

Automatic scheduling of image processing pipelines

Citation for published version (APA):
Sioutas, S. (2020). Automatic scheduling of image processing pipelines. [Phd Thesis 1 (Research TU/e /
Graduation TU/e), Electrical Engineering]. Technische Universiteit Eindhoven.

Document status and date:
Published: 18/12/2020

Document Version:
Publisher’s PDF, also known as Version of Record (includes final page, issue and volume numbers)

Please check the document version of this publication:

• A submitted manuscript is the version of the article upon submission and before peer-review. There can be
important differences between the submitted version and the official published version of record. People
interested in the research are advised to contact the author for the final version of the publication, or visit the
DOI to the publisher's website.
• The final author version and the galley proof are versions of the publication after peer review.
• The final published version features the final layout of the paper including the volume, issue and page
numbers.
Link to publication

General rights
Copyright and moral rights for the publications made accessible in the public portal are retained by the authors and/or other copyright owners
and it is a condition of accessing publications that users recognise and abide by the legal requirements associated with these rights.

 • Users may download and print one copy of any publication from the public portal for the purpose of private study or research.
 • You may not further distribute the material or use it for any profit-making activity or commercial gain
 • You may freely distribute the URL identifying the publication in the public portal.

If the publication is distributed under the terms of Article 25fa of the Dutch Copyright Act, indicated by the “Taverne” license above, please
follow below link for the End User Agreement:
www.tue.nl/taverne

Take down policy
If you believe that this document breaches copyright please contact us at:
openaccess@tue.nl
providing details and we will investigate your claim.

Download date: 17. Nov. 2023

https://research.tue.nl/en/publications/ce0bab9b-ab24-413a-b9cf-c9ef36c50196

Automatic Scheduling of Image Processing Pipelines

proefschrift

ter verkrijging van de graad van doctor aan de Technische Universiteit
Eindhoven, op gezag van de rector magnificus prof.dr.ir. F.P.T. Baaijens,
voor een commissie aangewezen door het College voor Promoties in het

openbaar te verdedigen op vrijdag 18 december 2020 om 16.00 uur

door

Savvas Sioutas

geboren te Athene, Griekenland

Dit proefschrift is goedgekeurd door de promotor en de samenstelling van
de commissie is als volgt:

voorzitter: prof.dr.ing. A.J.M. Pemen
1e promotor: prof.dr. H. Corporaal
2e promotor: prof.dr.ir. T. Basten
copromotor: dr.ir. S. Stuijk
leden: prof.dr. K.G.W. Goossens

prof.dr.ir. H.E. Bal (Vrije Universiteit Amsterdam)
dr. A. Adams (Adobe Research)

adviseurs: dr. L.J.A.M. Somers

Het onderzoek dat in dit proefschrift wordt beschreven is uitgevoerd in overeenstem-
ming met de TU/e Gedragscode Wetenschapsbeoefening.

Automatic Scheduling of
Image Processing Pipelines

Savvas Sioutas

Doctorate committee:

prof.dr. H. Corporaal Eindhoven University of Technology, 1st promotor
prof.dr.ir. T. Basten Eindhoven University of Technology, 2nd promotor
dr.ir. S. Stuijk Eindhoven University of Technology, copromotor
prof.dr.ing. A.J.M. Pemen Eindhoven University of Technology, chairman
prof.dr. K.G.W. Goossens Eindhoven University of Technology
prof.dr.ir. H.E. Bal Vrije Universiteit Amsterdam
dr. A. Adams Adobe Research
dr. L.J.A.M. Somers Eindhoven University of Technology

This work was supported in part by Canon Production Printing Netherlands
B.V.

© Copyright 2020, Savvas Sioutas
All rights reserved. Reproduction in whole or in part is prohibited without the
written consent of the copyright owner.

A catalogue record is available from the Eindhoven University of Technology
Library
ISBN: 978-90-386-5189-7

Summary

Automatic Scheduling of Image Processing Pipelines

Image processing applications are a vital part of many high-tech systems.
Wide format printers, traffic surveillance cameras, as well as autonomous
cars are examples of systems that execute complex image-processing al-
gorithms that usually need to be highly optimized in an effort to meet
real-time constraints. Due to the inherently intricate nature of these
applications, as well as the ever increasing complexity of modern hardware
architectures, code generation in the image processing domain remains a
challenging task.

Even though modern state-of-the-art compilers attempt to automati-
cally apply basic optimization techniques on the generated code, software
developers with low-level knowledge and deep understanding of the un-
derlying hardware are often still needed to ensure that the final imple-
mentation of the algorithm can achieve the required performance. Being
a manual effort, this optimization process has to be repeated each time a
new algorithm is developed or a new hardware platform is used.

This thesis tackles the aforementioned challenge by developing meth-
ods that enable automatic generation of efficient code in the image process-
ing domain. First, an analytical model is proposed for the optimization of
memory-bound kernels targeting multi-core CPU architectures [81]. The
model leverages hardware prefetching behavior in order to exploit self-
spatial and temporal reuse. Results show 40% higher performance on
average compared to prior related work.

Second, an optimization algorithm that aims to maximize producer-
consumer locality and reuse in multi-stage pipelines targeting multi-core
CPU architectures is proposed through a set of heuristics and analytical
modeling [82]. Experimental results show an average 40% performance
improvement over previous automatic scheduling attempts, while being
competitive to manually-tuned solutions.

Third, an auto-scheduling framework for GPGPU architectures that
captures key platform specific parameters is introduced [79]. The auto-
scheduler aims to maximize the amount of parallelism exploited in the im-
plementation while minimizing the number of external memory accesses.

Throughout an extensive set of benchmarks and platforms the proposed
framework is the first one to achieve performance competitive to manual
expert-tuned solutions while limiting design time to the order of seconds.

Finally, a series of custom lowering compiler passes are designed that
enable automatic, efficient code generation for the NVIDIA Tensor Core
architecture through an abstract high-level description in the Halide do-
main - specific language [80]. Achieved performance is within 20% of the
NVIDIA cuBLAS library kernels thus increasing the programmability of
the NVIDIA Tensor Core units without severely limiting performance.

The optimization methods proposed in this thesis enable compilers
to automatically generate high-performance code for applications in the
image processing domain, without the need of manual optimizations or
extensive auto-tuning. All of the above contributions have been im-
plemented as tools or compiler passes to be used alongside the Halide
domain specific language and compiler and are also available as open
source software.

Contents

1 Introduction 1
1.1 Image processing applications 1
1.2 Architectures and platforms 2
1.3 Platform-aware compilation 4
1.4 Optimization challenges . 7
1.5 Thesis contributions . 10
1.6 Thesis overview . 11

2 Image processing pipelines 13
2.1 Algorithms . 13
2.2 Optimization strategies . 15
2.3 Optimization space . 21
2.4 Summary . 22

3 The Halide language and compiler 23
3.1 Functional representation 23
3.2 Scheduling . 24
3.3 Compilation flow and code generation 27
3.4 Summary . 28

4 Scheduling memory-bound kernels in multi-core CPU plat-
forms 29
4.1 Introduction . 29
4.2 Related work . 31
4.3 Proposed method . 32
4.4 Experimental framework 43
4.5 Experimental results . 45
4.6 Summary . 52

5 Reuse analysis for multi-stage pipelines 53
5.1 Introduction . 53
5.2 Related work . 55
5.3 Motivational example and problem formulation 59
5.4 Proposed method . 66

iii

iv CONTENTS

5.5 Experimental results . 76
5.6 Summary . 83

6 Efficient scheduling for GPGPUs 85
6.1 Introduction . 85
6.2 Related work . 87
6.3 Problem statement . 90
6.4 GPU autoscheduler . 99
6.5 Evaluation and experimental results 107
6.6 Summary . 116

7 Programming Tensor Cores from an image processing DSL
117

7.1 Introduction . 117
7.2 Background information . 119
7.3 Related work . 122
7.4 Tensor Cores in Halide . 123
7.5 Evaluation . 126
7.6 Summary . 129

8 Conclusions and Future Work 131

Bibliography 135

Publications 147

A Tools 149
A.1 Reuse Scheduler . 149
A.2 GPU Scheduler . 151
A.3 Tensor Core code generator 154

Acknowledgments 157

Curriculum Vitae 159

1
Introduction

1.1 Image processing applications
Digital signal and image processing applications can nowadays be found
everywhere around us: from filtering and image enhancement techniques
implemented by our smartphone cameras to autonomous driving technol-
ogy and face detection or pattern recognition algorithms used by online
social media and search engines. This is largely a result of the rapid
advances in sensor technology which allows for an ever-growing, massive
amount of data to be constantly available. The imaging and computer
vision domains allow us to process and analyze that data and extract
useful information. As a result, image processing is no longer strictly tied
to computational photography but is widely used in many other domains
of the digital world.

Throughout this thesis, we will be using the term “image processing
pipelines” to describe all relevant applications in the image processing
and computer vision domains. These “pipelines” refer to large graphs of
feed-forward pixel computations such as stencil operations, reductions or
computations with data-dependent access patterns over input images (or
arrays of pixels). A single pipeline can often contain dozens of stages with
various combinations of the above operations. As hardware capabilities
and sensors continue to evolve, the opportunities for more sophisticated
algorithms and applications increase. At the same time, as the complexity
of these applications increases, so does the need for high-performance and

1

2 CHAPTER 1. INTRODUCTION

efficient code generation.
Artificial intelligence and machine learning is for example a domain

that has rapidly evolved over the past decade due to the enormous amount
of data that is nowadays constantly available. Deep learning neural net-
work applications have proven to be capable of tackling many difficult
problems in the computer vision domain. Image classification and local-
ization, object detection and segmentation as well as super resolution and
reconstruction of images are only some of the applications that neural
networks excel at, while traditional imaging techniques struggle with or
are completely incapable of solving those problems within the constraints
of modern hardware specifications. However, these solutions often come at
the cost of orders of magnitude higher computational needs and hardware
resources than the equivalent classical methods. Deployment of such
applications thus becomes a challenging problem especially in the context
of embedded computing, where energy efficiency and performance are
intertwined and data transmission towards offline processing is not always
ideal, as it can be even more costly in terms of energy consumption.

1.2 Architectures and platforms
The specifications of the overall application often dictate the characteris-
tics and nature of the deployment platform. Deep learning networks used
for image super resolution and classification require an enormous amount
of compute power and are therefore usually executed on highly-parallel
GPU clusters. On the other hand, object recognition networks used in
self-driving cars and image enhancement filters found on the entirety of
modern smartphones require both high performance as well as low power
either to ensure that the application fits specific real-time constraints, or
to allow for prolonged battery usage, while in may cases the need for both
performance and energy efficiency is also present.

As modern hardware architectures become more and more complex,
deployment of applications becomes a critical and challenging task. State-
of-the-art CPU architectures often contain multiple SIMD units in each
of their respective processing elements, along with a highly sophisticated
memory hierarchy system with various prefetching mechanisms. On the
other hand, graphic processing units (GPUs) offer an enormous amount of
parallelism that can be exploited in order to dramatically improve perfor-
mance in applications where data-level parallelism is abundant. Highly-
specialized architectures that aim to further speed up the main compu-
tation part of an application are also becoming more and more common.
The NVIDIA Tensor Core units (TCUs) [58] and Google TPU [33] are
such examples that offer specific instructions targeting generalized matrix
multiplication kernels, which are the main workload of most deep learning

1.2. ARCHITECTURES AND PLATFORMS 3

applications. These units can offer performance orders of magnitude
higher than traditional CPU and GPU architectures (Figure 1.1).

0.0

0.3

0.7

1.0

1.3
×102

1.152
15.7

125

CPU GPU TCU

TF
LO

PS

Figure 1.1: TFLOPS - theoretical peak performance comparison
between CPU, GPU and TCU architectures: Intel i9-9900K, NVIDIA
Tesla V100 (with / without TCU)

Current state-of-the-art hardware platforms usually contain both a
CPU architecture which can act as a host, as well as a GPU (often
with embedded Tensor Core units in case of NVIDIA), FPGA or ASIC
architecture that can act as an accelerator. Developers thus need to decide
on where and how to deploy their application on such a heterogeneous
platform in order to properly utilize all of its resources. Answering this
question is not as simple as choosing the hardware that can offer the
highest peak performance, but instead requires extensive evaluation of
the application’s and the platform’s specifications. For example, while a
GPU can usually achieve performance orders of magnitude higher than a
CPU in applications with high levels of data parallelism, it also has much
higher power consumption. For mobile embedded applications such as
health monitoring devices, prolonged high power usage can significantly
limit the battery’s lifetime, while it can also cause disastrous effects even
on high-performance GPU clusters when specific thermal limits are being
exceeded for a long period of time.

In order to maintain a balance and achieve both high performance,
as well as energy efficiency, developers need to ensure that all (and only)
necessary hardware resources are used in an efficient way. In a GPU
architecture, that corresponds to all processing units being busy during
execution while maintaining proper usage of the system’s memory hier-
archy. At the same time, fully exploiting the highly parallel nature of
the platform can minimize the time during which the system operates at

4 CHAPTER 1. INTRODUCTION

full power. A similar argument can be made for CPUs as well as any
other kind of hardware architecture. As a result, the need for efficient
code generation and optimization is obvious and perhaps even more im-
portant when targeting embedded devices that feature a large number of
constraints.

1.3 Platform-aware compilation
The initial design of an image processing algorithm is typically performed
in a high-level language such as MATLAB or Python and has no relation
to the platform the application will be deployed on. The final code then
often has to be re-written in a highly efficient C/C++ implementation,
which takes the underlying hardware and its resources into account dur-
ing the optimization process. As different architectures require different
optimization strategies to achieve sufficient performance, it is often the
case that an optimized version of the same algorithm will look completely
different depending on the platform that it will be deployed on.

Optimizing even simple applications requires an extensive number of
code transformations to be applied in order to fully exploit all capabilities
of the target platform. Vectorization through SIMD intrinsics, loop tiling
and parallelization with OpenMP pragmas are only some of the optimiza-
tions commonly used when targeting a multi-core CPU architecture. In
a similar fashion, executing the same application on an NVIDIA GPU
would require rewriting all of it as a series of CUDA kernels and then
applying a different set of optimizations and transformations. Hardware-
specific parameters such as cache sizes, prefetching mechanisms, SIMD
vector width and number of available registers and processing elements
have a direct impact on which combination of transformations will lead to
optimal performance.

As a result, even though some techniques such as tiling, unrolling,
and loop fusion might be shared across architectures their usage and
parameters such as tile sizes and unroll factors will again largely dif-
fer not just per platform but also between various models of the same
architecture, depending on the above hardware specifications. Due to
this reason, the final implementation of an algorithm will be completely
different depending on whether the overall application runs on the high-
performance CPU of a desktop computer or on the embedded graphics
processing unit of a mobile smartphone, as well as on the manufacturer of
said CPU and GPU: an Intel processor will require different optimization
strategies and techniques compared to an ARM and even an altogether
different programming model compared to an NVIDIA GPU.

Furthermore, as newer architectures become more and more special-
ized, the programming effort required to achieve high performance in-

1.3. PLATFORM-AWARE COMPILATION 5

100

101

102

103

9.9 10.8

70.6
150

CPU FPGA GPU ASIC

Resnet-50

Im
ag

es
/s

/W
at

t

Figure 1.2: Comparison of computation efficiency (in images/s-Watt for
network inference) for CPU, FPGA, GPU, and ASIC for deep learning [19]

creases dramatically. For example, consider the popular Resnet-50 deep
learning network. Figure 1.2 shows a comparison between the computa-
tion efficiency (Number of images / s/Watt) for CPUs as well as FPGA,
GPU and ASIC accelerators. As seen in the graph, both GPUs and
ASICs achieve much higher efficiency than that of CPUs [19]. GPUs
manage to achieve near-ASIC performance thanks to the specialized logic
used by the embedded Tensor Core units. However, even though GPU
programmability and flexibility is certainly increased compared to ASICs
which are designed and fixed to a single application, significant effort
by the programmer is still required in order to maintain an adequate
implementation. Developers that aim to efficiently utilize all capabilities
of such platforms have to extensively restructure and re-optimize their
existing code-bases while dealing with data movement not just between
the host CPU and accelerator-GPU devices but also the CUDA cores and
Tensor cores.

Platform-aware code generation becomes even more important when
one considers the fact that in an industrial context the same application
will have to be compiled multiple times such that it is capable of running
efficiently in various targets. Image processing frameworks such as Adobe
Photoshop need to run adequately on systems with various hardware capa-
bilities. As a result, the deployed application often contains multiple op-
timized implementations of the same filtering or enhancement algorithm,
one of which gets finally executed depending on the client’s platform. In
the same way, other camera and image enhancement applications such as
Instagram found in almost all current smart-phone devices need to provide
high-performance implementations even though each client’s device might

6 CHAPTER 1. INTRODUCTION

differ not just per manufacturer, but also per CPU type, GPU capabilities,
or even battery and thermal limitations. This trend emphasizes the need
for novel compilation and optimization techniques that enable efficient
code generation for applications running on multiple possible hardware
platforms.

0.0

0.4

0.8

1.2

1.6
×102

9.45 0.57

35.86

130.92
150.4

gcc Clang Pluto MKL Peak

SGEMM, M = 2088, N = K = 2048
GF

LO
PS

Figure 1.3: SGEMM single-core performance comparison across various
compiler frameworks and Intel-MKL, Intel i7-8700K [11]

While modern compilers attempt to automatically apply some ba-
sic optimizations such as vectorization and unrolling to the generated
code, other more sophisticated transformations fall outside their scope
and they are often unable to achieve performance competitive to hand-
tuned manual implementations. As a result, the translation-optimization
phase remains a manual process that has to be repeated each time a
newer or different platform is used, even when the initial algorithm is
left unchanged. Figure 1.3 shows a single-core performance comparison
across various compiler frameworks and the Intel-MKL library on a single-
precision matrix-multiplication benchmark targeting an Intel i7-8700K
processor. As seen in the graph, both gcc (v9.2.1) and Clang (v8.0.0),
the current most popular general purpose C/C++ compiler frameworks,
are unable to achieve performance even within 10% of the machine’s ca-
pabilities (column Peak), even though both attempt to use optimizations
such as vectorization and unrolling 1. On the other hand, Pluto [12],
an open-source polyhedral source-to-source compiler that can analyze
the code before performing various polyhedral transformations (including
interchange and tiling) achieves much higher performance. However, all

1Clang performs poorly on the above benchmark due to the fact that it only
attempts to vectorize the innermost loop, while interchange would instead dramatically
improve spatial locality [11]

1.4. OPTIMIZATION CHALLENGES 7

three frameworks are unable to match the high efficiency of the manually
optimized micro-kernels found within Intel-MKL [31].

Various domain-specific languages (DSLs) and compilers have been
proposed over the years [53,73,87] in order to accelerate the design process
without sacrificing performance and code readability. They typically make
use of domain-specific knowledge to restrict the space of allowed programs,
thus allowing them to apply transformations and optimizations that a
general-purpose compiler could not easily do. Such languages often offer
automatic schedulers which are integrated inside their compilers. These
schedulers fall into two categories: analytical model-driven schedulers that
generate quick solutions by restricting the design space considered [52,
72] and brute-force autotuning frameworks that extensively search the
optimization space through iterative compilation [4,54]. Hybrid solutions
have also been proposed over the years that attempt to limit the space
evaluated by the autotuning frameworks and steer it without sacrificing
performance of the final implementation [2]. In this thesis we will be
focusing on the Halide DSL and compiler [73].

The Halide DSL [73] is perhaps the most prominent among the afore-
mentioned image-processing DSLs. Its syntax allows developers to specify
their implementations using a two-step approach: a high-level, functional
description of their algorithm and a separate set of scheduling directives
which dictate the various transformations and optimizations that should
be applied on the final implementation. As a result, it enables faster
exploration of the optimization space, improved code readability and
maintainability. Furthermore, through various back-end code generators
it can improve code portability, making it easier to port an existing
algorithm to a new target platform. However, even with Halide or other
similar languages, expert knowledge is still required to ensure that the
optimization schedule applied on the implementation will lead to near-
optimum performance. While there have been attempts at automatic
schedule generation [43, 52], these are generally unable to consistently
reach the performance achieved by manually tuned schedules.

1.4 Optimization challenges
As already mentioned, the optimization strategies that should be applied
on the implementation are associated with both the nature of the stages
that the pipeline consists of, as well as the architecture-specific parameters
and constraints of the target hardware platform. Traditional optimiza-
tions attempts to focus on the vectorization and parallelization of the
loop nests associated with the definition of each stage. However, most
operations found inside inner loop computations feature low arithmetic
intensity, and instead focus on extensive data transfer requirements which

8 CHAPTER 1. INTRODUCTION

grow as the dependencies between the stages become more complex. As
a result, the majority of image processing applications are memory bound
and their performance is limited by the memory bandwidth of the under-
lying platform.

Due to the above reason, global transformations such as loop/stage
fusion and tiling are also necessary. Stage fusion in combination with
tiling and inlining can dramatically increase producer/consumer locality
and reduce memory usage at the cost of redundant computations and
synchronization. The number of stages that can be merged together into
a single loop nest is strongly correlated with the hardware resources and
nature of the platform. For example, a CPU architecture contains a much
larger cache compared to the shared memory found in most GPUs and
thus allows for more computations to be stored into local memories. On
the other hand, GPU architectures offer massive parallelism that can hide
the latency caused by recomputing data.

Compute
Granularity

Storage
Granularity

High
Locality

Low
Locality

High
Recomputation

Low
Recomputation

Fusion Design Space

breadth-first

more
parallelism

more
synchronization

inline

Figure 1.4: Optimization design space, adapted from [73]

Optimizing an image processing pipeline involves dealing with a trade-
off between parallelism, redundant computations and locality. A visual
representation of the design space is shown in Figure 1.4, where the verti-
cal axis corresponds to the compute granularity while the horizontal axis
corresponds to the storage granularity. Storage granularity refers to the
amount of intermediate values that are stored while compute granularity
refers to the time interval between production and consumption of said
values. The various transformations that are applied on the generated
code have a direct impact on both the parallelism that can be exploited,
as well as the locality of intermediate results between stages. Finding

1.4. OPTIMIZATION CHALLENGES 9

a point in this trade-off space which results in maximum performance
is not a trivial task, especially considering the near infinite number of
valid options as well as the fact that different hardware architectures will
have their performance influenced by recomputation and parallelism in
a different way. This figure will be explained in further detail in the
following chapters.

Design space exploration is usually performed manually by domain
experts with instruction-level knowledge and deep understanding of com-
puter architecture. Manual optimization (or scheduling) is a very time-
consuming process but usually offers the best results in terms of perfor-
mance. Alternatively, various autotuning frameworks have been evaluated
over the years which focus on iterative compilation techniques that ex-
haustively search the optimization space in order to achieve performance
close to the maximum that can be achieved. Such frameworks can offer
results that may even surpass manual optimization when targeting small-
scale applications such as matrix multiplication and other linear algebra
kernels, where the optimization design space is often limited to combi-
nations of tiling, unrolling and parallelization/vectorization. However,
their efficiency decreases as the complexity of the application rises. In the
context of multi-stage imaging pipelines where more transformations are
needed to achieve optimal performance, the search space quickly becomes
too large to traverse within a specific time frame. Autotuners then need
to constrain themselves to only a subset of the whole space or use a model
as a steering mechanism in order to converge to a good solution. More
importantly, cross-compilation falls out of their scope and they are unable
to provide a solution when a single algorithm needs to be compiled for
multiple targets, since they need to perform iterative execution of the
application on the actual platform in order to choose a final optimal
implementation. As a result, depending on the nature of the platform
and the complexity of the algorithm, neither manual scheduling nor brute-
force autotuning is always feasible, especially when targeting embedded
edge devices with limited resources.

On the other hand, analytical modeling guided by heuristics is a quick
and efficient way of generating optimization solutions. Interestingly, in
the scope of linear algebra applications (such as Basic Linear Algebra
Subprograms - or BLAS routines), they have even proved to be on-par
with autotuned solutions [44], without the need for iterative compilation.
Such analytical frameworks aim to estimate the performance and minimize
the execution time of the application through carefully designed cost
functions and heuristics that model the behavior of the target platform.

In order to eliminate both the need of time-consuming autotuning and
extensive manual effort, the problem we aim to solve lies in implementing
efficient optimization strategies and analytical models for applications in
the image-processing domain that integrally look at both architecture- and

10 CHAPTER 1. INTRODUCTION

application-specific parameters in order to decide which transformations
should be applied on the generated code. Design space exploration should
therefore be driven by a trade-off analysis that strives to maintain a
balance between redundant computations, parallelism and locality.

1.5 Thesis contributions
As already mentioned, the majority of image processing applications are
dominated by memory-bound kernels and operations. To this end, modern
CPU architectures employ various levels of memory hierarchy along with
sophisticated prefetching mechanisms. Since complete image processing
pipelines may feature hundreds such kernels as functional stages, proper
utilization of the above components is vital during the optimization pro-
cess. Moreover, when considering each pipeline as a whole, a new set
of optimization opportunities become available due to data reuse oppor-
tunities across stages of the pipeline that feature a producer/consumer
relation.

Equivalent techniques need to be developed for GPGPU architec-
tures that accelerate highly parallel applications in heterogeneous plat-
forms. Current state-of-the-art GPUs contain specialized units (such as
the NVIDIA Tensor Core Units, present in all modern NVIDIA GPUs)
capable of significantly increasing the performance of specific workloads
such as matrix multiplications. Modern compilers and imaging DSLs need
to integrate novel compiler passes which can take advantage of these units
without sacrificing performance or programmability.

In order to tackle the main issues highlighted in the previous sections
and achieve the approach outlined above, this thesis introduces a set of
analytical models and heuristics that automatically schedule image pro-
cessing applications on both CPU and GPU architectures without the need
of expert low-level knowledge or extensive manual effort. All algorithms
and frameworks presented throughout this thesis have been implemented
as tools to be used alongside the Halide DSL and are available as open
source software.

We show that our frameworks achieve performance competitive to
manually tuned schedules while generating solutions in the order of sec-
onds. To this end, our contributions can be summarized as follows:

1. An analytical model that optimizes memory-bound kernels target-
ing multi-core CPU architectures by modeling the behavior of the
memory hierarchy and its various prefetching mechanisms [81].

2. An optimization algorithm composed of an analytical model and a
set of heuristics that aim to maximize producer-consumer locality
and data reuse in multi-stage image processing pipelines [82].

1.6. THESIS OVERVIEW 11

3. An automatic scheduling framework that targets GPU architectures
and enables quick generation of optimization schedules while extend-
ing the search space considered in traditional state-of-the-art loop
and kernel fusion techniques [79].

4. A series of novel compiler passes that facilitate the programming
of NVIDIA tensor core units by enabling code generation through
the Halide DSL and achieves performance competitive to cuBLAS
implementations [80].

This work shows that through analytical modeling and heuristics, we
can enable quick and efficient code generation in the image processing
domain without the need of time-consuming autotuning, even for large
and complex image processing applications.

1.6 Thesis overview
The rest of this thesis is organized as follows. Chapters 2 and 3 present
necessary background information in order to facilitate the understanding
of the next chapters, while Chapters 4-7 present our main contributions.

In detail, Chapter 2 provides details regarding application specific
parameters in image processing pipelines, while Chapter 3 introduces
Halide-specific knowledge necessary for the following chapters.

Chapter 4 presents the analytical model that classifies memory-bound
kernels and enables optimization that target either temporal or self-spatial
locality. Chapter 5 showcases the optimization algorithm that exploits
producer-consumer locality and reuse in order to maximize performance
in various image processing pipelines. Chapter 6 introduces an automatic
scheduling framework for GPU architectures that captures key platform-
specific parameters and achieves performance competitive to manual so-
lutions. Chapter 7 presents a series of custom lowering compiler passes
that enable automatic, efficient code generation for the NVIDIA Tensor
Core architecture through the Halide DSL.

Finally, Chapter 8 concludes the thesis and discusses future-work pos-
sibilities. The procedure in order to gain access to the developed tools
can be found in Appendix A.

12 CHAPTER 1. INTRODUCTION

2
Image processing pipelines

2.1 Algorithms
Algorithms in the image processing domain are typically defined as series
of feed-forward pixel computations. The entirety of these operations
along with all dependencies between them composes the image processing
pipeline. In a similar way, each independent operation over an array
of pixels defines the individual stage of the pipeline. Image processing
pipelines can then be described as directed acyclic graphs (DAGs) where
each node corresponds to a functional stage of the pipeline. Each stage
performs a specific operation on one or more multi-dimensional input
buffers before passing its output onto the next stage. Computations on
input buffers are usually described using loop nests, the depth of which
is defined by the number of dimensions required for the output buffer of
each stage. Stencil computations usually make up the majority of such
stages in a typical state-of-the-art image processing pipeline.

Stencil codes are iterative kernels that compute elements/pixels of
an array based on a fixed pattern, which is called a ‘stencil’. They are
common in simulations (fluid dynamic simulations), iterative differential
equation solvers, cellular automata and of course image processing appli-
cations [29].

Other common operations found within the image processing and com-
puter vision domains refer to up/down sampling, reductions and computa-
tions with data-dependent access patterns. Each of the above operations

13

14 CHAPTER 2. IMAGE PROCESSING PIPELINES

requires individual analysis and separate optimization techniques in order
to achieve high performance.

Figure 2.1: Local Laplacian Filters [73]

The dependencies between stages can be described through a pro-
ducer/consumer relation. Stages that produce data which are needed in
followup computations are called producers, while the ones that require
that data as inputs are referred to as consuming stages. Analyzing these
relations is a crucial part of the optimization process.

Common state-of-the-art pipelines often contain multiple combina-
tions of the above operations, often across dozens of stages. Figure 2.1
shows the “local Laplacian filters” pipeline [62], used in Instagram. It
is composed of 99 stages with complex dependencies between them and
various combinations of the above mentioned operations. Manually op-
timizing such a pipeline can require months of work even for domain
experts.

2.2. OPTIMIZATION STRATEGIES 15

2.2 Optimization strategies
Implementations of the various algorithms in the image processing domain
often need to be highly optimized in order to meet real-time constraints.
An optimized implementation can be orders of magnitude faster than a
naive version of the same algorithm. As a result, developers often employ
various techniques to transform their code depending on the character-
istics of both the overall application, as well as the architecture-specific
parameters of the platform.

These optimizations usually refer to loop transformations that attempt
to increase the performance of the implementation either by reducing
the number of external memory accesses or by increasing the amount of
parallelism exploited in the generated code. The transformations that we
will be using in the following chapters are briefly introduced below:

Loop splitting. This transformation attempts to eliminate dependen-
cies between loop iterations by splitting the original loop nests into mul-
tiple ones (usually inner and outer). The new loops iterate over different
subranges of the original iteration space but contain the same body. Loop
splitting can enable other optimizations such as tiling, vectorization and
parallelization [48].

1 for i=0;i<Bi;i++
2 for j=0;j<Bj;j++
3 B[i][j]=A[j][i]

1 for ii=0;ii<Bi;ii+=Ti
2 for i=ii;i<ii+Ti;i++
3 for j=0;j<Bj;j++
4 B[i][j]=A[j][i]

where Bi = k × Ti, k ∈ N

Listing 2.1: Loop Splitting

An example of Loop Splitting can be seen in Listing 2.1, where the
initial i loop on the left side has been split into an outer ii and an
inner i loop by a factor equal to Ti. As is, this transformation does not
influence the access pattern or computation on either array (neither on
A nor B). However, when combined with the following transformations it
can significantly improve spatial and temporal locality.

Loop interchange [48] reorders the dimensions of a loop nest in or-
der to alter the memory access patterns on an associated array. Loop
interchange can reduce cache misses and improve locality.

An example can be seen in Figure 2.2. The original loop nest that per-
forms a simple array transposition is seen on the left. By interchanging the
i and j loop indices (right side nest), the memory accesses on array A can

16 CHAPTER 2. IMAGE PROCESSING PIPELINES

1 for i=0;i<Bi;i++
2 for j=0;j<Bj;j++
3 B[i][j]=A[j][i]

1 for j=0;j<Bj;j++
2 for i=0;j<Bi;i++
3 B[i][j]=A[j][i]

A
j

i

A
j

i

Figure 2.2: Loop Interchange

become more cache-friendly. A visual representation of the transformation
is shown in the above figure. The left subfigure shows the access patterns
on array A before interchange is applied. Input pixels are loaded in a
column-major order, causing a different cache line to be fetched from the
external memory into the local cache for each output pixel (since data is
stored in a row-major layout in modern C-like compilers). Depending on
the size of the global j dimension, these lines might be evicted before i
moves to the next iteration and data from the same cache line are needed
again. As a result, this loop ordering will cause a significant number of
cache misses. On the other hand, the right subfigure shows the access
patterns on the same array after interchange has been applied. In this
case, since i is the innermost loop, data will be loaded across cache lines,
which in turn will result in a dramatically reduced number of misses.

Loop tiling is a combination of interchange and splitting. Tiling [18,40]
transforms a loop such that it iterates over blocks of data with carefully
picked sizes that fit in the local memories of the platform (cache or shared
memory of a GPU).

An example of loop tiling can be seen in Figure 2.3, where both i and
j loops have been tiled. Splitting is first applied such that the initial i
loop is split into i (inner) and ii (outer) (and j and jj for the original
j dimension in a similar fashion) and then interchange is performed such
that the new inner loops are the j and i loops while the outer ones
become the jj and ii. The inner loops are called “intra-tile” loops, while
the outer ones are referred to as “inter-tile”. The above figure, which

2.2. OPTIMIZATION STRATEGIES 17

1 for i=0;i<Bi;i++
2 for j=0;j<Bj;j++
3 B[i][j]=A[j][i]

1 for ii=0;ii<Bi;ii+=Ti
2 for jj=0;jj<Bj;jj+=Tj
3 for i=ii;i<ii+Ti;i++
4 for j=jj;j<jj+Tj;j++
5 B[i][j]=A[j][i]

B

i

j

ii

jj

Figure 2.3: Loop Tiling

assumes tile sizes of 4 pixels (Ti,Tj=4) shows the order in which pixels of
the output array B are computed. Pixels inside each tile are generated in
a row-major order and after a whole tile is produced, computation moves
to the next one, again in row-major order. Due to the massive amount
of data needed to be transferred between stages, most applications in the
image processing domain are memory bound, where performance of the
final implementation is bound by the memory bandwidth of the underlying
system. As a result, tiling is one of the most important transformations
when optimizing imaging and vision pipelines.

Loop fusion combines the bodies of two separate loop nests. In the
context of image processing, fusion also refers to the merging of separate
stages that have a production/consumption relationship.

This transformation can significantly increase locality [97] between
production and consumption of intermediate values but may increase the
amount of redundant computations and synchronization requirements.
Fusion can potentially also increase the complexity of dependencies be-
tween loop iterations and therefore limit the amount of parallelism that
can be exploited. In its extreme case, total fusion is equivalent to stage
inlining, where the producing statement is concatenated inside its con-
sumers.

Examples of loop fusion are shown in Figures 2.4 and 2.5. The top left

18 CHAPTER 2. IMAGE PROCESSING PIPELINES

1 allocate B[Bi][Bj];
2 for i=0;i<Bi;i++
3 for j=0;j<Bj;j++
4 B[i][j]=A[j][i]

6 for i=0;i<Bi;i++
7 for j=0;j<Bj;j++
8 C[i][j]=B[i][j]+D[i][j]

1 for i=0;i<Bi;i++
2 allocate B[Bj]
3 for j=0;j<Bj;j++
4 B[j]=A[j][i]
5 for j=0;j<Bj;j++
6 C[i][j]=B[j]+D[i][j]

i

j

A B
j

i

Figure 2.4: Loop Fusion - compute per output line

listing of Figure 2.4 shows two loop nests which can be described through
a producer/consumer relation, as values of B are consumed to produce C.
The right listing shows the transformed loop after the i loops have been
fused/merged together. This allows for increased locality and reduced
memory requirements (one scanline of size Bj of array B as opposed to a
whole array of size Bi*Bj in the original loop nest). Figure 2.4 shows the
dependencies between input array A and output C as well as how pixels
are loaded from array A in order to produce and store the intermediate
array B and finally the output C.

