis to re-attach
the TILABLE property. Following this, we iterate over the clusters and
attach the SKEWABLE property to those PARALLEL and AFFINE loops.
Algorithm 12 briefly illustrates the algorithm used for the skewing pass.

ALGORITHM 12: Pseudocode for part of loop skewing analysis.

Input: clusters, prefix
Output: processed

1 d = prefix[-1].dim
2 for c in clusters do

// TILABLE is a necessary condition
3 if TILABLE not in c.properties[d] then
4 return clusters
// All good, ‘d‘ is actually SKEWABLE

5 processed = attach property(clusters, d, SKEWABLE) return processed

4.4.2.2. Loop skewing synthesis

After the loop skewing analysis is finished (see Section 4.4.2.1), we proceed
to loop skewing synthesis. Again, we use a Queue to implement this
pass. A set of clusters is given as input to be transformed. Accesses and
loop bounds are skewed. We follow different heuristic strategies to drive
the skewing. The algorithm in Listing 13 shows the pseudocode for the
skewing synthesis pass. We check whether any SKEWABLE property exists
in the cluster’s dimensions. If more than two SKEWABLE dimensions
are present, we avoid applying skewing as the expected performance for
skewing more than two dimensions is still unexplored territory. Then,
depending on whether we have or not a blocked time loop, which would
lead to interchanged loops (see Section 4.4.1), we decide at which level
of the loop hierarchy we will skew the accesses. We may well support

142



skewed accesses without necessarily performing loop interchange (see
Section 2.3.3 for loop interchange). However, skewing the accesses without
loop interchange is not expected to benefit performance. The reason is that
along with skewing accesses, we also skew the bounds keeping the same
overall execution schedule. Thus no performance benefit is going to be
exposed from this optimisation pass.

ALGORITHM 13: Pseudocode for part of loop skewing synthesis.

Input: clusters, prefix
Output: processed

1 d = prefix[-1].dim
2 for c in clusters do

// TILABLE is a necessary condition
3 if SKEWABLE not in c.properties[d] then
4 return clusters
5 if d is c.ispace[-1].dim and not self.skewinner then
6 return clusters
7 skew dims = i.dim for i in c.ispace if SEQUENTIAL in c.properties[i.dim]
8 if len(skew dims) > 2: then
9 return clusters

10 skew dim = skew dims[-1]
// Prefix is skewable and nested under a SEQUENTIAL loop

11 skewlevel = 1
12 intervals = []
13 for i in c.ispace do
14 if i.dim is d then

// If time is blocked, skew at skewlevel + 1
15 cond1 = len(skew dims) == 2 and d. depth == skewlevel + 1

// If time is blocked, skew at level == 0 (e.g. subdims)
16 cond3 = len(skew dims) == 2 and d. depth == 0

// If time is not blocked, skew at level <=1
17 cond2 = len(skew dims) == 1 and d. depth <= skewlevel
18 if cond1 then
19 intervals.append(Interval(d, i.lower, i.upper))
20 else if cond2 or cond3 then
21 intervals.append(Interval(d, skew dim, skew dim))
22 else
23 intervals.append(i)
24 else if i.dim is d then
25 intervals.append(i)
26 intervals = IntervalGroup(intervals, relations=c.ispace.relations)
27 ispace = IterationSpace(intervals, c.ispace.sub iterators, c.ispace.directions)
28 exprs = xreplace indices(c.exprs, d: d - skew dim)

processed.append(c.rebuild(exprs=exprs, ispace=ispace))
29 return processed

A simple example lets us look at expressions’ input and output clusters.
Listing 4.14 shows the expressions and their index accesses before and after
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loop skewing. In this (general) case, we skew the x and the y dimensions.
We do not skew at the z dimension as vectorising over the innermost
accesses has proven more profitable and is a generally accepted and applied
practice in this family of stencil kernels.

Listing 4.14: Cluster expressions before and after loop skewing synthesis.

1 (Pdb) clusters[1]
2 Cluster([Eq(r4, -2.0*u[t0, x + 2, y + 2, z + 2])
3 Eq(u[t1, x + 2, y + 2, z + 2], dt*(r0*u[t0, x + 2, y + 2,

z + 2] + a*(r1*r4 + r1*u[t0, x + 1, y + 2, z + 2] +
r1*u[t0, x + 3, y + 2, z + 2]....)))])

4
5 (Pdb) ---> clusters = skewing(clusters, sregistry, options)
6
7 (Pdb) clusters[1]
8 Cluster([Eq(r4, -2.0*u[t0, -time + x + 2, -time + y + 2, z + 2])
9 Eq(u[t1, -time + x + 2, -time + y + 2, z + 2], dt*(r0*u[

t0, -time + x + 2, -time + y + 2, z + 2] + a*(r1*r4 +
r1*u[t0, -time + x + 1, -time + y + 2, z + 2] + r1*u

[t0, -time + x + 3, -time + y + 2, z + 2]....)))])

4.4.3. Parametrizing bounds: main and remainder areas in
temporal blocking

Section 4.3.2.3 introduced the issue of main and remainder areas. We
showed that deriving the necessary bounds for space blocking in one
or more levels of depth has a straightforward logic. However, there is
more than one challenge when deriving the bounds in temporal blocking
schemes. The diagonal planes (see Figure 4.8) do not only intersect with
the domain bounds. They additionally intersect with the tile bounds and
the loop blocking bounds.

Figure 4.8 illustrates that for the loop iterators, we have the following
constraints:

1. the space ’tile’ loop iterator is bounded by its self bounds (tile, red
bounds), the domain bound in space and time (black arrows) and the
space-time diagonal (blue line).

2. the space ’block’ loop iterator is bounded by itself, and its skewed
parent ’tile’ bound (and consequently the domain bound) (block,
red-dotted line) and the space-time diagonal (blue line)
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upper time domain bound
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Figure 4.8.: A one-dimensional 3-point Jacobian stencil kernel, time-tiled example. The
loop bounds in wavefront temporal blocking are derived by computing the intersection
of several limiting factors. These factors include (in red/crimson) the ’tile’ loop blocking
bounds, (in red/crimson dotted) the ’block’ loop blocking bounds, (in black) the domain
bounds, and (in green) the time-tile bound.

3. the time iterator is bounded by the domain size (black arrows) and
time-tile size/space-time diagonal (blue line).

All the complexities stem primarily from the diagonal skewed planes,
which are functions of space and time. Deriving the complex loop bounds
paves the way for valid schedule code generation and avoids out-of-bounds
accesses. We consider the above constraints to generate the valid bounds
and transform the bounds for every “Iteration” stemming from a Dimen-
sion.

For simplicity, to show the bounds of an Iteration for a specific Dimen-
sion, we use the following format:

Iteration name; ( minimum, maximum, step )

Listing 4.15 shows the mapping of the Iteration bounds before and after
applying the computed iteration bounds to iterate over the grid points
using the wavefront temporal blocking method. We use the same j1d-3pt
example similar to Figure 4.8.
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Listing 4.15: Listing shows how the Iteration loop bounds look like before and after
computing the valid bounds for iterating over the grid points through the wavefront
temporal blocking method. The format is “Iteration name; (minimum, maximum, step)”. A
j1d-3pt example is used, similar to Figure 4.8

1 // Iteration x0_blk0;
2 (x_m, x_M, x0_blk0_size):
3 // to
4 (x_m, time_M - time_m + x_M, x0_blk0_size)
5
6 // Iteration time[t0,t1];
7 (time0_blk0, time0_blk0 + time0_blk0_size - 1, 1):
8 // to
9 (time0_blk0, MIN(time0_blk0 + time0_blk0_size - 1, time_M), 1)

10
11 // Iteration x0_blk1;
12 (x0_blk0, x0_blk0 + x0_blk0_size - 1, x0_blk1_size):
13 // to
14 (MAX(x0_blk0, time + x_m), MIN(x0_blk0 + x0_blk0_size - 1, time +

x_M), x0_blk1_size)
15
16 // Iteration x;
17 (x0_blk1, x0_blk1 + x0_blk1_size - 1, 1) :
18 // to
19 (x0_blk1, MIN(MIN(x0_blk0 + x0_blk0_size - 1, time + x_M), x0_blk1

+ x0_blk1_size - 1), 1)

4.4.4. Wavefront temporal blocking code generation

Implementing a valid strategy for deriving loop bounds helps to generate
code for several combinations of skewing, time blocking and multilevel
blocking (as presented in sections 4.4.1 and 4.4.2.2).

Code generation capabilities These combinations can result in several
code generation schemes. Among others, we generate code for simple
skewing, skewing with one-level loop interchange (Time skewing), skewing
with two-level loop interchange (Wavefront temporal blocking), and multi-
level loop interchange (Wavefront temporal blocking with hierarchical
space blocking). In addition, after applying these optimisations, we also
apply shared-memory OpenMP parallelism and SIMD vectorisation. Again,
the optimisations presented in this chapter are implemented to work
smoothly with already-present Devito optimisations.

Simple arguments in the Operator drive all these code-generation capabil-
ities. Listing 4.16 briefly shows how arguments can drive code generation.
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Listing 4.16: Combining compiler passes for several variants of code generation.

1 # Simple access skewing
2 (Pdb) op.apply('advanced', {"skewing":True})
3 # Time skewing
4 (Pdb) op.apply('advanced', {"skewing":True, "blocktime":True})
5 # Wavefront temporal blocking
6 (Pdb) op.apply('advanced', {"skewing":True, "blocklevels":1})
7 # Wavefront temporal blocking with hierarchical space blocking
8 (Pdb) op.apply('advanced', {"skewing":True, "blocklevels":2})

Finally, after successively applying the three compiler passes presented
in Sections 4.4.1, 4.4.2 and 4.4.3, we are able to generate highly-optimised
C code using wavefront temporal blocking. Listing 4.17 shows a snippet of
the generated C code with applied wavefront temporal blocking.

Listing 4.17: Snippet of the generated C code with wavefront temporal blocking.

1 float r0 = 1.0F/dt;
2 float r1 = 1.0F/(h_x*h_x);
3 float r2 = 1.0F/(h_y*h_y);
4 float r3 = 1.0F/(h_z*h_z);
5
6 for (int time0_blk0 = time_m; time0_blk0 <= time_M; time0_blk0 +=

time0_blk0_size)
7 {
8 for (int x0_blk0 = x_m; x0_blk0 <= time_M - time_m + x_M;

x0_blk0 += x0_blk0_size)
9 {

10 for (int y0_blk0 = y_m; y0_blk0 <= time_M - time_m + y_M;
y0_blk0 += y0_blk0_size)

11 {
12 for (int time = time0_blk0, t0 = (time)%(2), t1 = (time + 1)

%(2); time <= MIN(time0_blk0 + time0_blk0_size - 1,
time_M); time += 1, t0 = (time)%(2), t1 = (time + 1)%(2)
)

13 {
14 #pragma omp parallel num_threads(nthreads)
15 {
16 #pragma omp for collapse(2) schedule(dynamic,1)
17 for (int x0_blk1 = MAX(x0_blk0, time + x_m); x0_blk1 <=

MIN(x0_blk0 + x0_blk0_size - 1, time + x_M); x0_blk1
+= x0_blk1_size)

18 {
19 for (int y0_blk1 = MAX(y0_blk0, time + y_m); y0_blk1 <=

MIN(y0_blk0 + y0_blk0_size - 1, time + y_M); y0_blk1
+= y0_blk1_size)

20 {
21 for (int x = x0_blk1; x <= MIN(MIN(x0_blk0 +

x0_blk0_size - 1, time + x_M), x0_blk1 +
x0_blk1_size - 1); x += 1)

22 {
23 for (int y = y0_blk1; y <= MIN(MIN(y0_blk0 +
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y0_blk0_size - 1, time + y_M), y0_blk1 +
y0_blk1_size - 1); y += 1)

24 {
25 #pragma omp simd aligned(u:32)
26 for (int z = z_m; z <= z_M; z += 1)
27 {
28 float r4 = -2.0F*u[t0][-time + x + 2][-time +

y + 2][z + 2];
29 u[t1][-time + x + 2][-time + y + 2][z + 2] =

dt*(a*(r1*r4 + r1*u[t0][-time + x + 1][-
time + y + 2][z + 2] + r1*u[t0][-time + x
+ 3][-time + y + 2][z + 2] + r2*r4 + r2*u[
t0][-time + x + 2][-time + y + 1][z + 2] +
... ;

30 }
31 }
32 }
33 }
34 }
35 }
36 }
37 }
38 }
39 }

4.5. Performance evaluation

This section evaluates our automated temporal blocking scheme’s perfor-
mance on a range of stencil kernels. We use various CPU platforms to
benchmark our kernels, having different core counts, cache sizes, clock
rates and memory bandwidth.

The first system is a desktop range Intel CPU with a single socket 16-core
Intel IceLake, namely i7-10700KF with AVX2 support. Each CPU has three
cache levels: 256KiB L1d, L1i caches private to each core, and shared 2MiB
L2 and a 16MiB L3 cache.

The second system is an HPC-server range Intel CPU with a dual-socket
20-core per socket Intel Cascade Lake, Gold 5218R with AVX512 support.
Each CPU has three cache levels: 1.3MiB L1d, L1i caches private to each
core, and shared 40MiB L2 and a 50MiB L3 cache.

The third system is an HPC-server range Intel CPU with a dual-socket
20-core per socket Intel Cascade Lake, Gold 6230 with AVX512 support.
Each CPU has three cache levels: 32KiB L1d, L1i caches private to each
core, and shared 1MiB L2 and a 27.5MiB L3 cache.

The fourth system is an HPC-server range AMD CPU with a dual-socket
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64-core per socket EPYC7742 with AVX2 support. This system has 4
NUMA nodes per socket, so the effective physical cores we use for the
benchmarking are 16. Each CPU has three cache levels: 32KiB L1d, L1i
caches private to each core, and shared 512 KiB L2 and a 16MiB L3 cache.

The fifth system is an older generation HPC-server range Intel CPU with
a dual socket 8-core per socket Intel SandyBridge, namely E5-2640 with
AVX support. Each CPU has three cache levels: 512KiB L1d, L1i caches
private to each core, and shared 4MiB L2 and a 40MiB L3 cache.

The above details are summarised in table 4.1. The compiler used was
GCC 9.3.0*.

CPU characterstics
i7-10700KF Gold 5218R Gold 6230 EPYC7742 E5-2640

CPU(s) 16 80 40 256 32
Thread(s) per core: 2 2 1 2 2
Core(s) per socket: 8 20 20 64 8
Socket(s): 1 2 2 2 2
NUMA node(s): 1 2 2 8 2
Clock rate: 3.80GHz 2.10GHz 2.10GHz 2.25GHz 2.50GHz
L1d cache: 256KiB 1.3MiB 32KiB 32KiB 512KiB
L1i cache: 256KiB 1.3MiB 32KiB 32KiB 512KiB
L2 cache: 2MiB 40 MiB 1MiB 512KiB 4MiB
L3 cache: 16MiB 55 MiB 27.5MiB 16MiB 40MiB
Max Mem BW: 45GB/s 120GB/s 131GB/s 190GB/s 59GB/s

Table 4.1.: Characteristics of CPU platforms used for benchmarking

We used OpenMP shared-memory parallelism with dynamic scheduling
and SIMD vectorisation. Thread pinning was enabled using the environ-
ment variables OMP PROC BIND (GCC) and KMP AFFINITY (ICC). The
experimentation framework and instructions on reproducibility are avail-
able in Section 3.4.6. Our work was built on top of Devito v.4.6.2 and can
automatically generate code for the following combinations of compiler
passes:

1. space blocking

2. time blocking (time skewing with space blocking)
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3. wavefront (time skewing with hierarchical space blocking)

We compare our best-automated variant, which is wavefront temporal
blocking, against the highly optimised spatially blocked and vectorised
Devito kernels.

Note: Before proceeding to results, we highly recommend that the
reader has revised Section 3.4, as several paragraphs, such as NUMA
issues and the reduced performance for high-order stencils, are naturally
encountered.

Working set of the problem Cache optimisations aim to improve cache
hits in multiple cache levels. Therefore we need to benchmark problems
with a size that exceeds cache capacity. In order to ensure that in the
presented results, the problem size exceeds the cache capacity, and therefore
we evaluate benefits across all cache levels; we calculate and present the
working set size for all the benchmarked problems.

Working set/Problem size
Laplace 512x512x512 [1GB]
Acoustic 512x512x512 [2GB]
TTI 256x256x256 [≈ 1.8GB]

Table 4.2.: Size of the working set of the problems to be evaluated

4.5.1. Evaluation of standard stencil kernels

In this subsection, we evaluate some stencils widely used in the majority
of research papers that benchmark stencil kernels. Those stencils include
the Heat Diffusion stencil and a standard implementation of the acoustic
wave stencil, as shown in Section 2.1.1.

4.5.1.1. The heat diffusion stencil

The equations that describe Heat Diffusion were discussed in Section
2.1.3.1. We presented how the stencil kernel derives from the mathematical
equations. The heat diffusion stencil lowers to a Laplacian-like Jacobi
kernel, which forms a 13pt, 25pt and 37pt star stencil in 3D for space
discretisation orders of 4, 8 and 12, respectively. In this subsection, we
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evaluate the impact of temporal blocking on the performance of the Heat
Diffusion stencil. Subfigures 4.9a, 4.9b 4.9c show the Gpts/s throughput
on a variety of platforms.
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Figure 4.9.: Gpoints/s throughput for varying space discretisation order on various plat-
forms for the Heat Diffusion 512x512x512 problem (Higher is better).

For space discretisation order (henceforth SDO) of 4, the temporal block-
ing improvement over the highly optimised spatially blocked code starts
from 1.14x for the EPYC7252, around 1.4x for the G5218R and G6230, and
1.64x for E5-2640. The improvement on the i7-10700KF is highly impressive,
reaching up to 3x. For SDO 8, we only see improvement on the i7-10700KF,
reaching 1.64x. The rest of the platforms show no improvement. For the
high SDO 12, we see speedup on the i7-10700KF and E5-2640 of 1.2x and
1.1x, respectively. Figure 4.9 shows that CPUs with high maximum memory
bandwidth benefit less compared to CPUs with less memory bandwidth
such as the i7-10700KF.

4.5.1.2. The wave-equation stencil

The equations that describe wave propagation were discussed in Section
2.1.3.2. We presented how the stencil kernel derives from the mathematical
equations. Since the wave equation itself is similar to a more advanced
version of a real-world example, we benchmark this stencil along with
boundary conditions and damping fields in Section 4.5.2.1.
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4.5.2. Industrial-level applications

In this subsection, we evaluate more complex stencils than compared to
Section 4.5.1. Most of the physics in this subsection has already been
presented in Section 3.3. These kernels contain damping fields, absorbing
boundary conditions and others.

4.5.2.1. Isotropic acoustic

In Figure 4.10, we see the results of the benchmarked kernels with wave-
front temporal blocking versus the highly-optimised spatially blocked
kernels for the Acoustic wave equation stencil kernels.
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Figure 4.10.: Gpoints/s throughput for varying space discretisation order on various
platforms for the Acoustic wave propagation 512x512x512 problem (Higher is better).

For SDO 4, the WTB speedup over the highly optimised spatially blocked
code starts from 1.2x for the G5218R, around 1.4x for the EPYC7252 and
G6230, 1.91x for E5-2640 and 3.32x for the i7-10700KF. For SDO 8, there is
no improvement on G5218R. However, there is speedup for the majority
of platforms. 1.10x for G6230, 1.17x for EPYC7252, 1.27x for E5-2640 and
finally 1.9x for i7-10700KF. For the high SDO 12, we only see a speedup of
1.33x on the i7-10700KF. We notice that CPUs with high maximum memory
bandwidth benefit less compared to CPUs with less memory bandwidth,
such as the i7-10700KF.
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4.5.2.2. Anisotropic acoustic (TTI)

Figure 4.11 shows the results of the benchmarked WTB kernels versus
the highly optimised spatially blocked kernels for the anisotropic acoustic
(TTI) wave equation stencil kernel. TTI is a very complex and demanding
kernel. For more info, redirect to Section 3.3.2
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Figure 4.11.: Gpoints/s throughput for varying space discretisation order on various
platforms for the anisotropic acoustic wave propagation 256x256x256 problem (Higher is
better).