Two alternate options can be seen in the listings of Figure 2.5. The
left one shows the transformed loop nest after both i and j loops of the
producer B have been fused with its consumer C. Since pixels of B are com-
puted as needed per output pixel of array C, only one element needs to be
computed and stored before consumption. This further increases locality
and reduces memory requirements compared to the previous case where
only the i loops were merged. Figure 2.5 also shows the dependencies on
array A for the production of a single pixel of the output.

Finally, the right listing shows an example of the most extreme case
of loop fusion, which we call “inlining”. In this case, computation of
the intermediate array A has been completely inlined inside the compu-

2.2. OPTIMIZATION STRATEGIES 19

1 for j=0;i<Bi;i++
2 for i=0;j<Bj;j++
3 allocate B[1]
4 B[0]=A[j][i]
5 C[i][j]=B[0]+D[i][j]

1 for j=0;i<Bi;i++
2 for i=0;j<Bj;j++
3 C[i][j]=A[j][i]+D[i][j]

i

j

A B
j

i

Figure 2.5: Loop Fusion - inline

tation of the output array, eliminating all intermediate allocations in the
process. However, lower memory requirements are not always associated
with higher performance. This type of “point-wise fusion” can interfere
with both parallelism and vectorization or the efficiency of prefetching
mechanisms. Moreover, in cases where the dependencies between stages
grow more complicated, it may instead cause severe recomputation and
synchronization costs. The following chapters investigate all of these
trade-offs in greater detail.

Loop unrolling Loop unrolling attempts to decrease the overhead with
branches and computations associated with a loop’s exit condition by
duplicating its body multiple times [97]. When the loop extent (iteration
count) is known at compile time it can be completely unrolled, eliminating
all such overhead in the process. This transformation affects register usage
and instruction cache pressure and thus excessive unrolling may instead
lead to performance degradation.

20 CHAPTER 2. IMAGE PROCESSING PIPELINES

1 for j=0;i<Bi;i++
2 for j=0;j<4;j++
3 B[i][j]=A[j][i]

1 for i=0;i<Bi;i++
2 B[i][0]=A[0][i]
3 B[i][1]=A[1][i]
4 B[i][2]=A[2][i]
5 B[i][3]=A[3][i]

Listing 2.2: Loop Unrolling - completely unrolling the j loop

Listing 2.2 shows an example of loop unrolling, where the extent
(range) of loop j is known to be a constant value of 4 and is unrolled
as seen in the right loop nest.

Vectorization Vectorization is a form of data-level parallelism and usu-
ally refers to transformations that allow multiple loop iterations to be
simultaneously executed on a system with SIMD (single instruction mul-
tiple data) extensions. Examples of such extensions are the SSE and AVX
vector operations found in Intel x86 CPUs and the NEON equivalent oper-
ations found in ARM processors. The vectorization factor is typically set
to be equal to the natural “vector width” of the corresponding architecture.

1 for j=0;i<Bi;i++
2 for j=0;j<Bj;j++
3 B[i][j]=A[j][i]

1 for i=0;i<Bi;i++
2 for j=0;j<Bj/8;j+=8;
3 B[i][j.vector.0.8]=A[j.vector.0.8][i]

Listing 2.3: Loop Vectorization

Listing 2.3 shows an example of loop vectorization, where the j di-
mension has been vectorized by a factor of 8. As a consequence, j within
the computation inside the loop has been replaced by vector operations
of size 8.

Parallelization Parallelization refers to transformations that enable
task-level (or more specifically thread-level) parallelism such that the
implementation exploits the multi-core capabilities a platform. Single
or multiple loop iterations are assigned to a separate processing unit
(corresponding to a core or thread in a multi-core processor). It is typically
implemented using OpenMP pragmas or similar parallel programming
paradigms.

2.3. OPTIMIZATION SPACE 21

2.3 Optimization space
As explained in the previous section, an efficient implementation of an
image processing application requires a series of loop transformations
and optimizations. However, choosing which specific combinations of
transformations should be used as well as which parameters (i.e., tile
sizes, loop ordering) is not a trivial task, as optimizations interact with
each other and affect the behavior of the implementation in various ways.

Moreover, image processing pipelines are often dominated by stages
with stencil operations. Optimizing such operations involves dealing with
a trade-off between locality, parallelism and redundant computations of
intermediate values (Figure 1.4). As a result, the overall optimization
design space is also defined by these metrics. In detail:

Locality refers to the time interval (or iteration interval) between pro-
duction and consumption of intermediate values. In the case of image pro-
cessing pipelines, locality can be increased through loop/stage fusion and
inlining. Increased locality can reduce or even eliminate external memory
accesses and intermediate allocations. However, in most cases it comes at
the cost of increased redundant computations and synchronization costs
(and therefore decreased parallelism).

Parallelism refers to the ratio of the platform’s processing units that
can be kept active throughout the implementation. Task-level paral-
lelism is usually associated with the number of cores/threads on a multi-
processor system, while data-level parallelism refers to the SIMD units
and their vector width. The amount of parallelism that can be exploited
is affected by the tile sizes applied on the loop nest. Small tile sizes can
impact the efficiency of vectorization, while large tile sizes might cause
cores/processing units to remain idle.

Recomputation or mainly refers to output values of stages being re-
computed. The cost of such redundant computations varies depending
both on the computation under question as well as on the nature and
resources of the underlying platform.

A visual representation of the design space is shown in Figure 1.4. The
storage granularity (horizontal axis) refers to the number of intermediate
values that are stored, and thus controls the amount of recomputation in
the final implementation. In a similar fashion, the compute granularity
(vertical axis) refers to the interval between production and consumption
of shared intermediate values and is associated with achieved locality of
said values. Invalid are those situations where less data is stored than

22 CHAPTER 2. IMAGE PROCESSING PIPELINES

is being computed (storage granularity is lower than the compute one).
Implementations with low or zero recomputation and low locality are
breadth-first solutions (we call them “root” solutions) and can exploit
a high amount of parallelism. On the other hand, higher locality can lead
to significantly higher synchronization costs due to more complicated de-
pendencies between loop iterations and thus cause a decrease the amount
of parallelism that will be exploited. In the other extreme of breadth-first
solutions lie the “inline” ones, where intermediate values are recomputed
every time they are needed by their consumers. In practice, and as we
will see in the following chapters, the best solutions are often “overlapping
tiles” and “sliding window” implementations that lie in the middle of
the design space. The former refers refer to overlapping regions of data,
which cause redundant computations but feature high parallelism. Sliding
windows refer to situations where intermediate pixels are produced when
first needed and are stored in circular buffers until no longer used. Such
implementations feature higher producer/consumer locality at the cost of
increased synchronization.

2.4 Summary
This chapter examined the key features of applications in the image pro-
cessing domain, along with traditional optimization methods and tech-
niques. The optimization space considered in the following chapters was
also established.

3
The Halide language and compiler

Halide [73] is a Domain Specific Language (DSL) and compiler for high-
performance image processing applications. Its key feature is the sepa-
ration of algorithmic description and optimization schedule in an effort
to provide increased code portability, readability and maintainability. In
this thesis, we use Halide to evaluate our proposed optimization strategies
and algorithms.

3.1 Functional representation
As a functional language, algorithms specified in Halide resemble the
mathematical relation/equation that formulates the relationship between
input and output. As seen in example listing 3.1, there are no explicit
loops. Instead, developers specify variables, or “Vars”, which correspond
to the dimensions in the output domain of a functional stage.

Stages in Halide are specified as “Funcs” and refer to multidimensional
rectangular domains. Each stage can perform any of the operations de-
scribed in the previous chapter. The initial definition of a Func is called
the “pure” definition. Subsequently, update definitions of a stage can
be defined as independent passes over the output of the previous ‘pure’
definition or update. This allows for a form of recursion on the algorithms.

In the example of Listing 3.1, the producer stage performs a simple
stencil operation on a 3-dimensional input buffer. The three dimensions
correspond to the width x, height y and depth (or channel) c dimensions

23

24 CHAPTER 3. THE HALIDE LANGUAGE AND COMPILER

1 Var x, y, c;
2 //A simple stencil code
3 Func producer;
4 producer(x,y,c)= input(x-2,y,c) + input(x+1,y,c) + input(x+3,y,c)
5 +input(x,y+1,c) + input(x,y-2,c) + input(x,y+3,c);

7 //A small reduction
8 Func consumer;
9 consumer(x,y)= producer(x,y,0) + producer(x,y,1) + producer(x,y,2);

11 //and a scaling of the output
12 consumer(x,y)= consumer(x,y) * 10;

Listing 3.1: A Halide algorithm example

of the input buffer/image respectively with the width being innermost
(in terms of storage). Its output values are then used to produce the
consumer based on the relation of line 9 (summation across channels).
The definitions in lines 4 and 9 respectively are the “pure” definitions of
stages producer and consumer respectively. Finally, an example update
definition can be seen in line 12 as an independent pass over the pixels of
the output of line 9.

Given an algorithmic description such as the one above, Halide uses
interval analysis to derive the dependencies between production and con-
sumption of values. For the above example, the compiler will auto-
matically infer that in order to produce one output pixel/value of stage
consumer, it first needs to compute three pixels of the producer stage, as
well as 18 pixels loaded from input.

3.2 Scheduling
An algorithm description written in Halide has no notion of execution
order, allocation or connection to the hardware the code will finally run
on. The order in which pixels of a stage are computed, as well as the
allocation sizes for its buffers are all specified through a separate schedule
definition.

Schedules in Halide are defined through a series of “ scheduling direc-
tives” that dictate the various transformations that the compiler should
apply on the generated code. Most of these directives correspond to
common optimizations used in the image processing domain, similar to
the ones presented in Section 2.2.

As an example, consider the schedule seen in Listing 3.2. Loops x and
y are split by a factor of 128 and 8 such that the inner loops become

3.2. SCHEDULING 25

1 Var xi("xi"), yi("yi"), xo("xo"), yo("yo");

3 consumer.compute_root()
4 .split(x, xo, xi, 128)
5 .split(y, yo, yi, 8)
6 .reorder(xi, yi, xo, yo)
7 .vectorize(xi)
8 .parallel(yo);

10 consumer.update().split(x, xo, xi, 128)
11 .reorder(xi, xo, y)
12 .vectorize(xi)
13 .parallel(y);

15 producer.compute_at(consumer, xo)
16 .reorder(c,x,y)
17 .vectorize(x,8)
18 .unroll(c);

Listing 3.2: Example CPU schedule

xi and yi and the outer ones xo and yo. The dimensions of the loop
nest are then reordered with the new permutation being xi, yi, xo,
yo, where xi is the innermost. These two transformations are equivalent
to tiling the original loop nest with tile sizes 128 and 32 in the x and
y dimensions. After performing loop interchange, the innermost intra-
tile loop is vectorized, issuing the compiler to inject SIMD intrinsics and
replace the iterations with vector operations and the outermost loop yo is
parallelized across threads. Similarly, the update definition of consumer
is scheduled such that the innermost dimension xi is vectorized. The
producing stage is then computed as needed per tile of its consumer using
the compute_at directive. In this case, each time consumer starts an
iteration of xo, the compiler is asked to first calculate and store all pixels
of producer that will be consumed during this iteration. Finally, its
dimensions are reordered with the channel dimension being innermost,
which is then unrolled.

The previous schedule assumes that the code will run on a multi-core
CPU architecture with SIMD extensions. However, Halide also supports
code generation for GPU architectures. An example schedule for the same
pipeline which instead targets a GPU architecture is found in Listing 3.3.

The schedule of Listing 3.3 will map the implementation onto the
GPU of the platform. Most steps are identical to the previous CPU
implementation with the exception of the gpu_threads and gpu_blocks
directives. gpu_threads tells the compiler which dimensions should be

26 CHAPTER 3. THE HALIDE LANGUAGE AND COMPILER

1 Var xi("xi"), yi("yi"), xo("xo"), yo("yo");

3 consumer.compute_root()
4 .split(x, xo, xi, 128)
5 .split(y, yo, yi, 8)
6 .reorder(xi, yi, xo, yo)
7 .gpu_threads(xi, yi)
8 .gpu_blocks(xo, yo);

10 consumer.update().split(x, xo, xi, 128)
11 .split(y, yo, yi, 8)
12 .reorder(xi, yi, xo, yo)
13 .gpu_threads(xi, yi)
14 .gpu_blocks(xo, yo);

16 producer.compute_at(consumer, xo)
17 .reorder(c,x,y)
18 .gpu_threads(x,y)
19 .unroll(c);

Listing 3.3: Example GPU schedule

assigned as CUDA threads (or OpenCL’s work-items), while gpu_blocks
indicates which dimensions should be mapped as blocks (or OpenCL’s
notion of work-groups). As a result, production of values from producer
will happen before each ‘block’ iteration of the consumer.

Below is a list of the most important scheduling directives, which will
be used in the following chapters.

reorder: Performs interchange on the dimensions of a loop.

split: Splits a dimension into an inner and outer loop.

tile: Splits and reorders dimensions in one statement, i.e. equivalent to
loop tiling

vectorize: Translates a loop into vector operations.

unroll: Unrolls a loop by replicating its body.

parallel: Parallelizes each iteration of a loop across threads.

compute_root: Specifies that the whole stage should be computed and
stored before its consumption

compute_at: Specifies that a stage should be computed "as needed" by a
specific dimension of its consumer.

3.3. COMPILATION FLOW AND CODE GENERATION 27

store_at: Specifies that the allocation of a stage should be moved at
a specific dimension in the consumer’s loop nest. Can control reuse of
intermediate values and exploit sliding window optimizations.

compute_inline: Inlines the computation of a stage into all of its con-
sumers.

gpu_threads: Assigns a dimension to correspond with CUDA’s notion of
threads.

gpu_blocks: Assigns a dimension to correspond with CUDA’s notion of
blocks.

gpu_tile: Equivalent to the tile directive, but also assigns dimensions to
threads and blocks.

3.3 Compilation flow and code generation
Given an algorithm and an optimization schedule, the Halide compiler
will internally lower the initial code into an Intermediate Representation
(IR). Halide can target numerous back-ends including traditional CPU
architectures (Intel x86, ARM) as well as GPU architectures (NVIDIA
PTX, Intel OpenCL). After a series of lowering and optimization passes,
the Halide IR is translated to the LLVM IR before the final code gen-
eration. LLVM [41] is a compiler infrastructure used by multiple general
purpose as well as domain specific languages as a back-end code generator
in order to support various instruction set architectures.

Halide
Code

Lowering Bounds
inference

IR passes Code
generation

ASM
Code

Figure 3.1: Basic compilation flow of Halide: Source code gets lowered
into an intermediate representation (IR). Bounds inference determines
the dependencies and bounds between consumers/producers. Various IR
passes apply optimizations on the lowered AST (vectorization, scheduling
directives, flattening etc). Final code generation is achieved by translating
Halide IR to LLVM/NVVM IR and finally to machine instructions (ASM).

Figure 3.1 shows a simplified view of the compilation flow of the Halide
compiler. Each of the individual steps are discussed below in more detail.

Lowering: The first step of the compilation flow is responsible for
lowering the functional representation of the algorithm to an IR. The
initial algorithm gets transformed into an imperative C-like loop nest

28 CHAPTER 3. THE HALIDE LANGUAGE AND COMPILER

using a specific schedule. The storage and computation of producers are
recursively injected inside the loop nest of the consumer as specified by
the same schedule. All bounds and allocation sizes are symbolic at this
point.

Bounds inference: Halide uses interval arithmetic to compute the
regions required by each producer in order to calculate the values/pixels
needed by its consumers. During this step the compiler uses interval
computations to derive all bounds and allocation sizes, replacing the
previous symbolic relations.

IR passes: A series of IR optimization passes are then used to ap-
ply various transformations on the lowered abstract syntax tree (AST).
These passes are responsible for most of the optimizations used in the
scheduling part of the code. Optimization passes involve: sliding and
storage folding optimizations that remove redundant computations while
replacing allocations with circular buffers, reusing intermediate data in
the process. Storage flattening optimizations convert multidimensional
buffers into one-dimensional ones by re-formulating array indices relative
to the base of each buffer. Other passes focus on unrolling loops by
duplicating their body, or vectorizing them by replacing iterations with
vector operations.

Code generation: At this point, the Halide IR is translated into LLVM
IR. LLVM is then used for back-end code generation, which emits machine
instructions (ASM) for the scheduled pipeline. For NVIDIA architectures
the equivalent NVVM IR is used before producing PTX code.

3.4 Summary
This chapter briefly introduced all necessary background knowledge re-
lated to the Halide DSL and compiler in order to facilitate the understand-
ing of the following chapters. In this thesis, we use Halide to implement
and evaluate our scheduling algorithms targeting both multi-core CPU
architectures as well as GPGPUs. The first contributions of the thesis
will focus on the front-end scheduling directives which operate on the
Halide lowered IR, while the last one on the code generation part of the
compiler and the various extensions that were made upon it.

4
Scheduling memory-bound kernels in

multi-core CPU platforms

4.1 Introduction
The ever-growing gap between processor and memory speed in modern
architectures is currently a severe drawback in the efficiency of applica-
tions in domains where high performance is necessary. Memory-intensive
(or memory-bound) applications are affected the most by this problem,
since they usually contain loop nests with a large number of memory
accesses and relatively few computations. As a result, they are bound by
the memory bandwidth of the system [102].

Developers often employ various optimization methods and techniques
in order to mitigate the effects of this memory bandwidth problem and
increase the performance of their implementations. Loop tiling [1,9,13,18,
40,46,83,84,96,100] is a common loop transformation that aims to improve
temporal locality thereby enabling data reuse. Tiling paired with vector-
ization and parallelization can have a huge impact on the performance of
an application. However, picking the proper tile dimensions that will min-
imize external memory accesses without interfering with the SIMD unit or
the hardware prefetching mechanism present in most modern architectures
is not a trivial task. Due to these reasons, manually optimizing a target
algorithm is a time-consuming and error-prone process, where numerous
architecture and application-specific parameters need to be considered.

In the past, most approaches to automatic tile size selection have

29

30
CHAPTER 4. SCHEDULING MEMORY-BOUND KERNELS IN MULTI-CORE

CPU PLATFORMS

mainly focused on analytical models [8,45,50,64] that only consider loop
nests that fit into specific patterns while relying on the compiler to de-
cide on the optimal loop ordering. These methods may quickly generate
efficient code when the loop nest fits into the expected pattern but may
produce sub-optimal results in other case. Furthermore, they usually
ignore the hardware prefetching mechanisms found in modern architec-
tures and as a result, the proposed optimizations may actually lead to a
deterioration in the performance of the final implementation.

Other approaches employ dynamic auto-tuning frameworks [5,93] that
exhaustively search the optimization space in order to optimize the target
application. In general, these frameworks are able to produce near-optimal
results. However the time needed to converge to that solution is usually
unknown, thus making them inadequate for fast design space exploration
and debugging. Furthermore, the fact that they need to run on the target
platform can also be a limitation for some architectures.

In this work, we propose an optimization algorithm and analytical
model for memory-bound applications that aims to minimize external
memory accesses, while taking necessary architecture and application-
specific parameters into account. The model first classifies the application
by detecting patterns in the definitions which are derived by the state-
ments in the innermost level of the loop nest. We use these patterns to
determine whether the applications should be optimized with emphasis
on spatial or temporal locality in order to better exploit the hardware
prefetching mechanisms, as well as to determine which other optimiza-
tions (i.e. vectorization, non-temporal instructions, multi-threading) may
improve the performance of the final implementation. The algorithm
then invokes an analytical model that based on the previous classification
decides which levels of the cache hierarchy to optimize for and then chooses
the tile dimensions as well as the final loop nest order.

We implement our algorithm as a tool to be used along with the Halide
language and compiler [73] (introduced in Chapter 3 in order to automat-
ically generate optimization schedules for Halide functions often within
milliseconds. We extend the Halide compiler with the ability to generate
non-temporal stores by adding a new scheduling directive to the language’s
front end. We test our method on various target applications and compare
its results with previous analytical as well as dynamic empirical (auto-
tuning) models. We find that our method achieves an average performance
improvement of 40% compared to the aforementioned analytical models
targeting the Halide DSL. Performance is also better in terms of quality to
the exhaustively auto-tuned implementations, where the results using our
approach are usually achieved in a matter of milliseconds instead of hours
(in terms of optimization run-time) when using the Halide autotuner.

The remainder of this chapter is organized as follows: subsection 4.2
discusses related work. subsection 4.3 presents the proposed model and

4.2. RELATED WORK 31

analysis technique. subsection 4.4 shows the implemented Halide tool,
while subsection 4.5 demonstrates experimental results and a comparison
with similar frameworks. Concluding remarks are discussed in subsec-
tion 4.6. This work was published in [81].

4.2 Related work
The problem of optimizing memory-intensive applications has been con-
sidered many times in the past. Most of that work has focused on tile
size selection algorithms. These algorithms usually employ analytical
models that aim to determine the optimal tile dimensions in order to
exploit temporal locality. The authors in [18] take cache parameters
into account when generating tile sizes, but are only considering one
level of cache hierarchy and no interaction with other optimizations or
cache associativity. In [63] the authors propose the block data layout
as a solution to bypassing the issues associated with memory-intensive
applications and also provide a corresponding analysis. However specific
hardware and software support is needed in order take advantage of their
approach, which limits the application scope. [101] proposes a combination
between machine learning techniques and synthetic kernels to calculate
the tile size for a specific class of applications, but limits their search to
cubic tiles and only takes one level of cache hierarchy into account. The
authors in [64] propose an analytical model to optimize nested loops with
a combination of tiling and interchange. However, their work is focused on
embedded accelerators and thus all interaction with the cache is ignored,
leading to suboptimal results of the model in cache-based systems.

In [49] the authors consider multi-level cache hierarchies in order to
exploit reuse in both L1 and L2 cache levels while taking associativity
into account. We use a similar analysis for our temporal locality optimizer
that exploits reuse in L1 and L2 cache, but extends it in order to also take
the hardware prefetching mechanisms and multi-core aspects of current
architectures into account and to generate the loop nest permutation that
takes advantage of those features. In [50], interaction with the hardware
prefetching mechanisms is considered in order to achieve reuse in the L3
cache. However, both techniques rely on the compiler in the back-end to
find the optimal loop order before performing any analysis. To this end, we
propose a combined approach that considers loop tiling and loop ordering
at the same time. Furthermore, they only consider tiling for applications
with some form of temporal locality, which may lead to suboptimal results
in situations where tiling should be focused only on self-spatial reuse.

Other approaches have focused on empirical autotuning methods that
exhaustively try to optimize an application [5, 21, 92, 93]. In [93] an
example of such a method is presented, that generates an optimized BLAS

32
CHAPTER 4. SCHEDULING MEMORY-BOUND KERNELS IN MULTI-CORE

CPU PLATFORMS

library for a target platform on the Pluto framework. However, such
approaches usually require a large amount of time in order to explore the
entire design space and converge to an efficient solution and furthermore
cannot be used without access to the target architecture.

Hybrid methods have also been presented where both analytical mod-
els and exhaustive searches are used [23,38,70,78]. For example, in [78] an
analysis is conducted to obtain bounds on the search space that should be
explored. The authors consider data reuse in multiple levels of the cache
hierarchy but ignore cache associativity.

As already mentioned in Chapter 3, Halide enables the separation of
a target algorithm from its optimization schedule. Due to this reason,
it is a good target environment for testing our optimization algorithm.
Similar to our approach, the Halide Auto-Scheduler [52], attempts to
automatically generate an optimization schedule for a given function by
using a heuristic based optimization algorithm. However, the authors’ ap-
proach focuses on finding the best loop fusion options in image processing
pipelines with numerous stages and thus the cache and tiling analysis it
employs is limited (considering only one level of cache hierarchy). This
leads to suboptimal results in small memory intensive applications. More-
over, it uses the bounds inference information provided by the back-end
compiler regarding memory accesses and footprint and is thus unable to
discern patterns in the source code. The Halide autotuner implemented
alongside the autotuning framework Opentuner [5], is another method
that automatically generates optimization schedules by iteratively running
an application using different optimization configurations. The autotuner
needs a large amount of time to search the design space, while providing
no guarantee regarding the quality of the final solution. Furthermore,
part of the design space is sometimes actually excluded from the search
space, and thus the framework may be incapable of finding the optimal
solution altogether.

Other, more recent schedulers were proposed (after publication of this
work in [81]) which also attempt to schedule Halide applications [2, 82].
Due to this reason, the evaluation section of this chapter only compares
to solutions available at the time of publication.

4.3 Proposed method
In this section we present the general optimization flow of our proposed
method and demonstrate the analysis involved. Figure 4.1 shows the
generic procedure that takes an algorithmic description of a loop nest as
input, classifies it in order to decide whether to apply loop transformations
and if so which combinations of them. It finally performs parallelization
and vectorization (if supported by the target architecture) in order to

4.3. PROPOSED METHOD 33

produce an optimization schedule for it. Furthermore, if the optimizer
detects that the output data is not used in future loop iterations, then
non-temporal store instructions are used in order to bypass the cache and
reduce cache pollution. Non-temporal stores can help assure that data
fetched into the cache by the hardware prefetchers do not get evicted
before they can actually be used.

Table 4.1: Architecture and application Parameters

Notation Description

LiCLS Li cache line size
Liway Li cache associativity
LiCS Li cache size

Bi Problem size in ith Dimension
DTS Data Type Size

NCores Number of Cores
Nthreads Threads per Core

Table 4.1 lists all the application and architecture-specific parameters
that will be required throughout the optimization process. The former
category considers the problem size (loop bounds in each dimension) as
well as the size of the data type as the main parameters of interest. As for
architecture-specific parameters, most of the information we need refers
to the memory hierarchy of the system, such as the size, line size and
associativity of each cache level. Other parameters include the native
vector width of the architecture, and the number of available processing
units.

Classification

The first step in the optimization flow involves the classification of the
algorithm definition. The main purpose of this step is to decide whether
transformations should be applied on the target loop nest, and if so
whether they should focus on optimizing for temporal or spatial locality.
The reason behind this distinction is twofold. Firstly, tiling (and therefore
altering the stride of most load operations of a program) a loop nest with
only contiguous memory accesses or no temporal locality may interfere
with the efficiency of the streaming hardware prefetching unit and lead to
suboptimal results. Secondly, tile size selection for (self-) spatial locality
requires a different analysis than tiling that aims to exploit temporal reuse.
The only notion of reuse in applications that only benefit from increased
self-spatial locality would refer to cache line reuse, or more specifically to
input data that belong to the same cache line.

The classification process that specifies whether to transform the loop
nest and optimize for temporal or spatial locality can be seen in Figure 4.2.

34
CHAPTER 4. SCHEDULING MEMORY-BOUND KERNELS IN MULTI-CORE

CPU PLATFORMS

Input
Statement

Classification

Architecture
Parameters

Application
Parameters

Spatial
Optimizer

Parallelization
Vectorization

Temporal
Optimizer

Optimization
Schedule

Figure 4.1: Optimization Flow

input
statement

diff
indices

Temporal
reuse

transpose

Self-spatial
reuse

Parallelization
Vectorization

NTI

noyes

yes no

Figure 4.2: Classification Process

We first check if the unique indices in the input arrays (which appear
on the right-hand-side of the algorithmic relation) of the algorithm de-
scription are different from the ones in the output array (which appear in
the left-hand-side). If that’s the case, then our algorithm contains multiple
cache line references with temporal reuse possibilities. If we do not detect
such a pattern, then it either means that only self-spatial reuse may be
exploited, or that the algorithm only contains contiguous memory accesses
and applying any loop transformation may alter the stride of the load
operations and therefore interfere with the efficiency of the prefetching
mechanisms. When optimizing for spatial reuse we check whether any
arrays appear transposed in the statement. In this case, we transform
the loop in order to ensure that useful data fetched to the L1 cache due
to prefetching will not get evicted before they can be used. If none of
the above patterns exist in the statement, then no further analysis is
needed and no loop transformations are deemed beneficial. This decision
is also supported by the work in [34], which explains that tiling may not
be effective for stencil computations (even though they might reference
multiple cache lines and therefore have some form of temporal reuse) due
to uniform access patterns that can be easily exploited by the hardware
prefetchers in modern architectures which can achieve the same level of
reuse without the loop overhead of tiling.

4.3. PROPOSED METHOD 35

Optimizations for temporal reuse

This section presents the analytical model, as well as the procedure that
is followed in order to determine both the dimensions of the tile as well
as the final loop permutation.

In general, our goal is to exploit reuse in both L1 and L2 caches in
order to minimize the overall number of (cache) misses. More specifically,
we pick tile dimensions such that L1 reuse is achieved in the outermost
intra-tile loop and L2 reuse in the innermost inter-tile loop. The shared
cache (L3) is also implicitly considered during the optimization procedure;
modern hardware prefetching units are also capable of detecting non-unit
strides in load operations in which case they fetch the expected data to
the last-level-cache (and usually to the L2 as well). To better exploit this
feature, we also aim to minimize the inter/intra-tile distance of each loop,
therefore minimizing the stride of the equivalent load operations as well.

Table 4.2: Basic notation

Notation Description

lc Amount of data that fits in one cache line
Nsets Number of sets in cache
Twidth Tile width

Bc Loop Bounds in the leading (column) dimension
maxTi Maximum tile size in ith dimension
Tdims Number of tile dimensions

Ti Tile size in ith dimension
wsLi Li cache working set

ai Li access time cost
CLi Estimated misses in Li cache

Corder Loopnest permutation cost
L2pref L2 cache prefetches per access

L2maxpref Maximum prefetch distance
Lieway Effective associativity of Li cache

As an example, consider the code in Listing 4.1 which shows a simple
C implementation of tiled matrix multiplication. In this case the classifier
will recognize that different indices appear in the left and right side of
the statement and thus will determine that temporal reuse should be
exploited. We first want to achieve L1 cache reuse at the outermost intra-
tile loop level (i).

For the loop nest of Listing 4.1, an iteration of the i loop accesses/loads
a row from array C of width Tj , a row from array A of width Tk and a
tile of size Tk ∗ Tj from array B. Thus the working set for the L1 cache in
this case is:

wsL1 = Tj + Tk + TjTk (4.1)

36
CHAPTER 4. SCHEDULING MEMORY-BOUND KERNELS IN MULTI-CORE

CPU PLATFORMS

1 for ii=0;ii<Bi;ii+=Ti
2 for kk=0;kk<Bk;kk+=Tk
3 for jj=0;jj<Bj;jj+=Tj
4 for i=ii;i<ii+Ti;i++
5 for k=kk;k<kk+Tk;k++
6 for j=jj;j<jj+Tj;j++ // vector loop
7 C[i][j]=C[i][j]+A[i][k]*B[k][j]

Listing 4.1: Tiled matrix multiplication

The total estimated cold misses in the L1 cache for one iteration of the i
loop will be:

Tj
lc

+ Tk
lc

+ TjTk
lc

(4.2)

However, due to the streaming prefetchers present in the L1 and L2 cache
which fetch the next cache line after every reference, the estimated cold
misses will be:

1 + 1 + Tk (4.3)
Furthermore, for Ti iterations of the i loop, Equation 4.3) becomes:

Ti + Ti + Tk (4.4)

Finally, the total number of estimated misses in the L1 cache after taking
the inter-tile loop nest iterations into account will be:

CL1 = (Ti + Ti + Tk)(BiBjBk
TiTjTk

) (4.5)

Similarly, we want to achieve L2 reuse at the innermost inter-tile loop
level (jj). One iteration of the jj loop will access a whole tile of arrays A,
B and C. In this case the working set for the L2 cache will be:

wsL2 = TjTi + TkTi + TjTk (4.6)

Moreover, just like for the L1 cache, the estimated number of cold misses
for one iteration of the jj loop will be:

TjTi
lc

+ TkTi
lc

+ TjTk
lc

(4.7)

Which after eliminating the prefetched references becomes:

Ti + Ti + Tk (4.8)

Which in turn for Bj

Tj
iterations of the jj loop :

Ti
Bj
Tj

+ Ti + Tk
Bj
Tj

(4.9)

4.3. PROPOSED METHOD 37

And finally after taking the other two inter-tile loops (kk,ii) into account
we can compute the total estimated cost for the L2 cache:

CL2 = (Ti
Bj
Tj

+ Ti + Tk
Bj
Tj

)Bi
Ti

Bk
Tk

(4.10)

After computing both (4.5) and (4.10) we can compute the final cost
function:

Ctotal = a2CL1 + a3CL2 (4.11)

We use a weighted cost function where the a2 and a3 are the relative access
times of L2 and L3 cache respectively. We assume that the hardware
prefetching unit can follow the strides of the memory references and
therefore fetch the equivalent data into the L2 and L3 cache.

Corder is the cost function that describes the total distance in terms
of iterations between the “equivalent” intra and inter tile loops, that
belonged to a single original dimension before tiling was applied. In detail
the partial costs for Listing 1 are: TiTk, Bj

Tj
Ti and Bj

Tj

Bk

Tk
for the j, k, i

original loops respectively. The total loop permutation cost would be:

Corder = (BjBk
TjTk

+ BjTi
Tj

+ TiTk) (4.12)

It is obvious that for a different inter-tile or intra-tile permutation, a
different loop would be at the outermost intra-tile loop level (or innermost
inter-tile), which in turn would lead to a different L1/L2 working set and
a different number of estimated misses. This explains why we evaluate all
possible permutations.

Algorithm 1 is used to acquire an upper bound on the dimensions of
the tile, such that no interference misses occur. In detail, it emulates the
behavior of the cache, by fetching tile rows into the array emucache and
testing whether the set that the new data will be mapped to is already full,
at which point the interference flag (intrflag) becomes true and the upper
bound maxTi is returned. Furthermore, the algorithm keeps track of the
prefetched data that might cause interference misses in the following way:
If we are optimizing for the L1 cache, then we also need to consider the fact
that for every cache line that is fetched, the next one is also brought into
the cache by the hardware prefetcher. When optimizing for the L2 cache,
we need to take into account that more than one prefetching requests may
be issued at once, usually with a maximum distance between the actual
reference and the prefetched data (usually 20 for Intel processors). For
this reason we also fill the array with these extra lines in order to detect
situations where the prefetched data might cause useful data to be evicted.
To accomplish this, we track the total number of prefetched lines (s), as
well as the distance between the actual reference and the prefetched line

38
CHAPTER 4. SCHEDULING MEMORY-BOUND KERNELS IN MULTI-CORE

CPU PLATFORMS

(s− p). Finally, in the case of L2, we limit the effective number of sets to
half the original size. In other words, we reduce the effective cache size by
half (and thus size of wsL2) to account for the data that are fetched by the
constant stride prefetchers. As the experiments show in subsection 4.5,
this leads to efficient results, especially in the case of processors without
L3 cache where data is only brought to L2. All the relevant notation can
be found in Table 4.2.

Algorithm 2 shows the procedure that is followed in order to optimize
a loop nest for temporal locality. The first step is to obtain the proper
tile dimensions that minimize misses in the L1 and L2 cache. To achieve
this we evaluate all possible tile sizes, as constrained by the bounds re-
turned by the cache emulation algorithm (Algorithm 1) (for the first three
dimensions) and problem size (for loop nests with four or more levels) for
all valid intra-tile and inter-tile permutations. Invalid permutations are
considered those where the loops that correspond to column indices are
outermost. For each possible tile we calculate the size of the working set
in the L1 and L2 cache to ensure that the tile fits in the cache (in order to
minimize capacity misses) and finally if the dimension that corresponds
to the outermost intertile loop (the one that we plan to parallelize over
cores/threads) fulfills the following constraint:

Bouter

Touter
≥ Nthreads/core ∗Ncores (4.13)

This constraint ensures that each core/thread can execute at least one
iteration of the inter-tile loop nest in order to better distribute the com-
putation load among the processing units. The tile dimensions that
correspond to the minimum total cost are chosen for the final tile size.
To better utilize the prefetching units, we introduce a second step in our
procedure where we try to minimize the distance between the inter and
intra-tile loops that correspond to the same original loop in the original
nest. This way we minimize the reuse distance of the equivalent data, as
well as the stride of the load operation that will occur on the next inter-tile
reference. Finally, after tiling and reordering the loop nest, we merge the
outer inter-tile loops when possible to reduce loop overhead and further
exploit parallelism.

Optimizations for spatial reuse

Optimizing for spatial locality is important in applications with no tem-
poral reuse possibilities. This subsection presents the analytical model
and the procedure to obtain tile dimensions that take advantage of the
streaming hardware prefetching units in applications with complex strides
like transposed arrays.

4.3. PROPOSED METHOD 39

Algorithm 1: Cache emulation Algorithm (emu)
Input: L1CLS, LiCS , DTS , Ti−1, Liway, Bi, Nthreads, addr,

L2pref , L2maxpref
Output: maxTi

Initializations :
1: lc = bL1CLS

DT S
c

Nsets = b Lics
Liway∗DT S

c
Lieway = Liway

Nthreads
maxTi ← 0, s← 0
intrflag ← False

2: if optimizing for L2 then
3: Ti−1 = dmax(Ti−1,lc)

lc
e

4: Nsets = Nsets
2

5: else
6: Ti−1 = dmax(Ti−1+lc,2∗lc)

lc
e

7: end if
8: emucache[Nsets] = 0
9: repeat

10: set← daddr+maxT i∗Bi

lc
e

11: for i = 0 to Ti−1 do
12: if emucache[(set+ i)] = Lieway then
13: intrflag ← True
14: else
15: emucache[(set+ i)] + +
16: s+ +
17: end if
18: if s− i <= L2maxpref then
19: for p = 0 to L2pref do
20: if emucache[(set+ i+ p)] = Lieway then
21: intrflag ← True
22: end if
23: end for
24: end if
25: end for
26: if intrflag = False then
27: maxTi + +
28: end if
29: until intrflag = True OR maxTi = Bi
30: Return maxTi

40
CHAPTER 4. SCHEDULING MEMORY-BOUND KERNELS IN MULTI-CORE

CPU PLATFORMS

Algorithm 2: Temporal Reuse Optimizer
Input: L1CLS, L2CLS, L1CS, L2CS, L1way, L2way, Ncores,

B0, .., Bn, DTS

Output: Tile size, Loop order
Step 1: Loop Tiling:

1: i← 0
2: for Every inter-tile loop permutation do
3: for Every intra-tile permutation do
4: if Column index is outermost then
5: Skip to next permutation
6: end if
7: repeat
8: PickTi ≤ Bc
9: i← i+ 1
10: maxTi = emu(L1CLS, L1CS, DTS, L1way,

Bc, Nthreads, addr, 0, 0)
11: Pick Ti ≤ maxTi
12: if (Tdims > 2) then
13: i← i+ 1
14: maxTi = emu(L2CLS, L2CS, DTS, L2way, Bi,

Nthreads, addr, L2pref, L2maxpref)
15: Pick Ti ≤ maxTi
16: if (Tdims > 3) then
17: for i=3 to Tdims do
18: Pick Ti ≤ Bi
19: end for
20: end if
21: Calculate wsL2, Estimate CMissL2
22: end if
23: Calculate wsL1, Estimate CL1
24: if (wsL1, wsL2 fit in cache and iterations per thread ≥ 1)

then
25: CostFunction=(a2CL1 + a3CL2)
26: end if
27: until all valid tile sizes evaluated
28: end for
29: end for

Step 2: Reorder Loop:
30: for Every valid inter-tile loop permutation do
31: for Every valid intra-tile permutation do
32: Calculate Corder
33: end for
34: end for

4.3. PROPOSED METHOD 41

As an example, consider the C code in Listing 4.2 which shows a tiled
implementation of a transposition and masking algorithm.

1 for yy=0;yy<By;yy+=Ty
2 for xx=0;xx<Bx;xx+=Tx
3 for y=yy;y<yy+Ty;y++
4 for x=xx;x<xx+Tx;x++
5 out[y][x]=A[x][y]&B[y][x]

Listing 4.2: Tiled Transposition and Masking

In this case the classifier detects that the indices are the same in the
input (left-hand-side) and output (right-hand-side) arrays, and that one
array (A) appears transposed in the statement. As a result the algorithm
is optimized targeting spatial locality, using Algorithm 3.

We again assume the presence of a streaming prefetcher in both levels
of the cache hierarchy, which means that the processor will fetch the next
cache line for memory references in A and B. Just like in the previous
subsection, the cost of accessing one tile of the transposed array A will be
equal to Tx which after taking the inter-tile loops into account becomes:

Tx
BxBy
TxTy

= BxBy
Ty

(4.14)

The total cost for array A will be:

Cpartial = (BxBy
Ty

)Tx
lc

(4.15)

where we refer to the factor Tx

lc
as the prefetching efficiency for array A

which represents the efficiency of the constant stride prefetching unit in
the L2 cache. This factor gets minimized for Tx = lc (assuming that
all tiles have a minimum of lc size in every dimension). In other words,
the transposed array favors tiles that have the maximum height and the
minimum width. Similarly, for array B the cost of accessing one tile be
equal to Ty which after taking the inter-tile loops into account becomes:

Ty
BxBy
TxTy

= BxBy
Tx

(4.16)

The total cost for array B will be:

Cpartial = (BxBy
Tx

)Tx
lc

(4.17)

Finally the working sets for the two levels of cache:

wsL1 = lcTx + Tx (4.18)

42
CHAPTER 4. SCHEDULING MEMORY-BOUND KERNELS IN MULTI-CORE

CPU PLATFORMS

Algorithm 3: Spatial Locality Optimizer
Input: L1CLS, L2CLS, L1CS, L2CS, L1way, L2way, B0, .., Bn, DTS
Output: Tile size

Initializations :
1: lc = bL1CLS

DTS
c,

2: repeat
3: CTotal ← 0
4: Pick Twidth ≤ Bc
5: i← i+ 1
6: maxTi = emu(L2CLS, L2CS, DTS, L2way, Bi,

Nthreads, addr, L2pref, L2maxpref)
7: Pick Ti ≤ maxTi
8: Calculate wsL2
9: Calculate wsL1
10: for Every input array do
11: if (wsL1, wsL2 fit in cache and iterations per thread ≥ 1) then
12: Calculate Cpartial
13: CTotal+ = Cpartial
14: end if
15: end for
16: until all valid tile sizes evaluated

wsL2 = 2TxTy (4.19)

Algorithm 3 shows the pseudocode for the spatial locality optimizer.
Just like in the previous subsection, we use Algorithm 1 to obtain an
upper bound for the tile dimensions (tile height for 2 dimensional arrays).
We calculate the working sets and if the tile height also fulfills equation
(4.6), then for each input array we calculate the partial cost (Cpartial)
as explained in the previous example (equations (4.16),(4.17)). The final
cost function CTotal is equal to the sum of all Cpartial costs. We evaluate
all valid tile sizes as constrained by the bounds returned from Algorithm 1
and the problem size in the leading (column) dimension, and the tile that
corresponds to the minimum Ctotal is chosen as the final tile size.

Parallelization, vectorization, non-temporal instructions

Standard optimizations include performance optimizations that can be
applied after properly transforming the loop nest. These optimizations
usually include vectorization and parallelization. Another possibility is
the usage of non-temporal stores in applications with no temporal reuse
in the output data. Non-temporal instructions can bypass the various

4.4. EXPERIMENTAL FRAMEWORK 43

levels of the memory hierarchy in order to avoid cache pollution. For
applications with contiguous memory accesses, tiling is unnecessary, since
the streaming hardware prefetching units are already capable of fetching
the next cache line along with the data that will be needed in the near
future. This is why in such cases we bypass all tiling transformations
during the optimization flow.

4.4 Experimental framework
In this section we present the experimental framework that was developed
for the Halide DSL and compiler [73]. The red box in Figure 4.3 highlights
the optimizer that is described in this work and which is implemented as
a tool to be used with Halide. Listing 4.3 gives an example implementa-
tion of a matrix multiplication implementation in the Halide language,
along with an optimization schedule. We should emphasize that our
proposed optimization flow can be used with any other compiler/back-end
but the Halide DSL was chosen in order to make use of the scheduling
directives that enable quick application of various loop transformations
and optimizations as seen in Listing 4.3. Such a framework is especially
useful in many applications in the image processing domain, where most
parameters are fixed and known at compile-time.

Halide
Source Code

Application
Parameters

Halide
Statement

Classification

Architecture
Parameters

Parallelization
Vectorization

Spatial
Optimizer

Temporal
Optimizer

Halide
Optimization
Schedule

Halide
Source Code

Halide
Compiler

Optimizer

Figure 4.3: Experimental Halide Optimization Flow

As already mentioned in subsection 4.2, there are currently two ways
to generate optimization schedules for Halide functions: the Halide Auto-

44
CHAPTER 4. SCHEDULING MEMORY-BOUND KERNELS IN MULTI-CORE

CPU PLATFORMS

1 //Algorithm Definition
2 C(j,i)=0;
3 C(j,i)=C(j,i)+A(k,i)*B(j,k);
4 //Optimization Schedule
5 C.update().split(j,j_o,j_i,512)
6 .split(i,i_o,i_i,32)
7 .reorder(j_i,i_i,j_o,i_o)
8 .vectorize(j_i,8)
9 .parallel(i_o);

Listing 4.3: Matrix Multiplication in Halide & example optimization
schedule for an Intel-based x86 architecture.

Scheduler [52] uses a heuristics-based algorithm to decide on the tile size
and final loop permutation, while the autotuner [5] iteratively searches the
design space with various schedule configurations in order to minimize the
execution time of the final application. We use those two approaches as
references for comparison with our framework.

Our framework requires the definition of a Halide function, along with
the application and architecture specific parameter as input to the opti-
mizer. The Halide statement is then processed during the classification
step, and depending on the information that is derived and the patterns
that can be recognized, a different optimization technique is used, as
explained previously in subsection 3.

Furthermore, since the Halide compiler cannot generate non-temporal
instructions, we extend it with a new scheduling directive - .non_temporal()
- that produces non-temporal stores in the generated code when used in
the optimization schedule of a function. To this end, we introduce a new
optimization to the Halide front-end that allows the compiler to mark
a function and the subsequent Halide Intermediate Representation (IR)
store nodes as non-temporal in order to internally use that information to
generate specific instructions (both scalar and vector variants) with non-
temporal hints during the LLVM code generation pass in the back-end.
Examples of such instructions (and the ones generated by the compiler
in the following experiments) in Intel platforms with SSE/AVX support
are the vector operations (v)movntdq, (v)movntps for integer and single
precision floating point data types respectively.

4.5. EXPERIMENTAL RESULTS 45

4.5 Experimental results
Comparison to Halide approaches

This subsection presents the results that were obtained for a variety of
benchmarks. All experiments were conducted multiple times measuring
the average execution time of 100 runs for each benchmark. The run-time
difference between runs of the same experiment was less than 1%.

We compare our results with the equivalent that the Halide Auto-
Scheduler and autotuner generate on the same platform. Table 4.3 shows
the hardware specifications of the target architectures that were used
throughout the experimental process, while Table 4.4 lists the bench-
marks, the problem size used in each of them along with the average
execution time of the best implementation (in terms of execution time) for
each benchmark to be used as reference for the following graphs. We chose
three different architectures to showcase the flexibility of our approach in
platforms with different architectural parameters. Specifically, the two
Intel platforms differ in the number of cores and therefore may lead to
different tile sizes (Equation 4.13), while the ARM architecture operates
on a completely different memory hierarchy and utilizes one thread per
core. Finally, Table 4.5 shows the runtime of our framework for each
benchmark. In most cases, the tool is able to provide solutions within mil-
liseconds, with the only exception being the convolution layer benchmark
due to the large number of nested loops present in the tiled version of the
algorithm and therefore the large number of possible loop permutations.

Table 4.3: Experimental Platforms

Intel i7 5930k Intel i7 6700 ARM Cortex A15

LCLS 64B 64B 64B
L1way 8 8 2
L1CS 32KB 32KB 32KB
L2way 8 8 16
L2CS 256KB 256KB 512KB

NCores 6 4 4
Nthreads 2 2 1

Figure 4.5 shows the throughput (1/s) relative to the fastest imple-
mentation for the two Intel platforms. The autotuner bar refers to the
schedule that the Halide autotuner converges to after one hour of runtime.
The Baseline bar corresponds to the most basic optimization a developer
may perform, which usually includes parallelization of the outer loop and
vectorization of the inner one. Finally, in order to make the comparison
clearer, and since neither the autotuning nor the autoscheduling methods
are able to generate non-temporal instructions, we separate the results

46
CHAPTER 4. SCHEDULING MEMORY-BOUND KERNELS IN MULTI-CORE

CPU PLATFORMS

Table 4.4: Benchmarks

Average execution time (ms)
Best implementation

Benchmark & Problem Size Intel i7 6700 Intel 5930K ARM A15

convlayer
887.12 503.80 8897.293x3x64x64 Convolution Layer

256x256x64x16

doitgen
233.29 143.77 2824.87Multiresolution Analysis Kernel

256x256x256

matmul
298.97 182.24 2080.58Matrix Multiplication

2048x2048

3mm
310.97 178.90 1564.15Three Matrix Multiplications

2048x2048

gemm
286.12 183.00 1503.06Generalized Matrix Multiplication

2048x2048

trmm
199.44 131.76 1295.14Triangular Matrix Multiplication

2048x2048

syrk
742.57 364.80 3575.62Symmetric rank k update

2048x2048

syr2k
1442.41 992.61 7269.75Symmetric rank 2k update

2048x2048

tpm
10.02 6.00 41.87Matrix Transposition and Masking

4096x4096

tp
7.23 4.50 39.00Matrix Transposition

4096x4096

copy
5.49 3.18 -Array Copy

4096x4096

mask
8.32 4.67 -Array Mask

4096x4096

4.5. EXPERIMENTAL RESULTS 47

where the classifier decides to use non-temporal (streaming) stores. The
first nine benchmarks (convlayer, doitgen, matmul, 3mm, trmm, gemm,
syrk, syr2k) have been optimized for temporal reuse, while the transpo-
sition (tp), transposition and masking (tnm), copy and mask kernels have
been optimized for spatial reuse. Non-temporal instructions can also be
used for the four last algorithms.

0.0

0.3

0.5

0.8

1.1
tp&m convlayer matmul doitgen

Proposed+NTI AutotunerNo
rm

al
ize

d
th

ro
ug

hp
ut

 (1
/s

)

Figure 4.4: Throughput (1/s) relative to fastest implementation;
autotuner ran for 1 day on Intel 5930K , NTI refer to implementations
with non-temporal instructions.

The autotuning framework generates relatively poor schedules for most
benchmarks either because it excludes schedules with tiling in all dimen-
sions, or because it needs even more time to converge to a better solution.
Due to this reason, we performed an extra experiment for the matrix
multiplication, doitgen, convolution layer and transposition and masking
benchmarks, where we compare our solution to the schedule generated
by the autotuner after one day of runtime. It should also be noted that
most of the applications had to be rewritten in a Halide-specific way that
uses helper functions (e.g. sum) and bypasses the initial definition of
the algorithms (e.g. initialize sum to zero) in order to be optimized by
the autotuner. These functions rely on the compiler to perform some
optimizations instead of actual loop transformations specified by the de-
veloper. Without this alternate definition, the autotuner would only
attempt to optimize the initialization step and not the actual computation.
The syrk and syr2k benchmarks could not be rewritten in such a way and
thus the autotuned implementations are excluded.

Figure 4.4 demonstrates the performance of the solutions generated
after one day of autotuning along with the results of our framework. We
chose algorithms with different loop dimensions (2, 3, 4, 5 dimensions for

48
CHAPTER 4. SCHEDULING MEMORY-BOUND KERNELS IN MULTI-CORE

CPU PLATFORMS

0.0
0.2
0.4
0.6
0.8
1.0

convlayer

0.0
0.2
0.4
0.6
0.8
1.0

doitgen

0.0
0.2
0.4
0.6
0.8
1.0

matmul

0.0
0.2
0.4
0.6
0.8
1.0

3mm

0.0
0.2
0.4
0.6
0.8
1.0

trmm

0.0
0.2
0.4
0.6
0.8
1.0

gemm

0.0
0.2
0.4
0.6
0.8
1.0

syrk

0.0
0.2
0.4
0.6
0.8
1.0

syr2k

0.0
0.2
0.4
0.6
0.8
1.0

tpm

0.0
0.2
0.4
0.6
0.8
1.0

tp

0.0
0.2
0.4
0.6
0.8
1.0

copy

0.0
0.2
0.4
0.6
0.8
1.0

mask

No
rm

al
ize

d
th

ro
ug

hp
ut

 (1
/s

)

(a) Intel i7 6700

0.0
0.2
0.4
0.6
0.8
1.0

convlayer

0.0
0.2
0.4
0.6
0.8
1.0

doitgen

0.0
0.2
0.4
0.6
0.8
1.0

matmul

0.0
0.2
0.4
0.6
0.8
1.0

3mm

0.0
0.2
0.4
0.6
0.8
1.0

trmm

0.0
0.2
0.4
0.6
0.8
1.0

gemm

0.0
0.2
0.4
0.6
0.8
1.0

syrk

0.0
0.2
0.4
0.6
0.8
1.0

syr2k

0.0
0.2
0.4
0.6
0.8
1.0

tpm

0.0
0.2
0.4
0.6
0.8
1.0

tp

0.0
0.2
0.4
0.6
0.8
1.0

copy

0.0
0.2
0.4
0.6
0.8
1.0

mask

Proposed Proposed+NTI Auto-Scheduler Autotuner Baseline

No
rm

al
ize

d
th

ro
ug

hp
ut

 (1
/s

)

(b) Intel i7 5930K

Figure 4.5: Intel platforms - Throughput (1/s) relative to fastest
implementation (see Table 4.4)

4.5. EXPERIMENTAL RESULTS 49

the transpose and masking, matrix multiplication, doitgen and convolu-
tion layer respectively) in order to compare our analysis for transforming
N-dimensional loops with stochastic autotuned methods. These results
are similar to the ones presented in Figure 4.5 and therefore strengthen
our decision to tile each dimension of the input loop nest, as opposed to
the autotuner schedules that only attempt tiling in the dimensions of the
output array.

The schedules provided by the Auto-Scheduler offer a significant speed-
up compared to both the baseline schedules and the autotuned ones.
However, our schedules still perform significantly better for most bench-
marks. The syrk and syr2k benchmarks are the only exceptions where
our approach performs similar to the baseline schedule due to the fact
that the algorithms contain memory references along cache lines, and
therefore do not significantly benefit from tiling. However, as expected,
after repeating the experiments for larger problem sizes, the tiled version
performed around 25% better than the baseline schedule.

0.0

0.4

0.8

1.1

1.5
tp&m tp copy mask

Proposed Proposed+NTI Auto-Scheduler

No
rm

al
ize

d
th

ro
ug

hp
ut

 (1
/s

)

Figure 4.6: Throughput (1/s) relative to Proposed Non-NTI imple-
mentation, NTI refer to implementations with non-temporal instructions.
(Intel 5930K)

Table 4.5: Optimization runtime

Benchmark convlayer doitgen matmul 3mm gemm trmm
7.604s 0.153s 0.006s 0.006s 0.006s 0.005s

Runtime syrk syr2k tpm tp copy mask
0.009s 0.012s 0.002s 0.002s 0.002s 0.002s

Figure 4.6 shows the effect of non-temporal store instructions in the
applications where the classifier does not detect output data reuse for

50
CHAPTER 4. SCHEDULING MEMORY-BOUND KERNELS IN MULTI-CORE

CPU PLATFORMS

the Intel i7-5930K platform. As seen in the graph, this optimization can
significantly improve the performance in applications with no temporal
reuse on the output data due to a reduction of the total number of cache
misses.

0.0
0.2
0.4
0.6
0.8
1.0

doitgen matmul convlayer gemm 3mm

0.0
0.2
0.4
0.6
0.8
1.0

trmm syrk syr2k tp tpm

Proposed Auto-Scheduler Baseline

No
rm

al
ize

d
th

ro
ug

hp
ut

 (1
/s

)

Figure 4.7: ARM Cortex A15 platform - Throughput (1/s) relative to
fastest implementation.

Figure 4.7 demonstrates the results for the ARM Cortex A15 archi-
tecture. This architecture does not have an L3 cache and the L2 one is
shared among the four cores of the platform. Due to this reason, a minor
change to the model was required before conducting the experiments: The
calculation of L2way in Algorithm 2 should be updated to L2way

Ncores
instead of

L2way
Nthreads

to account for this fact. Furthermore, since the ARM architecture
does not support vector stores with non-temporal hints the mask and copy
algorithms are not included in this graph (their performance is identical in
all three of the proposed, baseline and Auto-Scheduler implementations).
In general our proposed algorithm outperforms the Auto-Scheduler and
baseline on this architecture as well.

Comparison to other tiling approaches

In this subsection, we compare our approach to previous state of the
art analytical models for automatic tile size selection. Namely we pick
the TSS method proposed in [49] as well as the TTS method which was

4.5. EXPERIMENTAL RESULTS 51

introduced in [50]. We pick these techniques as they have similarities with
our approach: The TSS method considers reuse in the L1 and L2 cache
without taking prefetching into account, while the TTS technique opti-
mizes for L2 and L3 cache while taking advantage of hardware prefetch-
ing. However, prefetching is not considered in the analytical model and
prefetched references are not taken into account while estimating the
number of cold misses in every iteration. As a result, the proposed tile
sizes for both TTS and TSS are different than the ones picked by our
approach.

Table 4.6: Average execution time (ms) - Intel 5930K

Problem Size 400 800
Benchmark TTS TSS Proposed TTS TSS Proposed

matmul 1.76 1.54 1.65 12.08 15.06 9.35
tmm 1.01 1.19 0.93 5.93 22.42 5.02
syrk 14.80 7.20 5.80 96.24 115.07 69.04
syr2k 30.57 13.22 11.29 58.88 86.99 51.21

Problem Size 1024 1600

matmul 23.56 71.97 20.46 98.65 104.18 71.62
tmm 10.01 35.46 10.57 58.47 137.83 36.21
syrk 224.88 228.83 159.47 242.11 294.84 213.32
syr2k 228.33 248.60 97.14 451.45 536.22 314.38

Table 4.6 shows the average execution time (ms) on the Intel i7-5930K
platform for the three methods. Since both TTS and TSS use a different
framework and back-end compiler, we are not able to reproduce their opti-
mization flow. For this reason, we choose this specific platform for our ex-
periments, since it has similar cache hierarchy (LCLS, L1way, L1CS, L2way,
L2CS) as the one used in [50] in order to use the tile dimensions picked
by TTS and TSS as listed in [50], with a difference on the size of the L3
cache and the number of cores. However, since the size of the L3 cache in
both platforms is large enough, and the effective size per core is the same,
we do not expect a big impact on the final tile dimesions. Furthermore,
since nor TTS, nor TSS consider loop interchange, we try every possible
loop permutation for each benchmark and pick the one that results in the
best performance to include in our experiments. We compare the three
techniques for the four benchmarks that are common between the ones
used in [50] and the ones we used in subsection 4.5 and four different
problem sizes.

The results presented in Table 4.6 indicate that our method outper-
forms the other two techniques by up to two times on the syr2k bench-
mark. Furthermore, the experiments show that our proposed approach
generates results which are on average 26% and 41% faster than the
solutions provided by TTS and TSS respectively.

52
CHAPTER 4. SCHEDULING MEMORY-BOUND KERNELS IN MULTI-CORE

CPU PLATFORMS

4.6 Summary
In this chapter we proposed an optimization framework for memory bound
applications that considers architecture and application specific param-
eters while taking advantage of the hardware prefetching mechanisms
in modern platforms. We implement it as a tool to be used with the
Halide DSL and compiler and compare it to both other analytical as
well as empirical methods. Experimental results indicate a significant
improvement in performance compared to previous models, while pro-
viding solutions usually within milliseconds. These results show that
interaction between loop transformations and the sophisticated hardware
prefetching mechanisms in modern architectures is of utmost importance
when optimizing memory intensive applications.

5
Reuse analysis for multi-stage

pipelines

5.1 Introduction
High-tech systems such as wide format printers, radars, and health-care
monitoring applications execute complex image processing algorithms on a
target platform which is typically a multi-core CPU (e.g. from ARM or In-
tel) with SIMD extensions. In order to meet the real-time constraints, the
final implementation needs to be highly optimized for the target platform.
Traditional optimizations usually include a series of loop transformations,
such as tiling and loop fusion as well as vectorization and parallelization
and aim to exploit locality (spatial and temporal), data level parallelism
and task level parallelism respectively. However, manually applying these
transformations siginificantly reduces code readability and portability and
discourages high level design space exploration.

Recently, domain-specific-languages (DSLs) such as Halide [73], which
was introduced in detail in Chapter 3 and PolyMage [53] were introduced
in order to facilitate the optimization process in high-performance image
processing applications. These DSLs allow developers to express applica-
tions in a more abstract format while maintaining the ability to apply low
level optimizations and transformations on the final code. The benefits
of approaches can be invaluable in the case of image processing pipelines
where a combination of optimizations including stage interleaving or stage

53

54 CHAPTER 5. REUSE ANALYSIS FOR MULTI-STAGE PIPELINES

fusion, tiling, vectorization and parallelization are necessary in order to
achieve high performance.

As explained in Chapter 2, an image processing pipeline can be defined
as a series of functional stages, where each stage contains an arbitrary
number of nested loops and depends on data produced during an earlier
stage. As a result, interleaving the computation of these stages can offer
significant performance improvement by exploiting producer/consumer
locality and ensuring that intermediate buffers are kept inside the local
caches or registers. Both Halide and PolyMage employ techniques that
allow for the automatic optimization of such imaging pipelines. The
Halide Auto-Scheduler [52] attempts to group stages together and eval-
uates an effective tiling in each group. PolyMage can use both auto-
tuning to search parts of the design space as well as a recently introduced
model-driven approach [32]. This new approach quickly attempts to fuse
stages and extends the search space in order to cover more solutions
than the previous auto-tuning method. However, all three techniques
[32, 52, 53] focus on the interleaving of the computation of each stage
using overlapping tiles and therefore lead to solutions with limited reuse
possibilities and often miss sliding window opportunities.

In this chapter we present a novel optimization strategy for image pro-
cessing pipelines that considers stage fusion for maximum producer/con-
sumer locality in conjunction with tile size selection while evaluating reuse
possibilities not considered in previous state-of-the-art approaches. Our
technique is driven by an analytical model that takes relevant application
and architecture specific parameters (such as the number of cores/threads,
cache size, interaction with hardware prefetching) into account and is
capable of producing optimized schedules within seconds, even for complex
pipelines with a large number of stages. We implement it as a tool to be
used with the Halide DSL, as an alternative cost model and analysis to
the Halide Auto-Scheduler and evaluate it across a variety of benchmarks
and target platforms. We compare our solutions to the ones produced by
the Halide Auto-Scheduler, the manual solutions given for the Halide DSL
on the same benchmarks when applicable, as well as the ones produced by
PolyMage (using both the original auto-tuned method, as well as the DP-
fusion technique implemented in [32]) on the same target architectures.
We observe a substantial performance improvement across all platforms
and architectures.

It is important to remark that our technique is not restricted to Halide.
It can be used with other DSLs and general purpose compilers that target
image processing, tensor or linear algebra applications and offer control
over the production and consumption of pipeline stages, as well as the
allocation of intermediate buffers.

The rest of this chapter is organized as follows: subsection 5.2 dis-
cusses related work. Subsection 5.3 gives a motivational example, while

5.2. RELATED WORK 55

subsection 5.4 presents our proposed optimization technique in detail.
Subection 5.5 showcases the experimental results that were obtained.
Conclusive remarks are finally discussed in subsection 5.6. This work
was published in [82].

5.2 Related work
In this section we discuss prior related work. We identify the limitations
of traditional loop fusion and tiling techniques used in general purpose
languages when optimizing image processing pipelines and investigate
some of the benefits of recent image processing domain-specific-languages.

General purpose languages

Loop fusion in conjunction with tiling has been extensively studied in the
past, especially in the case of general purpose compilers. Most of these
approaches focus on exploiting data locality while maintaining parallelism
in applications dominated by linear algebra or stencil computations [35,61,
95, 99, 103]. More specifically, the authors in [103] propose a hierarchical
tiling technique for iterative solver applications in order to reduce com-
munication overhead without introducing severe redundant computation.
In [61], the effects of various inter-loop optimization strategies on PDE
solvers are investigated.

In [17] the authors propose an optimization strategy for compute-
intensive multi-dimensional summations that involve products of several
arrays. They investigate the effects of loop fusion and tiling in such
applications while also reducing the memory footprint of intermediate
temporary buffer requirements.

Other approaches have focused on enabling loop fusion in applications
with complex data dependencies between loop iterations [47, 98]. The
authors in [98] propose a technique that eliminates fusion-preventing de-
pendencies by means of loop tiling and array copying. After iteratively
applying the aforementioned method to multiple loop nests, a single equiv-
alent nested loop can be formed that can be tiled for cache locality. In a
similar fashion, [47] proposes a way of mitigating the presence of fusion-
preventing dependencies, while maintaining parallelism and eliminating
cache conflicts in the subsequent fused loops.

However, all aforementioned methods involve traditional loop fusion
techniques that target time iterated stencils, the scope of which differs
from the complex multi-dimensional problems defined in the context of
image processing pipelines, a term that covers all applications within the
scope of this work. Stages in these pipelines perform various data-parallel

56 CHAPTER 5. REUSE ANALYSIS FOR MULTI-STAGE PIPELINES

computations before having their output consumed by the next stage,
which in turn executes a different computation or stencil.

Domain specific languages

Recently, domain specific languages (DSLs) have emerged that enable
quick design space exploration in the image processing domain. These
DSLs provide high level abstractions in the definitions of the functional
steps inside the pipeline, as well as the ability to apply optimizations
on the generated code in order to ensure high performance on the final
implementation.

Tensor Comprehensions [87] is an example of a recent DSL that targets
deep learning applications such as convolutional and recurrent neural
networks. It consists of a high level language with syntax that resembles
the mathematics of deep learning and a Just-In-Time polyhedral compiler
for CUDA-based GPU architectures. It employs an autotuner in order to
automatically generate efficient polyhedral schedules.

PolyMage [53] is another DSL for image processing applications that
uses a dataflow-like language to describe pipelines. It employs polyhedral
transformations [29,39,66] to optimize the computations performed by the
functional stages of the pipeline with a grouping-then-tiling approach.
More specifically, it relies on auto-tuning over various tile dimensions,
which are all powers of two, in order to decide which stages of the pipeline
will be grouped together. It then applies polyhedral optimizations on each
group to generate the final nested loops. An alternative optimization
strategy for pipelines implemented in PolyMage was introduced in [32].
This method introduced a dynamic fusion and tiling model that extends
the search space to tile sizes that are not powers of two and resolves the
need for auto-tuning. However, due to the nature of the analysis that is
used in the PolyMage compiler, its application scope is limited to stencil
computations and up/down sampling.

In Halide [73], image processing pipelines are defined as directed acyclic
graphs, where each node of the graph represents a functional stage. Each
stage is equivalent to a Halide function, which specifies all producer/-
consumer relations at the specific stage. Furthermore, the functional
description of the pipeline is independent of its optimization schedule. In
other words, the Halide functions define the relations and dependencies
between the stage of the pipeline, but do not influence the way the stages
will get executed. As a result, the optimization schedule can control
both the order of execution within a single stage, as well as the way the
computation of stages gets interleaved during the execution of the pipeline.
Figure 5.1b shows a simple two-stage blur filter implemented in Halide,
along with its optimization schedule. Given this schedule, the compiler
will tile the loop of the blury filter using a tile size of 256x32, vectorize

5.2. RELATED WORK 57

(a) Pipeline graph
1 Func blurx, blury
2 Var x, y, xi, yi;

4 // The algorithm
5 blurx(x,y) = (input(x-1,y) + input(x,y) + input(x+1,y))/3;
6 blury(x,y) = (blurx(x,y-1) + blurx(x,y) + blurx(x,y+1))/3;

8 // The schedule
9 blury.tile(x,y,xo,yo,xi,yi,256,32)

10 .vectorize(xi,8).parallel(yo);
11 blurx.compute_at(blury,xo).vectorize(x,8);

13 blury.realize(1024,1024);

(b) Halide algorithm definition & schedule
1 parallel yo in [0,1024/32):
2 for xo in [0,1024/256):
3 allocate blurx[34][256]
4 for y in [-1,33):
5 for x.o in [0,32):
6 vectorized x.vector in [0,8)
7 blurx(...) = ...
8 for yi in [0, 32):
9 for xi.o in [0,32):

10 vectorized xi.vector in [0,8)
11 blury(...) = ...

(c) Equivalent C-like loop-nest

Figure 5.1: 3x3 Blur pipeline

58 CHAPTER 5. REUSE ANALYSIS FOR MULTI-STAGE PIPELINES

the innermost intra-tile loop (xi) using vectors of size 8 and parallelize
its outermost inter-tile loop (yo). Furthermore, the computation of the
blurx stage will be interleaved on a per-tile basis and its innermost loop
will also be vectorized using vectors of size 8. In other words, before
each intra-tile loop iteration, Halide will first allocate buffer space and
compute all pixels of blurx that will get consumed during this iteration.
The equivalent loop-nest in pseudo-C can be seen in Figure 5.1c.

Halide initially employed an auto-tuning framework to automatically
generate optimized schedules for pipelines [73] which required an extensive
amount of time in order to derive an adequate schedule. A more generic
auto-tuning approach which is driven by genetic algorithms was proposed
in the auto-tuning framework Opentuner [4]. This framework was able to
generate efficient schedules in less time for small pipelines (e.g. bilateral
grid), but fails to converge to a good solution for larger, more complex
problems.

Currently, Halide uses a heuristic based Auto-Scheduler which was
initially proposed in [52] but then received an updated cost model by
the Halide community [26]. This method uses a greedy grouping al-
gorithm to group stages of the pipeline together in order to maximize
producer/consumer locality and applies tiling to the output stage of each
group independently. However, the grouping strategy excludes parts of the
design space, considers only a limited number of tile sizes and its analysis
does not cover buffer allocation and storage scheduling. As a result, while
it can quickly produce schedules within seconds, it misses interesting
solutions of the design space which may benefit from sliding window
opportunities. Those missed solutions may however allow for better SIMD
vector unit utilization and better exploitation of the hardware prefetchers.

The analytical model we introduced in Chapter 4 may also automat-
ically schedules kernels in Halide. However, while it can take hardware
prefetching into account and involves a hierarchical tiling approach, it is
limited to single stage pipeline and stage fusion falls outside its analysis.

Our method considers both the compute as well as the storage levels
of a stage while determining its final optimization schedule. We show
that by taking both compute and store level into account, we can reduce
the amount of intermediate temporary buffer space required, which in
return allows for different grouping and tiling options as well as increased
producer/consumer locality. Furthermore, our analytical model takes
hardware prefetching inherently into account and investigates tile sizes
in a larger scope.

Other, more recent schedulers were proposed (after publication of this
work) which also attempt to schedule Halide applications [2]. Due to this
reason, the evaluation section of this chapter only compares to solutions
available at the time of publication.

5.3. MOTIVATIONAL EXAMPLE AND PROBLEM FORMULATION 59

5.3 Motivational example and problem for-
mulation

In this section we use the blur pipeline seen in Figure 5.1 as a motivational
example in order to demonstrate the limitations of current state-of-the-art
approaches, as well as the idea behind our work.