For SDO 4, the WTB speedup over the highly optimised spatially blocked
code starts from 1.17x, for the G6230, around 1.25x for the EPYC7252 and
G5218R, and 1.29x for the i7-10700KF. For SDO 8 and SDO 12, there
is a slight improvement on G5218R. However, there is speedup for the
majority of platforms. 1.10x for G6230, 1.17x for EPYC7252, 1.27x for
E5-2640 and finally 1.9x for i7-10700KF. For the high SDO 12, we only see a
speedup of 1.33x on the i7-10700KF. Figure 4.11 shows some slight benefit
towards CPUs with higher max memory bandwidth, probably because we
benchmark a kernel with high arithmetic intensity, and it is mainly limited
by computational resources rather than memory bandwidth. Consequently,
powerful CPUs with good caches can help get some benefits.

4.5.2.3. Elastic

Automating temporal blocking code generation for the elastic-wave prop-
agation kernel could not be implemented in this thesis. Some additional
machinery is needed in order to satisfy the data dependency requirements
of the elastic stencil kernel. These complex data dependencies stem from
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cross-loop read-write dependencies for updating multiple fields. Automat-
ing temporal blocking for the elastic kernel needs additional work and is
related to an open issue in the Devito compiler. 3 This codegen limita-
tion does not allow our scheme to transform loops with cross-loop data
dependencies as described in Section 3.3.3.

If the reader is eager to look at possible gains from applying tempo-
ral blocking to the elastic wave propagation kernels, we redirect to the
performance evaluation in Section 3.18, where a semi-automated with man-
ual edits implementation is evaluated. We consider automated temporal
blocking for the elastic wave propagation as future work; more details are
provided in Section 4.7.

4.6. Conclusions

This chapter presented a general compiler approach to automatically ap-
plying temporal blocking to stencil computations. Starting from a high
level of symbolic abstraction, we generate code harnessing the advantages
of temporal blocking automatically. By breaking temporal blocking down
into independent building blocks, we managed to ease its implementation
within the compiler and support multiple combinations of closely related
heuristic optimisations in tandem with pre-existing optimisations. These
combinations include simple skewing (accesses and bounds), skewing
with one-level loop interchange (Time skewing), skewing with two-level
loop interchange (Wavefront temporal blocking) and multi-level loop in-
terchange (Wavefront temporal blocking with hierarchical space blocking).
In addition, they offer straightforward integration with shared-memory
parallelism (inner and outer). To the best of our knowledge, we offer an au-
tomated solution that is the first to combine high-level mathematic abstrac-
tion and temporal blocking code generation. The contributed optimisation
was evaluated against state-of-the-art highly-optimised implementations
from the Devito compiler and proven to offer considerable performance
benefits. The experimental evaluation makes temporal blocking an at-
tractive optimisation target for stencil computations. The compiler work
presented in this thesis significantly helps automate wavefront and other
temporal blocking variants.

3 The open issue can be found here: Issue #618.
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4.7. Limitations and Future work

Our work has several limitations, which we review in this section. These
limitations stem mainly from the lack of time to implement additional
features and the performance limitations of temporal blocking with high-
order stencils. We discuss these limitations and propose future research
directions to resolve them.

1. The contributed compiler infrastructure currently generates only
wavefront temporal blocking (WTB) code. However, WTB is known
to have its limitations in performance. Performance is often limited
by the disadvantages of WTB, such as thread load imbalance at the
starting and ending phases of the sequentially progressing wavefronts.
Whenever the wavefront area is small, threads have little space to
operate and compute points in tiles. A future research direction
would be to extend the compiler infrastructure with more temporal
blocking methods. Other variants of temporal blocking, such as
overlapped and diamond, offer better thread load balance.

2. Temporal blocking works smoothly with all Devito-supported op-
timisations apart from distributed-memory parallelism (MPI code
generation). Combining MPI and temporal blocking is even more
challenging as additional care must be taken for a number of aspects,
such as allocating more data per node to satisfy data dependencies
for more point updates in time. The short answer is communicating
fatter/wider halos between nodes to satisfy communication and com-
putation for more than one timestep. Additionally, it depends upon
item 1 as tiles in wavefront temporal blocking are updated sequen-
tially, meaning there is no space for another degree of distributed-
memory parallelism over shared-memory parallelism. Consequently,
a distributed-memory temporal blocking method would be an exten-
sion dependent on the future work of item 1. Although distributed
memory parallelism is a great enhancement for production-grade
runs, it is common to encounter Full Waveform Inversion (FWI) and
Reverse Time Migration (RTM) runs without using MPI distributed
parallelism. Consequently, we consider that our contribution could
have an impact even without MPI. More specifically, there are prob-
lems using low-frequency waves that may be small enough to be
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worth running on a single socket of a relatively high-end CPU.

3. Elastic-like wave propagation kernels are not compliant with the au-
tomated temporal blocking scheme. Additional machinery is needed
to support cross-loop data dependencies. For performance results
on the elastic-wave propagation, we redirect the reader to the semi-
automated hand-tuned kernels in Section 3.4.2.

4. Integration of signal receivers is not implemented. This limitation
stems from the specific application context of seismic and medical
imaging. Consequently, this thesis only evaluates the stencil kernels
for the forward phase. Performance-wise, this is quite satisfactory as
this is one of the bottlenecks of the imaging pipeline. In order to fully
execute an imaging problem, receivers need to be fully integrated
into the automatically generated wavefront temporal blocking code.
This automation requires some more software engineering and is left
for future work.

5. Another limitation of this work is that it is limited to CPUs only.
Tiling loops for execution on GPUs differs from CPUs depending
on the model employed to offload on GPUs. Supporting temporal
blocking for GPUs is in the roadmap of future work.

6. Other architectures: Another platform of interest to benchmark the
temporally blocked kernels would be ARM A64FX. In order to take
advantage of A64FX’s performance, we need to use the Fujitsu CC
(fcc) compiler [Odajima et al., 2020]. Our efforts to benchmark our
temporal blocking model with fcc failed as the compiler would not
digest for varying size loops (main/remainder areas with min/max
bounds) as seen in Section 4.4.3 that could have zero length. Support-
ing this platform is considered future work. Another platform that
would be interesting to try is Cerebras WSE-2, where recent research
has shown great potential [Jacquelin et al., 2022].

4.7.1. Code availability

An implementation of the methods described in this chapter is available in a
Devito fork repository under the MIT open-source license available at DOI:
10.5281/zenodo.7472679. See the chapter4-README.md for instructions
on how to see the code used and reproduce the results in the chapter.

156

https://github.com/devitocodes/devito
https://zenodo.org/record/7472679
https://zenodo.org/record/7472679
https://github.com/georgebisbas/devito/blob/temporal_on_4_6_2_thesis/chapter4-README.md


Chapter 5

Conclusions

This final chapter revisits the contributions, achievements and limitations
of this thesis. Future research directions are also discussed, and we attempt
to assess the potential scientific impact of this thesis.

5.1. Summary

This thesis introduced techniques to automate cache-related optimisations
for improving the performance of numerical methods for solving partial
differential equations. We evaluated the contributed optimisations on
standard as well as real-world problems. The work presented in this thesis
is built upon three main pillars:

Motivation The performance optimisation of any computational kernel
should always start with bottleneck analysis. As in this thesis, this
is even more challenging in the case of already-optimised code as
we attempt to squeeze the last bit of performance out of the stencil
kernels. The motivation behind that attempt is accelerating stencil
computations that are omnipresent in real-life applications. More
specifically we focus on stencil kernels stemming from seismic and
medical imaging applications. Optimisations for real-world applica-
tions are only sometimes straightforward, as several factors must be
considered. These factors usually stem from several parameters that
need to be considered to simulate real-world phenomena accurately
(e.g. boundary conditions, external factors and others). In this thesis,
we systematically attempt to solve real-world applications to the best
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extent possible. The cases where this is not possible are elaborated in
the following limitations and future research Section 5.2.

Automation through Devito high-level compiler The integration of all kinds
of optimisations into compilers is a challenging task. Arithmetic
optimisations, loop transformations, parallelism and others are highly
beneficial but require significant engineering effort. Especially in
codes that simulate real-world phenomena, doing this by hand is
time-consuming, highly tedious and error-prone. These complexities
reduce productivity for scientific individuals and teams as they often
fall apart their domain expertise for developing end-to-end scientific
applications. Throughout this thesis, we aim to automate wavefront
temporal blocking so that this happens behind the scenes without
user intervention. This automation allows domain specialists to
model practical applications and harness the speedup benefits of
WTB without caring for low-level optimisations.

Validation of the hypotheses The hypotheses behind performance benefits
must always be validated. In this thesis, we applied optimisations to
improve cache reuse. We verified that our optimisations improved
cache reuse via performance profiling tools such as Intel Advisor and
rooflines models. All performance numbers reported in this thesis
aim to be reproducible on the platforms used for benchmarking.

In this thesis, we have investigated two main challenges in finite-difference
stencil computations on structured grids.

Temporal blocking of finite-difference stencil operators with sparse “off-
the-grid” sources (Chapter 3) This work introduced a mechanism to
enable temporal blocking in stencil computations involving sparse off-the-
grid operators as encountered, for example, with sources and receivers in
seismic inversion problems. We applied wavefront temporal blocking to
wave-propagators ranging from isotropic acoustic to more advanced, such
as isotropic elastic and anisotropic acoustic (TTI). Experimental evaluation
of the improved kernels on Broadwell and Skylake microarchitectures
showed compelling evidence of substantial acceleration of at least 1.5x for
low and at least 1.1x for medium space order wave-propagation kernels.
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The most significant achievement of this chapter is the inspector/executor
scheme for applying temporal blocking to stencil kernels used in scientific
simulations. These kernels often include sparse, “off-the-grid” operators.
These operators raise limitations and complicate the straightforward appli-
cation of temporal blocking.

Automated temporal blocking through compiler technology (Chapter 4)
This work introduced a compiler pass scheme to automate temporal block-
ing as a compiler pass within an already existing high-level compiler
like Devito. Our contributions help to automatically generate temporal
blocking code starting from a high-level mathematic symbolic input.