As already mentioned, optimizing an image processing pipeline usually
involves dealing with a complex trade-off between parallelism, locality and
recomputation. The transformations that are often considered include a
combination of loop interchange, splitting, fusion, parallelization and vec-
torization. Choosing a proper fusion strategy for each stage in a pipeline
has a significant effect on the performance of the final implementation.
Figure 5.2 shows three example schedules for the blur pipeline in pseudo-
C syntax. The amount of reuse or recomputation, as well as the size
of the intermediate buffer that is required can be controlled through
the combination of various loop permutations, tile sizes, and levels at
which we compute and store each stage of the pipeline. For example,
the solution shown in Figure 5.2a computes all necessary pixels in blurx
before consuming them in order to compute blury. Such a schedule avoids
all recomputation but suffers from poor locality and a large intermediate
buffer (depending on the problem size). On the other hand, fully inlining
the producer (blurx) into its consumer (blury) increases locality but at
the cost of the highest recomputation.

Current state-of-the-art approaches (e.g. the current Halide Auto-
Scheduler), only consider scheduling options where compute and store are
set to the same level of a loop nest. As an example, consider the schedule
seen in Figure 5.2b. In this case, tiling the iteration space of blury and
fusing its producer into the innermost inter-tile loop (xo), allows for an
intermediate solution that offers increased locality compared to the fully
stored implementation and less recomputation than the fully inlined one.
Furthermore, it does not hinder parallelization of the outermost inter-tile
loop, since the computation of blurx is interleaved at a lower level than
the parallel loop. We can quantify the amount of intermediate storage
(Bblurx) needed as well as the amount of recomputation (Rblurx) in such
a schedule for arbitrary tile dimensions:

Bblurx = Tx(Ty + vy) · sizeof(DataType) (5.1)

where Tx, Ty are the tile sizes in the x and y dimensions and vy is
the amount of overlap between blurx and its consumer blury in the y
dimension (in this example vy = 2).

Rblurx = Cp
bluryxo

xo

blurx − Croot
blurx (5.2)

60 CHAPTER 5. REUSE ANALYSIS FOR MULTI-STAGE PIPELINES

1 allocate blurx[By+2][Bx]
2 for y in [0,By+2):
3 for x in [0,Bx):
4 blurx(...) = ...

6 for y in [0,By):
7 for x in [0,Bx):
8 blury(...) = ...

(a) store/compute root

1 for yo in [0,By/Ty):
2 for xo in [0,Bx/Tx):
3 allocate blurx[Ty+2][

Tx]
4 for y in [-1,Ty+1):
5 for x in [0,Tx):
6 blurx(...) = ...
7 for yi in [0, Ty):
8 for xi in [0, Tx):
9 blury(...) = ...

(b) overlapping tiles

1 for yo in [0,By/Ty):
2 for xo in [0,Bx/Tx):
3 allocate blurx[3][Tx]
4 for yi in [-2, Ty):
5 for x in [0,Tx):
6 blurx(...) = ...
7 if (yi<0): continue
8 for xi in [0, Tx):
9 blury(...) = ...

(c) sliding windows inside tiles

Figure 5.2: 3x3 Blur pipeline - scheduling options

where Cp
bluryxo

xo

blurx is the total computation cost of blurx in this fusion
scenario and Croot

blurx is the cost when all of its pixels are computed and
stored before being consumed (as in Schedule (a)).

More specifically, Cpblury
xo
xo

blurx is the cost of blurx when fused into blury
with its computation (subscript xo) and allocation (superscript xo) set to
the xo level/index of the loop-nest of blury. Similarly, Croot

blurx is the cost
of computing and storing blurx outside the loop nest of the consuming
stage blury.

Cp
bluryxo

xo

blurx = Tx(Ty + 2)Bx
Tx

By
Ty

(5.3)

Croot
blurx = Bx(By + 2) (5.4)

where Bx, By are the problem sizes (loop bounds) in the x and y dimen-
sions respectively 1.

1In order to keep the equations and the example clear, we assume that the loop
bounds in each dimension are a multiple of the tile size.

5.3. MOTIVATIONAL EXAMPLE AND PROBLEM FORMULATION 61

(a) Overlapping tiles: all blue pixels of blurx are evaluated
before being consumed to produce an area equal to the output
tile in blury (red pixels). The memory allocation for blurx
should be as large as the blue area.

blurx
blury

By

Bx

Ty

Tx

(b) Sliding windows inside tiles: values of blurx are computed
per line of the output tile as needed. Pixels that are no longer
needed are discarded (gray area). The intermediate buffer
requirement is equal to the blue area. Green pixels will get
evaluated in future intra-tile iterations

Figure 5.3: Overlapping tiles and sliding window implementations.

Similar equations can be used in order to calculate the load cost (Cl)
for blurx which is equivalent to the load cost for the input data (Cblurx

input).
In detail:

Cl
bluryxo

xo

blurx = Cblurx
input = (Tx + 2)(Ty + 2)Bx

Tx

By
Ty

(5.5)

In the presence of a streaming hardware prefetcher 2, the previous equa-
2We assume that the problem size in the column dimension is larger than the size

62 CHAPTER 5. REUSE ANALYSIS FOR MULTI-STAGE PIPELINES

tion becomes:
Cl

bluryxo
xo

blurx = (Ty + 2)Bx
Tx

By
Ty

(5.6)

where we eliminate the sequential accesses across cache lines. Finally, the
amount of data that needs to stay in the cache in order to benefit from
input data reuse is:

Binput = (Tx + 2)(Ty + 2) · sizeof(DataType) (5.7)

Such a schedule benefits from increased locality compared to the one
with root storage. Furthermore, as seen in the above equations, the trade-
off between redundant computation and locality can be controlled by
tuning the applied tile dimensions. It should also be noted that a different
inter or intra-tile loop permutation leads to different buffer requirements
and cost-functions. Figure 5.3a shows a visual representation of the
schedule for an 8x8 output image with 4x4 tiling (Bx = 8, By = 8, Tx = 4
and Ty = 4). As seen in the figure, all blue pixels of blurx are evaluated
and stored before being consumed to produce one red tile of blury.

The third schedule (Figure 5.2c) shows an implementation where com-
putation and storage are set to different levels. Such schedules benefit from
sliding window opportunities that usually enable the folding of interme-
diate buffers without reducing the amount of data reuse. As an example,
consider the buffer requirements for this schedule (all of the other costs
will be the same as in schedule 5.2b). Starting from Equation 5.1 (since
the store level remains the same) we can calculate the memory footprint
of the producer blurx stage as follows:

Bblurx = Tx(Ty + 2) · sizeof(DataType) (5.8)

Since pixels of blurx are now computed per line of the output tile (yi), we
do not need to keep all of them in the intermediate buffer, but only those
that can be reused across intra-tile iterations (or across one xo iteration).
Therefore, Bblurx can be folded down to a circular buffer of size:

Bblurx = Tx(1 + 2) · sizeof(DataType) = 3Tx · sizeof(DataType) (5.9)

The same holds for the input data buffer which will now be:

Binput = (Tx + 2)(Ty + 2) · sizeof(DataType) (5.10)

and will be folded down to:

Binput = (Tx+2)(1+2)·sizeof(DataType) = 3(Tx+2)·sizeof(DataType)
(5.11)

of a physical page and therefore the constant stride prefetchers cannot follow the stride
of the non-consecutive load operations

5.3. MOTIVATIONAL EXAMPLE AND PROBLEM FORMULATION 63

Figure 5.3b shows a visual representation for a small 8x8 output image
with an applied tile size of 4x4 (Bx = 8, By = 8, Tx = 4 and Ty = 4).
Unlike Figure 5.3a, pixels of the producing stage blurx are produced per
line (yi) of the consuming stage blury as needed. For example, three
lines of width equal to Tx will be computed during the first yi iteration
in order to produce one tile row but only one line of blurx will need to
be computed for yi > 0 since two lines may be reused. Pixels that are no
longer needed (cannot be reused across one iteration of xo) are discarded.

Note that the above schedule does not ensure maximum folding of
the intermediate buffer allocated for blurx. For example, consider the
schedule seen in Figure 5.4a, interchanging the loop such that the order-
ing (from innermost to outermost) is (yi, xi, yo, xo), setting the compute
level of blurx to yi and its storage to y would allow the buffer to get
folded down to just the amount of overlap across y without any extra
recomputation compared to the previous schedule:

1 for xo in [0,Bx/Tx):
2 for yo in [0,By/Ty):
3 for xi in [0, Tx):
4 allocate blurx[3]
5 for yi in [-2, Ty):
6 blurx(...) = ...
7 if (yi<0): continue
8 blury(...) = ...

(a) maximum folding of the
intermediate buffer

blurx
blury

By

Bx

Ty

Tx

input

(b) Sliding windows inside tiles: values of blurx are computed per pixel of
the output tile as needed. Pixels that are no longer needed are discarded (gray
area). The intermediate buffer requirement is equal to the blue area. Green
pixels will get evaluated in future intra-tile iterations

Figure 5.4: Maximum folding of the intermediate buffer blurx

64 CHAPTER 5. REUSE ANALYSIS FOR MULTI-STAGE PIPELINES

Bblurx = (1 + vy) · sizeof(DataType) = 3 · sizeof(DataType) (5.12)

However, as it can also be seen from Figure 5.4b computing blurx at
the innermost level of its consumer causes the loading of the input buffer
to be much less efficient. In detail, since input is accessed in a column
major order (three horizontal pixels at a time are needed to produce one
pixel of blurx), prefetched (consecutive) cache lines will only be used
after Ty iterations, or will not even be used at all if Ty is too large and
they get evicted from the cache. As a result, the input load cost is now
equal to:

Cl
bluryyi

xi

blurx = Cblurx
input = 3(Ty + 2)Tx

Bx
Tx

By
Ty

= 3(Ty + 2)Bx
By
Ty

(5.13)

where the Tx factor can no longer be simplified since accesses to input
are not consecutive and the schedule does not benefit from hardware
prefetching (as much as the previous one). For reference, the previous
schedule (Figure 5.2c) performs twice as fast compared to this one, even
though it does not maximize folding.

Based on the above (Equations 5.9 and 5.11, Figure 5.3), we can
conclude that folding the intermediate buffers leads to much smaller local
memory requirements without sacrificing data reuse or increasing the
amount of redundant computations. As a result, solutions that were pre-
viously not considered, e.g. tile sizes that led to large memory footprints
can now easily be captured by separating the computation and storage of
a stage. However, as seen by comparing Equations 5.13 and 5.6, maximum
folding does not always ensure exploitation of the spatial locality or the
hardware prefetching mechanisms of the platform. Due to this reason a
trade-off analysis between reuse, recomputation, input loading cost and
memory requirements has to be conducted.

Figure 5.5 shows an abstract representation of the design space when
considering stage fusion. As already mentioned, previous state-of-the-
art techniques only consider solutions which reside within a small area
of this space. The Halide Auto-Scheduler only produces solutions where
the compute granularity of a stage is the same as its storage granularity.
As a result, the generated schedules are limited to fully inlined, fully
stored and tiled implementations with redundant computations where
the computation and storage are set to the innermost inter-tile level
(overlapping tiles). Figure 5.6 shows the distinct solutions for the above
loop permutation of the blur example. The root and inlined solutions have
been excluded due to limited reuse, parallelism or locality as explained
in the above example. We can notice that most solutions of the design

5.3. MOTIVATIONAL EXAMPLE AND PROBLEM FORMULATION 65

Compute
Granularity

St
or
ag
e

G
ra
nu

la
ri
ty

High
Locality

Low
Locality

High
Recomputation

Low
Recomputation

Fusion Design Space

root

inline

overlapping
tiles

sliding
window

sliding windows
inside tiles

more
parallelism

Valid Space

Invalid Space

Auto-Scheduler

Figure 5.5: Fusion solution space, adapted from [73]

space are currently not considered and all sliding window opportunities
are missed.

yo xo yi xi
xi

yi

xo

yo

Compute Level

St
or

ag
e

Le
ve

l

Auto-Scheduler

Invalid Space
Valid Space

Figure 5.6: Fusion solution space for the blur example

Our method enables fast exploration of this new design space. We will
show that through the use of heuristics, we can quickly prune the space
down to a single solution (e.g. out of the 10 valid schedules in Figure 5.6,
we only need to evaluate one). This is achieved by automatically elimi-
nating most uninteresting schedules which are pareto dominated by other
more efficient solutions. Dominant schedules are considered the following:

66 CHAPTER 5. REUSE ANALYSIS FOR MULTI-STAGE PIPELINES

1. Schedules that offer more reuse with the same buffer requirements.
e.g. consider the schedules (yi,yi) and (yi,xo). The second sched-
ule provides more reuse while the sliding window optimization allows
for the same memory requirements.

2. Schedules that offer the same amount of reuse with the smaller buffer
requirements. e.g. schedules (xo,xo) and (yi,xo) as explained in the
previous example.

The final solution is then evaluated through a cost function in order to
pick the tile sizes. The analysis has to be repeated for different loop
permutations, since that leads to a different design space with different
solutions.

5.4 Proposed method
In this section we present each major step in our optimization flow. We
follow a grouping-then-tiling technique that only attempts to split the
pipeline into smaller segments if the initial solution does not fit within
the memory constraints. More specifically, Section 5.4 discusses the al-
gorithms responsible for choosing the compute and store level of a stage
inside a pipeline (or a segment of a pipeline). Section 14 presents the
tiling analysis that determines the proper tile sizes for a pipeline/segment.
Section 11 demonstrates the procedure that is followed in order to split a
pipeline into smaller segments. Some final optimizations are discussed in
Section 11and an overview of the optimization flow is given in Section 11

Fusion strategy

This subsection introduces the analysis and heuristics that are used to
determine which single point of the fusion space should be chosen for
further evaluation. More specifically, this section addresses the problem
of choosing the computation and allocation level of each stage inside a
pipeline (or a segment of it).

As already mentioned, our goal is to eliminate inefficient schedules
without evaluating their costs. Algorithms 4 and 5 show the procedure
that is followed in order to accomplish that. In detail, Algorithm 4 takes
a pipeline (P) as an input which can be either the whole DAG of the
initial pipeline or a sub-graph of it, and identifies the compute and store
level for each stage (K) in P . On the other hand, Algorithm 5 attempts
to inline stages with trivial computational costs.

The pipeline can be described as a DAG of m connected nodes such
that P = {K0,K1, ...,Km}, where Km is the output/final stage of P .
Furthermore, in order to be able to describe all necessary dependencies

5.4. PROPOSED METHOD 67

between the nodes of the DAG, as well as the schedule of each stage, we
perform the following definitions for all i ≤ m:

• A linearly ordered setDi = {xi0, xi1, ..., xin1, xo0, xo1, ...xon2} which
represents the tiled loop nest of Ki where the xi and xo are the intra
and inter-tile loop indices respectively.

• A list of tuples Wi = {Y0, Y1, ..., Yl, ..., Yt}, 0 ≤ t < m, with Yl =
{Kl, Il}, Kl the consuming stage and Il = {E0, E1, ..., Ez}, z the
number of unique indices in the loop nest of Ki, E = (x, v), vεN,
while xεDKl

is the dimension where the dependency exists and v
the amount of overlap.

• A list of producers Li = {K0,K1, ...,Kp}, 0 ≤ p < m

• A tuple Si = (xcompute, xstore), xεDm, which will partially define the
final schedule and where xcompute and xstore are indices of the output
domain.

Algorithms 4 and 5 determine the compute and store level of a stage
inside a pipeline. More specifically, Algorithm 4 first checks whether a
stage has overlap with any of its consumers (whether any of its values can
be reused across iterations). If that is true, then the algorithm searches
for the dependency index with the highest intra-tile order. If that index is
also present in the loop nest of the output stage and is not the innermost
one, then it is set as the compute level of the stage. Its store level is set
to one level higher in order to benefit from sliding-window opportunities
and ensure that all possible reuse is captured as explained in Section 5.3.
While there might be cases where maximum folding and therefore even
smaller buffer requirements can only be obtained by either moving the
store level higher or the compute level lower than what Algorithm 4
considers, the above heuristics allow us to quickly choose a single point
in the design space while ensuring maximum reuse. Furthermore, if the
chosen index corresponds to the innermost intra-tile loop of the loop nest
or is a reduction dimension that offers full reuse, then the compute level is
also set to one level higher. This decision is made in order to better exploit
spatial locality and hardware prefetching in cases where the compute level
is set to the column (as also explained in the motivational example) or
vector index (which often corresponds to the innermost intra-tile loop) of
a loop-nest and avoid redundant computation in reductions that have full
overlap with their consumers. If on the other hand, the chosen index is
not found in the output loop nest, then it means that there is no direct
overlap between the output domain and the stage that is being scheduled,
but dependencies exist across intermediate stages. Its compute and store
levels are therefore set to the innermost intra-tile loop of the output
stage of that segment. The above method allows us to quickly choose

68 CHAPTER 5. REUSE ANALYSIS FOR MULTI-STAGE PIPELINES

Algorithm 4: Stage Fusion Analysis
Input: P,D0, D1, .., Dm,W0,W1, ...,Wm

Output: S0, S1, ..., Sm
1 i← m
2 repeat
3 if Wi 6= ∅ then
4 ci ← max(

⋃
Y εWi

select(
⋃
EεI

select(x,E), Y))

5 if ciεDm then
6 si = next(Dm, ci)
7 if ci = min(Dm) or is_reduction(ci) then

ci = next(Dm, ci)
8 Si ← (ci, si)
9 end

10 else Si ← (min(Dm),min(Dm))
11 end
12 else Si ← (inline,−)
13 i← i− 1
14 until i = 0

Algorithm 5: Inline Trivial Stages
Input: P,L0, L1, .., Lm, S0, S1, ..., Sm
Output: S0, S1, ..., Sm

1 i← m
2 repeat
3 if Si 6= (inline,−) then
4 if trivial(Ki) = True then
5 for j in 0 ≤ j ≤ pi do
6 if !trivial(Kj) && Sj = (inline,−) then
7 Sj ← Si
8 end
9 end

10 Si ← (inline,−)
11 end
12 end
13 i← i− 1
14 until i=0

5.4. PROPOSED METHOD 69

a compute/store level for each stage of the group/segment. Furthermore,
as explained in Section 5.3, moving the compute level even higher (to be
the same as the store level) would lead to dominated solutions that require
larger buffers only to achieve the same reuse. Finally, if a stage has zero
overlap with its consumers, then its computation is inlined. We should
note that all stages are scheduled with respect to the output stage of the
pipeline. This eliminates any possibilities of nested loop fusion, which
would add extra recomputation between the loops. We also introduce
notation for two helper functions (select and next) where:

• select returns the first subset (or element) denoted by the first
argument that belongs to the tuple (or pair) denoted by the second
argument.

• next also takes two arguments and returns the element which be-
longs to the ordered set specified by the first argument and the
position equal to the second argument plus one.

Algorithm 5 uses the partially defined output schedules of Algorithm 1
and attempts to inline the trivial stages of the pipeline. A stage is
considered trivial only if its computational cost is equivalent to its load
cost (similar to the analysis followed by the Halide Auto-Scheduler) and
only if all of its producers are non-inlined. After finding that a stage
is trivial, the algorithm checks if any of its direct producers that were
previously inlined (due to zero overlap), may now have to be scheduled.
In such a case, the compute and store levels of the newly found non-trivial
stage is set to be the same as the ones of the now inlined stage.

Group tiling

This section presents the analysis that chooses a proper tiling for a given
Pipeline/group. Algorithm 6 shows the procedure in detail.

The algorithm requires a pipeline (or segment) P as well as the linearly
ordered set Dm as inputs. The latter represents the ordering of the
tiled loop nest of the output stage and can initially be any (arbitrary)
permutation of the loop nest as long as the intra-tile loops (xi) do not
mix with the inter-tile ones (xo). The cost of evaluating each stage without
any recomputation (Croot

Ki , SKi = (root, root)) is computed in order to be
able to calculate the amount of recomputation for a given schedule. While
this factor will be constant and will not alter the analysis within a group,
it can affect the total cost of the pipeline when a different grouping is
considered (and different stages have zero recomputation). As explained
in the previous sections, the various discrete points in the fusion space
depend on the loop permutation of the pipeline. As a result, the algorithm
needs to try all possible intra and inter-tile loop permutations. Since the

70 CHAPTER 5. REUSE ANALYSIS FOR MULTI-STAGE PIPELINES

Algorithm 6: Tiling Analysis
Input: P,Dm
Output: Tm0, Tm1, ..., Tmn1, Pfused

1 for all i in 0 ≤ i < m do Evaluate CrootKi

2 repeat
3 Perform Stage Fusion Analysis
4 Inline trivial Stages
5 repeat
6 Ctotal ← 0
7 for all i in 0 ≤ i < m do

Ctotal+ = w · ClKm
si
ci

Ki + Cp
Kmsi

ci
Ki − Croot

Ki

8 until all valid tile sizes evaluated
9 until all valid loop permutations evaluated

T mn Tile Size in nth dimension

Cl
Kmsi

ci
Ki Load Cost of Ki

Cp
Kmsi

ci
Ki Compute Cost of Ki

Croot
Ki Root Compute Cost of Ki

Ctotal Total Cost of all stages

Bmn Problem Size in nth dimension

w Relative cost of load operation

Table 5.1: Notation

number of possible schedules explodes for large pipelines with multiple
nested loops (such as convolutional neural networks) we do not attempt to
interchange the kernels or other loops that only perform a few iterations.
This decision allows us to easily eliminate the loop overhead in many cases
by unrolling those loops. For each possible loop permutation we perform
the fusion analysis described in Algorithm 4 and then attempt to inline
any trivial stages (Algorithm 5). At this point we can evaluate all relevant
costs presented in Section 5.3 for each stage of the pipeline individually,
for an arbitrary tiling dimension. We iterate over all possible tile sizes
that fit into specific constraints:

• The tile size of the innermost intra-tile dimension (which is not part
of the kernel) has to be a multiple of the cache-line size, as well as
a multiple of the native vector width.

• The tile size of the outermost inter-tile dimension has to fulfill:
Bmno

Tmno
≥ Nthreads (5.14)

5.4. PROPOSED METHOD 71

• The tile size in a dimension where a dependency exists has to be at
least as large as the amount of maximum overlap in that dimension
such that, if x is the dimension of interest then:

Tmx ≥ max(
⋃
Y εWi

select(
⋃
EεI

select(v,E), Y)) (5.15)

In detail the first constraint is imposed in order to maintain vectoriza-
tion in conjunction with spatial locality across cache lines. The second
constraint ensures that the final schedule will have enough parallelism
to utilize the multi-threaded aspects of the target architecture. The
third constraint avoids invalid tile sizes that would lead to redundant
computations without extra buffer benefits (since due to the inter-stage
dependencies the memory allocation would be at least equal to the amount
of overlap anyway). Finally, we do not consider tiles where the total
footprint of stages without folded storage (compute and store level are
the same) does not fit into the L2 cache. This constraint ensures that
values that will be immediately consumed and cannot be reused in future
iterations stay local. We calculate the costs defined in Section 5.3 for each
stage individually using a weighted cost function and sum them together to
compute the total cost of the pipeline. Our cost function uses the load cost
of a stage (ClKm

si
ci

Ki) multiplied by the relevant overhead of a load operation
compared to a computation (w) plus the amount of recomputation of that
stage (CpKm

si
ci

Ki - Croot
Ki). The combination of loop permutation, fusion

choice and tile size (Tm0, Tm1, ..., Tmn1), that minimizes the total cost
(Ctotal) of the pipeline is chosen as the final schedule.

Stage grouping

If the memory footprint of the final schedule is larger than the size of the
last-level-cache, the pipeline is split into segments and each segment is
scheduled independently of the others. Given the fact that current multi-
core architectures contain caches of many MBs in size that will likely
fit many stages, our strategy attempts to reduce design time by only
attempting to split the pipeline if the initial solution (where all stages
are either fused or inlined into the output stage) does not fit into the
cache. The memory footprint of the pipeline is equal to the amount of
memory required/allocated for all intermediate stages of the pipeline (or
segment). Data from intermediate stages will either be stored in order
to be reused in future intra-tile iterations (in circular/folded buffers) or
will immediately be consumed in the current intra-tile iteration and are
not needed afterwards. Buffers in the former category are folded down
to the maximum amount of overlap (only in the dimension specified by
the compute level of the stage) and their total size needs to fit into

72 CHAPTER 5. REUSE ANALYSIS FOR MULTI-STAGE PIPELINES

Algorithm 7: Group Stages
Input: P,Dm
Output: H0, H1, ..., Hw

1 nP ← 0
2 for all i in 0 ≤ i < m do
3 if size(Wi) > 1 then
4 Si = {root, root}
5 HnP ← {K0i, ...,Kti,Ki}, nP + +
6 P ← erase({K0i, ...,Kti,Ki})
7 end
8 end
9 Hn ← P

10 for j in 0 ≤ j ≤ nP do SplitSegment(Hj)

Algorithm 8: Split Segments
Input: H
Output: H0, H1, ..., Hw

1 T ilingAnalysis(H)
2 if wsetH > csize then
3 nH ← max_split
4 repeat
5 SnH = {root, root}
6 Hn ← {K0, ...,Kn}, nH + +
7 H ← erase({K0, ...,Kn})
8 T ilingAnalysis(Hn)
9 if wsetHn < csize then SplitSegment(H)

10 until wsetHn > csize

11 end

the last-level-cache for future use, while buffers that will not get folded
need to fit inside the L2 cache (such that their data stays local between
production/consumption). All buffers are calculated based on the areas
required (allocated) by the compiler for a given schedule.

Algorithms 7 and 8 show the steps that are followed in order to split the
pipeline P into non overlapping segments (H0, H1, ..,Hw). Algorithm 7
takes the initial pipeline as an input and first checks if any stages have
more than one consumers. In that case, these stages form a new pipeline,
along with their producers and are erased from the initial DAG. This is
done in order to limit the design space and enable faster optimization
runtime. While as a result we may end up end up with multiple smaller
segments in some pipelines, we did not notice any significant performance
degradation due to this fact. Further investigation of performance benefits
that may be captured by merging those smaller segments is left as future
work. During the next step, we attempt to schedule all new pipelines,

5.4. PROPOSED METHOD 73

Figure 5.7: Pipeline segmentation strategy

along with the remainder of the previous step (remaining stages of the
original pipeline). Algorithm 8 checks whether the footprint of the new
segments is still larger than the available cache size, and then recursively
splits those into smaller segments using the following process. Starting
from the nth stage of the pipeline, where n is set to max_split (an
integer value which controls the minimum size of a segment) we schedule
all stages up to the nth. If the segment fits, then we attempt to schedule
the remaining stages by recursively repeating the same algorithm. After
having evaluated all possible configurations for a specific n, we increase it
by one and the process is repeated until the working set of the segment

74 CHAPTER 5. REUSE ANALYSIS FOR MULTI-STAGE PIPELINES

does not fit any more. This ensures that we skip configurations with
invalid segment sizes. Each (unique) valid solution generated by Algo-
rithm 8 where all stages of the original pipeline (P) have been successfully
scheduled is cached and the sum of all independent sub-pipelines’ cost is
evaluated. The configuration that results in the minimum (summed) cost
is chosen as the final solution. We should also note that if the initial
value of max_split is set to one, then the algorithm will evaluate all valid
grouping configurations for the pipeline.

Evaluating all possible configurations may require an extensive amount
of time for larger pipelines (such as deep neural networks). Our method
reduces the runtime of the grouping process by eliminating non-interesting
segmentations. This is achieved in two ways:

• Upon identifying that the memory footprint of a segment is larger
than the available cache size, we do not attempt to fuse more stages
into the same segment. This choice can be explained as follows:
A segment with a memory requirement larger than the available
cache size, will only grow larger if more stages are included into it,
especially if the newly included stage has extra dependencies.

• We do not attempt to split the final segment of a pipeline into
smaller ones, since that would only add external load costs from the
previous root stages to the subsequent consuming ones. This choice
allows us to significantly reduce the time needed to find the final
configuration especially in the context of modern multiprocessor
architectures with large cache sizes.

The steps followed for an example pipeline can be seen in Figure 5.7.

Final optimizations

Upon finding the final configuration of a pipeline, we have groups of stages
with a specified tiling and loop permutation per group. We vectorize the
innermost intra-tile loop of a group that is not part of a reduction (or a
kernel) and parallelize its outermost inter-tile loop among the platform’s
threads/cores as explained in Section 14 (Eq.5.14). However, we have
not yet considered any changes in the permutation of individual stages
within a stage. We optimize the loop nest of each producing stage within
a segment through loop interchange that improves reuse distance by re-
ordering loop indices with minimum strides to be innermost. Moreover,
the loop that corresponds to the compute level of a stage is always set
as outermost, since that loop will always iterate once (or once plus the
equivalent overlap with its consumer) and would add extra loop overhead
in any other position.

5.4. PROPOSED METHOD 75

Optimization flow overview

Figure 5.9 shows the optimization flow for an input pipeline along with
all iteration steps involved, while Figure 5.8 shows the steps followed in
order to schedule each segment (or the initial whole pipeline if it fits in
the cache).

Segment Stage Fusion
Algorithms 5 & 4 Evaluate Tile Cost

All valid
tile sizes
evaluated

Next tile size
config

All valid
permutations
evaluated

Next loop
permutation

Scheduled
Segment

yes

no

yes

no

Figure 5.8: Optimization flow for a pipeline segment (Algorithm 6)

segment fits
split nodes
with >1
consumers

for each
(new) segment

schedule
segment segment fits

stage nmax_split root
increase max_split

schedule new segment
segment fits

remaining
stages?

Algorithm 7 Algorithm 8
initialize
max_split

output pipe

schedule as
one segment

input pipe

next
segment?

return
best config

no

yes

no

yes no

yes

no

yes

no

yes

Figure 5.9: Optimization flow for an arbitrary pipeline

In detail, for all valid permutations of the tiled loop nest, Algorithm 6
calls Algorithms 4 and 5 in order to determine the compute/store levels
of each stage. It then evaluates the total cost of the pipeline for all valid
tile sizes and the combination of Dm, Tm (loop permutation and tile sizes
respectively) that minimizes Ctotal is chosen. If the memory footprint of
the final schedule is larger than the constraints imposed by the last level
cache of the target system, then Algorithms 7 and 8 are used to split
the pipeline into smaller segments, with Algorithm 6 (and subsequently
Algorithms 4 and 5) used again in order to schedule each new segment.
Every valid configuration (where all stages of the original pipeline have
been successfully scheduled) is cached in order to be evaluated at the end
of the process. The segmentation/configuration that minimizes the total
cost of the original pipeline is chosen as the final, now scheduled pipeline.

76 CHAPTER 5. REUSE ANALYSIS FOR MULTI-STAGE PIPELINES

5.5 Experimental results
This section demonstrates the results obtained across a wide variety of
image processing applications on three different architectures.

Experimental setup

The architectural details of each platform used in the experiments are
listed in Table 5.2. Table 5.3 provides a description of each benchmark
along with the problem size considered. The optimization/compile time
of all benchmarks is performed within seconds. Most of the descriptions
were found in [52]. The chosen benchmarks include image processing
pipelines used in [52], the pyramid blending algorithm used in [32], as well
as a popular recent Deep-Neural-Network used for single image super-
resolution (VDSR) that was introduced in [37]. All problem sizes are
chosen to be the same as the ones found either on the official Halide
repository on GitHub [26] or as the ones used in [32].

Platform LLC size (MB) L2 cache size (KB) Nthreads

Intel i7-6700 8 256 8
Intel i7-5930K 12 256 12
ARM Cortex A15 2 512 4

Table 5.2: Platform Features

In the following graphs, the manual implementations refer to the man-
ual schedules found in the Halide repository (the only exceptions being
the pyramid benchmark, the manual schedule of which was found in
[32] as well as the VDSR network which we implemented in Halide).
The PolyMage-A and PolyMage-DP implementations refer to the results
replicated using the artifacts and instructions provided by the authors
in [32] and [65]. However, implementations were provided for only six
benchmarks, which are also the ones considered in [32].

We compare our results to the equivalent ones produced by the other
methods: since all of our applications are implemented in Halide, we can
use the Halide Auto-Scheduler [52] to produce schedules for all bench-
marks. Each benchmark is executed 100 times and the average execution
time per run is measured. This process is repeated multiple times per
benchmark and the minimum average among those is used as the final av-
erage execution time. Furthermore, we properly adjust the optimizations
parameters of both the Auto-Scheduler and PolyMage before our experi-
ments for the solutions to be tuned to the target platforms. Since Poly-
Mage cannot explicitly vectorize loops (unlike Halide) the performance
of the PolyMage implementations is highly influenced by the efficiency of
the auto-vectorizer of the back-end compiler [32]. Finally, the problem

5.5. EXPERIMENTAL RESULTS 77

Benchmark Description
blur
2 stages

6400x4800

Simple two-pass 3x3 blur filter

bilateral
5 stages

2560x1536x3

Fast bilateral filter using the bilateral grid [14]. Constructs the
grid using a histogram reduction, followed by stencil and
sampling operations.

unsharp
6 stages

2560x1536x3

Enhances local contrast by smoothing an image with a small
support gaussian and subtracting it from the original to
isolate the high-frequency content, which is then combined
with the original image.

harris
13 stages

1920x1024x3

Implementation of the popular harris corner detection
algorithm [28] which combines multiple stencils and point-wise
operations.

camera
30 stages

2560x1936x3

The Frankencamera pipeline for processing raw data from an
image sensor into a color image [3]. The pipeline performs
hot-pixel suppression, demosaicing, color correction, gamma
correction, and contrast.

interpolate
52 stages

1536x2560x3

Interpolation of image pixel values using an image pyramid for
seamless compositing, based on the newest healing brush in
Photoshop. Pyramid construction deals with image data at
multiple resolutions and creates chains of stages with complex
dependencies

laplacian
99 stages

1536x2560x3

A local Laplacian filter: an edge-aware, multi-scale approach
for enhancing local contrast [62]. The pipeline builds multiple
image pyramids with complex dependencies and performs
data-dependent sampling.

lensblur
74 stages

1536x2560x3

Given a rectified stereo pair of images, produces a synthetic
shallow-depth-of-field image. It first solves for depth by
constructing and filtering a cost volume [77] using a
convolution pyramid [22], then renders the synthetically
defocused image by randomly sampling the source image over
a virtual aperture.

nlmeans
13 stages

614x1024x3

Fast non-local means image denoising using the method
of [20]. Computes a 7x7 image blur with weights determined
by 7x7 patch similarity

maxfilter
9 stages

1920x1024x3

Computes the maximum-brightness pixel within a circular
region around each target pixel. Uses a precomputed table of
differently-sized vertical max filters to reduce complexity from
O(radius2) per output pixel to O(radius).

pyramid
52 stages

1920x1024x3

Pyramid blending that blends two input images into one using
a mask and a Laplacian pyramid of 4 levels.

VDSR
24 stages

256x256x64

VDSR (Very Deep network for Super-Resolution) [37] is an
end-to-end network with 20 convolutional layers for single
image super-resolution.

Table 5.3: List of benchmarks. Table extended from [52]

78 CHAPTER 5. REUSE ANALYSIS FOR MULTI-STAGE PIPELINES

size used in [32] for the harris and unsharp benchmarks differs from the
one in the Halide repository. We therefore repeat the experiments for
this problem size as well and the results of this comparison can be seen
in Table 5.4. Halide was built using llvm 4.0.0, while the PolyMage
implementations were compiled using icpc on the i7-6700 platform and
gcc on the i7-5930K and ARM platforms.