Temporal blocking has proven beneficial for simple and more complex
(Chapter 3) stencil computations. Automated code generation for tem-
poral blocking is a challenging task that requires careful compiler pass
design. Writing temporal blocking code by hand is a very error-prone
task. It requires accurate coding and thinking of cache optimisations in a
higher-dimensional space with time dimension complicating this approach.
Especially for stencil kernels of practical applications, this task is even more
complicated as we often encounter multi-field stencils, high-arithmetic in-
tensity, imperfectly nested loops and indirect memory accesses.

Code availability The contributions of this thesis (code implementation,
dissemination, experiments) are publicly available. The code integrated into
Devito is publicly available via MIT License. The hyperlinks to reproduce
this work are available in the respective chapter. See subsections 3.4.6 for
Chapter 3 and 4.7.1 for Chapter 4.

5.2. Limitations and Future research directions

This section will discuss in more detail the limitations of this thesis and the
future research directions that aim to resolve them. Some of the limitations
of the research presented in this thesis have already been partly discussed
in the previous chapters (see Section 3.5 for Chapter 3 and Section 4.7 for
Chapter 4) . In this subsection, we emphasise them and discuss them more
thoroughly.
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Temporal blocking and high-order stencils By default, temporal block-
ing is expected to have limited gains for high-order stencils. Our goal is
to push the performance bar even at an additional 5% to 10% compared
to state-of-the-art, to unlock impact that may mean thousands of dollars
for seismic imaging or faster diagnoses to try and save lives for medical
imaging. Overall, achieving performance improvement through temporal
blocking with high-space order kernels requires further research. Other
temporal blocking methods, like diamond tiling, benchmarked on real-
world stencils, see Multicore Wavefront Diamond tiling [Malas et al., 2015,
Qu et al., 2020] offers an enhanced alternative to simple wavefront temporal
blocking. This scheme is expected to perform better as it offers a better
schedule for temporal cache reuse, concurrent start-up and better load
balance for the OpenMP threads.

Other methods like stencil retiming [Stock et al., 2014] have shown
promise in alleviating the performance bottleneck due to the high space
discretisation order, a possible combination with temporal blocking could
be promising.

Another possible solution could be data layout transformations in tan-
dem with wavefront temporal blocking as presented in Yount [2015].

We recap the open questions that arose from Chapters 3 and 4 of the
thesis and provide insights into potential research directions.

Advanced temporal blocking schemes The temporal blocking scheme
presented in this thesis is wavefront temporal blocking. This is only one of
many temporal blocking schemes, less or more advanced, having different
properties, advantages and disadvantages. Implementing wavefront tem-
poral blocking in Devito provides the necessary compiler infrastructure to
extend and scale to more temporal blocking schemes. One of the schemes
proven advantageous for stencil computations is diamond temporal block-
ing [Malas et al., 2015, Bertolacci et al., 2015, Levchenko and Perepelkina,
2017]. We aim to extend our infrastructure and automate other schemes,
such as trapezoidal and diamond temporal blocking.

Distributed-memory temporal blocking for NUMA architectures The
temporal blocking optimisations, similar to other cache blocking optimi-
sations, are particularly beneficial if memory accesses occur in the same
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NUMA region. As shown in the experimental evaluation in Sections 3.4
and 4.5, all experiments were performed in a single NUMA region. It has
proven to be beneficial for locality to apply distributed memory parallelism
across NUMA regions and shared memory parallelism across physical
cores within the same NUMA region. In order to extend temporal blocking
advantages to architectures with more than one NUMA region, an MPI-
aware temporal blocking scheme should be implemented. This scheme
should decompose the computational domain to each NUMA region (MPI
distributed-memory parallelism) and perform temporal blocking with
shared memory parallelism inside the region’s domain. As discussed in
Section 4.7, distributed memory parallelism greatly enhances production-
grade runs. Classes of Full Waveform Inversion (FWI) and Reverse Time
Migration (RTM) runs without using MPI distributed parallelism. More
specifically, there are problems using low-frequency waves that may be
small enough to be worth running on a single socket of a relatively high-
end CPU.

Faster auto-tuning Tuning temporal blocking models induces more pa-
rameters compared to typical space blocking. In space blocking, testing
each tuning run for 5 or 10 timesteps is enough to establish achieved
performance. Wavefront temporal blocking has an additional level of space
blocking plus the time dimension being blocked. In addition, each tuning
run takes longer as it is not safe to conclude the optimal shape by only
evaluating for a few timesteps as we do in standard space blocking. Conse-
quently, we need more timesteps in wavefront temporal blocking to draw
safe conclusions. The optimal block shapes can be a function of the cache
sizes, stencil radius, and accesses. Some works have tried to predict the
cache block sizes using layer conditions (LCs) [Hammer et al., 2017] from
these parameters. An auto-tuning schedule for faster prediction of the
optimal parameters is considered necessary.

Complete integration of sources and receivers The implementation pre-
sented in Chapter 4 is capable of automating temporal blocking to pure
stencil loops. In order to benchmark using actual data, we initially perform
source injection without temporal blocking to inject the signal in its com-
plete form in the field. After this, we evaluate the stencil kernels. Chapter
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3 showed that we can apply temporal blocking in the presence of sources
and receivers. However, this still needs to be fully automated within the
workflow. The complete integration of automating the transformation of
loops containing source injection and receiver interpolation within the
compiler is a work in progress.

Temporal locality optimisations on GPUs Another research direction
that emerged during our work in Chapter 3 and Chapter 4 was to extend
our work on accelerators such as Nvidia and AMD GPUs. Through
OpenACC and OpenMP programming models, we can easily port our
automatic code generation technology to GPUs. By modifying the cache
blocking and parallelisation strategies discussed earlier, we optimise our
code generation for further performance improvement on GPUs. We
evaluate the performance of our optimised stencil kernels on GPUs and
discuss our findings. Finite-difference stencil kernels have long been
executed on GPUs (e.g. see [Micikevicius, 2009, Meng and Skadron, 2009,
Schäfer and Fey, 2011, Zhang and Mueller, 2012, Holewinski et al., 2012,
Zhao et al., 2018b, Reguly et al., 2016, Grosser et al., 2014a, Steuwer et al.,
2017, Zohouri et al., 2018, Zhao et al., 2019, Sai et al., 2020, Matsumura
et al., 2020, Gysi et al., 2021]).
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J. R. Johnson, M. Püschel, J. C. Hoe, and J. M. F. Moura. Spiral: Extreme
performance portability. Proceedings of the IEEE, 106(11):1935–1968, 2018.
doi: 10.1109/JPROC.2018.2873289.

168

http://dx.doi.org/10.1016/S0167-8191(00)00034-X
http://doi.acm.org/10.1145/2063384.2063396
http://doi.acm.org/10.1145/2063384.2063396
https://www.devitoproject.org/devito/index.html
http://dx.doi.org/10.5281/zenodo.49283
http://dx.doi.org/10.5281/zenodo.49283


M. Frigo and V. Strumpen. Cache oblivious stencil computations. In
Proceedings of the 19th Annual International Conference on Supercomputing,
ICS ’05, pages 361–366, New York, NY, USA, 2005. ACM. ISBN 1-59593-
167-8. doi: 10.1145/1088149.1088197.

M. Frigo and V. Strumpen. The cache complexity of multithreaded cache
oblivious algorithms. In Proceedings of the Eighteenth Annual ACM Sympo-
sium on Parallelism in Algorithms and Architectures, SPAA ’06, page 271–280,
New York, NY, USA, 2006. Association for Computing Machinery. ISBN
1595934529. doi: 10.1145/1148109.1148157.

M. Frigo, C. E. Leiserson, H. Prokop, and S. Ramachandran. Cache-
oblivious algorithms. ACM Trans. Algorithms, 8(1), Jan. 2012. ISSN
1549-6325. doi: 10.1145/2071379.2071383.

G. Fursin, Y. Kashnikov, A. W. Memon, Z. Chamski, O. Temam, M. Namo-
laru, E. Yom-Tov, B. Mendelson, A. Zaks, E. Courtois, et al. Milepost gcc:
Machine learning enabled self-tuning compiler. International journal of
parallel programming, 39(3):296–327, 2011.

S. Girbal, N. Vasilache, C. Bastoul, A. Cohen, D. Parello, M. Sigler, and
O. Temam. Semi-automatic composition of loop transformations for
deep parallelism and memory hierarchies. International Journal of Parallel
Programming, 34(3):261–317, 2006.

M. Griebl, C. Lengauer, and S. Wetzel. Code generation in the polytope
model. In Proceedings of the 1998 International Conference on Parallel Archi-
tectures and Compilation Techniques, PACT ’98, page 106, USA, 1998. IEEE
Computer Society. ISBN 0818685913.

T. Grosser, A. Groesslinger, and C. Lengauer. Polly — perform-
ing polyhedral optimizations on a low-level intermediate representa-
tion. Parallel Processing Letters, 22(04):1250010, 2012a. doi: 10.1142/
S0129626412500107. URL http://www.worldscientific.com/

doi/abs/10.1142/S0129626412500107.
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A. Klöckner. Loo.py: transformation-based code generation for GPUs
and CPUs. In Proceedings of ARRAY ‘14: ACM SIGPLAN Workshop on
Libraries, Languages, and Compilers for Array Programming, Edinburgh,
Scotland., 2014. Association for Computing Machinery. doi: 10.1145/
2627373.2627387.
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A. Schäfer and D. Fey. High performance stencil code algorithms for
GPGPUs. Procedia Computer Science, 4:2027–2036, 2011. ISSN 18770509.
doi: 10.1016/j.procs.2011.04.221.

G. Smith. Numerical Solution of Partial DifferentialEquations: Finite Difference
Methods. Clarendon, 1985.

M. Steuwer, C. Fensch, S. Lindley, and C. Dubach. Generating performance
portable code using rewrite rules: From high-level functional expressions
to high-performance opencl code. SIGPLAN Not., 50(9):205–217, aug
2015. ISSN 0362-1340. doi: 10.1145/2858949.2784754. URL https:

//doi.org/10.1145/2858949.2784754.

M. Steuwer, T. Remmelg, and C. Dubach. Matrix multiplication beyond
auto-tuning: Rewrite-based gpu code generation. In 2016 International
Conference on Compliers, Architectures, and Sythesis of Embedded Systems
(CASES), pages 1–10, 2016. doi: 10.1145/2968455.2968521.

M. Steuwer, T. Remmelg, and C. Dubach. Lift: A functional data-parallel ir
for high-performance gpu code generation. In 2017 IEEE/ACM Interna-
tional Symposium on Code Generation and Optimization (CGO), pages 74–85,
2017. doi: 10.1109/CGO.2017.7863730.

K. Stock, M. Kong, T. Grosser, L.-N. Pouchet, F. Rastello, J. Ramanujam,
and P. Sadayappan. A framework for enhancing data reuse via associa-
tive reordering. In Proceedings of the 35th ACM SIGPLAN Conference on
Programming Language Design and Implementation, PLDI ’14, page 65–76,
New York, NY, USA, 2014. Association for Computing Machinery. ISBN
9781450327848. doi: 10.1145/2594291.2594342.

M. M. Strout, M. Hall, and C. Olschanowsky. The sparse polyhedral
framework: Composing compiler-generated inspector-executor code.
Proceedings of the IEEE, 106(11):1921–1934, 2018. doi: 10.1109/JPROC.
2018.2857721.

R. Strzodka, M. Shaheen, D. Pajak, and H.-P. Seidel. Cache accurate time
skewing in iterative stencil computations. In Proceedings of the 2011
International Conference on Parallel Processing, ICPP ’11, pages 571–581,
Washington, DC, USA, 2011. IEEE Computer Society. ISBN 978-0-7695-
4510-3. doi: 10.1109/ICPP.2011.47.

181

https://doi.org/10.1145/2858949.2784754
https://doi.org/10.1145/2858949.2784754


A. K. Sujeeth, K. J. Brown, H. Lee, T. Rompf, H. Chafi, M. Odersky, and
K. Olukotun. Delite: A compiler architecture for performance-oriented
embedded domain-specific languages. ACM Trans. Embed. Comput. Syst.,
13(4s), apr 2014. ISSN 1539-9087. doi: 10.1145/2584665. URL https:

//doi.org/10.1145/2584665.

H. Tanaka, Y. Ishihara, R. Sakamoto, T. Nakamura, Y. Kimura, K. Nitadori,
M. Tsubouchi, and J. Makino. Automatic generation of high-order finite-
difference code with temporal blocking for extreme-scale many-core
systems. In 2018 IEEE/ACM 4th International Workshop on Extreme Scale
Programming Models and Middleware (ESPM2), pages 29–36. IEEE, 2018.

Y. Tang, R. A. Chowdhury, B. C. Kuszmaul, C.-K. Luk, and C. E. Leiserson.
The pochoir stencil compiler. In Proceedings of the Twenty-third Annual
ACM Symposium on Parallelism in Algorithms and Architectures, SPAA ’11,
pages 117–128, New York, NY, USA, 2011. ACM. ISBN 978-1-4503-0743-7.
doi: 10.1145/1989493.1989508. URL http://doi.acm.org/10.1145/

1989493.1989508.

F. Thaler, S. Moosbrugger, C. Osuna, M. Bianco, H. Vogt, A. Afanasyev,
L. Mosimann, O. Fuhrer, T. C. Schulthess, and T. Hoefler. Porting the
cosmo weather model to manycore cpus. In Proceedings of the Platform for
Advanced Scientific Computing Conference, PASC ’19, New York, NY, USA,
2019. Association for Computing Machinery. ISBN 9781450367707. doi:
10.1145/3324989.3325723.

J. W. Thomas. Numerical partial differential equations: finite difference methods,
volume 22. Springer Science & Business Media, 2013.

D. Unat, J. Zhou, Y. Cui, S. B. Baden, and X. Cai. Accelerating a 3d
finite-difference earthquake simulation with a c-to-cuda translator. Com-
puting in Science and Engg., 14(3):48–59, May 2012. ISSN 1521-9615. doi:
10.1109/MCSE.2012.44. URL http://dx.doi.org/10.1109/MCSE.

2012.44.

D. Unat, A. Dubey, T. Hoefler, J. Shalf, M. Abraham, M. Bianco, B. L.
Chamberlain, R. Cledat, H. C. Edwards, H. Finkel, K. Fuerlinger, F. Han-
nig, E. Jeannot, A. Kamil, J. Keasler, P. H. J. Kelly, V. Leung, H. Ltaief,
N. Maruyama, C. J. Newburn, and M. Pericás. Trends in data locality

182

https://doi.org/10.1145/2584665
https://doi.org/10.1145/2584665
http://doi.acm.org/10.1145/1989493.1989508
http://doi.acm.org/10.1145/1989493.1989508
http://dx.doi.org/10.1109/MCSE.2012.44
http://dx.doi.org/10.1109/MCSE.2012.44


abstractions for hpc systems. IEEE Transactions on Parallel and Distributed
Systems, 28(10):3007–3020, 2017. doi: 10.1109/TPDS.2017.2703149.

A. Van Deursen, P. Klint, and J. Visser. Domain-specific languages: An
annotated bibliography. ACM Sigplan Notices, 35(6):26–36, 2000.

F. G. Van Zee and R. A. van de Geijn. BLIS: A framework for rapidly instan-
tiating BLAS functionality. ACM Transactions on Mathematical Software,
41(3):14:1–14:33, June 2015. URL http://doi.acm.org/10.1145/

2764454.

N. Vasilache, O. Zinenko, T. Theodoridis, P. Goyal, Z. DeVito, W. S. Moses,
S. Verdoolaege, A. Adams, and A. Cohen. Tensor comprehensions:
Framework-agnostic high-performance machine learning abstractions.
arXiv preprint arXiv:1802.04730, 2018.

A. Venkat, M. Shantharam, M. Hall, and M. M. Strout. Non-affine
extensions to polyhedral code generation. In Proceedings of Annual
IEEE/ACM International Symposium on Code Generation and Optimiza-
tion, CGO ’14, pages 185:185–185:194, New York, NY, USA, 2014a.
ACM. ISBN 978-1-4503-2670-4. doi: 10.1145/2544137.2544141. URL
http://doi.acm.org/10.1145/2544137.2544141.

A. Venkat, M. Shantharam, M. Hall, and M. M. Strout. Non-affine exten-
sions to polyhedral code generation. In Proceedings of Annual IEEE/ACM
International Symposium on Code Generation and Optimization, CGO ’14,
page 185–194, New York, NY, USA, 2014b. Association for Computing
Machinery. ISBN 9781450326704. doi: 10.1145/2581122.2544141. URL
https://doi.org/10.1145/2581122.2544141.

S. Verdoolaege. isl: An integer set library for the polyhedral model. In
K. Fukuda, J. Hoeven, M. Joswig, and N. Takayama, editors, Mathematical
Software (ICMS’10), LNCS 6327, pages 299–302. Springer-Verlag, 2010.

S. Verdoolaege, J. Carlos Juega, A. Cohen, J. Ignacio Gómez, C. Tenllado,
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Appendix A

Appendix

A.1. An example for deriving the size of errors in
finite difference approximations

This section uses a simple example to show some errors in finite-difference
approximations and plots these errors on a log-log scale.

Let u(x) = sin(x) represent a function of one variable that is smooth and
x̄ = 1; a particular point of interest, within an interval where the function
is well-defined. We are trying to approximate u′(1) = cos(1) = 0.5403023.
Table A.1 shows the error ∆u(x̄)− u′(x̄) for various values of h for each of
the formulas 2.1, 2.2, 2.3, 2.4. We see that ∆+u and ∆−u behave similarly,
although one exhibits an error roughly the negative of the other. This is
reasonable from Figure 2.1 and explains why D0u, the average of the two,
has an error much smaller than both.

Table A.1.: Errors in various finite difference approximations

h ∆+u(x̄) ∆−u(x̄) ∆0u(x̄) ∆3u(x̄)
1.0e − 01 −4.2939e − 02 4.1138e − 02 −9.0005e − 04 6.8207e − 05
5.0e − 02 −2.1257e − 02 2.0807e − 02 −2.2510e − 04 8.6491e − 06
1.0e − 02 −4.2163e − 03 4.1983e − 03 −9.0050e − 06 6.9941e − 08
5.0e − 03 −2.1059e − 03 2.1014e − 03 −2.2513e − 06 8.7540e − 09
1.0e − 03 −4.2083e − 04 4.2065e − 04 −9.0050e − 08 6.9979e − 11

We see that:
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∆+u(x̄)− u′(x̄) ≈ −0.42h,

∆0u(x̄)− u′(x̄) ≈ −0.09h2,

∆3u(x̄)− u′(x̄) ≈ 0.007h3,

confirming that these methods are first-order, second-order, and third-
order accurate, respectively.

Figure A.1 shows these errors plotted against h on a log-log scale. This
is a way to plot errors when we expect them to behave like some power of
h since if the error E(h) behaves like

The errors are:
E(h) ≈ Chp,

then

log |E(h)| ≈ log |C|+ p log h.

So on a log-log scale, the error behaves linearly with a slope equal to p,
the order of accuracy.
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Figure A.1.: The absolute errors in ∆u(x̄)− u′(x̄) from Table A.1 plotted against h on a
log-log scale. Adapted and edited from [LeVeque, 2007]
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A.2. Devito generated code for wave propagators

A.2.1. Devito generated code for TTI wave propagators

The following code shows the optimized generated C-code for the TTI
wave propagation.

Listing A.1: An optimised version of Devito generated code for a TTI forward wave
propagators stencil.