At this point it is important to emphasize that, as seen in Figures 6.5
and 5.9, all of the proposed algorithms are tightly coupled. As explained
in the motivational example of Section 5.3, sliding windows and circular
buffers allow for tile sizes that would otherwise be impossible to consider
(e.g. large tile strips that otherwise would never fit into the local buffer
constraints imposed by the cache size). As a result, evaluating each
algorithm independently is not possible; they should all be considered
together

Performance results

Figure 5.10 shows the average execution time (in ms) for each benchmark
on the two Intel platforms listed in Table 2. The results for the harris
and unsharp benchmarks on the problem size of the PolyMage implemen-
tations can be seen in Table 5.4.

Our schedules outperform the Auto-Scheduler solutions in almost all
cases, with the Laplacian benchmark being the only exception on the Intel
i7-5930K, where the difference in execution time is still within ≈ 2%. We
noticed that while the initial Auto-Scheduler paper optimizes for L2 cache
size, the currently used and updated one is targeting the shared last level
cache. We conducted multiple experiments for both choices and noticed
that while some benchmarks experience a slight performance improvement
when the memory footprint constraint is set to the size of L2, other ones
suffer a dramatic performance degradation. As a result, we choose to
use the currently advised method of optimizing for last level cache in the
results. Finally, our schedules are also comparable or even better than
the manual ones in many cases.

PolyMage-DP performance is similar to the Auto-Scheduler in almost
all cases. The constant updates and focus on the Auto-Scheduler by the
Halide community may explain the difference in the results presented here
and the ones in [32] between the two methods. The efficiency of auto-tuned
PolyMage-A solutions vary per benchmark and platform: the raw camera
and bilateral grid implementations of the autotuned solutions on the intel
i7-6700 are close to (or slightly better than) the manual Halide schedules.
On the other hand, they are much less efficient compared to the other
implementations of the harris filter on both Intel platforms.

The results for the ARM Cortex platform can be seen in Figure 5.11
and Table 5.4, where a similar pattern can be discerned. Our schedules

5.5. EXPERIMENTAL RESULTS 79

0.0
0.8
1.6
2.3
3.1

blur

0.0
5.2

10.5
15.8
21.0

bilateral

0.0
1.4
2.9
4.3
5.8

unsharp

0.0
2.8
5.6
8.4

11.2
harris

0.0
4.5
8.9

13.4
17.9

camera

0.0
15.2
30.4
45.7
60.9

interp

0.0
19.1
38.1
57.2
76.3

laplacian

0.0
0.3
0.7
1.0
1.3 ×103 lensblur

0.0
0.7
1.4
2.2
2.9 ×102 nlmeans

0.0
18.5
36.9
55.4
73.9

maxfilter

0.0
23.6
47.2
70.9
94.5

pyramid

0.0
0.5
1.0
1.5
2.0 ×103 VDSR

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

s)

(a) Intel i7-6700

0.0
0.6
1.2
1.7
2.3

blur

0.0
8.4

16.8
25.2
33.6

bilateral

0.0
1.6
3.1
4.7
6.3

unsharp

0.0
2.6
5.2
7.9

10.5
harris

0.0
7.9

15.8
23.6
31.5

camera

0.0
8.4

16.8
25.2
33.6

interp

0.0
18.3
36.7
55.0
73.3

laplacian

0.0
2.5
5.0
7.5

10.0 ×102 lensblur

0.0
0.5
1.0
1.5
1.9 ×102 nlmeans

0.0
13.4
26.8
40.2
53.5

maxfilter

0.0
21.0
42.0
63.0
84.0

pyramid

0.0
0.4
0.8
1.2
1.6 ×103 VDSR

Auto-Scheduler Proposed Manual PolyMage-DP PolyMage-A

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

s)

(b) Intel i7-5830K

Figure 5.10: Performance Results on the two Intel Platforms

80 CHAPTER 5. REUSE ANALYSIS FOR MULTI-STAGE PIPELINES

0.0
7.6

15.2
22.8
30.4

blur

0.0
0.6
1.2
1.7
2.3 ×102 bilateral

0.0
0.3
0.5
0.8
1.0 ×102 unsharp

0.0
0.3
0.6
0.9
1.3 ×102 harris

0.0
0.5
0.9
1.4
1.8 ×102 camera

0.0
0.5
1.1
1.6
2.2 ×102 interp

0.0
0.3
0.5
0.8
1.0 ×103 laplacian

0.0
2.4
4.8
7.2
9.7 ×103 lensblur

0.0
1.9
3.9
5.8
7.7 ×103 nlmeans

0.0
1.1
2.3
3.4
4.6 ×102maxfilter

0.0
2.2
4.4
6.7
8.9 ×102 pyramid

0.0
0.4
0.7
1.1
1.5 ×104 VDSR

Auto-Scheduler Proposed Manual PolyMage-DP PolyMage-A

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

s)

Figure 5.11: Performance results on the ARM platform
Method Intel i7-6700 Intel i7-5930K ARM A15

harris unsharp harris unsharp harris unsharp

PolyMage-A 45 27 27 27 377 254
PolyMage-DP 15 21 21 21 304 388
Auto-Scheduler 16 22 14 22 164 206

Proposed 11 20 10 20 171 189

Table 5.4: Average execution time (ms) for harris & unsharp benchmarks
- problem size 4256×2832

outperform both the manual and autoscheduled ones with the largest
differences observed in the interp, laplacian and VDSR benchmarks. The
performance of the PolyMage solutions varies per benchmark. For exam-
ple, it performs significantly worse than the Halide solutions on the camera
pipeline, slightly better than both the Auto-Scheduler and the manual
Halide schedule on the interp benchmark, and much faster than all Halide
solutions in the bilateral pipeline. The main reasons behind this result
are the differences in the functional description of the pipeline between
the Halide and PolyMage implementations: Halide uses a built-in linear
interpolation function that performs more complex computations than
the PolyMage implementation of it. Upon forcing Halide to use a simpler
approach, performance was improved by up to 40% in all three cases
(Auto-Scheduler, Manual and Proposed). Furthermore, Halide requires
all expressions used as indices in functions/stages to be bounded, and
therefore performs extra clamping in two stages for the compiler to be
able and derive the bounds of the equivalent producers. These extra
computations are the main bottlenecks in the performance of the Halide

5.5. EXPERIMENTAL RESULTS 81

bilateral pipeline on the ARM platform. However, finding an efficient
description is outside the scope of this work.

Finally, in order to test the efficiency of our grouping strategy (Al-
gorithms 7 and 8), we repeat the experiments for the VDSR network
and investigate the performance for various problem sizes. We choose
VDSR since it consists of sequential stages where each subsequent stage
consumes the output of the previous one (except for the input image
which is consumed twice). This benchmark is therefore a good candidate
for such an experiment since various problem sizes will lead to different
tiling choices and therefore different memory footprints, which, due to a
constant memory constraint will require new segmentations. The results
of this experiment on the Intel i7-6700 platform for 5 different dimensions
of the output image are presented in Figure 5.12. Our schedules perform
more than 2x better than the equivalent Auto-Scheduled solutions for
large problem sizes.

In order to demonstrate the robustness of our method, the same ex-
periment was conducted on another platform (with an Intel i7-6560U
processor) once with the hardware prefetcher enabled and once with the
hardware prefetcher disabled. The experiments followed a similar trend
as in Figure 5.12 when comparing the two implementations. Furthermore,
the performance degradation when the hardware prefetcher was disabled
in our solutions was close to 20% while for the Auto-Scheduler solutions
it was more than 2x. Upon further investigation, we noticed that the loop
permutation chosen by the Auto-Scheduler (which attempts to reorder
loops based on their stride, i.e. placing the loop with the smallest stride
innermost) interleaves the column, row and kernel dimensions, limiting
the amount of spatial reuse that can be captured in the process. This
incurs a high penalty when the hardware prefetchers are disabled. On
the other hand our proposed method does not reorder loops with low
iterations (similar to the 3x3 convolution kernels) and only attempts to ex-
ploit prefetching when determining the tile size dimensions (Algorithm 6).
Setting the kernel inner to the column and row dimensions allows data
to stay in the local caches (or even registers) before they are reused. As
a result, self-spatial reuse can still be exploited across kernel iterations
and this explains why our schedules do not suffer as much when hardware
prefetchers are disabled.

Finally, based on the above results (Figures 5.10-5.12), we can observe
that larger pipelines with multiple stages such as the interp, laplacian and
VDSR benchmarks benefit the most from our schedules, where sliding
window opportunities are easily captured, buffers are folded down to
smaller memory footprints, and new tiling opportunities are considered.
Moreover, even in cases where the pipeline does not offer such oppor-
tunities (e.g. bilateral, nlmeans), our solutions remain similar to (or in
many cases even better than) both the Auto-Scheduler, and the manual

82 CHAPTER 5. REUSE ANALYSIS FOR MULTI-STAGE PIPELINES

256×
256

512×
512

768×
512

1024×
768

1024×
1024

P
ro

b
le

m
 S

ize
 (M

×
N
×

3
)

0

5×
10

3

10
4

1.5×
10

4

2×
10

4

Average Execution time (ms)

1.97×
10

3

4.01×
10

3

1.206×
10

4

1.339×
10

4

1.843×
10

4

8.92×
10

2
2.02×

10
3

2.88×
10

3

5.57×
10

3

7.33×
10

3

V
D

S
R

A
u
to

-S
ch

e
d
u
le

r
P
ro

p
o
se

d

Figure 5.12: VDSR average execution time (ms), Intel i7-6700

5.6. SUMMARY 83

solutions.

5.6 Summary
In this chapter we presented a novel platform-aware algorithm for the opti-
mization of image processing pipelines running on multi-core CPU based
architectures. We show that our method captures solutions of the de-
sign space which were not covered in previous state-of-the-art techniques
by effectively considering combinations of loop tiling, interchange and
stage fusion with independent computation and allocation per stage. Our
model takes into account multiple architecture specific parameters such
as multithreading, vectorization and hardware prefetching. We evaluate
our proposed method across a variety of image processing applications
implemented in the Halide DSL and compiler and compare it to both
previous state-of-the-art techniques that target the Halide and PolyMage
DSLs, as well as manually optimized Halide solutions. Experimental
results show significant average performance improvements compared to
previous related work as well as the manually optimized implementations
of Halide pipelines.

84 CHAPTER 5. REUSE ANALYSIS FOR MULTI-STAGE PIPELINES

6
Efficient scheduling for GPGPUs

6.1 Introduction
Code generation for image processing pipelines remains a challenging
problem due to the increasing need for high performance as well as the
complexity of modern hardware platforms. Image processing applications
usually require developers to have expert knowledge of both the algorithm
that needs to be implemented, as well as the behavior of the underlying
platform that will be used. These platforms are usually of heterogeneous
nature, with a multi-core CPU with SIMD extensions acting as a host
and a dedicated or onboard GPU unit acting as an accelerator. In the
context of image processing pipelines, GPUs can often be more than an
order of magnitude faster than a traditional CPU architecture [6]. As
a result, developers have to spend a lot of manual effort in order to
provide efficient implementations of each pipeline and manage host and
accelerator communication. This effort usually has to be repeated each
time an algorithm gets designed or modified or a new target platform has
to be used.

Modern compilers and languages attempt to alleviate this issue by
using libraries with predefined manual optimized implementations of the
most popular image processing algorithms [69], or by allowing developers
to specify their applications in a general-purpose, high-level language.
Such an example is the Julia language which uses the LLVM CUDA
backend [10] to generate code for NVIDIA GPU architectures, enabling

85

86 CHAPTER 6. EFFICIENT SCHEDULING FOR GPGPUS

easier offloading for applications through a general purpose language.
Domain specific languages (DSLs) have also proven to be invaluable

for efficient GPU code generation. These languages often incorporate a
syntax that allows for both quicker exploration of the optimization space,
as well as offloading parts of the application to the GPU extensions of the
platform.

However, unlike the CPU platforms that we studied in the previous
chapters, GPU based architectures impose strict constraints on the sched-
ule that make many schedules invalid. Such constraints are the maximum
number of threads per block as well as the maximum shared memory
per Streaming Multiprocessor (SM) which may vary per architecture or
Compute Capability (although usually some parameters remain constant).
Developers have to keep such constraints in mind when determining the
proper tile sizes for their implementations, as they can have a severe
impact on performance.

In this chapter we make the following contributions:

1. We extend the current autoscheduler of Halide master [27] with a
new analytical cost model that considers GPU specific parameters
when generating optimization schedules.

2. We perform fast design space exploration by eliminating uninter-
esting and invalid configurations without evaluating the equivalent
schedules while ensuring that the final schedules meet all constraints
imposed by the platform.

3. We introduce a set of heuristics that enable nested fusion, extend-
ing to possible solutions outside the traditional optimization space
where computation of each group’s intermediate stages is always
placed relative to the group’s output stage and always set to the
block level of the consuming loop nest. Nested fusion reduces the
shared memory requirements of the schedule configuration, allowing
previously computed values to stay in local registers.

4. We evaluate our approach across various applications and test it on
two different CUDA based platforms. Experimental results show a
significant performance improvement over previous attempts (over
2x) at automatic GPU scheduling while our solutions remain com-
petitive or are even better than the manual schedules written by
Halide experts (around 10% faster).

5. We implement our method as an extension over the previous CPU
autoscheduler reusing parts of its analysis in an effort to ensure
compatibility with the current Halide versions.

6.2. RELATED WORK 87

The rest of this chapter is organised as follows: Section 2 discusses
related work. Section 3 establishes the search space and scope of our
approach. Section 4 presents the proposed method which we name Auto-
GPU. Section 5 demonstrates the experimental results that were obtained.
Possible future work and conclusive remarks are discussed in Section 6.
This work was published in [79].

6.2 Related work
This section discusses related work on optimization strategies for image
processing applications and GPU code generation. We divide this section
into three parts: a) Common loop transformations used to optimize loop
nests of image processing pipeline stages, combinations of which are often
used in automatic scheduling attempts, b) prior automatic scheduling
for Halide pipelines and their limitations for GPU schedule generation,
c) other optimization strategies for efficient GPGPU code generation in
the image processing domain as well as general purpose compilers.

Loop transformations

Most scheduling approaches for image processing pipelines focus on a
combination of loop transformations and optimizations to exploit par-
allelism and avoid costly memory accesses. The most common of these
transformations are loop fusion and tiling. Loop fusion can enable other
optimizations by increasing locality between production and consumption
of intermediate values [48]. In the context of GPU code generation,
fusion can help avoid global memory accesses by merging multiple kernels,
increasing performance in memory bound applications by introducing
redundant computations and ensuring that data used across consecutive,
merged stages of the pipeline remain in the shared memory or local
caches [71,90,91].

Loop tiling is often used alongside kernel fusion to exploit parallelism
and enable both spatial and temporal reuse across stages. Tiling has been
extensively used to optimize applications in the image processing domain
targeting either CPU or GPU based architectures. Most such approaches
focus on the optimization of affine programs, using what is commonly
called an overlapping tiles analysis that executes one thread block per
tile, interleaving the computation of producing stages at the block level of
the consuming loop nest and storing all pixels computed into the shared
memory [30, 75]. Tile sizes are often chosen through a cost function
that attempts to model the performance of the underlying architecture
while taking into account key CPU parameters (hardware prefetching,
SIMD vector units, number of cores) or GPU specific parameters (register

88 CHAPTER 6. EFFICIENT SCHEDULING FOR GPGPUS

and shared memory usage, achieved occupancy) [67, 82]. Our model
considers even more architecture specific parameters, such as the thread
block size, the total number of global memory accesses, active streaming
multiprocessors and threads per stage while extending the kernel fusion
space by allowing computation of producing stages to be placed at depths
lower than the block level, reducing the shared memory requirements of
the schedule and allowing values to be placed in the constant memory and
registers instead.

Halide autoscheduling

Automatic scheduling for Halide pipelines has been investigated a number
of times in the past. Halide originally used an autotuner [73] that was
later replaced with a more optimized one that uses genetic algorithms in
order to find an efficient schedule [4]. However, this approach was unable
to converge to optimal solutions especially for complex large pipelines.
An analytical heuristic based model was later introduced by Mullapudi
et al [52] which uses an overlapping tile analysis along with a greedy
grouping/merge algorithm, which enables fast exploration of the design
space and generation of optimization schedules. Its search space is limited
to tile sizes that are powers of two (8 to 256), stages can either be
fully inlined (completely concatenating the statements of producers and
consumers), computed in a breadth-first manner, or interleaved at the
innermost inter-tile level of the group output (overlapping tiles). This
method was extended by the Halide community and after having its cost
model updated it is one of the supported autoschedulers in the Halide
master [27]. While the original publication shows promising results on
GPU architectures as well, that part of the scheduler was never integrated
into the Halide master. We extend the Halide master scheduler with a
new analytical model and analysis passes that enable (i) GPU schedule
generation, (ii) a larger tiling and kernel fusion solution space than prior
approaches, as well as (iii) schedule requirements that ensure that the
final solution adheres to the constraints of the underlying hardware, all
without sacrificing design/compile time.

Recent analytical models [81, 82] tried to extend the search space
considered while attempting to model cache and hardware prefetching
behaviors. The analytical model proposed by Sioutas et al [82] attempts
to quickly generate efficient schedules through the use of heuristics while
maintaining a larger search space (sliding window optimizations) com-
pared to the one explored by both the Mullapudi et al [52] and Halide
master [27] autoschedulers. However, both above models [81, 82] along
with the associated heuristics were tuned to CPU behavior with large
caches, and due to favoring sliding window optimizations, they are inca-

6.2. RELATED WORK 89

pable of exploiting the massive parallelism available on GPU architectures
without sacrificing performance to thread synchronization overhead.

Finally, Adams et al [2] investigated a learned model that used random
pipelines as training data in order to train a hybrid model for x86 multi-
core CPUs. Its search space is much larger than prior non-autotuning
attempts, but retraining and changes to the search space are needed
for more efficient GPU-valid schedules. The authors report preliminary
results compared to the Li et al scheduler [43] (29 to 33% faster) in CUDA
based platforms but without yet retraining for GPUs. The latter [43] is the
only functional autoscheduler for GPUs where tiling is applied to stages
independently while stages themselves are either set to root (breadth-first
implementations) or inline. While this can serve as a good baseline for
an optimization schedule, stage/kernel fusion is not considered at all and
solutions are often far from optimal or inferior to the manually tuned
ones. This chapter extends the current CPU scheduler present in Halide
master [27] with new heuristics and an updated analytical model that
considers a broader space along with GPU parameters when generating
optimization schedules for Halide pipelines.

Other DSLs and approaches

Besides Halide, there have been several other DSLs with GPU offloading
support. Hipacc [51] is similar to Halide, as it can generate code for both
multi-core CPUs as well as GPUs, while employing an autoscheduling
framework in order to optimize the final code. This framework was
recently extended in [72] with a novel kernel fusion model that tries
to interleave computation of stages within the pipeline, but unlike our
approach, loop tiling and interchange is not considered in the model.

Forma [74] is another DSL that behaves similar to Halide and offers
an integrated autoscheduler as well. It supports CUDA (PTX) code
generation and can cover a large set of image processing applications.
However, its primary optimization strategy is to generate code in such a
form that the back-end compiler (nvcc) will be able to efficiently optimize.

PolyMage [54] is a DSL comparable to Halide that relies on the poly-
hedral framework and also targets image processing pipelines. It combines
autotuning with heuristics in order to automatically generate schedules.
However unlike our approach, tile sizes are limited to powers of two and
stages are always fused at the innermost inter-tile level of their consumers
(overlapping tiles analysis).

Many other DSLs focus on optimizing tensor operations and only
a subset of the algorithms found in traditional image processing appli-
cations. Such are for example TVM [15] and Tensor Comprehensions
[87]. TVM focuses on local optimizations for single operators in the
context of deep learning. Developers define an optimization space and

90 CHAPTER 6. EFFICIENT SCHEDULING FOR GPGPUS

the compiler can automatically determine which optimizations should be
applied. Tensor Comprehensions uses a front-end that is similar to the
one used by Halide and its intermediate representation, but it replaces
Halide’s interval analysis with a polyhedral representation. Automatic
optimization is enabled through autotuning across various possible sched-
ules. Our method uses an analytical model and heuristics and does not
require autotuning to generate efficient schedules, thus enabling faster
design time and cross-compilation.

Outside the scope of DSLs, polyhedral compilers are often used to
optimize image processing and tensor or stencil operations in GPUs [7,
67, 88]. These compilers employ polyhedral transformations in order to
optimize affine programs. They aim to maximize parallelism through
proper tile size selection but their application is limited to small-scale
algorithms (i.e. GEMM based kernels) and they are unable to express
many of the trade-offs explored in the above non-polyhedral DSLs like
introducing redundant computations in an attempt to further increase
locality.

6.3 Problem statement
Halide pipelines can be described as DAGs where each node of the graph
represents a Halide function (Func), or stage of the pipeline. Each stage
can be defined as a rectangular n-dimensional array, the allocation and size
of which is determined/inferred by the compiler based on the dependencies
with its consuming stages and the schedule. Each stage can have multiple
dependencies on input images/buffers or other preceding stages.

As an example consider the graph shown in Figure 6.1a which repre-
sents an arbitrary pipeline consisting of 11 nodes or functional stages. In a
naive implementation where the granularity of all stages is set to root each
producer would be evaluated once and stored into a buffer to be consumed
later. A naive implementation of this pipeline would require a separate
CUDA kernel to be launched for each stage, storing all computed pixels
necessary for the following stages in large buffers/arrays. In GPU terms
that would result in multiple accesses to the global memory and the local
caches (depending on the size of the buffers, as well as the dependencies
between the stages). In other words, each edge would represent a number
of global memory accesses equal to the allocation of the preceding node
(buffer).

An example of such an implementation for part of the pipeline can be
seen in Figure 6.2. The definitions of stages K, H, W and Z along with an
example schedule that launches a separate CUDA kernel for each of them
is seen in Figure 6.2a. The compute_root scheduling directive tells the
compiler to fully compute a stage before moving to the next one. When

6.3. PROBLEM STATEMENT 91

in

F

G

BYA

D E

K H

PWJ

Z

out

(a) Initial DAG:
Each node represents
a functional stage of
the pipeline, each edge
represents a number of
global memory accesses.
A different CUDA kernel
is launched for each stage.

in

F

G

BYA

D E

K H

PWJ

Z

out

(b) Transformed DAG:
Trivial stages are inlined
into their consumers by
concatenating their defi-
nitions. The number of
global memory accesses
can be reduced at the
cost of redundant compu-
tation.

in

F

G

BYA

D E

K H

PWJ

Z

out

(c) Optimized DAG:
The pipeline is split
into segments in order
to increase locality.
Each group/segment
corresponds to a different
CUDA kernel.

Input/Output Func/Stage

Inlined Stage

Group

Global access Shared access

Figure 6.1: Generic Pipeline Example: Trivial stages are inlined into their
consumers before splitting the pipeline into smaller groups of stages which are assigned
an optimization schedule.

92 CHAPTER 6. EFFICIENT SCHEDULING FOR GPGPUS

1 //function definitions for stages K,W,H,Z
2 K(x,y,c) = E(x,y) + E(x+1,y) + E(x+2,y)
3 H(x,y) = E(x,y) * 4
4 W(x,y) = K(x,y,0) + K(x,y,1) + K(x,y,2) + 2 * H(x,y)
5 Z(x,y) = W(x, y-2) + W(x,y-1) + W(x,y) + W(x,y+1) + W(x,y+2)

7 //GPU schedule
8 //tile the loops
9 Z.compute_root().gpu_tile(x, y, x_o, y_o, x_i, y_i, 4, 4);

10 W.compute_root().gpu_tile(x, y, x_o, y_o, x_i, y_i, 6, 8)
11 H.compute_root().gpu_tile(x, y, x_o, y_o, x_i, y_i, 8, 6);
12 K.compute_root().gpu_tile(x, y, x_o, y_o, x_i, y_i, 8, 4);

(a) Definitions and Example GPU Schedule of KHWZ stages: Compute granularity
of all stages is set to root. Each stage is fully computed and stored in the global
memory before moving to the next one. All memory transactions occur through the
global memory and/or the local caches. A single kernel is generated for each stage.

1 //produce each stage in a separate
kernel

2 allocate __global__ K[3*12*8]
3 <CUDA>gpu_block K.y_o
4 <CUDA>gpu_block K.x_o
5 <CUDA>gpu_thread K.y_i
6 <CUDA>gpu_thread K.x_i
7 for K.c
8 K(..) = ...
9 allocate __global__ H[12*8]

10 <CUDA>gpu_block H.y_o
11 <CUDA>gpu_block H.x_o
12 <CUDA>gpu_thread H.y_i
13 <CUDA>gpu_thread H.x_i
14 H(..) = ...
15 allocate __global__ W[12*8]
16 for <CUDA>gpu_block W.y_o
17 for <CUDA>gpu_block W.x_o
18 for <CUDA>gpu_thread W.y_i
19 for <CUDA>gpu_thread W.x_i
20 W(..) = ...
21 allocate __global__ Z[8*8]
22 <CUDA>gpu_block Z.y_o
23 <CUDA>gpu_block Z.x_o
24 <CUDA>gpu_thread Z.y_i
25 <CUDA>gpu_thread Z.x_i
26 Z(..) = ...

(b) Equivalent pseudo-CUDA
loop nest for stages K,H,W,Z:
Allocation for each stage is moved
to the global memory. A dif-
ferent kernel with variable grid
dimensions is launched for each
stage. The grid dimensions are
controlled through the scheduling
directives.

6.3. PROBLEM STATEMENT 93

Z
K WH

(c) Visual representation of the previous (compute_root) schedule: Each stage will
launch a different CUDA kernel. The green pixels correspond to thread block
dimensions of the CUDA grid that will be launched for each kernel controlled by the
gpu_tile directive. Each stage is fully computed and all pixels are stored into the
global memory before moving to the next one.

Figure 6.2: A naive implementation fully computes each stage in a
different CUDA kernel and stores all data into the global memory.

paired with the gpu_tile command, the loop nest that corresponds to
the surrounding stage will be tiled and the inner intra-tile loops will be
mapped to CUDA threads, while the outer inter-tile dimensions will be
mapped to CUDA blocks. As a consequence, the loop nest of stage H gets
tiled such that the intra-tile loops x_i and y_i have sizes 8 and 6 iterations
respectively or a threadblock of size 8x6. The equivalent CUDA pseudo-
code can be found in Figure 6.2b. A separate CUDA kernel is launched
for each stage and all pixels computed are stored in the global memory.
Finally, Figure 6.2c shows a visual representation of the schedule, where
the green pixels correspond to the tile applied to each loop nest, which
is equal to the dimensions of the CUDA thread block. All pixels need to
be loaded back from the global memory before they can be used in the
consuming stages.

However, global memory accesses are often costly compared to ones in
the cache or shared memory since DRAM bandwidth is often much lower
than the one achieved by shared memory. A more efficient implementation
would then require splitting the pipeline into groups of stages where
each group corresponds to a different CUDA kernel and therefore global
accesses only happen between groups, while all intra-group communica-
tion happens either through registers or the shared memory. However,
such communication introduces extra synchronization between threads
and therefore may limit the amount of parallelism that can be exploited.

As a consequence, optimizing a pipeline as a whole involves generating
schedules that affect both the intra-group as well as inter-group granu-

94 CHAPTER 6. EFFICIENT SCHEDULING FOR GPGPUS

larity [2, 82]. Inter-group scheduling focuses on the segmentation of the
pipeline into groups of stages as well as inlining stages into their con-
sumers such that maximum producer/consumer locality can be achieved.
Scheduling stages within a group (intra-group) includes optimizations
such as tiling, unrolling, selecting the variables that should be assigned as
threads/blocks as well as determining the level of the consuming loop nest
at which the computation of each producer should be placed. Figure 6.1b
shows the new DAG after stages D and H have been inlined into their
consumers (J and W respectively). Stage inlining is equivalent to replacing
all occurrences of a producing stage inside the functional definition of
the consuming stage with all necessary computations of said producer.
The same pipeline after being partitioned into 4 groups (red dashed line)
with stages G, E, J and Z as the output functions of each group is seen
in Figure 6.1c. As seen in the new graph, the number of edges that
correspond to global memory accesses has reduced in an effort to maximize
producer/consumer locality.

An example of what is usually called an "overlapping tiles" schedule can
be seen in Figure 6.3, where all non-inlined stages are computed as needed
per intra-tile iteration (or per thread block) of the output stage. Inlining
stage H is equivalent to replacing its occurrence in the definition of W with
2 * E(x, y) * 4. Kernel fusion is achieved through the compute_at,
level scheduling directive which tells the compiler to compute all pixels
of a stage necessary for one iteration of level by the consumer. As a
consequence, computation of stages K and W gets interleaved on a per-tile
basis of the consumer Z and all pixels are stored in the shared memory.
Contrary to the previous implementation, this one requires a single kernel
to be launched for the whole group, and global memory accesses are
limited to writes for the output, and reads for stages outside the group.

The equivalent CUDA pseudo-code can be found in Figure 6.3b. As
already mentioned a single CUDA kernel is launched for the whole group
and all pixels computed in a single intra-tile iteration are stored in the
shared memory. Finally, Figure 6.3c shows a visual representation of the
schedule, The blue and green pixels of the producing stages correspond to
the pixels that will be computed before each intra-tile iteration and stored
in the shared memory in order to produce the red pixels in the output.
The green pixels indicate how the dependencies propagate in order to
generate the pixels for one x_i iteration, while the orange arrows show
the single pixel dependencies between stages. It is important to note that
while the tile applied to the output would cause a 4x4 thread block on the
generated CUDA kernel, assigning dimensions x and y of the producing
stages K and W causes the actual thread block to grow into 4x8 due to
inter-stage dependencies.

An even more optimized implementation is shown in Figure 6.4 where
computation of stage K has been moved inside the inner thread dimension

6.3. PROBLEM STATEMENT 95

1 //function definitions for stages K,W,H,Z
2 K(x,y,c) = E(x,y) + E(x+1,y) + E(x+2,y)
3 H(x,y) = E(x,y) * 4
4 W(x,y) = K(x,y,0) + K(x,y,1) + K(x,y,2) + 2 * H(x,y)
5 Z(x,y) = W(x, y-2) + W(x,y-1) + W(x,y) + W(x,y+1) + W(x,y+2)

7 //group schedule
8 //start with the output of the group
9 Z.compute_root().gpu_tile(x, y, x_o, y_o, x_i, y_i, 4, 4);

10 W.compute_at(Z,x_o).gpu_threads(x, y);
11 K.compute_at(Z,x_o).gpu_threads(x, y);

(a) Definitions and Example GPU Schedule of Group KWZ: Computation of K and
W has been moved at the block (innermost inter-tile level) of the output Z. A single
kernel is launched for the whole group.

1 //produce Z
2 <CUDA>gpu_block Z.y_o
3 <CUDA>gpu_block Z.x_o
4 allocate __shared__ K[3*4*8]
5 //produce K
6 <CUDA>gpu_thread K.y_i
7 <CUDA>gpu_thread K.x_i
8 for K.c
9 K(...) = ...

10 //produce W
11 //consume K
12 allocate __shared__ W[4*8]
13 <CUDA>gpu_thread W.y_i
14 <CUDA>gpu_thread W.x_i
15 W(..) = ...
16 //consume W
17 <CUDA>gpu_thread Z.y_i
18 <CUDA>gpu_thread Z.x_i
19 Z(..) = ...

(b) Equivalent pseudo-CUDA
loop nest for segment KWZ: Allo-
cation for stages K and W is moved
to the shared memory. Grid di-
mensions are controlled by the
tiling of the output Z loop and its
dependencies with the producing
stages.

96 CHAPTER 6. EFFICIENT SCHEDULING FOR GPGPUS

(c) Visual representation of the dependencies and the previous schedule: The blue and
green pixels of the producing stages correspond to the pixels that will be computed
before each intra-tile iteration and stored in the shared memory in order to produce
the red pixels in the output. The green pixels indicate how the dependencies propagate
in order to generate the pixels for one x_i iteration, while the orange arrows show the
single pixel dependencies between stages.

Figure 6.3: An overlapping tiles schedule computes all pixels needed for
one intra-tile iteration (or thread block) and stores them in the shared
memory.

of its consumer W to achieve what we call nested fusion in this work. Since
one pixel of W requires three pixels of K (across the third dimension) but
none across x or y, computing K per pixel of W does not cause redundant
computation to increase. The equivalent loop nest is shown in Figure 6.4b,
where we can see that computation of K is nested inside W and shared mem-
ory allocation is limited to the one required by W. This is better explained
through the visual representation of the schedule in Figure 6.4c where
none of the light gray pixels of Stage K need to be stored in the shared
memory and are computed on-the-fly as needed by W. The third dimension
of K is also unrolled to minimize loop overhead inside W.x_i. Nested fusion
increases the work computed by the W.x_i threads sacrificing parallelism
in the process but it can boost performance in applications with severe
memory requirements by replacing large shared memory allocations with
smaller ones in the constant memory and registers.

A larger tile size could further reduce the communication to the global
memory (less pixels needed per tile by stage E), but may reduce the occu-
pancy of the GPU and even cause the schedule to exceed the constraints
imposed by the architecture. As an example, assume that the output
stage Z is tiled with a 32x12 tile. Since dimensions x and y of stage W are
also assigned as threads and due to the dependencies with their consumer
Z (four extra pixels along y) the dimensions of the thread block will be

6.3. PROBLEM STATEMENT 97

1 //function definitions for stages K,W,H,Z
2 K(x,y,c) = E(x,y) + E(x+1,y) + E(x+2,y)
3 H(x,y) = E(x,y) * 4
4 W(x,y) = K(x,y,0) + K(x,y,1) + K(x,y,2) + 2 * H(x,y)
5 Z(x,y) = W(x, y-2) + W(x,y-1) + W(x,y) + W(x,y+1) + W(x,y+2)

7 //group schedule
8 //start with the output of the group
9 Z.compute_root()

10 //tile the loop
11 .split(x, x_o, x_i, 4).split(y, y_o, y_i, 4)
12 .reorder(x_i,y_i,x_o,y_o);
13 //assign Vars to threads
14 .gpu_threads(x_i,y_i).gpu_blocks(y_o,y_o);
15 //optimize the member stages
16 W.compute_at(Z,x_o)
17 .reorder(x, y).gpu_threads(x, y);
18 //nested fusion should be allowed
19 K.compute_at(W, x).unroll(c);

(a) Definitions and Example GPU Schedule of Group KWZ: Computation of K has
been moved at the block (innermost inter-tile level) of the output Z and W has been
interleaved inside the thread level that computes W.

1 //produce Z
2 <CUDA>gpu_block y_o
3 <CUDA>gpu_block x_o
4 allocate __shared__ W[4*8]
5 //produce W
6 <CUDA>gpu_thread W.y_i
7 <CUDA>gpu_thread W.x_i
8 //produce K
9 unrolled K.c

10 K(..) = ...
11 //consume K
12 W(..) = ...
13 //consume W
14 <CUDA>gpu_thread y_i
15 <CUDA>gpu_thread x_i
16 Z(..) = ...

(b) Equivalent pseudo-CUDA
loop nest for segment KWZ: Al-
location of stage W is moved to the
shared memory. A single kernel
is launched for the whole seg-
ment. Values of K are computed
as needed per pixel of W and stored
in registers until consumption.

98 CHAPTER 6. EFFICIENT SCHEDULING FOR GPGPUS

(c) Visual representation of the dependencies and the previous schedule: The blue and
green pixels of the producing stages correspond to the pixels that will be computed
before each intra-tile iteration and stored in the shared memory in order to produce the
red pixels in the output. The green pixels indicate how the dependencies propagate in
order to generate the pixels for one xi iteration, while the orange arrows show the single
pixel dependencies between each stage. The light gray pixels correspond to values of K
that will be produced (once) for one inter-tile operation without being stored into the
shared memory.

Figure 6.4: Nested fusion can significantly lower shared memory usage,
without increasing redundant computation

32x16 causing 512 threads per block in total and 2048 bytes allocated in
the shared memory (assuming 4 bytes per pixel). Such dependencies can
easily be derived by the compiler but are difficult to deduce by developers
for more complex cases.