1 int ForwardTTI(struct dataobj *restrict damp_vec, struct
dataobj *restrict delta_vec, struct dataobj *restrict
epsilon_vec, struct dataobj *restrict phi_vec, struct
dataobj *restrict rec_vec, struct dataobj *restrict
rec_coords_vec, struct dataobj *restrict src_vec, struct
dataobj *restrict src_coords_vec, struct dataobj *restrict
theta_vec, struct dataobj *restrict u_vec, struct dataobj
*restrict v_vec, struct dataobj *restrict vp_vec, const
int x_M, const int x_m, const int y_M, const int y_m,
const int z_M, const int z_m, const float dt, const float
o_x, const float o_y, const float o_z, const int p_rec_M,
const int p_rec_m, const int p_src_M, const int p_src_m,
const int time_M, const int time_m, const int x0_blk0_size
, const int y0_blk0_size, const int nthreads, const int
nthreads_nonaffine, const int z_size, const int x_size,
const int y_size, struct profiler * timers)

2 {
3 float **pr22_vec;
4 posix_memalign((void**)(&pr22_vec),64,nthreads*sizeof(float

*));
5 float **pr23_vec;
6 posix_memalign((void**)(&pr23_vec),64,nthreads*sizeof(float

*));
7 float *r16_vec;
8 posix_memalign((void**)(&r16_vec),64,(x_size + 1)*(y_size +

1)*(z_size + 1)*sizeof(float));
9 float *r17_vec;

10 posix_memalign((void**)(&r17_vec),64,(x_size + 1)*(y_size +
1)*(z_size + 1)*sizeof(float));

11 float *r18_vec;
12 posix_memalign((void**)(&r18_vec),64,(x_size + 1)*(y_size +

1)*(z_size + 1)*sizeof(float));
13 float *r19_vec;
14 posix_memalign((void**)(&r19_vec),64,(x_size + 1)*(y_size +

1)*(z_size + 1)*sizeof(float));
15 #pragma omp parallel num_threads(nthreads)
16 {
17 const int tid = omp_get_thread_num();
18 posix_memalign((void**)(&(pr22_vec[tid])),64,(x0_blk0_size

+ 1)*(y0_blk0_size + 1)*(z_size + 1)*sizeof(float));
19 posix_memalign((void**)(&(pr23_vec[tid])),64,(x0_blk0_size

+ 1)*(y0_blk0_size + 1)*(z_size + 1)*sizeof(float));
20 }
21
22 float (*restrict damp)[damp_vec->size[1]][damp_vec->size[2]]

__attribute__ ((aligned (64))) = (float (*)[damp_vec->
size[1]][damp_vec->size[2]]) damp_vec->data;
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23 float (*restrict delta)[delta_vec->size[1]][delta_vec->size
[2]] __attribute__ ((aligned (64))) = (float (*)[
delta_vec->size[1]][delta_vec->size[2]]) delta_vec->data
;

24 float (*restrict epsilon)[epsilon_vec->size[1]][epsilon_vec
->size[2]] __attribute__ ((aligned (64))) = (float (*)[
epsilon_vec->size[1]][epsilon_vec->size[2]]) epsilon_vec
->data;

25 float (*restrict phi)[phi_vec->size[1]][phi_vec->size[2]]
__attribute__ ((aligned (64))) = (float (*)[phi_vec->
size[1]][phi_vec->size[2]]) phi_vec->data;

26 float **pr22 = (float**) pr22_vec;
27 float **pr23 = (float**) pr23_vec;
28 float (*restrict r16)[y_size + 1][z_size + 1] __attribute__

((aligned (64))) = (float (*)[y_size + 1][z_size + 1])
r16_vec;

29 float (*restrict r17)[y_size + 1][z_size + 1] __attribute__
((aligned (64))) = (float (*)[y_size + 1][z_size + 1])
r17_vec;

30 float (*restrict r18)[y_size + 1][z_size + 1] __attribute__
((aligned (64))) = (float (*)[y_size + 1][z_size + 1])
r18_vec;

31 float (*restrict r19)[y_size + 1][z_size + 1] __attribute__
((aligned (64))) = (float (*)[y_size + 1][z_size + 1])
r19_vec;

32 float (*restrict rec)[rec_vec->size[1]] __attribute__ ((
aligned (64))) = (float (*)[rec_vec->size[1]]) rec_vec->
data;

33 float (*restrict rec_coords)[rec_coords_vec->size[1]]
__attribute__ ((aligned (64))) = (float (*)[
rec_coords_vec->size[1]]) rec_coords_vec->data;

34 float (*restrict src)[src_vec->size[1]] __attribute__ ((
aligned (64))) = (float (*)[src_vec->size[1]]) src_vec->
data;

35 float (*restrict src_coords)[src_coords_vec->size[1]]
__attribute__ ((aligned (64))) = (float (*)[
src_coords_vec->size[1]]) src_coords_vec->data;

36 float (*restrict theta)[theta_vec->size[1]][theta_vec->size
[2]] __attribute__ ((aligned (64))) = (float (*)[
theta_vec->size[1]][theta_vec->size[2]]) theta_vec->data
;

37 float (*restrict u)[u_vec->size[1]][u_vec->size[2]][u_vec->
size[3]] __attribute__ ((aligned (64))) = (float (*)[
u_vec->size[1]][u_vec->size[2]][u_vec->size[3]]) u_vec->
data;

38 float (*restrict v)[v_vec->size[1]][v_vec->size[2]][v_vec->
size[3]] __attribute__ ((aligned (64))) = (float (*)[
v_vec->size[1]][v_vec->size[2]][v_vec->size[3]]) v_vec->
data;

39 float (*restrict vp)[vp_vec->size[1]][vp_vec->size[2]]
__attribute__ ((aligned (64))) = (float (*)[vp_vec->size
[1]][vp_vec->size[2]]) vp_vec->data;

40
41 /* Flush denormal numbers to zero in hardware */
42 _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
43 _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
44
45 float r20 = 1.0F/(dt*dt);
46 float r21 = 1.0F/dt;
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47
48 /* Begin section0 */
49 START_TIMER(section0)
50 #pragma omp parallel num_threads(nthreads)
51 {
52 #pragma omp for collapse(2) schedule(static,1)
53 for (int x = x_m - 1; x <= x_M; x += 1)
54 {
55 for (int y = y_m - 1; y <= y_M; y += 1)
56 {
57 #pragma omp simd aligned(delta,phi,theta:32)
58 for (int z = z_m - 1; z <= z_M; z += 1)
59 {
60 r16[x + 1][y + 1][z + 1] = sqrt(2*delta[x + 4][y +

4][z + 4] + 1);
61 r17[x + 1][y + 1][z + 1] = cos(theta[x + 4][y + 4][z

+ 4]);
62 float r24 = sin(theta[x + 4][y + 4][z + 4]);
63 r18[x + 1][y + 1][z + 1] = r24*sin(phi[x + 4][y +

4][z + 4]);
64 r19[x + 1][y + 1][z + 1] = r24*cos(phi[x + 4][y +

4][z + 4]);
65 }
66 }
67 }
68 }
69 STOP_TIMER(section0,timers)
70 /* End section0 */
71
72 for (int time = time_m, t0 = (time)%(3), t1 = (time + 2)%(3)

, t2 = (time + 1)%(3); time <= time_M; time += 1, t0 = (
time)%(3), t1 = (time + 2)%(3), t2 = (time + 1)%(3))

73 {
74 /* Begin section1 */
75 START_TIMER(section1)
76 #pragma omp parallel num_threads(nthreads)
77 {
78 const int tid = omp_get_thread_num();
79 float (*restrict r22)[y0_blk0_size + 1][z_size + 1]

__attribute__ ((aligned (64))) = (float (*)[
y0_blk0_size + 1][z_size + 1]) pr22[tid];

80 float (*restrict r23)[y0_blk0_size + 1][z_size + 1]
__attribute__ ((aligned (64))) = (float (*)[
y0_blk0_size + 1][z_size + 1]) pr23[tid];

81
82 #pragma omp for collapse(2) schedule(dynamic,1)
83 for (int x0_blk0 = x_m; x0_blk0 <= x_M; x0_blk0 +=

x0_blk0_size)
84 {
85 for (int y0_blk0 = y_m; y0_blk0 <= y_M; y0_blk0 +=

y0_blk0_size)
86 {
87 for (int x = x0_blk0 - 1, xs = 0; x <= MIN(x0_blk0 +

x0_blk0_size - 1, x_M); x += 1, xs += 1)
88 {
89 for (int y = y0_blk0 - 1, ys = 0; y <= MIN(y0_blk0

+ y0_blk0_size - 1, y_M); y += 1, ys += 1)
90 {
91 #pragma omp simd aligned(u,v:32)
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92 for (int z = z_m - 1; z <= z_M; z += 1)
93 {
94 r22[xs][ys][z + 1] = 5.0e-2F*(-(-u[t0][x + 4][

y + 4][z + 4] + u[t0][x + 4][y + 4][z +
5])*r17[x + 1][y + 1][z + 1] - (-u[t0][x +
4][y + 4][z + 4] + u[t0][x + 4][y + 5][z

+ 4])*r18[x + 1][y + 1][z + 1] - (-u[t0][x
+ 4][y + 4][z + 4] + u[t0][x + 5][y + 4][

z + 4])*r19[x + 1][y + 1][z + 1]);
95 r23[xs][ys][z + 1] = 5.0e-2F*(-(-v[t0][x + 4][

y + 4][z + 4] + v[t0][x + 4][y + 4][z +
5])*r17[x + 1][y + 1][z + 1] - (-v[t0][x +
4][y + 4][z + 4] + v[t0][x + 4][y + 5][z

+ 4])*r18[x + 1][y + 1][z + 1] - (-v[t0][x
+ 4][y + 4][z + 4] + v[t0][x + 5][y + 4][

z + 4])*r19[x + 1][y + 1][z + 1]);
96 }
97 }
98 }
99 for (int x = x0_blk0, xs = 0; x <= MIN(x0_blk0 +

x0_blk0_size - 1, x_M); x += 1, xs += 1)
100 {
101 for (int y = y0_blk0, ys = 0; y <= MIN(y0_blk0 +

y0_blk0_size - 1, y_M); y += 1, ys += 1)
102 {
103 #pragma omp simd aligned(damp,epsilon,u,v,vp:32)
104 for (int z = z_m; z <= z_M; z += 1)
105 {
106 float r25 = 5.0e-2F*(-r17[x + 1][y + 1][z]*r22

[xs + 1][ys + 1][z] + r17[x + 1][y + 1][z
+ 1]*r22[xs + 1][ys + 1][z + 1] - r18[x +
1][y][z + 1]*r22[xs + 1][ys][z + 1] + r18[
x + 1][y + 1][z + 1]*r22[xs + 1][ys + 1][z
+ 1] - r19[x][y + 1][z + 1]*r22[xs][ys +

1][z + 1] + r19[x + 1][y + 1][z + 1]*r22[
xs + 1][ys + 1][z + 1]) + 2.08333329e-4F
*(-u[t0][x + 2][y + 4][z + 4] - u[t0][x +
4][y + 2][z + 4] - u[t0][x + 4][y + 4][z +
2] - u[t0][x + 4][y + 4][z + 6] - u[t0][x
+ 4][y + 6][z + 4] - u[t0][x + 6][y + 4][

z + 4]) + 3.33333326e-3F*(u[t0][x + 3][y +
4][z + 4] + u[t0][x + 4][y + 3][z + 4] +

u[t0][x + 4][y + 4][z + 3] + u[t0][x + 4][
y + 4][z + 5] + u[t0][x + 4][y + 5][z + 4]
+ u[t0][x + 5][y + 4][z + 4]) -

1.87499996e-2F*u[t0][x + 4][y + 4][z + 4];
107 float r28 = 1.0F/(vp[x + 4][y + 4][z + 4]*vp[x

+ 4][y + 4][z + 4]);
108 float r26 = 1.0F/(r20*r28 + r21*damp[x + 1][y

+ 1][z + 1]);
109 float r27 = r17[x + 1][y + 1][z]*r23[xs + 1][

ys + 1][z] - r17[x + 1][y + 1][z + 1]*r23[
xs + 1][ys + 1][z + 1] + r18[x + 1][y][z +
1]*r23[xs + 1][ys][z + 1] - r18[x + 1][y

+ 1][z + 1]*r23[xs + 1][ys + 1][z + 1] +
r19[x][y + 1][z + 1]*r23[xs][ys + 1][z +
1] - r19[x + 1][y + 1][z + 1]*r23[xs + 1][
ys + 1][z + 1];

110 u[t2][x + 4][y + 4][z + 4] = r26*(r21*damp[x +

194



1][y + 1][z + 1]*u[t0][x + 4][y + 4][z +
4] + r25*(2*epsilon[x + 4][y + 4][z + 4] +
1) + 5.0e-2F*r27*r16[x + 1][y + 1][z + 1]
+ r28*(-r20*(-2.0F*u[t0][x + 4][y + 4][z

+ 4]) - r20*u[t1][x + 4][y + 4][z + 4]));
111 v[t2][x + 4][y + 4][z + 4] = r26*(r21*damp[x +

1][y + 1][z + 1]*v[t0][x + 4][y + 4][z +
4] + r25*r16[x + 1][y + 1][z + 1] + 5.0e-2
F*r27 + r28*(-r20*(-2.0F*v[t0][x + 4][y +
4][z + 4]) - r20*v[t1][x + 4][y + 4][z +
4]));

112 }
113 }
114 }
115 }
116 }
117 }
118 STOP_TIMER(section1,timers)
119 /* End section1 */

A.2.2. Devito generated code for elastic wave propagators

The following code shows the optimized generated C-code for the Elas-
tic wave propagation stencil-only part. Sources injection and receiver
interpolation are ommited from the listing.

Listing A.2: An optimised version of Devito generated code for an Elastic forward wave
propagators stencil.

1
2 int ForwardElastic(struct dataobj *restrict b_vec, struct

dataobj *restrict damp_vec, struct dataobj *restrict
lam_vec, struct dataobj *restrict mu_vec, struct dataobj *
restrict rec1_vec, struct dataobj *restrict
rec1_coords_vec, struct dataobj *restrict rec2_vec, struct
dataobj *restrict rec2_coords_vec, struct dataobj *

restrict src_vec, struct dataobj *restrict src_coords_vec,
struct dataobj *restrict tau_xx_vec, struct dataobj *

restrict tau_xy_vec, struct dataobj *restrict tau_xz_vec,
struct dataobj *restrict tau_yy_vec, struct dataobj *
restrict tau_yz_vec, struct dataobj *restrict tau_zz_vec,
struct dataobj *restrict v_x_vec, struct dataobj *restrict
v_y_vec, struct dataobj *restrict v_z_vec, const int x_M,
const int x_m, const int y_M, const int y_m, const int

z_M, const int z_m, const float dt, const float o_x, const
float o_y, const float o_z, const int p_rec1_M, const int
p_rec1_m, const int p_rec2_M, const int p_rec2_m, const
int p_src_M, const int p_src_m, const int time_M, const
int time_m, const int x0_blk0_size, const int x1_blk0_size
, const int y0_blk0_size, const int y1_blk0_size, const
int nthreads, const int nthreads_nonaffine, struct
profiler * timers)

3 {
4 float (*restrict b)[b_vec->size[1]][b_vec->size[2]]
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__attribute__ ((aligned (64))) = (float (*)[b_vec->size
[1]][b_vec->size[2]]) b_vec->data;

5 float (*restrict damp)[damp_vec->size[1]][damp_vec->size[2]]
__attribute__ ((aligned (64))) = (float (*)[damp_vec->

size[1]][damp_vec->size[2]]) damp_vec->data;
6 float (*restrict lam)[lam_vec->size[1]][lam_vec->size[2]]

__attribute__ ((aligned (64))) = (float (*)[lam_vec->
size[1]][lam_vec->size[2]]) lam_vec->data;

7 float (*restrict mu)[mu_vec->size[1]][mu_vec->size[2]]
__attribute__ ((aligned (64))) = (float (*)[mu_vec->size
[1]][mu_vec->size[2]]) mu_vec->data;

8 float (*restrict rec1)[rec1_vec->size[1]] __attribute__ ((
aligned (64))) = (float (*)[rec1_vec->size[1]]) rec1_vec
->data;

9 float (*restrict rec1_coords)[rec1_coords_vec->size[1]]
__attribute__ ((aligned (64))) = (float (*)[
rec1_coords_vec->size[1]]) rec1_coords_vec->data;

10 float (*restrict rec2)[rec2_vec->size[1]] __attribute__ ((
aligned (64))) = (float (*)[rec2_vec->size[1]]) rec2_vec
->data;

11 float (*restrict rec2_coords)[rec2_coords_vec->size[1]]
__attribute__ ((aligned (64))) = (float (*)[
rec2_coords_vec->size[1]]) rec2_coords_vec->data;

12 float (*restrict src)[src_vec->size[1]] __attribute__ ((
aligned (64))) = (float (*)[src_vec->size[1]]) src_vec->
data;

13 float (*restrict src_coords)[src_coords_vec->size[1]]
__attribute__ ((aligned (64))) = (float (*)[
src_coords_vec->size[1]]) src_coords_vec->data;

14 float (*restrict tau_xx)[tau_xx_vec->size[1]][tau_xx_vec->
size[2]][tau_xx_vec->size[3]] __attribute__ ((aligned
(64))) = (float (*)[tau_xx_vec->size[1]][tau_xx_vec->
size[2]][tau_xx_vec->size[3]]) tau_xx_vec->data;

15 float (*restrict tau_xy)[tau_xy_vec->size[1]][tau_xy_vec->
size[2]][tau_xy_vec->size[3]] __attribute__ ((aligned
(64))) = (float (*)[tau_xy_vec->size[1]][tau_xy_vec->
size[2]][tau_xy_vec->size[3]]) tau_xy_vec->data;

16 float (*restrict tau_xz)[tau_xz_vec->size[1]][tau_xz_vec->
size[2]][tau_xz_vec->size[3]] __attribute__ ((aligned
(64))) = (float (*)[tau_xz_vec->size[1]][tau_xz_vec->
size[2]][tau_xz_vec->size[3]]) tau_xz_vec->data;

17 float (*restrict tau_yy)[tau_yy_vec->size[1]][tau_yy_vec->
size[2]][tau_yy_vec->size[3]] __attribute__ ((aligned
(64))) = (float (*)[tau_yy_vec->size[1]][tau_yy_vec->
size[2]][tau_yy_vec->size[3]]) tau_yy_vec->data;

18 float (*restrict tau_yz)[tau_yz_vec->size[1]][tau_yz_vec->
size[2]][tau_yz_vec->size[3]] __attribute__ ((aligned
(64))) = (float (*)[tau_yz_vec->size[1]][tau_yz_vec->
size[2]][tau_yz_vec->size[3]]) tau_yz_vec->data;

19 float (*restrict tau_zz)[tau_zz_vec->size[1]][tau_zz_vec->
size[2]][tau_zz_vec->size[3]] __attribute__ ((aligned
(64))) = (float (*)[tau_zz_vec->size[1]][tau_zz_vec->
size[2]][tau_zz_vec->size[3]]) tau_zz_vec->data;

20 float (*restrict v_x)[v_x_vec->size[1]][v_x_vec->size[2]][
v_x_vec->size[3]] __attribute__ ((aligned (64))) = (
float (*)[v_x_vec->size[1]][v_x_vec->size[2]][v_x_vec->
size[3]]) v_x_vec->data;

21 float (*restrict v_y)[v_y_vec->size[1]][v_y_vec->size[2]][
v_y_vec->size[3]] __attribute__ ((aligned (64))) = (
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float (*)[v_y_vec->size[1]][v_y_vec->size[2]][v_y_vec->
size[3]]) v_y_vec->data;

22 float (*restrict v_z)[v_z_vec->size[1]][v_z_vec->size[2]][
v_z_vec->size[3]] __attribute__ ((aligned (64))) = (
float (*)[v_z_vec->size[1]][v_z_vec->size[2]][v_z_vec->
size[3]]) v_z_vec->data;

23
24 /* Flush denormal numbers to zero in hardware */
25 _MM_SET_DENORMALS_ZERO_MODE(_MM_DENORMALS_ZERO_ON);
26 _MM_SET_FLUSH_ZERO_MODE(_MM_FLUSH_ZERO_ON);
27
28 float r24 = 1.0F/dt;
29
30 for (int time = time_m, t0 = (time)%(2), t1 = (time + 1)%(2)

; time <= time_M; time += 1, t0 = (time)%(2), t1 = (time
+ 1)%(2))

31 {
32 /* Begin section0 */
33 START_TIMER(section0)
34 #pragma omp parallel num_threads(nthreads)
35 {
36 #pragma omp for collapse(2) schedule(dynamic,1)
37 for (int x0_blk0 = x_m; x0_blk0 <= x_M; x0_blk0 +=

x0_blk0_size)
38 {
39 for (int y0_blk0 = y_m; y0_blk0 <= y_M; y0_blk0 +=

y0_blk0_size)
40 {
41 for (int x = x0_blk0; x <= MIN(x0_blk0 +

x0_blk0_size - 1, x_M); x += 1)
42 {
43 for (int y = y0_blk0; y <= MIN(y0_blk0 +

y0_blk0_size - 1, y_M); y += 1)
44 {
45 #pragma omp simd aligned(b,damp,tau_xx,tau_xy,

tau_xz,tau_yy,tau_yz,tau_zz,v_x,v_y,v_z:32)
46 for (int z = z_m; z <= z_M; z += 1)
47 {
48 v_x[t1][x + 4][y + 4][z + 4] = dt*(r24*v_x[t0