In GPUs, multiprocessor occupancy is the ratio of active warps to
the maximum number of warps supported on an SM. Maximizing the
occupancy can help hide latency during global memory loads which are
followed by a thread synchronization command. The occupancy is deter-
mined by the amount of shared memory and registers used by each thread
block. Achieved occupancy can be calculated using a set of equations
that vary per Compute Capability (CC) of the GPU. These equations can
be found in [59]. In this specific schedule, on a GPU of 7.5 CC and a
configuration of 64Kbytes of shared memory per block, if we assume that
our kernel requires 64 registers per block, 2048 bytes of shared memory
usage and 512 threads per block we would get a 100% occupancy of each
SM.

As seen from the above, proper kernel fusion alongside tile size selec-
tion has a direct impact on the amount of parallelism that will be exploited
in the implementation, the occupancy of the GPU’s SMs as well as the
number of external (global) memory accesses. The problem we aim to

6.4. GPU AUTOSCHEDULER 99

solve then lies in introducing a model that can quickly generate an efficient
schedule for a whole pipeline while ensuring that all constraints imposed
by the target GPU architecture are satisfied. Such a model needs to be
able to find a balance between parallelism and redundant computations
and should focus on minimizing the number of global memory accesses
while maximizing the occupancy of the GPU’s SMs.

6.4 GPU autoscheduler
This section presents the new optimization passes implemented in the
Halide master [27] autoscheduler in order to generate optimization sched-
ules that target CUDA-based GPU architectures. We follow a process sim-
ilar to the current optimization flow where trivial (pointwise consumed)
stages are first inlined into their consumers and then partitioned into
groups using the greedy algorithm implemented in the Halide master. We
adapt its model with new heuristics and steps which are presented in the
following algorithms. Figure 6.5 shows an overview of the optimization
flow used by the autoscheduler. Our method can generate schedules using
the traditional overlapping tiles analysis, as well as a new nested fusion
method. Throughout the next sections, our proposed GPU scheduler is
named AutoGPU.

Naive
Pipeline

Bounds
Estimates

Target
Specs

Stage Inlining
Evaluate Dependencies
Initialize Stage Costs

Initializations
Generate tiles
Estimate occupancy
Analyze group costs
Evaluate cost functions

Stage Fusion

Schedule Generation
Assign threads/blocks
Unroll dims
Reorder dims
Optimize granularity

Scheduled
Pipeline

Figure 6.5: Basic Scheduling Flow: The scheduler requires the loop bounds
estimates along with a target specification description given by the user in order
to produce an optimization schedule for a given pipeline. Most of the steps in the
compilation flow have been extended in order to support automatic GPU scheduling.

100 CHAPTER 6. EFFICIENT SCHEDULING FOR GPGPUS

Initialization and overview

Most of the steps in the initialization process are identical with the ones
performed by the CPU autoscheduler. The user needs to give an estimate
of the problem size (loop bounds for the input buffers and outputs) as
well as the specifications for the target architecture (compute capabil-
ity). During the initialization step, the scheduler evaluates the amount
of reuse/overlap between stages and inlines trivial functions. Trivial are
considered the functions that are either consumed in a pointwise function
or have a low arithmetic cost. After having initialized the cost of each
stage, the scheduler uses the greedy algorithm of the Halide master in
order to inline stages into their consumers when that is deemed beneficial
by the model. The next step involves tiling and splitting the pipeline into
segments, while the last step generates the final optimization schedule of
the pipeline and further tightens the compute granularity of each stage
when applicable. These two steps are discussed in more detail in the
following subsections.

Stage fusion and tiling

This section discusses the new algorithms developed for automatic sched-
ule generation targeting CUDA-based GPU architectures. These algo-
rithms focus on efficient tiling and fusion of stages of the pipeline while
exploiting both parallelism and producer/consumer locality. As already
mentioned in Section 2, our scheduler is driven by an analytical model that
expands upon a number of architecture specific parameters considered in
prior related work by incorporating features such as the active Streaming
Multiprocessors and threads per stage when evaluating the cost of a
grouping configuration while also ensuring that the final schedule meets
the constraints imposed by the target hardware platform.

The scheduler begins by determining which dimensions of each stage
should be tiled. To this end, the bounds across each dimension are
analyzed and in an attempt to limit the search space, loops with low
iteration count are not tiled (e.g. channel dimensions in RGB images,
small filter kernels). If all dimensions of a stage are found to have a low
iteration count (i.e. less than 64 iterations), then we pick the largest
one to be tiled, ensuring that at least one dimension can be tiled and
an adequate number of blocks will be generated by the equivalent PTX
kernel. The loop bounds for the outputs of the pipeline are derived by
the estimates given by the user. Loop bounds for all producing stages
are instead determined through the bounds inference analysis pass of
the compiler. After the dimensions to be tiled have been determined,
a list of all possible tile sizes for these dimensions gets generated. Since
evaluating all possible combinations would require an enormous amount of

6.4. GPU AUTOSCHEDULER 101

time for deeply nested loops, we impose an upper bound on the generated
tiles. These upper bounds vary per dimension and depend on both its
extent as well as the number of dimensions that will be tiled (NTdims).
The bounds (upper Tmax and lower Tmin) for the generated tile sizes
(Tdim) across each dimension (dim) based on the corresponding extents
Bdim are selected such that the scheduler does not spend extra time
evaluating options that are known to be inefficient or invalid. Invalid
are considered the configurations that exceed the constraints imposed by
the platform (number of threads or shared memory allocation higher than
the maximum permitted), while inefficient are deemed those that do not
exploit enough parallelism (e.g. number of blocks less than 2-4 times the
number of SMs). These upper and lower bounds are defined based on the
following equations:

Tmin ≤ Tdim ≤ Tmax

Tmin =
{

8, if Bdim ≥ 64
2, otherwise

Tmax =

Bdim
128 , if Bdim ≥ 1024, NTdims = 1

Bdim
32 , if Bdim ≥ 1024, NTdims > 1

Bdim
2 , otherwise

The numbers 2, 32 and 128, used as upper bounds for the tiles in the
equations above, have been chosen such that at least one block is active
per SM, but they can easily be changed in the model for architectures
with a low SM count. In a similar fashion, the lower bounds ensure more
than 8 threads per block in loops with extents larger than 64, and at least
one block active per SM in loops with low iteration count. The step size
used for the final tile size configurations is set to two.

After generating the tile size configurations that will be evaluated,
we proceed to the fusion analysis of the pipeline’s stages by recursively
attempting to merge groups of stages until no more beneficial merges
can be found. This process is performed using the greedy algorithm
of the CPU autoscheduler in the Halide master. A merge is deemed
beneficial only when the total cost of the new merged group is less than
the sum of the costs of each individual group. Each independent group
corresponds to a single CUDA kernel as seen in the examples of Section
3 (Figures 6.3 and 6.4). The cost of a group as well as the benefit of a
configuration are determined through the algorithm and analytical model
presented in listing 6.1. Specifically, A brief description of some of the
terms used in the pseudocode is found in Table 6.1. The terms denoted
with capital letters refer to architecture parameters used as constant
constraints in the following algorithm.

Listing 6.1 shows the analysis that evaluates the costs for a given tiling
configuration of a group (memory and arithmetic). Similar to the CPU

102 CHAPTER 6. EFFICIENT SCHEDULING FOR GPGPUS

1 Function evaluate_group_costs(group):
2 //evaluate load costs
3 for each stage in group.inputs:
4 memory_cost += stage.memory_cost / consecutive_loads
5 for each stage in group.members:
6 memory_cost += stage.memory_cost
7 footprint += stage.footprint
8 thread_count=1 //evaluate GPU terms
9 for each dim in (group.output and loop_threads):

10 thread_block[dim] = tiles[dim]
11 thread_count *= thread_block[dim]
12 //get extents required for each stage across each dimension
13 local_bounds = dependence_analysis(group.tiles);
14 occupancy = 1.0 //initialize metrics
15 active_threads = MAX_THREADS_PER_BLOCK
16 active_SMs = SM_COUNT
17 for each stage in group.members:
18 stage.thread_count=1
19 for each dim in (stage.dims and loop_threads):
20 stage.thread_block[dim] = local_bounds.stage[dim]
21 stage.thread_count *= stage.thread_block[dim]
22 //track maximum on each dimension for the thread block size
23 thread_block[dim] = max(thread_block[dim],stage.threads[dim])
24 {stage.occupancy, stage.active_threads, stage.active_SMs} =

estimate_occupancy(stage.thread_count, footprint)
25 //ensure occupancy above threshold
26 if(stage.occupancy < OCCUPANCY_THRESHOLD) return

invalid_configuration
27 //evaluate arithmetic costs
28 arithmetic_cost += stage.arithmetic_cost /
29 (stage.occupancy * stage.active_threads)
30 occupancy = min(occupancy, stage.occupancy)
31 active_threads = min(active_threads, stage.active_threads)
32 active_SMs = min(active_SMs, stage.active_SMs)
33 thread_count = max(thread_count, stage.thread_count)
34 //ensure resource requirements within target constraints
35 if(thread_count % WARP_SIZE != 0 || active_SMs < SM_COUNT ||
36 thread_count > MAX_THREADS_PER_BLOCK ||
37 footprint > MAX_SHARED_MEM_PER_BLOCK)
38 return invalid_configuration
39 group_cost = //evaluate total cost
40 arithmetic_cost + memory_cost / (occupancy * active_threads)
41 return group_cost

Listing 6.1: Group Costs Analysis: Calculates the total cost of a group (kernel
fusion and tiling) as well as various GPU specific metrics in order to ensure that the
equivalent optimization schedule adheres to the target’s resource constraints.

6.4. GPU AUTOSCHEDULER 103

Description
group Stages merged together into a single kernel.

tiles Tiling configuration applied on the group’s
output stage loop nest

inputs Stages computed outside the group,
or stages input to the pipeline.

members Non-inlined stages of the group

footprint Total size of the shared memory allocation
required for this group

thread_block[dim] Thread block size across each dim dimension.
thread_count Sum of threads required for a computation.

active_SMs Number of active SMs during a computation.

active_threads Number of active threads during a computation
(subset of the total threads).

occupancy SM occupancy during the computation
of a member stage.

SM_COUNT Number of Streaming Multiprocessors in the GPU.
MAX_THREADS_PER_BLOCK Maximum threads per block constraint.

MAX_SHARED_MEM_PER_BLOCK Maximum shared memory per block constraint.
WARP_SIZE Number of threads that make up a single warp.

Table 6.1: Notation of terms used in Listing 6.1

scheduler, the memory cost of a stage is calculated as the number of loads
from a buffer, multiplied by a factor equal to the cost of accessing the
global memory compared to a computation. Specifically, the algorithm
first calculates the costs of loading data from stages outside the group
(global memory accesses), which may be either stages from other groups
or input buffers. Stages accessing input buffers (which typically reside
in the global memory) have their memory cost divided by the number
of consecutive loads from that buffer (in bytes) in order to take memory
coalescing (lines 3-4) into account. The benefit from such loads is capped
by the maximum transfers that can be issued per global transaction. The
memory cost for stages within the group (member stages) is then calculated
in a similar fashion. Allocations for buffers of such stages are allocated
in the shared memory (line 6) and the sum of all such allocations will
be equal to the shared memory requirements for a given tiling/grouping
configuration (line 7).

For each specific tiling configuration for a group we need to estimate
the dimensions of the thread block required for the corresponding schedule
in order to ensure that the generated kernel does not exceed the target’s
constraints. If the group is a singleton (only one non inlined stage which

104 CHAPTER 6. EFFICIENT SCHEDULING FOR GPGPUS

is the output), then the thread block dimensions are equal to the intra-
tile extents (tiles) of the loop levels that were chosen to be assigned as
threads by the equations described above, found in loop_threads (lines
10 to 12). This behavior can be seen in Figure 6.2 where each of the K, H,
W, Z stages correspond to a different group and therefore an independent
CUDA kernel whose thread block dimensions are equal to the tile sizes on
each dimension. On the other hand, for groups with multiple (non-inlined)
stages, the thread block dimensions have to be calculated based on the
regions of each stage required to produce one tile of the output. These
regions (local_bounds)s are inferred by the dependence analysis of the
compiler (line 14). The actual final thread block size in each dimension
will be equal to the maximum extent across all stages of the group (line 25)
and the total number of threads will be equal to the product across each
thread block dimension (lines 23). As an example consider the definitions
and schedule of Figure 6.3a. The schedule of the group output Stage Z
will require a thread block of 32x12 dimensions (due to tiling in x and y
dimensions respectively), but due to its dependencies with the producing
stage W, the actual grid dimensions will be 32x16 with a total of 512
threads per block.

Based on the total shared memory allocation, as well as the number of
threads required per stage, we can calculate the occupancy of each stage,
the number of active threads, as well as the number of SMs that will be
active during the computation of said stage (line 26). This calculation
takes place in a new pass (estimate_occupancy) that is implemented in
our scheduler and is made based on the NVIDIA Occupancy Calculator
[59] which can determine all of these metrics as a function of the number
of threads (estimated_threads), shared memory per block (footprint),
the number of registers per thread as well as the compute capability of
the platform. Since it is not possible to accurately predict the number of
registers that will be used at compile time, we estimate them such that:

Nregs ≤ min(MAX_REGS_P ER_T HREAD,
T OT AL_REGS_P ER_SM

Nthreads
)

If the occupancy of a stage is less than OCCUPANCY_THRESHOLD (usually
set to 0.1) then the number of active warps per SM may severely limit
parallelism and the configuration can already be considered inefficient (line
28). Unlike a CPU-only architecture where the number of tiles n_tiles
is enough to obtain an estimate to the amount of parallelism that can
be exploited, a GPU architecture requires all of the above metrics for a
given configuration. In order to calculate the total arithmetic cost of each
group, the arithmetic cost of each stage is scaled by the product of active
threads, and occupancy (line 30). Finally, the total (sum) arithmetic and
memory costs are multiplied by the number of tiles, and the number of

6.4. GPU AUTOSCHEDULER 105

active threads and occupancy of the group is set to the minimum across
all stages (lines 30-31).

The final cost of a grouping/tiling configuration can be evaluated given
all of the metrics calculated above. We first check whether the new sched-
ule will be valid for the target platform (lines 36-37). To this end, we en-
sure that the number of threads (thread_count) and shared memory per
block (footprint) does not exceed the maximum values allowed for the
architecture (MAX_THREADS_PER_BLOCK and MAX_SHARED_MEM_PER_BLOCK
respectively). Unlike CPU scheduling, where such checks are not neces-
sary, GPU schedules that exceed these platform specific constraints will
cause the generated kernel to fail at run-time, and should therefore be
invalidated by the scheduler’s analysis as quickly as possible. We ensure
that the minimum active SMs per group (active_SMs) are at least equal to
the number of SMs in the platform (SM_COUNT, line 36). During the fusion
analysis, the final, total cost is simply equal to the arithmetic and memory
cost of the analysis, as determined by the algorithm in Listing 6.1. During
the fusion/grouping analysis, we only generate tile sizes which are powers
of two in order to further reduce optimization runtime (not shown in the
listing for simplicity). However, the final tile sizes should ensure that the
total number of threads is a multiple of the WARP_SIZE (usually 32 in most
architectures). As a result, a final tiling pass, where tiling configurations
use a step size of 2), is performed after all groupings have been concluded.
During this step, the memory cost of a group configuration (tiling/fusion)
is scaled by the product of occupancy and active threads in order to avoid
situations where the tile sizes grow too large while the occupancy and
active threads remain the same (line 39).

Similar to the CPU scheduler in the Halide master, after the group’s
cost has been calculated, a new grouping choice is picked for evaluation
until no more beneficial group merges can be found. The pipeline whose
groups result in the minimum overall cost is picked for the final optimiza-
tions and schedule generation.

Other optimizations and schedule generation

After tile sizes have been selected and the pipeline has been split into
segments, we finalize the optimization schedule of the pipeline. For each
group, we first tile the loop based on the sizes selected during the previous
steps and then assign the outer (up to three) inter-tile variables as blocks
and the outer intra-tile variables as threads (Halide gpu_blocks and
gpu_threads respectively). The loop nests of each stage are reordered
such that dimensions not assigned as threads are innermost (ordered based
on their stride), followed by the thread dimensions and finally the block
dimensions. Inner intra-tile loops (such as the kernels of convolution layers
and the channel dimension of RGB images) are then unrolled.

106 CHAPTER 6. EFFICIENT SCHEDULING FOR GPGPUS

1 Function max_order_reuse(consumer, producer):
2 //find overlap dimensions with largest ordering in the consumer’s

loop nest
3 overlap_dims = reuse_per_stage[consumer].find(producer);
4 set = false
5 for dim in overlap_dims:
6 if (!set) max_order = dim
7 else if(consumer.loop_order[dim] > consumer.loop_order[max_order

] :
8 max_order = dim
9 return max_order

11 Function optimize_granularity(group):
12 for each stage in group.members:
13 set = false
14 if(stage == group.output_stage) continue
15 //find its consumers
16 for each consumer in group.members:
17 //if the compute level is not set initialize it here
18 if(!set):
19 member.compute_level = max_order_reuse (consumer, stage)
20 if(consumer == stage) stage.compute_stage = group.

output_stage //consumes itself
21 else stage.compute_stage = consumer
22 else:
23 if(topological_order(consumer) > topological_order(stage.

compute_stage)):
24 stage.compute_level = max_order_reuse (consumer, stage)
25 if(consumer == stage) stage.compute_stage = group.

output_stage //consumes itself
26 else stage.compute_stage = consumer
27 return

Listing 6.2: Nested Fusion Optimization Pass: A quick post-tiling pass
that attempts to tighten the interleaving of stages by lowering the compute level of
producing stages without affecting the amount of redundant computation.

6.5. EVALUATION AND EXPERIMENTAL RESULTS 107

Contrary to the traditional overlapping tiles analysis where compu-
tation of stages is always placed/interleaved at the innermost inter-tile
(or GPU block) level of the output (consuming) loop nest, our scheduler
can also generate schedules where nested fusion is enabled. Nested fusion
allows scheduling the computation of stages at different levels, including
at intermediate stages of the group similar to the schedule presented
in Figure 6.4, where computation of stage K has moved from the block
dimension (x_o) of the group’s output stage (Z) to the inner thread
dimension x of stage W. This optimization pass is applied on groups where
member stages have severe resource requirements (i.e. high number of
active threads, high shared memory usage).

The above code (Listing 6.2) demonstrates how nested fusion is
implemented in our scheduler. The algorithm attempts to tighten the
compute and storage granularity of a stage by lowering its compute_at
level both in terms of consumers (compute_stage) as well as dimension
(compute_level). After a loop ordering (loop_order) has been chosen,
we schedule producing stages (each stage in group.members) at their
last consumer (in topological order) and one level above the overlap
dimension with the highest order in the consuming loop’s ordering (lines
5-8), using the max_order_reuse function. For stages that only consume
themselves (e.g. matrix multiplications, convolutions) the compute_stage
is set to the group’s output stage (lines 20 and 25). The amount and
dimension of reuse/overlap per stage (reuse_per_stage) is determined
during the initialization step of the autoscheduler as seen in Figure 6.5.
On the example seen in Figure 6.4, computation of stage K has been
moved to the x level of the loop nest of stage W since there is no
reuse/overlap between K and W across iterations of x or y. On the other
hand, stage W will not be moved below the innermost inter-tile loop
level (block level x_o) since reuse possibilities exist across iterations of
y (which is the outermost intra-tile loop of the consuming stage Z). This
extra optimization step can further increase locality in applications with
severe memory requirements by reducing shared memory allocations and
allowing temporary values to stay in the constant memory or registers, at
the cost of extra synchronization and therefore reduced parallelism.

6.5 Evaluation and experimental results
This section presents the results that were obtained using our proposed
method on a test suite of 14 applications. We test our algorithms using
two state-of-the-art CUDA-based architectures, the key parameters of
which are shown in Table 6.2. The RTX 2080Ti platform is chosen to
represent targets in the High Performance Computing domain, while the
AGX Xavier represents the embedded domain. The list of benchmarks

108 CHAPTER 6. EFFICIENT SCHEDULING FOR GPGPUS

along with the corresponding number of channels or dimensions of the
output loop nest, number of stages and compile time (on an AMD Ryzen
2920X processor) using our scheduler can be found in Table 6.3. All
benchmarks share a problem size of 1536x2560 (width, height) and differ in
the number of output channels. Exceptions are the matmul and convlayer
benchmarks that compute a 1536x1536 and 128x128x64x4 (width, height,
output feature maps, batch size) output image respectively. A description
of each of the benchmarks used can be found in [2, 52].

RTX 2080 Ti AGX Xavier
Compute Capability 7.5 7.2

L1 cache 64KB 128KB
Max Shared memory per Block 64KB 48KB

SM count 68 8

Max threads per Block 1024
Max regs per Block 255
Max regs per SM 65536

Table 6.2: Architectural parameters for the two platforms

Benchmark [c,s,t]
bilateral [2,8,24s]
camera [2,30,47s]

harris [3,13,3s]
histogram [3,7,4s]

IIR [3,8,3s]
interpolate [3,52,10s]
laplacian [3,103,21s]
maxfilter [3,9,15s]
unsharp [3,9,2s]
nlmeans [3,13,28s]
stencil [3,34,28s]
lensblur [3,74,51s]

matmul [2,2,1s]

convlayer [4,4,2s]

Table 6.3: Benchmarks,
corresponding number of
channels, functional stage
and compile time using
AutoGPU respectively.

Halide GPU scheduling

We compare our solutions to the manual schedules obtained from the
Halide official repository [27] as well as the ones generated by the Li et
al scheduler [43]. Some manual schedules were further optimized before
benchmarking since the existing ones were either targeting GPUs with
limited amount of available memory (interpolate) or older architectures
(matmul) and the results would not be representative of actual expert-
tuned schedules. To investigate the impact of each optimization pass/step

6.5. EVALUATION AND EXPERIMENTAL RESULTS 109

0.0
0.1
0.3
0.4
0.5

bilateral

0.0
0.4
0.8
1.3
1.7

camera

0.0
0.2
0.4
0.5
0.7

harris

0.0
0.4
0.7
1.1
1.4

histogram

0.0
0.7
1.4
2.1
2.8

IIR

0.0
0.7
1.5
2.2
2.9

interpolate

0.0
3.6
7.2

10.8
14.4

laplacian

0.0
4.1
8.3

12.4
16.6

maxfilter

0.0
0.2
0.4
0.6
0.7

unsharp

0.0
11.9
23.8
35.6
47.5

nlmeans

0.0
1.1
2.1
3.2
4.2

stencil

0.0
1.6
3.3
4.9
6.5

matmul

0.0
1.7
3.4
5.0
6.7

cvlayer

0.0
7.4

14.7
22.1
29.4

lensblur AutoGPU (Overlap)
AutoGPU (Nested)
AutoGPU (w/o Fus)
Manual
Gradient scheduler

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

s)

Figure 6.6: Average Execution time (ms) NVIDIA RTX 2080 Ti
Comparison of the average runtime of our proposed method (without stage fusion, with
overlapped tiling and with nested fusion applied on all groups) with the manual tuned
Halide schedules and the Li et al autoscheduler [43]

in our model, we generate three kinds of implementations: schedules where
fusion is entirely disabled and stages are tiled and computed either inline
or at root level (AutoGPU w/o Fus), schedules where fusion strategies
are limited to the the traditional overlapping tiles technique (AutoGPU
Overlap) and finally schedules where all optimization passes are enabled
and nested fusion may also be applied on a group (AutoGPU Nested)
depending on the heuristics described in the previous section. The per-
formance of our proposed AutoGPU autoscheduler corresponds to the
AutoGPU Nested bar.

The average execution time of each implementation is measured as
follows: each application is executed 100 times and afterwards host and
GPU device are synchronized. We measure the average time elapsed and
repeat this process 100 times. The minimum average execution time across
all samples is finally used in the following graphs.

Figure 6.6 shows the results obtained with the NVIDIA RTX 2080Ti
platform. Our solutions outperform the Li et al scheduler [43] in all
benchmarks with a significant speedup (over 5x) in large pipelines where
fusion is beneficial. Moreover, our schedules result in an average of 10%
performance improvement over the manual implementations. Three appli-
cations also have a moderate performance improvement when the sched-
uler operates under the nested fusion mode compared to only overlapping
tiles. Forcing the scheduler to apply the nested fusion optimization on
all groups would cause two benchmarks to suffer a slowdown (bilateral,
lensblur) due to reduced parallelism. The effect of our tiling analysis
can be determined by comparing the Li et al scheduler with the results
that correspond to the no fusion schedules. Our solutions (AutoGPU w/o

110 CHAPTER 6. EFFICIENT SCHEDULING FOR GPGPUS

Fusion) outperform the latter [43] in most cases due to a more extensive
tiling analysis. We notice that four out of 14 benchmarks experience
zero slowdown when fusion is disabled, since all implementations would
converge to breadth-first schedules anyway (where all non-inlined stages
are set to compute_root). The Li et al autoscheduler was not able
to generate valid solutions for the last two applications (cvlayer and
lensblur).

0.0
1.9
3.8
5.6
7.5

bilateral

0.0
5.0

10.1
15.1
20.1

camera

0.0
2.1
4.1
6.2
8.2

harris

0.0
2.9
5.7
8.6

11.5
histogram

0.0
3.4
6.8

10.2
13.6

IIR

0.0
6.1

12.1
18.2
24.3

interpolate

0.0
23.8
47.6
71.4
95.2

laplacian

0.0
0.4
0.8
1.3
1.7 ×102maxfilter

0.0
2.2
4.3
6.5
8.6

unsharp

0.0
1.2
2.3
3.5
4.6 ×102 nlmeans

0.0
17.9
35.8
53.6
71.5

stencil

0.0
20.5
40.9
61.4
81.8

matmul

0.0
20.2
40.3
60.5
80.7

cvlayer

0.0
0.8
1.7
2.5
3.3 ×102 lensblur AutoGPU (Overlap)

AutoGPU (Nested)
AutoGPU (w/o Fus)
Manual
Grad autosched

Av
er

ag
e

ex
ec

ut
io

n
tim

e
(m

s)

Figure 6.7: Average Execution time (ms) NVIDIA AGX Xavier
Comparison of the average runtime of our proposed method (without stage fusion, with
overlapped tiling and with nested fusion applied on all groups) with the manual tuned
Halide schedules and the Li et al autoscheduler [43]

Results for the same benchmarks when run on the NVIDIA AGX
Xavier architecture while running at max clock on the default power
mode are shown in Figure 6.7. The results follow a similar trend with
our scheduler outperforming both the manual and the Li et al solutions,
with the latter being slower in all cases even when fusion is disabled in our
model. The only application where we can notice a deviation compared
to the RTX platform is the histogram, where the Li et al autoscheduler
performs similar to our methods due to limited parallelism offered by the
platform (low SM count compared to the RTX 2080 Ti). Overall, we
notice that two non-local means (nlmeans) and camera pipeline are the
only applications with a significant benefit when nested fusion is enabled
(around 40% and 33% respectively in the AGX platform). Pipelines with
a small number of stages (histogram, IIR, matmul) do not offer large
fusion opportunities and all three methods result in similar performance.
Similar results (lower runtimes but similar ratios) were obtained on the
maximum power mode.

All experiments were repeated on four more platforms with different
GPUs of various generations. Figure 6.8 shows the average speedup
achieved using our proposed AutoGPU method over the manual and Li

6.5. EVALUATION AND EXPERIMENTAL RESULTS 111

et al schedules for all six considered architectures. The performance
of AutoGPU is equal to the AutoGPU-Nested bar of the above graphs
and corresponds to the situation where fusion is enabled and the nested
optimization pass is performed only when it is deemed profitable by the
heuristics presented in the previous section. As seen in the graph, our
schedules on average perform similar to the manually tuned ones. In
detail, they achieve around 10% higher performance on the RTX 2080Ti
and RTX 2070 platforms, 3% to 5% on the embedded Tegra boards (K1
and Xavier) but are 7% slower on the older GTX TITAN GPU. On the
other hand, and as expected since the Li et al scheduler does not consider
stage fusion, our solutions are 70% to 127% faster than the ones generated
by [43].

0.5
1.0

2.0
2.5

RTX 2080 Ti

0.5
1.0

2.0
2.5

RTX 2070

0.5
1.0
1.5
2.0

GTX TITAN

0.5
1.0

2.0
2.5

GTX 570

0.5
1.0
1.5
2.0

Tegra K1

0.5
1.0

2.0
2.5

AGX Xavier

Manual/AutoGPU Li et al/AutoGPU

Sp
ee

du
p

Figure 6.8: Speedup of AutoGPU compared to manual and Li et al
scheduling: AutoGPU refers to our scheduler when all optimization passes are
enabled.

We should also note that even though our framework itself has not
been optimized for compile-time, all schedules are generated within the
order of seconds as can be seen in Table 6.3.

In order to further investigate our results, the roofline model for the
RTX 2080 Ti platform [94] was derived for six of the benchmarks as shown
in Figure 6.9. The roofline model can show how close an implementation
is to the maximum performance achieved by the target platform. Memory
bound applications are bound by the memory bandwidth of the hardware
(GDDR6 on RTX2080 ti), while compute bound applications are bound
by the maximum achieved performance, or Floating point Operations
per second (FLOP/s). Arithmetic intensity was calculated after profiling
each application using the NVIDIA Nsight profiler [60] in order to count
the number of DRAM (and other memories for the hierarchical roofline)
transactions, and Floating point Operations (FLOPs). Peak performance
and bandwidth was measured using the Empirical Roofline Toolkit (ERT)
[85].

As seen from the above figures, all applications are mostly memory
bound which is common in image processing. It is also interesting to note
that since different optimization schedules can heavily influence the num-
ber of memory accesses as well as floating point operations (e.g. inlining)
implementations do not share the same arithmetic intensity (AI). We can

112 CHAPTER 6. EFFICIENT SCHEDULING FOR GPGPUS

100 101 102

Arithmetic Intensity [FLOPs/Byte]
101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

] peak: 13422.9 GFLOP/s

GDDR6: 504.0 GB/s

bilateral

AutoGPU
Li et al
Manual

AutoGPU
Li et al
Manual

(a) bilateral

10−1 100 101 102
Arithmetic Intensity [FLOPs/Byte]

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

] Pea : 13422.9 GFLOP/s

GDD
R6:

504.
0 GB

/s

harris

AutoGPU
Li et al
Manual

AutoGPU
Li et al
Manual

(b) harris

10−1 100 101 102
Arithmetic Intensity [FLOPs/Byte]

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

] pea : 13422.9 GFLOP/s

GDD
R6:

504.
0 GB

/s

interpolate

AutoGPU
Li et al
Manual

AutoGPU
Li et al
Manual

(c) interpolate

6.5. EVALUATION AND EXPERIMENTAL RESULTS 113

10−1 100 101 102
Arithmetic Intensity [FLOPs/Byte]

101

102

103

104
Pe

rfo
rm

an
ce

 [G
FL
OP

/s
ec

] pea : 13422.9 GFLOP/s

GDD
R6:

504.
0 GB

/s

laplacian

AutoGPU
Li et al
Manual

AutoGPU
Li et al
Manual

(d) laplacian

10−1 100 101 102
Arithmetic Intensity [FLOPs/Byte]

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

] pea : 13422.9 GFLOP/s

GDD
R6:

504.
0 GB

/s

unsharp

AutoGPU
Li et al
Manual

AutoGPU
Li et al
Manual

(e) unsharp

10−1 100 101 102

Arithmetic Intensity [FLOPs/Byte]
100

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]

peak: 13422.9 GFLOP/s

GDDR6: 504.0 GB/s

nlmeans

AutoGPU-Overlap
Manual

AutoGPU
Li et al

AutoGPU-Overlap
Manual

AutoGPU
Li et al

(f) nlmeans

114 CHAPTER 6. EFFICIENT SCHEDULING FOR GPGPUS

10−1 100 101 102
Arithmetic Intensity [FLOPs/Byte]

100

101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

]

pea : 13422.0 GFLOP/s

L1: 7
616.0

 GB/s

L2: 1
205.1

 GB/s

GDDR
6: 50

4.0 G
B/s

cv_layer

manual
AutoGPU

L1
L2
GDDR6

(g) cvlayer

100 101 102

Arithmetic Intensity [FLOPs/Byte]
101

102

103

104

Pe
rfo

rm
an

ce
 [G

FL
OP

/s
ec

] peak: 13422.9 GFLOP/s

GDDR6: 504.0 GB/s

lensblur

AutoGPU
Manual
AutoGPU
Manual

(h) lensblur

Figure 6.9: Roofline models for a subset of the applications used as
benchmarks. The ceiling values correspond to the maximum achieved
memory bandwidth of the RTX 2080 Ti architecture and the maximum
achievable performance.

6.5. EVALUATION AND EXPERIMENTAL RESULTS 115

notice that for three benchmarks (bilateral, interpolate and unsharp) the
AutoGPU implementations are equivalent to the manual ones and close
to the ceiling imposed by the DRAM memory bandwidth. In two cases
(laplacian and lensblur) AutoGPU schedules cause a higher AI allowing
for higher performance. In cvlayer, AutoGPU achieves higher FLOP/s
with more dram accesses (lower AI) but higher L1 and L2 AI which also
explains the lower execution time. It is important to note however that all
figures should be considered alongside the runtimes shown in Figure 6.6,
since higher performance (in FLOP/s) does not necessarily mean lower
execution time. As an example, consider the nlmeans benchmark where
the AutoGPU overlap implementation achieves a higher performance than
AutoGPU with nested fusion enabled even though the latter is 20% faster.
Through nested fusion, AutoGPU requires less than half of the dram
accesses of AutoGPU-Overlap (half bytes) for the same number of float-
ing point operations. A similar situation happens for harris, where the
manual schedule achieves a higher rate of floating point operations per
second (FLOP/s) but at reduced performance compared to AutoGPU
since it requires nearly 2x FLOPS for the same bytes (and has therefore
higher AI). Finally, we can see that without loop fusion and a limited
tiling model, Li et al is constrained to a much lower AI than the other
implementations due to excessive memory accesses and no shared memory
usage, which explains why it is heavily bound by a platform’s memory
bandwidth ceiling. This coincides with the fact that loop/kernel fusion
and inlining can make applications less memory bound, enabling higher
performance through other optimizations.

All experiments were repeated using a much smaller problem size
(192x320 for most benchmarks and 512x512 for matmul) as well as a
larger one (3840x2160 and 4096x4096 for matmul). For smaller problem
sizes our scheduler performed on average similar to the manual (within
1%) while in the larger cases, our solutions outperformed the manual ones
by 15% and the results were similar to the ones presented in Figure 6.6.
In both cases the solutions generated by our scheduler were around 2 or
more times faster than the ones given by the Li et al scheduler.

Finally, in order to showcase the portability of our approach to non-
CUDA architectures, the whole test suite was repeated on an Intel GE
onboard graphics card using the openCL target of Halide. The main
changes that had to be made to account for the differences in the memory
hierarchy and target specifications was to set the maximum threads per
block to 512 (instead of 1024 in CUDA) and set the maximum tile size to
half of that in CUDA architectures. The results obtained were similar to
the ones presented above with the difference that the Li et al scheduler [43]
was unable to generate valid schedules in a few benchmarks due to the
reduced maximum threads/memory per block constraints.

116 CHAPTER 6. EFFICIENT SCHEDULING FOR GPGPUS

Comparisons with other frameworks

As already mentioned in Section 2, HiPacc is a DSL similar to Halide,
which was recently extended with a kernel fusion model for CUDA. We
compared the performance of Halide using our proposed scheduler with the
performance of HiPacc using the instructions provided in [72] for unsharp,
harris and bilateral (which are the common benchmarks in the two suites).
HiPacc was in all cases faster than Li et al but more than 2x slower than
both the manual and our schedules. Unsharp was the only application
where HiPacc was only 20% slower than our method and on par with the
manual implementation. (However the two definitions of the algorithms
were different, i.e. the Gaussian kernels in Halide get generated at run-
time, while in HiPacc they are hardcoded.)