][x + 4][y + 4][z + 4] + 5.0e-1F
*(4.16666673e-3F*(tau_xx[t0][x + 3][y +
4][z + 4] - tau_xx[t0][x + 6][y + 4][z +
4] + tau_xy[t0][x + 4][y + 2][z + 4] -
tau_xy[t0][x + 4][y + 5][z + 4] + tau_xz[
t0][x + 4][y + 4][z + 2] - tau_xz[t0][x +
4][y + 4][z + 5]) + 1.12500002e-1F*(-
tau_xx[t0][x + 4][y + 4][z + 4] + tau_xx[
t0][x + 5][y + 4][z + 4] - tau_xy[t0][x +
4][y + 3][z + 4] + tau_xy[t0][x + 4][y +
4][z + 4] - tau_xz[t0][x + 4][y + 4][z +
3] + tau_xz[t0][x + 4][y + 4][z + 4]))*(b[
x + 4][y + 4][z + 4] + b[x + 5][y + 4][z +
4]))*damp[x + 1][y + 1][z + 1];

49 v_y[t1][x + 4][y + 4][z + 4] = dt*(r24*v_y[t0
][x + 4][y + 4][z + 4] + 5.0e-1F
*(4.16666673e-3F*(tau_xy[t0][x + 2][y +
4][z + 4] - tau_xy[t0][x + 5][y + 4][z +
4] + tau_yy[t0][x + 4][y + 3][z + 4] -
tau_yy[t0][x + 4][y + 6][z + 4] + tau_yz[
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t0][x + 4][y + 4][z + 2] - tau_yz[t0][x +
4][y + 4][z + 5]) + 1.12500002e-1F*(-
tau_xy[t0][x + 3][y + 4][z + 4] + tau_xy[
t0][x + 4][y + 4][z + 4] - tau_yy[t0][x +
4][y + 4][z + 4] + tau_yy[t0][x + 4][y +
5][z + 4] - tau_yz[t0][x + 4][y + 4][z +
3] + tau_yz[t0][x + 4][y + 4][z + 4]))*(b[
x + 4][y + 4][z + 4] + b[x + 4][y + 5][z +
4]))*damp[x + 1][y + 1][z + 1];

50 v_z[t1][x + 4][y + 4][z + 4] = dt*(r24*v_z[t0
][x + 4][y + 4][z + 4] + 5.0e-1F
*(4.16666673e-3F*(tau_xz[t0][x + 2][y +
4][z + 4] - tau_xz[t0][x + 5][y + 4][z +
4] + tau_yz[t0][x + 4][y + 2][z + 4] -
tau_yz[t0][x + 4][y + 5][z + 4] + tau_zz[
t0][x + 4][y + 4][z + 3] - tau_zz[t0][x +
4][y + 4][z + 6]) + 1.12500002e-1F*(-
tau_xz[t0][x + 3][y + 4][z + 4] + tau_xz[
t0][x + 4][y + 4][z + 4] - tau_yz[t0][x +
4][y + 3][z + 4] + tau_yz[t0][x + 4][y +
4][z + 4] - tau_zz[t0][x + 4][y + 4][z +
4] + tau_zz[t0][x + 4][y + 4][z + 5]))*(b[
x + 4][y + 4][z + 4] + b[x + 4][y + 4][z +
5]))*damp[x + 1][y + 1][z + 1];

51 }
52 }
53 }
54 }
55 }
56 }
57 #pragma omp parallel num_threads(nthreads)
58 {
59 #pragma omp for collapse(2) schedule(dynamic,1)
60 for (int x1_blk0 = x_m; x1_blk0 <= x_M; x1_blk0 +=

x1_blk0_size)
61 {
62 for (int y1_blk0 = y_m; y1_blk0 <= y_M; y1_blk0 +=

y1_blk0_size)
63 {
64 for (int x = x1_blk0; x <= MIN(x1_blk0 +

x1_blk0_size - 1, x_M); x += 1)
65 {
66 for (int y = y1_blk0; y <= MIN(y1_blk0 +

y1_blk0_size - 1, y_M); y += 1)
67 {
68 #pragma omp simd aligned(damp,lam,mu,tau_xx,

tau_xy,tau_xz,tau_yy,tau_yz,tau_zz,v_x,v_y,
v_z:32)

69 for (int z = z_m; z <= z_M; z += 1)
70 {
71 float r25 = (4.16666673e-3F*(v_x[t1][x + 2][y

+ 4][z + 4] - v_x[t1][x + 5][y + 4][z + 4]
+ v_y[t1][x + 4][y + 2][z + 4] - v_y[t1][

x + 4][y + 5][z + 4] + v_z[t1][x + 4][y +
4][z + 2] - v_z[t1][x + 4][y + 4][z + 5])
+ 1.12500002e-1F*(-v_x[t1][x + 3][y + 4][z
+ 4] + v_x[t1][x + 4][y + 4][z + 4] - v_y

[t1][x + 4][y + 3][z + 4] + v_y[t1][x +
4][y + 4][z + 4] - v_z[t1][x + 4][y + 4][z
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+ 3] + v_z[t1][x + 4][y + 4][z + 4]))*lam
[x + 4][y + 4][z + 4];

72 tau_xx[t1][x + 4][y + 4][z + 4] = dt*(r24*
tau_xx[t0][x + 4][y + 4][z + 4] + r25 +
2*(4.16666673e-3F*(v_x[t1][x + 2][y + 4][z
+ 4] - v_x[t1][x + 5][y + 4][z + 4]) +

1.12500002e-1F*(-v_x[t1][x + 3][y + 4][z +
4] + v_x[t1][x + 4][y + 4][z + 4]))*mu[x

+ 4][y + 4][z + 4])*damp[x + 1][y + 1][z +
1];

73 tau_xy[t1][x + 4][y + 4][z + 4] = dt*(r24*
tau_xy[t0][x + 4][y + 4][z + 4] + 2.5e-1F
*(4.16666673e-3F*(v_x[t1][x + 4][y + 3][z
+ 4] - v_x[t1][x + 4][y + 6][z + 4] + v_y[
t1][x + 3][y + 4][z + 4] - v_y[t1][x + 6][
y + 4][z + 4]) + 1.12500002e-1F*(-v_x[t1][
x + 4][y + 4][z + 4] + v_x[t1][x + 4][y +
5][z + 4] - v_y[t1][x + 4][y + 4][z + 4] +
v_y[t1][x + 5][y + 4][z + 4]))*(mu[x +

4][y + 4][z + 4] + mu[x + 4][y + 5][z + 4]
+ mu[x + 5][y + 4][z + 4] + mu[x + 5][y +
5][z + 4]))*damp[x + 1][y + 1][z + 1];

74 tau_xz[t1][x + 4][y + 4][z + 4] = dt*(r24*
tau_xz[t0][x + 4][y + 4][z + 4] + 2.5e-1F
*(4.16666673e-3F*(v_x[t1][x + 4][y + 4][z
+ 3] - v_x[t1][x + 4][y + 4][z + 6] + v_z[
t1][x + 3][y + 4][z + 4] - v_z[t1][x + 6][
y + 4][z + 4]) + 1.12500002e-1F*(-v_x[t1][
x + 4][y + 4][z + 4] + v_x[t1][x + 4][y +
4][z + 5] - v_z[t1][x + 4][y + 4][z + 4] +
v_z[t1][x + 5][y + 4][z + 4]))*(mu[x +

4][y + 4][z + 4] + mu[x + 4][y + 4][z + 5]
+ mu[x + 5][y + 4][z + 4] + mu[x + 5][y +
4][z + 5]))*damp[x + 1][y + 1][z + 1];

75 tau_yy[t1][x + 4][y + 4][z + 4] = dt*(r24*
tau_yy[t0][x + 4][y + 4][z + 4] + r25 +
2*(4.16666673e-3F*(v_y[t1][x + 4][y + 2][z
+ 4] - v_y[t1][x + 4][y + 5][z + 4]) +

1.12500002e-1F*(-v_y[t1][x + 4][y + 3][z +
4] + v_y[t1][x + 4][y + 4][z + 4]))*mu[x

+ 4][y + 4][z + 4])*damp[x + 1][y + 1][z +
1];

76 tau_yz[t1][x + 4][y + 4][z + 4] = dt*(r24*
tau_yz[t0][x + 4][y + 4][z + 4] + 2.5e-1F
*(4.16666673e-3F*(v_y[t1][x + 4][y + 4][z
+ 3] - v_y[t1][x + 4][y + 4][z + 6] + v_z[
t1][x + 4][y + 3][z + 4] - v_z[t1][x + 4][
y + 6][z + 4]) + 1.12500002e-1F*(-v_y[t1][
x + 4][y + 4][z + 4] + v_y[t1][x + 4][y +
4][z + 5] - v_z[t1][x + 4][y + 4][z + 4] +
v_z[t1][x + 4][y + 5][z + 4]))*(mu[x +

4][y + 4][z + 4] + mu[x + 4][y + 4][z + 5]
+ mu[x + 4][y + 5][z + 4] + mu[x + 4][y +
5][z + 5]))*damp[x + 1][y + 1][z + 1];

77 tau_zz[t1][x + 4][y + 4][z + 4] = dt*(r24*
tau_zz[t0][x + 4][y + 4][z + 4] + r25 +
2*(4.16666673e-3F*(v_z[t1][x + 4][y + 4][z
+ 2] - v_z[t1][x + 4][y + 4][z + 5]) +

1.12500002e-1F*(-v_z[t1][x + 4][y + 4][z +
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3] + v_z[t1][x + 4][y + 4][z + 4]))*mu[x
+ 4][y + 4][z + 4])*damp[x + 1][y + 1][z +
1];

78 }
79 }
80 }
81 }
82 }
83 }
84 STOP_TIMER(section0,timers)
85 /* End section0 */
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