CuDNN is another widely used framework that provides hand opti-
mized implementations of popular deep learning applications. We tested
our autoscheduler on ResNet-50, a popular deep learning application used
for image classification. Our solutions were on average 25% to 30%
slower compared to the pytorch implementation with CuDNN enabled
on the RTX 2080 TI platform. (Noted: No manual Halide, or other
implementations were provided for this network). However, Halide is not
yet capable of utilizing the tensor cores on the Turing architectures.

6.6 Summary
In this chapter we introduced a new analytical model along with novel op-
timization passes and heuristics for the Halide DSL and compiler in order
to enable automatic generation of schedules targeting CUDA-based GPU
architectures. We integrated our model into the Halide autoscheduler and
tested it on a variety of image processing pipelines. Experimental results
show that the generated schedules can achieve performance comparable
to, or even better than that of manual, expert-tuned solutions.

Future work directions can either improve the current model with new
techniques (i.e. multi-level tiling, unrolling of outer loops) or even use
the heuristics we developed here as features in a learned autoscheduler
similar to [2]. The occupancy of the target platform and the arithmetic
cost per thread can for example be features that could be beneficial
during the training process. Moreover, a scheduler more dedicated to
deep learning could also be enabled as an extension to our framework
with parametric based schedules for layers. Furthermore, an extended
scheduler should integrate the existing CPU and GPU models in order
to be able to independently decide whether pipelines/stages should be
scheduled on the host CPU or offloaded into the GPU accelerator when
present.

7
Programming Tensor Cores from an

image processing DSL

Tensor Cores (TCUs) are specialized units first introduced by NVIDIA
in the Volta microarchitecture in order to accelerate matrix multiplica-
tions for deep learning and linear algebra workloads. While these units
have proved to be capable of providing significant speedups for specific
applications, their programmability remains difficult for the average user.
In this chapter, we extend the Halide DSL and compiler with the ability
to utilize these units when generating code for a CUDA based NVIDIA
GPGPU. To this end, we introduce a new scheduling directive along with
custom lowering passes that automatically transform a Halide AST in
order to be able to generate code for the TCUs. We evaluate the generated
code and show that it can achieve over 5x speedup compared to Halide
manual schedules without TCU support, while it remains within 20% of
the NVIDIA cuBLAS implementations for mixed precision GEMM and
within 10% of manual CUDA implementations with WMMA intrinsics.

7.1 Introduction
Matrix multiplication (GEMM) has proven to be an integral part of many
applications in the image processing domain [24]. With the rise of CNNs
and other Deep Learning applications, NVIDIA designed the Tensor Core
Unit (TCU). TCUs are specialized units capable of performing 64 (4x4x4)

117

118
CHAPTER 7. PROGRAMMING TENSOR CORES FROM AN IMAGE

PROCESSING DSL

multiply - accumulate operations per cycle. When first introduced along-
side the Volta microarchitecture, these TCUs aimed to improve the per-
formance of mixed precision multiply-accumulates (MACs) where input
arrays contain half precision data and accumulation is done on a single
precision output array. With the newer Turing architecture, TCUs also
support fixed precision MACs as well as more data types compared to the
previous generation.

Although TCUs can significantly increase the performance of applica-
tions such as DNNs and other tensor contractions whose main workloads
can be formulated as matrix multiplications, direct programmability of
these units remains either inaccessible to non CUDA experts, or com-
pletely hidden behind libraries such as cuBLAS and CUTLASS.

Halide [73] is a Domain Specific Language (DSL) for image processing
applications that aims to increase code portability and readability by sep-
arating the functional description of an application from its optimization
schedule. Using LLVM [41] as a backend compiler, Halide can target
various architectures including multi-core CPUs as well as CUDA based
GPGPUs. These multi-core CPUs can often act as a host while parts of
the code are offloaded into a GPU which acts as an accelerator.

In this chapter we extend the Halide DSL with the tensor_core
scheduling directive, along with all necessary lowering and backend com-
piler passes in order to allow the compiler to automatically utilize the
TCUs when asked by the user. To this end, we implement custom lowering
passes that replace the parts of the AST that correspond to the tradi-
tional matrix multiplication and inject calls to new compiler intrinsics
that correspond to tensor operations. Furthermore, using NVVM as a
backend, we extend the PTX (Parallel Thread Execution) code generator
for each of the new intrinsics. Finally, we demonstrate that through our
extensions, the compiler can automatically generate a highly optimized
implementation of GEMM without the user having to worry about data
types, loop bounds or other scheduling choices. Experimental results show
that the performance of the generated code is over 5x faster than manually
tuned Halide schedules without tensor core support, and close to or even
faster than NVIDIA cuBLAS implementations.

The rest of this chapter is organized as follows: Section 7.2 presents
background information on the NVIDIA tensor core architecture, focusing
on its programmability as well as matrix multiplication in the Halide DSL.
Section 7.3 discusses related work on compiler support for similar archi-
tectures across various DSLs. Section 7.4 introduces the new scheduling
directive along with all necessary compiler passes that enable code gener-
ation for TCUs in Halide, along with an example optimization schedule
that was used for benchmarking. Section 7.5 evaluates the performance
of generated code based on the aforementioned schedule compared to
equivalent cuBLAS implementations as well as manually scheduled Halide

7.2. BACKGROUND INFORMATION 119

implementations without tensor core support. Finally, concluding remarks
are made in Section 7.6. This work was published in [80].

7.2 Background information
This section presents key background information on the NVIDIA Tensor
Core architecture and its programmability, as well as on the Halide DSL
and compilation flow.

Warp Scheduler

Register File

SFU

LD/ST

L1 Cache / Shared Memory

FP32

LD/STLD/STLD/ST

INT32

Warp Scheduler

Register File

SFU

LD/ST

TensorFP32

LD/STLD/STLD/ST

INT32

Warp Scheduler

Register File

SFU

LD/ST

FP32

LD/STLD/STLD/ST

INT32

Warp Scheduler

Register File

SFU

LD/ST

FP32

LD/STLD/STLD/ST

INT32

Tensor

TensorTensor

Figure 7.1: Simplified view of the Turing SM microarchitecture.
Each SM sub-core contains 2 Tensor Cores capable of executing 64
multiply/accumulate operations per cycle. Warps in each subcore can
utilize these units and can communicate through the shared memory.

120
CHAPTER 7. PROGRAMMING TENSOR CORES FROM AN IMAGE

PROCESSING DSL

The NVIDIA Tensor Core architecture

The NVIDIA Tensor Core Unit [58] (TCU) was first introduced alongside
the Volta architecture and is also present in the Turing microarchitecture.
A simplified model of the Turing Streaming Multiprocessor (SM) microar-
chitecture can be seen in Figure 7.1. Each SM contains four sub-cores
(processing units). Sub-cores contain two processing units, each capable
of executing 4x4x4 multiply/accumulate per cycle. This translates to 128
operations per cycle for every TCU. On a Turing RTX 2080Ti (TU102,
which was used in our experiments) that operates on a 1.635Ghz clock
and contains 68 SMs (or 544 TCUs), theoretical tensor core performance
reaches 113TOPS. Similar architectures have been introduced by Google
[33] (TPU) and Intel [76] (NNP).

NVIDIA provides two dinstinct ways of programming these units: a)
Widely used libraries such as cuBLAS [55] and cuDNN [16] have been
extended with new kernels that utilize the TCUs to accelerate GEMM
performance. CUTLASS [56] (CUDA templates for Linear Algebra Sub-
routines), another NVIDIA library that built upon C++ in order to enable
high-performance in BLAS-like kernels supports code generation for the
TCUs as well. b) the CUDA WMMA (Warp level Matrix Multiply and
Accumulate) API provides a more direct way for CUDA developers to
program these units using specific intrinsics. These intrinsics operate on
a new data type called fragment which represents the part of the array
that will be used in the following TCU instructions and can vary per data
type, memory layout of the corresponding array and/or size. Fragments
can either be used in load, store or multiply/accumulate instructions
(wmma.load, wmma.store and wmma.mma intrinsics respectively). Load and
store intrinsics can read/store into the shared or the global memory. In
this work, we instead use the NVVM IR intrinsics that correspond to the
above instructions, and extend the Halide compiler passes accordingly in
order to generate high-performance GEMM kernels.

Matrix multiplication in Halide

As already mentioned in Chapter 3, Halide separates the algorithmic de-
scription of an application from its optimization schedule. As an example,
consider the code seen in Listing 7.1, which implements a simple matrix
multiplication kernel in Halide.

In detail, lines 5 and 6 are responsible for the functional behavior of the
application and define the relationship between output and input data.
Line 5 initializes all elements of array C to zero and then line 6 which
is called an update definition (in Halide terms) over the initialization
describes the matrix multiplication of arrays A and B (and accumulation
in output array C). Lines 9 and 10 dictate the optimization schedule of the

7.2. BACKGROUND INFORMATION 121

1 Var x("x"), y("y"),xi("xi"),yi("yi");
2 int matrix_size=1024;
3 // Algorithm
4 RDom k(0, matrix_size);
5 C(x, y) = 0.0f ;
6 C(x, y) += A(k,y) * B(x,k);

8 // Schedule
9 C.compute_root().gpu_tile(x,y,xi,yi,32,16);

10 C.update().gpu_tile(x,y,xi,yi,32,16);

Listing 7.1: Example Matrix Multiplication in Halide

Front-end Scheduling

Split loop dimensions
Assign blocks/threads

Halide
Code

Lowering

Replace AST nodes
Inject tensor Operations

Code Generation

Translate Halide IR
CodeGen for Tensor Ops

PTX
Code

Figure 7.2: Basic Compilation Flow: The tensor_core scheduling
directive dictates that the corresponding Halide function should be ported
on the TCUs. Calls to custom tensor core intrinsics are injected into the
AST during lowering and finally translated into LLVM/NVVM IR before
generating the final PTX code.

implementation and control details such as the loop transformations that
will be applied on the generated code, the memory storage and layout
for intermediate buffers, the order in which input data is loaded and
other architecture specific information, such as the loop dimensions that
correspond to the x, y and z dimensions of a threadblock on a GPU. It
is important to note that the optimization schedule does not affect the
functional output of the code. In this specific example, the gpu_tile
scheduling directive will cause the compiler to tile the x and y dimensions
with tile sizes of 32 and 16 respectively, such that xi and yi are the inner
intra-tile loops and x, y the outer inter-tile loops. At the same time,
the inner (intra-tile) loops will be assigned as CUDA threads while the
outer (inter-tile) loops as block dimensions. The same will be done for

122
CHAPTER 7. PROGRAMMING TENSOR CORES FROM AN IMAGE

PROCESSING DSL

the update definition of C.
As seen in the above example, Halide allows for increased code porta-

bility and readability, since: a) the optimizations applied through the
scheduling directives cannot change the functional output of the code
and b) changing the target platform only requires rewriting the schedule.
All scheduling transformations are applied after the initial description
has been lowered into an intermediate representation (IR). Halide IR
remains platform independent until later stages of the compilation flow
where it is translated into LLVM IR for the final target code generation.
Specifically, for CUDA based architectures, Halide IR gets mapped into
LLVM’s NVVM backend to generate PTX code. NVVM IR is a compiler
IR (internal representation) based on the LLVM IR which was designed
to represent GPU compute kernels (for example, CUDA kernels). For
each Halide function/stage a different CUDA kernel is generated through
LLVM. In the above example, one kernel would be launched to initialize
the output array to zero and another one would be responsible for the
actual matrix multiplication.

We will show that by injecting new tensor specific intrinsics as well as
properly modifying Halide’s PTX code generator (where the translation to
LLVM IR occurs for the PTX backend) we can generate high performance
code that utilizes the NVIDIA TCUs.

7.3 Related work
Imaging DSLs provide an efficient high-level way for developers to generate
high-performance implementations without sacrificing code readability
and maintainability. Due to this reason, custom backends and extensions
for architectures that operate as accelerators have been a popular subject
in the context of such languages [51, 73, 74, 87]. Most DSLs use LLVM
as a backend to generate code for accelerators. Halide [73] and Tensor
Comprehensions [87] are two example languages that translate their IR
into LLVM IR in order to generate PTX code for GPU offloading. In a
similar fashion, Halide can generate code for the Qualcomm Hexagon DSP
with HVX extensions. Other approaches make use of C code generators
in these DSLs to support FPGA code generation through HLS (High level
synthesis) [68], or DSPs [89]. TVM [15] is a deep learning compiler stack,
heavily influenced by Halide IR. It supports various architectures and was
recently extended with Tensor Core code generation [86]. However, unlike
our approach, TVM instead injects CUDAWMMA intrinsics into C/C++
output code and requires nvcc to compile the final implementation. Our
method does not need the code to be linked with any CUDA libraries
during design time and thus enables cross compilation. Moreover, TVM
requires the user to make scheduling choices for the mapping, while we

7.4. TENSOR CORES IN HALIDE 123

predefine an efficient schedule that as seen in the benchmarks of Sec-
tion 7.5 can achieve high throughput in nearly all cases while remaining
generic.

7.4 Tensor Cores in Halide
This section presents our extensions to the Halide compiler in order to
enable code generation for the NVIDIA TCUs. To this end, we intro-
duce a new tensor_core scheduling directive. After our extensions the
optimization schedule presented in Listing 7.1 becomes:

1 // Schedule
2 C.compute_root().gpu_tile(x,y,xi,yi,32,16);
3 C.update().tensor_core(A,row,B,col);

Listing 7.2: The new tensor_core directive is enough to generate high
performance code for GEMM kernels in supported architectures

NVVM Intrinsic Layout Data Type
nvvm.wmma.m16n16k16 A B C A/B C Type Halide IR
load.a.row.f16 row - - float16 - mma_load
load.b.col.u8 - col - uint8 - mma_load
load.c.row.f32 - - row - float32 mma_load
store.d.col.i32 - - col - int32 mma_store

mma.col.col.f32.f32 col col - float16 float32 mma_operation
mma.row.col.u8 row col - uint8 int32 mma_operation

Table 7.1: NVVM WMMA Intrinsic Selection Examples

As seen in the above listing, the new directive only requires the input
arrays and their storage layout. The size of the fragments, as well as the
data types and the necessary NVVM intrinsics to generate code are all
automatically derived based on the type of the input buffers. In a similar
way, the dimensions of the grid to be launched as well as the amount of
shared memory to be requested for the implementation are calculated. A
simplified view of the compilation steps required to generate TCU code
can be seen in Figure 7.2. In the language front-end, we introduce the
tensor_core directive which marks the computation of a Halide function
to be ported on the TCU. At the same time we split the dimensions of the
loop such that we create a 256x256 tile (similar to the CUDA WMMA
implementation in [57]) and assign the corresponding dimensions to the
CUDA grid dimensions. Finally we propagate the types of the input and

124
CHAPTER 7. PROGRAMMING TENSOR CORES FROM AN IMAGE

PROCESSING DSL

output arrays, as well as their layout to the upcoming IR passes. Since
this is a new scheduling directive, we need to provide new information
during the lowering phase in order for the compiler to know what kind of
new transformations should be applied on the code. We first attempt to
fix the bounds of the loops that need to be modified to account for the
required grid dimensions. To this end, we introduce a new lowering pass
during which we transform the AST by injecting IR nodes with calls to
tensor operation intrinsics. For the rest of this chapter, A, B and C refer
to the arrays/buffers of Listing 7.1, while a, b, c and d refer to the tensor
fragments used in WMMA operations. We introduce an intrinsic for each
type of tensor instruction:

1. mma_load(a/b/c,pointer,layout,stride,type) : Loads data
from the memory location of pointer into the a/b/c fragment of a
TCU. The memory location may be in either the shared or global
memory. The size, type and stride of the fragment is inferred by
type and stride.

2. mma_store(pointer,layout,stride,type) : Stores the d frag-
ment data from the TCU registers into the memory location specified
by pointer, which can point to either the shared or global memory.
The size, type and stride of the fragment is inferred by type and
stride.

3. mma_operation : Multiplies the a and b fragments and accumulates
the result (plus c) in the d fragment.

All of the above arguments that are not present in the tensor_core
scheduling directive are automatically inferred by the compiler.

We use a modified version of the schedules provided by NVIDIA [57]
as an example schedule to showcase the effectiveness of the tensor core
architecture in Halide. We focus on the optimized version which auto-
matically makes use of the maximum shared memory available on the
platform to store chunks of A, B and C arrays. When this is not possible,
a naive implementation that does not make use of the shared memory
is provided at the cost of performance. Efficient streaming of A/B/C
data to and from the global memory is realized through calls to memcpy.
Listing 7.3 shows an example lowered AST of the schedule generated by
the lowering pass for arrays of size 1024 × 1024, row, column layout for
A and B respectively and mixed precision (float16 for A, B and float32
for array C). For simplicity, the pointer and indexing calculation is not
shown, but all pointers are typically functions of the surrounding loop
iterators. The number of blocks of the launched kernel is equal to the SM
count of the GPU. A While node was also implemented in the Halide IR
as seen in line 4 of Listing 7.3 to account for the step size in the original
CUDA WMMA code.

7.4. TENSOR CORES IN HALIDE 125

1 gpu_block<CUDA> (output.s1.x.__block_id_x, 0, 68) {
2 allocate __shared[65536] in GPUShared
3 gpu_thread<CUDA> (.__thread_id_x, 0, 256) {
4 while (s0, output.s1.x.__block_id_x, ((s0*8)/64)*(8) < 64, 68){
5 unrolled (s1, 0, 16) {//Stream C into shared memory
6 (float32)mma_memcpy_C_to_shared(ptr_C, ptr_shared)
7 }
8 gpu_thread_barrier()//Sync threads
9 unrolled (s2, 0, 8) {//Load multiple fragments of C

10 (float32)mma_load(c, ptr_shared, row, stride)
11 }
12 gpu_thread_barrier()
13 unrolled (s3, 0, 16) {//loop over global K dimension
14 unrolled (s4, 0, 8) {//Stream A/B chunks into shared memory
15 (float16)mma_memcpy_AB(ptr_A, ptr_B, ptr_shared)
16 }
17 gpu_thread_barrier()
18 unrolled (s5, 0, 4) {
19 unrolled (s6, 0, 2) {//Load fragment A
20 (float16)mma_load(a, ptr_shared, row, stride)
21 unrolled (s7, 0, 4) {//Load fragment B
22 (float16)mma_load(b, ptr_shared, col, stride)
23 (float32)mma_operation()//Multiply/accumulate
24 }
25 }
26 }
27 gpu_thread_barrier()//Sync threads
28 }
29 unrolled (s8, 0, 8) {//Store accumulator into shared memory
30 (float32)mma_store(ptr_shared, row, stride)
31 }
32 gpu_thread_barrier()//Sync threads
33 unrolled (s9, 0, 16) { //stream C back to global memory
34 (float32)mma_memcpy_C_to_global(ptr_C, ptr_shared)
35 }
36 gpu_thread_barrier()//Sync threads
37 }
38 }
39 }

Listing 7.3: Example lowered AST of the computational loop after
tensor operations have been injected. The schedule has been adapted
from NVIDIA. All loop bounds and types are automatically derived by
the compiler.

126
CHAPTER 7. PROGRAMMING TENSOR CORES FROM AN IMAGE

PROCESSING DSL

Elements of C are first streamed into the shared memory (from the
global memory). In case C is zero as in the example of Listing 7.1 then
the call to the initial memcpy can be replaced by a memset. The same
data is then loaded into fragments to be reused in the following multi-
ply/accumulates through a mma.load.c instruction. A similar process
is repeated for chunks of A and B arrays. Iterating across the global
K dimension, fragments a and b are multiplied and accumulated into
fragment d, reusing fragments of b against a in the process. Finally, d
fragments are stored into the shared memory before being streamed back
into the global memory. All of the previous steps are repeated until there
are no more tiles to compute for each block. More specific details for the
schedule can be found in the NVIDIA CUDA Samples [57].

At this point the Halide IR along with the newly injected tensor
nodes/calls needs to be translated into LLVM/NVVM IR before the final
code generation. Proper NVVM intrinsic selection depends on the data
type and storage layout of the input/output arrays. All the necessary
information was either already propagated by the previous compilation
stages or was inferred by the compiler. An example of Halide IR to NVVM
intrinsic mapping can be seen in Table 7.1. All fragments of C/D are 8
elements wide, while fragments of A/B arrays are 4 elements wide when
they contain uint8 elements and 8 elements wide when the data type is
float16.

Since load and multiply/accumulate operations return a fragment data
type (an array of 8 floats or integers depending on the data type of
the output), all elements in the accumulator fragment C/D need to be
extracted and stored into the local memory after each wmma.mma.load.c
operation in order to ensure that the accumulator fragment is actually
updated after each cycle. For wmma.mma.store.d operations, the same
elements need to be loaded into registers before they can be used in the
instruction. Finally, wmma.mma operations are handled by first loading
the previous values of the accumulator into registers and then storing
them back after each multiply/accumulate. This process is automatically
handled during the translation of the Halide IR tensor intrinsics along
with all necessary memory allocations.

7.5 Evaluation
This section presents the experimental results obtained using the
tensor_core scheduling directive along with the other extensions pre-
sented above.

All experiments were performed on a RTX 2080Ti NVIDIA GPU
with 68 SMs. By default CUDA limits the maximum allowed shared
memory per block to 48Kb. Bypassing this limit is possible by set-

7.5. EVALUATION 127

ting the maximum dynamic shared memory size to 64Kb through the
cuFuncSetAttribute PTX runtime function which is added to the Halide
CUDA runtime before calling the kernel. The average execution time of
each benchmark was measured through Halide’s benchmark subroutine
across 100 iterations and 10 samples followed by a device sync.

0.0

0.1

0.2

0.3

0.4

1024x1024
0.0

0.6

1.1

1.7

2.2

2048x2048
0.0

4.1

8.1

12.2

16.3

4096x4096
0.0

0.4

0.8

1.2

1.6 ×102

8192x8192

0.0

0.1

0.2

0.3

0.4

1024x1024
0.0

0.5

0.9

1.4

1.8

2048x2048
0.0

3.7

7.4

11.0

14.7

4096x4096
0.0

0.3

0.6

0.9

1.1 ×102

8192x8192
Manual (Halide) AutoTensor (Halide) Cublas

Av
er
ag

e
ex
ec
ut
io
n
tim

e
(m

s)

A/B FP16, C/D FP32

A/B UINT8, C/D INT32

Figure 7.3: Matrix multiplication average execution time on an NVIDIA
RTX 2080Ti GPU, for mixed precision and fixed-point implementations
on various problem sizes.

The experimental results obtained on the NVIDIA RTX 2080Ti GPU
are shown in Figure 7.3. All implementations refer to the Halide function
of Listing 7.1. The top rows show the results across four different problem
sizes when the input A/B arrays contain elements of half precision and
the output is calculated in full precision, while the bottom row shows the
same results on fixed-point implementations. The "manual" bar refers to
the fastest Halide optimization schedule for matrix multiplication (that
does not use tensor cores), while cuBLAS refers to the results obtained
using cuBLAS on CUDA version 10.0. The optimized implementation
we provide assumes that the storage layout for array B is column major
while the Halide code of Listing 7.1 requires all arrays to be row major.

128
CHAPTER 7. PROGRAMMING TENSOR CORES FROM AN IMAGE

PROCESSING DSL

256 512 1024 2048 4096 8192 16384
Problem Size (N×N)

10−2

10−1

100

101

102

Av
er
ag
e
Ex

ec
ut
io
n
tim

e
(m

s)

1.8×10−2
2.5×10−2

5.5×10−2

2.46×10−1

1.29

9.86

8×101

1.7×10−2
2.2×10−2

4.8×10−2

2.69×10−1

1.57

1.407×101

8.6×101

AutoTensor (Halide)
CUDA WMMA API

Figure 7.4: Average execution time of matrix multiplication on a wide
range of problem sizes on NVIDIA RTX 2080Ti.

7.6. SUMMARY 129

Due to this reason, we transpose array B before using it in the matrix
multiplication. The execution time for this transposition is taken into
account for the "AutoTensor" bar of Figure 7.3. Tensor cores speed up
performance by up to 10x on larger problem sizes. The overhead of
transposition accounts for less than 10% of the runtime. Moreover, our
tensor core Halide implementation remains on average within 29% of the
cuBLAS performance for mixed precision matrix multiplications, and it
is even faster when using integer data types since cuBLAS cannot yet use
tensor operations for Turing architectures: Most BLAS kernels in cuBLAS
are optimized for the Volta architecture which did not have integer tensor
core support. When both Halide and cuBLAS assume a row, column
major layout for arrays A and B and no transposition is needed, Halide
can stay within 18% of cuBLAS performance.

Since standard cuBLAS routines (SGEMM) cannot yet utilize the
tensor core units when using int32 data types, we instead compare the per-
formance of our implementations against the hand-optimized fast GEMM
CUDA kernel found in [57] with imma (Integer Matrix Multiply Accumu-
late) intrinsics, specialized for the Turing architecture. Figure 7.4 shows
an extended comparison for Int32 matrix multiplications on the same plat-
form across a wider range of problem sizes. Both implementations assume
a row, col storage layout for arrays A and B respectively. We see that the
automatic Halide implementation achieves competitive performance (7%
slower on average) with the manual CUDA code [57] in nearly all cases.

7.6 Summary
In this chapter we presented a new scheduling directive for the Halide DSL
along with a set of intrinsics and lowering passes that enable automatic,
efficient code generation for matrix multiplications leveraging the Tensor
Core units present in the latest CUDA GPU architectures. We evaluated
our extensions using a Turing based NVIDIA GPGPU and showed that
through our custom intrinsics and passes, Halide can achieve performance
competitive with cuBLAS and manual CUDA code on matrix multiplica-
tion kernels.

130
CHAPTER 7. PROGRAMMING TENSOR CORES FROM AN IMAGE

PROCESSING DSL

8
Conclusions and Future Work

This dissertation introduced a set of optimization frameworks for image
processing and computer vision applications. The developed frameworks
are capable of generating efficient code that targets both multi-core CPU
as well as GPU architectures. This thesis shows that when targeting do-
main specific applications, analytical modeling and heuristics are enough
to achieve consistent performance competitive to manual, expert-tuned
solutions. Through properly defined analytical models that capture key
architecture-specific parameters, the frameworks introduced in the previ-
ous chapters enable quick generation of optimization schedules without the
need of time-consuming auto-tuning, thus also enabling cross-compilation
for embedded edge devices.

It should be noted that all of the optimization algorithms introduced
in Chapters 4, 5, and 6 can be used alongside any programming language
or compiler. However, the Halide DSL and compiler enabled quick design-
space exploration and evaluation of the proposed concepts thanks to the
explicit separation of algorithmic description and optimization schedule.
As a result, all tools developed to accompany the above chapters have been
designed to be used alongside the Halide language. Furthermore, domain-
specific compilers like Halide, TVM, PolyMage and Tensor Comprehen-
sions allow developers to use a higher-level syntax to perform intricate low-
level optimizations. When paired with automatic scheduling, they can be
extremely useful especially when targeting specialized architectures with
limited programmability such as the NVIDIA Tensor Core units. Halide
was in general preferred over similar DSLs and source-to-source compiler

131

132 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

tools due to its active community and already established presence within
industrial contexts.

Current Limitations. The work presented in this dissertation can
achieve performance competitive to manual solutions across a wide range
of real-world applications and state-of-the-art architectures while also
generating solutions in the order of seconds. However, its overall efficiency
is limited by the scope of knowledge instilled during its design. More
specifically, while analytical modeling can in principle capture all applica-
tion and architecture-specific parameters necessary in order to adequately
optimize an imaging pipeline, its efficiency is strictly tied to the nature of
the deployment platform.

As hardware architectures continue to evolve, it is not impossible that
future platforms will feature entirely different components, the behavior
of which is not captured in current models. To this end, our proposed
frameworks are limited to CPUs, GPUs and other architectures that can
be described through a similar memory hierarchy subsystem connected
with various computational units (processing core). In case of entirely
different platforms, new models alongside novel heuristics will instead need
to be designed.

In a similar fashion, our frameworks consider not only a subset of
the available optimization techniques used within the image-processing
domain, but also a limited number of transformations available through
the Halide language. In an effort to be able to cover a wide range
of applications, more specialized transformations such as multi-level or
hybrid tiling [25, 36] as well as explicit data placement and loading fall
outside the scope of this work, even though they have proven to be highly
effective under conditions. However, the proposed models can in principle
be extended in order to also consider such transformations.

More specifically, all of the proposed analytical models that were used
in Chapters 4, 5 and 6 can potentially benefit from a more sophisticated
analysis related to loop unrolling in order to use hardware registers in
a more efficient way. As an example, the model defined in Chapter 4
can be extended to consider another level of the memory hierarchy that
corresponds to the register file. Furthermore, the GPU scheduler of Chap-
ter 6 can also immensely benefit from explicit data placement of the
values associated input buffers or input values across stages. Halide
can achieve this through the .in() directive, which enables loading of
input data to be explicitly scheduled through a wrapper stage or Halide
Func. Such wrappers can then be fused into their consumers just like
a normal producing stage would. When targeting a GPU architecture,
the placement of the buffers associated with these wrapper stages can
be controlled such that they reside in a specific level of the memory

133

hierarchy (global memory, shared memory or registers). Applications such
as convolutional layers and matrix multiplications that offer high data
reuse across loop iterations can use this optimization and avoid redundant
loading of input data.

Future-work directions. The aforementioned limitations can be tack-
led through various future-work directions. These directions can be di-
vided into two categories: (i) approaches that aim to improve the pro-
grammability of non-traditional architectures while enabling efficient and
automatic code generation and (ii) extended optimization frameworks that
attempt to cover a larger search space by incorporating more techniques
and code transformations while maintaining a hardware-specific perspec-
tive of the optimization process.

Code-generation support for novel architectures: With the in-
creased popularity of computer vision and deep learning in the recent
years more and more domain-specific accelerators such as the intel neural
processing unit [76], the google TPU [33] or the are being introduced. As
most of them often require unique programming models hidden behind
various tools and libraries, their usage remains out of scope for the average
user and is therefore limited to expert developers capable of efficiently,
manually, programming them and integrating them in their products.

Domain-specific languages partially alleviate the above issue by incor-
porating passes within their compilers, that can both generate code as
well as handle all necessary data/code offloading in order to support such
architectures. However, current DSLs are often designed using individual
intermediate representations and custom back-end code generators (in
situations where LLVM is not available). As a result, all effort spent
to support such architectures in one of these languages often has to be
repeated in order to target a different one. A unified IR, shared across all
relevant DSLs could instead allow for a much more concise and streamlined
development process for future compilers and platforms. To an extent,
this is already possible through the Multi-Level Intermediate Representa-
tion (MLIR) [42] which attempts to unify the high-level front-end IRs of
various (mostly machine learning) frameworks through the use of a level
of abstraction called “flavors” that operate on tensors. Ideally, this kind
of infrastructure should also support variable granularity of computation
(i.e., operations on loops instead of tensors) or, in an even more advanced
form, enable generation of hardware description languages (HDL).

The future of analytical modeling and auto-scheduling. Tradi-
tional analytical models alongside heuristics enable quick and efficient
design-space exploration as well as efficient code generation through the al-

134 CHAPTER 8. CONCLUSIONS AND FUTURE WORK

gorithms introduced in this thesis. However, the rapid evolution of both in
terms of application as well as architecture development may in the future
become an obstacle towards automatic efficient code generation through
analytical modeling alone. As more and more platform- or application-
specific transformations will be needed to achieve performance comparable
to manual solutions, generic models will either have to be replaced by
domain-specific ones, each specialized in a subset of applications (i.e.
BLAS kernels, DNNs, classical vision pipelines), or by hybrid optimization
frameworks guided by some form of machine learning models.

Specialized schedulers can in principle achieve near-optimum perfor-
mance by modeling the behavior of all hardware components, while mak-
ing use of application-specific knowledge such as memory access patterns,
specific data placement and computational intensity to efficiently utilize
the platform’s resources. On the other hand, a learned model similar
to the one presented in [2] has the immense benefit of extensibility. In
other words, a learned model can easily be extended to support a new
optimization/transformation by repeating the training process. More-
over, such learned models are capable of detecting complex patterns and
architectural behaviors of applications, and as a result are also capable
of predicting the impact of various optimizations in situations that would
be nearly impossible to capture purely through analytical models and
heuristics that target the same range of applications. However, as the de-
sign space grows larger with the addition of more possible transformations
(along with their impact on existing ones), human guidance and heuristics
are of vital importance in order to steer the learning process. As a result,
hybrid, extensible models that incorporate both human knowledge and
artificial intelligence are expected to be a subject of significant research
in the field’s future.

Finally, future scheduling frameworks should be able to efficiently
handle the heterogeneous aspects of modern platforms. To this end, they
should be capable of deciding which parts of the applications (or stages of
an imaging pipeline) should be offloaded on a specific accelerator. This can
be achieved either through a learned model that predicts the performance
benefit of an application running on an available accelerator compared to
the host architecture or through a traditional heuristic-based analytical
model.

Bibliography

[1] Abella, J. Near-Optimal Loop Tiling by Means of Cache Miss
Equations and Genetic Algorithms. In Proceedings of the 2002
International Conference on Parallel Processing Workshops (Wash-
ington, DC, USA, 2002), ICPPW ’02, IEEE Computer Society,
p. 568.

[2] Adams, A., Ma, K., Anderson, L., Baghdadi, R., Li, T.-
M., Gharbi, M., Steiner, B., Johnson, S., Fatahalian, K.,
Durand, F., and Ragan-Kelley, J. Learning to Optimize
Halide with Tree Search and Random Programs. ACM Trans.
Graph. 38, 4 (July 2019), 121:1–121:12.

[3] Adams, A., Talvala, E.-V., Park, S. H., Jacobs, D. E.,
Ajdin, B., Gelfand, N., Dolson, J., Vaquero, D., Baek,
J., Tico, M., Lensch, H. P. A., Matusik, W., Pulli, K.,
Horowitz, M., and Levoy, M. The Frankencamera: An
Experimental Platform for Computational Photography. In ACM
SIGGRAPH 2010 Papers (New York, NY, USA, 2010), SIGGRAPH
’10, ACM, pp. 29:1–29:12.

[4] Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley,
J., Bosboom, J., O’Reilly, U.-M., and Amarasinghe, S.
OpenTuner: An Extensible Framework for Program Autotuning.
In Proceedings of the 23rd International Conference on Parallel
Architectures and Compilation (New York, NY, USA, 2014), PACT
’14, ACM, pp. 303–316.

[5] Ansel, J., Kamil, S., Veeramachaneni, K., Ragan-Kelley,
J., Bosboom, J., O’Reilly, U. M., and Amarasinghe, S.
OpenTuner: An extensible framework for program autotuning. In
2014 23rd International Conference on Parallel Architecture and
Compilation Techniques (PACT) (Aug 2014), pp. 303–315.

[6] Asano, S., Maruyama, T., and Yamaguchi, Y. Performance
comparison of FPGA, GPU and CPU in image processing. In
2009 International Conference on Field Programmable Logic and
Applications (Aug 2009), pp. 126–131.

135

136 BIBLIOGRAPHY

[7] Baghdadi, R., Ray, J., Romdhane, M. B., Del Sozzo,
E., Akkas, A., Zhang, Y., Suriana, P., Kamil, S., and
Amarasinghe, S. Tiramisu: A Polyhedral Compiler for Expressing
Fast and Portable Code. In Proceedings of the 2019 IEEE/ACM
International Symposium on Code Generation and Optimization
(Piscataway, NJ, USA, 2019), CGO 2019, IEEE Press, pp. 193–205.

[8] Bandishti, V., Pananilath, I., and Bondhugula, U. Tiling
Stencil Computations to Maximize Parallelism. In Proceedings
of the International Conference on High Performance Computing,
Networking, Storage and Analysis (Los Alamitos, CA, USA, 2012),
SC ’12, IEEE Computer Society Press, pp. 40:1–40:11.

[9] Bao, B., and Ding, C. Defensive loop tiling for shared cache. In
Proceedings of the 2013 IEEE/ACM International Symposium on
Code Generation and Optimization (CGO) (Feb 2013), pp. 1–11.

[10] Besard, T., Foket, C., and De Sutter, B. Effective Extensible
Programming: Unleashing Julia on GPUs. IEEE Transactions on
Parallel and Distributed Systems 30, 4 (April 2019), 827–841.

[11] Bondhugula, U. High Performance Code Generation in MLIR:
An Early Case Study with GEMM, 2020.

[12] Bondhugula, U., Hartono, A., Ramanujam, J., and Sa-
dayappan, P. A Practical Automatic Polyhedral Parallelizer and
Locality Optimizer. SIGPLAN Not. 43, 6 (June 2008), 101–113.

[13] Chame, J., and Moon, S. A Tile Selection Algorithm for
Data Locality and Cache Interference. In Proceedings of the 13th
International Conference on Supercomputing (New York, NY, USA,
1999), ICS ’99, ACM, pp. 492–499.

[14] Chen, J., Paris, S., and Durand, F. Real-time edge-aware
image processing with the bilateral grid. ACM Trans. Graph. 26
(2007), 103.

[15] Chen, T., Moreau, T., Jiang, Z., Zheng, L., Yan, E.,
Cowan, M., Shen, H., Wang, L., Hu, Y., Ceze, L., Guestrin,
C., and Krishnamurthy, A. TVM: An Automated End-to-
end Optimizing Compiler for Deep Learning. In Proceedings of
the 12th USENIX Conference on Operating Systems Design and
Implementation (Berkeley, CA, USA, 2018), OSDI’18, USENIX
Association, pp. 579–594.

[16] Chetlur, S., Woolley, C., Vandermersch, P., Cohen, J.,
Tran, J., Catanzaro, B., and Shelhamer, E. cuDNN: Efficient
Primitives for Deep Learning. CoRR abs/1410.0759 (2014).

BIBLIOGRAPHY 137

[17] Cociorva, D., Wilkins, J. W., Lam, C., Baumgartner, G.,
Ramanujam, J., and Sadayappan, P. Loop Optimization for a
Class of Memory-constrained Computations. In Proceedings of the
15th International Conference on Supercomputing (New York, NY,
USA, 2001), ICS ’01, ACM, pp. 103–113.

[18] Coleman, S., and McKinley, K. S. Tile Size Selection Using
Cache Organization and Data Layout. SIGPLAN Not. 30, 6 (June
1995), 279–290.

[19] Dally, W. J., Turakhia, Y., and Han, S. Domain-Specific
Hardware Accelerators. Commun. ACM 63, 7 (June 2020), 48–57.

[20] Darbon, J., Cunha, A., Chan, T. F., Osher, S., and Jensen,
G. J. Fast nonlocal filtering applied to electron cryomicroscopy. In
2008 5th IEEE International Symposium on Biomedical Imaging:
From Nano to Macro (May 2008), pp. 1331–1334.

[21] Demmel, J., Dongarra, J., Eijkhout, V., Fuentes, E.,
Petitet, A., Vuduc, R., Whaley, R. C., and Yelick, K.
Self adapting linear algebra algorithms and software. In Proceedings
of the IEEE (2005), p. 2005.

[22] Farbman, Z., Fattal, R., and Lischinski, D. Convolution
Pyramids. In Proceedings of the 2011 SIGGRAPH Asia Conference
(New York, NY, USA, 2011), SA ’11, ACM, pp. 175:1–175:8.

[23] Fraguela, B. B., Carmueja, M. G., Andrade, D., Joubert,
G. R., Nagel, W. E., Peters, F. J., Plata, O., Tirado, P.,
Zapata, E., A, B. B. F., A, M. G. C., and A, D. A. Optimal
tile size selection guided by analytical models. In In PARCO (2005),
pp. 565–572.

[24] Goodfellow, I. J., Bengio, Y., and Courville, A. Deep
Learning. MIT Press, Cambridge, MA, USA, 2016. http://www.
deeplearningbook.org.

[25] Grosser, T., Cohen, A., Holewinski, J., Sadayappan, P.,
and Verdoolaege, S. Hybrid Hexagonal/Classical Tiling for
GPUs. In Proceedings of Annual IEEE/ACM International Sympo-
sium on Code Generation and Optimization (New York, NY, USA,
2014), CGO ’14, ACM, p. 66–75.

[26] Halide. Halide GitHub Repository (MIT License), 2018. (commit
402171e7a4dfacb0bd93297cbdfb600a325fe745).

[27] Halide. Halide GitHub Repository (MIT License), 2018. (commit
a6129313b29a9f434ad28d425af689bcde4f13e7).

http://www.deeplearningbook.org
http://www.deeplearningbook.org

138 BIBLIOGRAPHY

[28] Harris, C., and Stephens, M. A combined corner and edge
detector. In In Proc. of Fourth Alvey Vision Conference (1988),
pp. 147–151.

[29] Holewinski, J., Pouchet, L.-N., and Sadayappan, P. High-
performance Code Generation for Stencil Computations on GPU
Architectures. In Proceedings of the 26th ACM International
Conference on Supercomputing (New York, NY, USA, 2012), ICS
’12, ACM, pp. 311–320.

[30] Holewinski, J., Pouchet, L.-N., and Sadayappan, P. High-
Performance Code Generation for Stencil Computations on GPU
Architectures. In Proceedings of the 26th ACM International
Conference on Supercomputing (New York, NY, USA, 2012), ICS
’12, ACM, p. 311–320.

[31] Intel Corporation. Intel Math Kernel Library, 2020. version
2020.

[32] Jangda, A., and Bondhugula, U. An Effective Fusion and
Tile Size Model for Optimizing Image Processing Pipelines. In
Proceedings of the 23rd ACM SIGPLAN Symposium on Principles
and Practice of Parallel Programming (New York, NY, USA, 2018),
PPoPP ’18, ACM, pp. 261–275.

[33] Jouppi, N. P., Young, C., Patil, N., Patterson, D.,
Agrawal, G., Bajwa, R., Bates, S., Bhatia, S., Boden, N.,
Borchers, A., and et al. In-Datacenter Performance Analysis
of a Tensor Processing Unit. In Proceedings of the 44th Annual
International Symposium on Computer Architecture (New York,
NY, USA, 2017), ISCA ’17, ACM, p. 1–12.

[34] Kamil, S., Husbands, P., Oliker, L., Shalf, J., and Yelick,
K. Impact of Modern Memory Subsystems on Cache Optimizations
for Stencil Computations. In Proceedings of the 2005 Workshop on
Memory System Performance (New York, NY, USA, 2005), MSP
’05, ACM, pp. 36–43.

[35] Kennedy, K., and McKinley, K. S. Maximizing loop parallelism
and improving data locality via loop fusion and distribution. In Lan-
guages and Compilers for Parallel Computing (Berlin, Heidelberg,
1994), U. Banerjee, D. Gelernter, A. Nicolau, and D. Padua, Eds.,
Springer Berlin Heidelberg, pp. 301–320.

[36] Kim, D., Renganarayanan, L., Rostron, D., Rajopadhye,
S., and Strout, M. M. Multi-Level Tiling: M for the Price

BIBLIOGRAPHY 139

of One. In Proceedings of the 2007 ACM/IEEE Conference on
Supercomputing (New York, NY, USA, 2007), SC ’07, ACM.

[37] Kim, J., Lee, J. K., and Lee, K. M. Accurate Image Super-
Resolution Using Very Deep Convolutional Networks. In 2016 IEEE
Conference on Computer Vision and Pattern Recognition (CVPR)
(June 2016), pp. 1646–1654.

[38] Knijnenburg, P. M. W., Kisuki, T., Gallivan, K., and
O’Boyle, M. F. P. The Effect of Cache Models on Iterative
Compilation for Combined Tiling and Unrolling: Research Articles.
Concurr. Comput. : Pract. Exper. 16, 2-3 (Jan. 2004), 247–270.

[39] Krishnamoorthy, S., Baskaran, M., Bondhugula, U., Ra-
manujam, J., Rountev, A., and Sadayappan, P. Effective
Automatic Parallelization of Stencil Computations. SIGPLAN Not.
42, 6 (June 2007), 235–244.

[40] Lam, M. D., Rothberg, E. E., and Wolf, M. E. The Cache
Performance and Optimizations of Blocked Algorithms. SIGPLAN
Not. 26, 4 (Apr. 1991), 63–74.

[41] Lattner, C., and Adve, V. LLVM: A Compilation Framework
for Lifelong Program Analysis & Transformation. In Proceedings
of the International Symposium on Code Generation and Optimiza-
tion: Feedback-Directed and Runtime Optimization (USA, 2004),
CGO ’04, IEEE Computer Society, p. 75.

[42] Lattner, C., Amini, M., Bondhugula, U., Cohen, A., Davis,
A., Pienaar, J., Riddle, R., Shpeisman, T., Vasilache, N.,
and Zinenko, O. MLIR: A Compiler Infrastructure for the End
of Moore’s Law, 2020.

[43] Li, T.-M., Gharbi, M., Adams, A., Durand, F., and Ragan-
Kelley, J. Differentiable programming for image processing and
deep learning in Halide. ACM Trans. Graph. (Proc. SIGGRAPH)
37, 4 (2018), 139:1–139:13.

[44] Low, T. M., Igual, F. D., Smith, T. M., and Quintana-Orti,
E. S. Analytical Modeling Is Enough for High-Performance BLIS.
ACM Trans. Math. Softw. 43, 2 (Aug. 2016).

[45] Low, T. M., Igual, F. D., Smith, T. M., and Quintana-Orti,
E. S. Analytical Modeling Is Enough for High-Performance BLIS.
ACM Trans. Math. Softw. 43, 2 (Aug. 2016), 12:1–12:18.

140 BIBLIOGRAPHY

[46] Lu, Q., Krishnamoorthy, S., and Sadayappan, P. Combining
Analytical and Empirical Approaches in Tuning Matrix Transposi-
tion. In Proceedings of the 15th International Conference on Parallel
Architectures and Compilation Techniques (New York, NY, USA,
2006), PACT ’06, ACM, pp. 233–242.

[47] Manjikian, N., and Abdelrahman, T. S. Fusion of Loops for
Parallelism and Locality. IEEE Trans. Parallel Distrib. Syst. 8, 2
(Feb. 1997), 193–209.

[48] McKinley, K. S., Carr, S., and Tseng, C.-W. Improving Data
Locality with Loop Transformations. ACM Trans. Program. Lang.
Syst. 18, 4 (July 1996), 424–453.

[49] Mehta, S., Beeraka, G., and Yew, P.-C. Tile Size Selection
Revisited. ACM Trans. Archit. Code Optim. 10, 4 (Dec. 2013),
35:1–35:27.

[50] Mehta, S., Garg, R., Trivedi, N., and Yew, P. TurboTiling:
Leveraging prefetching to boost performance of tiled codes, vol. 01-
03-June-2016. Association for Computing Machinery, 6 2016.

[51] Membarth, R., Reiche, O., Hannig, F., Teich, J., Korner,
M., and Eckert, W. HIPAcc: A Domain-Specific Language and
Compiler for Image Processing. IEEE Trans. Parallel Distrib. Syst.
27, 1 (Jan. 2016), 210–224.

[52] Mullapudi, R. T., Adams, A., Sharlet, D., Ragan-Kelley,
J., and Fatahalian, K. Automatically Scheduling Halide Image
Processing Pipelines. ACM Trans. Graph. 35, 4 (July 2016), 83:1–
83:11.

[53] Mullapudi, R. T., Vasista, V., and Bondhugula, U. Poly-
Mage: Automatic Optimization for Image Processing Pipelines. In
Proceedings of the Twentieth International Conference on Architec-
tural Support for Programming Languages and Operating Systems
(New York, NY, USA, 2015), ASPLOS ’15, ACM, pp. 429–443.

[54] Mullapudi, R. T., Vasista, V., and Bondhugula, U. Poly-
Mage: Automatic Optimization for Image Processing Pipelines.
SIGARCH Comput. Archit. News 43, 1 (Mar. 2015), 429–443.

[55] NVIDIA Corporation. NVIDIA cuBLAS library, 2008. version
10.0.

[56] NVIDIA Corporation. CUDA Templates for Linear Algebra
Subroutines, 2017.

BIBLIOGRAPHY 141

[57] NVIDIA Corporation. NVIDIA CUDA Samples, 2017.

[58] NVIDIA Corporation. NVIDIA Tensor Cores, 2017.

[59] NVIDIA Corporation. CUDA Occupancy Calculator, 2019.
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.
html.

[60] NVIDIA Corporation. NVIDIA Nsight Compute, 2019. version
2019.5.0.

[61] Olschanowsky, C., Strout, M. M., Guzik, S., Loffeld,
J., and Hittinger, J. A Study on Balancing Parallelism,
Data Locality, and Recomputation in Existing PDE Solvers. In
Proceedings of the International Conference for High Performance
Computing, Networking, Storage and Analysis (Piscataway, NJ,
USA, 2014), SC ’14, IEEE Press, pp. 793–804.

[62] Paris, S., Hasinoff, S. W., and Kautz, J. Local Laplacian
Filters: Edge-aware Image Processing with a Laplacian Pyramid.
In ACM SIGGRAPH 2011 Papers (New York, NY, USA, 2011),
SIGGRAPH ’11, ACM, pp. 68:1–68:12.

[63] Park, N., Hong, B., and Prasanna, V. K. Analysis of
memory hierarchy performance of block data layout. In Proceedings
International Conference on Parallel Processing (2002), pp. 35–44.

[64] Peemen, M., Mesman, B., and Corporaal, H. Inter-tile
Reuse Optimization Applied to Bandwidth Constrained Embedded
Accelerators. In Proceedings of the 2015 Design, Automation &
Test in Europe Conference & Exhibition (San Jose, CA, USA,
2015), DATE ’15, EDA Consortium, pp. 169–174.

[65] PolyMage project. PolyMage Repository
(Apache 2.0 License 2016), 2016. (commit
0ff0b46456605a5579db09c6ef98cb247dd2131d).

[66] Pouchet, L.-N., Bastoul, C., Cohen, A., and Cavazos,
J. Iterative Optimization in the Polyhedral Model: Part Ii,
Multidimensional Time. SIGPLAN Not. 43, 6 (June 2008), 90–100.

[67] Prajapati, N., Ranasinghe, W., Rajopadhye, S., Andonov,
R., Djidjev, H., and Grosser, T. Simple, Accurate, Analytical
Time Modeling and Optimal Tile Size Selection for GPGPU Sten-
cils. In Proceedings of the 22Nd ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming (New York, NY,
USA, 2017), PPoPP ’17, ACM, pp. 163–177.

https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html
https://docs.nvidia.com/cuda/cuda-occupancy-calculator/index.html

142 BIBLIOGRAPHY

[68] Pu, J., Bell, S., Yang, X., Setter, J., Richardson, S.,
Ragan-Kelley, J., and Horowitz, M. Programming Heteroge-
neous Systems from an Image Processing DSL. ACM Trans. Archit.
Code Optim. 14, 3 (Aug. 2017).

[69] Pulli, K., Baksheev, A., Kornyakov, K., and Eruhimov, V.
Real-time Computer Vision with OpenCV. Commun. ACM 55, 6
(June 2012), 61–69.

[70] Qasem, A., and Kennedy, K. Profitable Loop Fusion and Tiling
Using Model-driven Empirical Search. In Proceedings of the 20th
Annual International Conference on Supercomputing (New York,
NY, USA, 2006), ICS ’06, ACM, pp. 249–258.

[71] Qiao, B., Reiche, O., Hannig, F., and Teich, J. Automatic
Kernel Fusion for Image Processing DSLs. In Proceedings of the 21st
International Workshop on Software and Compilers for Embedded
Systems (New York, NY, USA, 2018), SCOPES ’18, ACM, p. 76–85.

[72] Qiao, B., Reiche, O., Hannig, F., and Teich, J. From Loop
Fusion to Kernel Fusion: A Domain-specific Approach to Locality
Optimization. In Proceedings of the 2019 IEEE/ACM International
Symposium on Code Generation and Optimization (Piscataway, NJ,
USA, 2019), CGO 2019, IEEE Press, pp. 242–253.

[73] Ragan-Kelley, J., Barnes, C., Adams, A., Paris, S., Du-
rand, F., and Amarasinghe, S. Halide: A Language and
Compiler for Optimizing Parallelism, Locality, and Recomputa-
tion in Image Processing Pipelines. In Proceedings of the 34th
ACM SIGPLAN Conference on Programming Language Design and
Implementation (New York, NY, USA, 2013), PLDI ’13, ACM,
pp. 519–530.

[74] Ravishankar, M., Holewinski, J., and Grover, V. Forma: A
DSL for Image Processing Applications to Target GPUs and Multi-
core CPUs. In Proceedings of the 8th Workshop on General Purpose
Processing Using GPUs (New York, NY, USA, 2015), GPGPU-8,
ACM, pp. 109–120.

[75] Rawat, P. S., Hong, C., Ravishankar, M., Grover, V.,
Pouchet, L.-N., Rountev, A., and Sadayappan, P. Resource
Conscious Reuse-Driven Tiling for GPUs. In Proceedings of the 2016
International Conference on Parallel Architectures and Compilation
(New York, NY, USA, 2016), PACT ’16, ACM, p. 99–111.

[76] Intel Corporation. Intel Neural Network Processor, 2020.

BIBLIOGRAPHY 143

[77] Rhemann, C., Hosni, A., Bleyer, M., Rother, C., and
Gelautz, M. Fast cost-volume filtering for visual correspondence
and beyond. In CVPR 2011 (June 2011), pp. 3017–3024.

[78] Shirako, J., Sharma, K., Fauzia, N., Pouchet, L.-N.,
Ramanujam, J., Sadayappan, P., and Sarkar, V. Analytical
Bounds for Optimal Tile Size Selection. In Proceedings of the
21st International Conference on Compiler Construction (Berlin,
Heidelberg, 2012), CC’12, Springer-Verlag, pp. 101–121.

[79] Sioutas, S., Stuijk, S., Basten, T., Corporaal, H., and
Somers, L. Schedule Synthesis for Halide Pipelines on GPUs. ACM
Trans. Archit. Code Optim. 17, 3 (Aug. 2020).

[80] Sioutas, S., Stuijk, S., Basten, T., Somers, L., and Cor-
poraal, H. Programming Tensor Cores from an Image Processing
DSL. In Proceedings of the 23th International Workshop on Software
and Compilers for Embedded Systems (New York, NY, USA, 2020),
SCOPES ’20, ACM, p. 36–41.

[81] Sioutas, S., Stuijk, S., Corporaal, H., Basten, T., and
Somers, L. Loop Transformations Leveraging Hardware Prefetch-
ing. In Proceedings of the 2018 International Symposium on Code
Generation and Optimization (New York, NY, USA, 2018), CGO
2018, ACM, pp. 254–264.

[82] Sioutas, S., Stuijk, S., Waeijen, L., Basten, T., Corporaal,
H., and Somers, L. Schedule Synthesis for Halide Pipelines
Through Reuse Analysis. ACM Trans. Archit. Code Optim. 16, 2
(Apr. 2019), 10:1–10:22.

[83] Tavarageri, S., Pouchet, L. N., Ramanujam, J., Rountev,
A., and Sadayappan, P. Dynamic selection of tile sizes. In 2011
18th International Conference on High Performance Computing
(Dec 2011), pp. 1–10.

[84] Temam, O., Fricker, C., and Jalby, W. Cache Awareness
in Blocking Techniques. In in Journal of Programming Languages
(1998).

[85] The Regents of the University of California, through
Lawrence Berkeley National Laboratory. ‘Empiri-
cal Roofline Tool (ERT)’ Copyright (c), 2019. (commit
96c4bbb41ad178d8d331696bebc2af6245af3e3c).

[86] TVM. TVM GitHub Repository (Apache-2.0 license), 2019.
(commit 9ff44969e3b566a8f1a7a50c327f63a3427984420.

144 BIBLIOGRAPHY

[87] Vasilache, N., Zinenko, O., Theodoridis, T., Goyal, P.,
DeVito, Z., Moses, W. S., Verdoolaege, S., Adams,
A., and Cohen, A. Tensor Comprehensions: Framework-
Agnostic High-Performance Machine Learning Abstractions. CoRR
abs/1802.04730 (2018).

[88] Verdoolaege, S., Carlos Juega, J., Cohen, A., Igna-
cio Gómez, J., Tenllado, C., and Catthoor, F. Polyhedral
Parallel Code Generation for CUDA. ACM Trans. Archit. Code
Optim. 9, 4 (Jan. 2013), 54:1–54:23.

[89] Vocke, S., Corporaal, H., Jordans, R., Corvino, R., and
Nas, R. Extending Halide to Improve Software Development for
Imaging DSPs. ACM Trans. Archit. Code Optim. 14, 3 (Aug. 2017).

[90] Wahib, M., and Maruyama, N. Scalable Kernel Fusion for
Memory-Bound GPU Applications. In SC ’14: Proceedings of
the International Conference for High Performance Computing,
Networking, Storage and Analysis (Nov 2014), pp. 191–202.

[91] Wang, G., Lin, Y., and Yi, W. Kernel Fusion: An Effective
Method for Better Power Efficiency on Multithreaded GPU. In Pro-
ceedings of the 2010 IEEE/ACM Int’l Conference on Green Com-
puting and Communications & Int’l Conference on Cyber, Physical
and Social Computing (USA, 2010), GREENCOM-CPSCOM ’10,
IEEE Computer Society, p. 344–350.

[92] Whaley, R. C., and Dongarra, J. J. Automatically Tuned
Linear Algebra Software. In Proceedings of the 1998 ACM/IEEE
Conference on Supercomputing (Washington, DC, USA, 1998), SC
’98, IEEE Computer Society, pp. 1–27.

[93] Whaley, R. C., Petitet, A., and Dongarra, J. J. Auto-
mated Empirical Optimization of Software and the ATLAS Project.
Parallel Computing 27 (2001), 3–25.

[94] Williams, S., Waterman, A., and Patterson, D. Roofline: An
Insightful Visual Performance Model for Multicore Architectures.
Commun. ACM 52, 4 (Apr. 2009), 65–76.

[95] Wolf, M. E., and Lam, M. S. A Data Locality Optimizing
Algorithm. In Proceedings of the ACM SIGPLAN 1991 Conference
on Programming Language Design and Implementation (New York,
NY, USA, 1991), PLDI ’91, ACM, pp. 30–44.

[96] Wolf, M. E., and Lam, M. S. A data locality optimizing
algorithm. pp. 30–44.

BIBLIOGRAPHY 145

[97] Wolf, M. E., Maydan, D. E., and Chen, D.-K. Combining
Loop Transformations Considering Caches and Scheduling. In Pro-
ceedings of the 29th Annual ACM/IEEE International Symposium
on Microarchitecture (USA, 1996), MICRO 29, IEEE Computer
Society, p. 274–286.

[98] Xue, J. Aggressive Loop Fusion for Improving Locality and
Parallelism. In Proceedings of the Third International Conference
on Parallel and Distributed Processing and Applications (Berlin,
Heidelberg, 2005), ISPA’05, Springer-Verlag, pp. 224–238.

[99] Yi, Q., and Kennedy, K. Improving Memory Hierarchy Per-
formance through Combined Loop Interchange and Multi-Level
Fusion. The International Journal of High Performance Computing
Applications 18, 2 (2004), 237–253.

[100] Yotov, K., Li, X., Ren, G., Garzaran, M. J. S., Padua, D.,
Pingali, K., and Stodghill, P. Is Search Really Necessary to
Generate High-Performance BLAS? Proceedings of the IEEE 93, 2
(Feb 2005), 358–386.

[101] Yuki, T., Renganarayanan, L., Rajopadhye, S., Anderson,
C., Eichenberger, A. E., and O’Brien, K. Automatic Creation
of Tile Size Selection Models. In Proceedings of the 8th Annual
IEEE/ACM International Symposium on Code Generation and
Optimization (New York, NY, USA, 2010), CGO ’10, ACM, pp. 190–
199.

[102] Zhang, L., Carter, J. B., Hsieh, W. C., and McKee, S. A.
Memory system support for image processing. In 1999 International
Conference on Parallel Architectures and Compilation Techniques
(Cat. No.PR00425) (1999), pp. 98–107.

[103] Zhou, X., Giacalone, J.-P., Garzarán, M. J., Kuhn, R. H.,
Ni, Y., and Padua, D. Hierarchical Overlapped Tiling. In Pro-
ceedings of the Tenth International Symposium on Code Generation
and Optimization (New York, NY, USA, 2012), CGO ’12, ACM,
pp. 207–218.

146 BIBLIOGRAPHY

Publications

Main Author

[1] Savvas Sioutas, Sander Stuijk, Twan Basten, Henk Corporaal, and
Lou Somers. Schedule Synthesis for Halide Pipelines on GPUs. ACM
Trans. Archit. Code Optim., 17(3), August 2020.

[2] Savvas Sioutas, Sander Stuijk, Twan Basten, Lou Somers, and Henk
Corporaal. Programming Tensor Cores from an Image Processing
DSL. In Proceedings of the 23th International Workshop on Software
and Compilers for Embedded Systems, SCOPES ’20, page 36–41, New
York, NY, USA, 2020. Association for Computing Machinery.

[3] Savvas Sioutas, Sander Stuijk, Henk Corporaal, Twan Basten, and Lou
Somers. Loop Transformations Leveraging Hardware Prefetching. In
Proceedings of the 2018 International Symposium on Code Generation
and Optimization, CGO 2018, pages 254–264, New York, NY, USA,
2018. ACM.

[4] Savvas Sioutas, Sander Stuijk, Luc Waeijen, Twan Basten, Henk
Corporaal, and Lou Somers. Schedule Synthesis for Halide Pipelines
through Reuse Analysis. ACM Trans. Archit. Code Optim., 16(2),
April 2019.

Co-author

[1] Luc Waeijen, Savvas Sioutas, Yifan He, Maurice Peemen, and Henk
Corporaal. Automatic Memory-Efficient Scheduling of CNNs. In
Dionisios N. Pnevmatikatos, Maxime Pelcat, and Matthias Jung,
editors, Embedded Computer Systems: Architectures, Modeling, and
Simulation, pages 387–400, Cham, 2019. Springer International Pub-
lishing.

147

148

A
Tools

A.1 Reuse Scheduler
This section describes the process in order to reproduce the results ob-
tained in the evaluation section of Chapter 5.

1. Dependencies

Hardware Dependencies: An Intel or ARM CPU.

Software Dependencies: To build and run the provided source code the
following frameworks are required:

– Clang/LLVM 7.0 or higher (for Linux)
– Linux distribution (tested on Ubuntu 18.04)
– Make 4.1 or higher
– Git 2.17 or higher

2. Installation

Acquiring LLVM:
Linux binaries for LLVM 7.0 along with the matching version of Clang can
be found through http://llvm.org/releases/download.html. Both llvm-
config and clang must be somewhere in the path.

149

http://llvm.org/releases/download.html

150 APPENDIX A. TOOLS

Acquiring and building Halide with the proposed scheduler:
The source code for Halide with the reuse scheduler can be found through:

$ git clone
https://github.com/TUE-EE-ES/HalideReuseScheduler.git

Point Halide to llvm-config and clang:

$ export LLVM_CONFIG=<path to llvm>/build/bin/llvm-config
$ export CLANG=<path to llvm>/build/bin/clang

To build Halide:

$ cd Halide
$ make
$ make distrib

3. Benchmarking

This subsection explains the process in order to reproduce the results
obtained in the evaluation section of Chapter 5.

To reproduce the results for all benchmarks:

$ cd benchmarks
$ source run_tests.sh

All runtimes should be listed in a new file named "results.txt" located
in the benchmarks folder.

To run an individual benchmark (e.g. harris) first set up the envi-
ronment variables needed by the autoscheduler with by exporting the
environment variables located in the above script:

$ cd harris
$ make test

The above process can be repeated for the rest of the applications. All
runtimes are expected to have a variation of +- 5% but a similar ratio
across each implementation compared to the one seen in the presented
figures.

The source code of the reuse scheduler can be found in the
AutoSchedule.cpp file, within the src/ directory.

https://github.com/TUE-EE-ES/HalideReuseScheduler.git

A.2. GPU SCHEDULER 151

A.2 GPU Scheduler
This section describes the process in order to reproduce the results ob-
tained in the evaluation section of Chapter 6.

1. Dependencies

Hardware Dependencies: A CUDA GPU of at least 3.2 compute capabil-
ity.

Software Dependencies: To build and run the provided source code the
following frameworks are required:

– Clang/LLVM 8.0 or higher (for Linux)
– Linux distribution (tested on Ubuntu 18.04)
– Make 4.1 or higher
– Git 2.17 or higher
– NVIDIA CUDA driver 10.0 or later
– Python 2.7 /w matplotlib and numpy

2. Installation

Acquiring LLVM:
Linux binaries for LLVM 8.0 along with the matching version of Clang can
be found through http://llvm.org/releases/download.html. Both llvm-
config and clang must be somewhere in the path.

Acquiring and building Halide with AutoGPU:
The source code for Halide with AutoGPU can be found through:

$ git clone https://github.com/TUE-EE-ES/HalideAutoGPU.git

Point Halide to llvm-config and clang:

$ export LLVM_CONFIG=<path to llvm>/build/bin/llvm-config
$ export CLANG=<path to llvm>/build/bin/clang

To build Halide:

$ cd Halide
$ make
$ make distrib

http://llvm.org/releases/download.html
https://github.com/TUE-EE-ES/HalideAutoGPU.git

152 APPENDIX A. TOOLS

3. Benchmarking

This subsection explains the process in order to reproduce the results
obtained in Figures 6.6 and 6.7.

To reproduce the results of Figure 6.6 run the all benchmarks for the RTX
GPU and then plot the graphs with matplotlib:

$ cd benchmarks
$ source run_tests_2080ti.sh

All runtimes should be listed in a new file named "results_ti.txt"
located in the benchmarks folder. To plot the graphs:

$ python plot_figures_2080ti.py

To reproduce the AGX Xavier results repeat the above process using the
AGX scripts instead:

$ source run_tests_xavier.sh

All runtimes should be listed in a new file named "results_xavier.txt"
located in the benchmarks folder. To plot the graphs:

$ python plot_figures_xavier.py

To run an individual benchmark (e.g. harris) first set up the environment
variables needed by the autoscheduler with:

$ cd benchmarks
$ source setup_env.sh

Compute Capability of the target platform can be set by chang-
ing the HL_TARGET environment variable set in the above script.
For example changing the target feature cuda_capability_61 to
cuda_capability_35 changes the target’s compute capability from 6.1
to 3.5.

$ cd harris
$ make test

The above process can be repeated for the rest of the applications. All
runtimes are expected to have a variation of +- 5% but a similar ratio
across each implementation compared to the one seen in the presented
figures.

A.2. GPU SCHEDULER 153

The source code of the AutoGPU scheduler can be found in the
AutoSchedule.cpp file, within the benchmarks/autoscheduler/ direc-
tory.

154 APPENDIX A. TOOLS

A.3 Tensor Core code generator
1. Dependencies

This section describes the process in order to reproduce the results ob-
tained in the evaluation section of Chapter 7.

Hardware Dependencies: A CUDA GPU with tensor cores is required
(Turing - sm75). All experiments were conducted on an NVIDIA RTX
2080Ti GPU.

Software Dependencies: To build and run the provided source code the
following frameworks are required:

• Clang/LLVM 9.0 or higher (for Linux)
• Linux 5.0 (tested on Ubuntu 18.04)
• Make 4.1 or higher
• Git 2.17 or higher
• NVIDIA CUDA driver 10.0 or later

2. Installation

Acquiring LLVM:
Linux binaries for LLVM 9.0 along with the matching version of Clang can
be found through http://llvm.org/releases/download.html. Both llvm-
config and clang must be somewhere in the path.

Acquiring and building Halide TCU:
The source code for Halide with TCU support can be found through:

$ git clone https://github.com/TUE-EE-ES/HalideTCU.git

Point Halide to llvm-config:

$ export LLVM_CONFIG=<path to llvm>/build/bin/llvm-config

To build Halide:

$ cd Halide
$ make

http://llvm.org/releases/download.html
https://github.com/TUE-EE-ES/HalideTCU.git

A.3. TENSOR CORE CODE GENERATOR 155

3. Benchmarking

This subsection explains the process in order to reproduce the results
obtained in Figures 7.3 and 7.4.

To reproduce the results of Figure 7.3 set the CUDA_SDK variable and build
the mixed precision matmul benchmark along with the necessary trans-
position. For the int32 matmul run the benchmark in the mat_mul_int
folder. The output should correspond to the average execution time for
each of the three implementations:

$ export CUDA_SDK=<path_to_cuda>
$ cd apps
$ cd mat_mul
$ make test MATRIX_SIZE=1024 TRANSPOSE=1

To reproduce the Halide runtimes of Figure 7.4 build the int32 matmul
benchmark. For the WMMA runtimes use the imma example code pro-
vided by NVIDIA [57]:

$ cd apps
$ cd mat_mul_int
$ make test MATRIX_SIZE=1024 TRANSPOSE=0

Changing the value of MATRIX_SIZE after make clean generates
an implementation for other problem sizes. All runtimes are ex-
pected to have a variation of +- 10% but a similar ratio across
each implementation compared to the one seen in the above figures.
The new passes and extensions for the TCU code generation can
be found in Halide/src: Inject_Tensor_Ops.cpp, top_equiv.cpp,
CodeGen_PTX_Dev.cpp, Func.cpp and smaller additions to other parts
of the compiler and runtime.

156 APPENDIX A. TOOLS

Acknowledgments

As my journey as a PhD student reaches its end, I cannot help but
reminisce on the various experiences that I went through, as well as
personal relationships that I developed and how these shaped the person
that I am today. To this end, I would like to extend my gratitude to the
people that each in their own way, sometimes directly while other times
without that being their primary intention, assisted me throughout my
PhD studies.

First and foremost I would like to express my gratitude to my first
and second promotors, prof. Henk Corporaal and prof. Twan Basten as
well as co-promotor dr. Sander Stuijk for their supervision and guidance
throughout my career as a PhD candidate. Their feedback during our
progress meetings was invaluable and I sincerely cannot fathom reaching
this point without their help. I would also like to thank dr. Lou Somers,
who would often bring my attention to more practical, down-to-earth
issues, whenever any academic, abstract concepts would try to take over
my research.

Moreover, I would like to thank the members of the doctoral committee
for agreeing to participate in my defense during such difficult times, as well
as for taking the time to read my drafts and provide constructive feedback
which helped improve the quality of this thesis. A big thank you to the
rest of the staff of the ES group, especially Marja, the group secretary,
for her extensive administrative support whenever it was needed. I also
want to thank all members of the PARsE group for their patience during
my rather boring rants about pixels and compute/store levels whenever I
came up with some new scheduling algorithm. Another big thank you goes
to the rest of the PhD students and members of the ES group, Alessandro,
Ilde, Sayandip, Kamlesh, Roel, Luc for the long discussions we’ve had at
the bar without which the pressure and stress I accumulated over various
periods might have been too much to bear (thank you Luc for listening
to my rather frequent philosophical and existential nonsense!).

Last but not least, I would like to thank my family for supporting
me and encouraging me throughout the years: my brother Thomas for
paving the way by coming to the Netherlands years before me and later
convincing me to pursue a PhD degree at TU/e. My father and mother
(and her cooking!) not only for visiting me in Eindhoven as often as they
could but also for their patience to my never-ending complaints.

157

158 Acknowledgments

Curriculum Vitae

Savvas Sioutas was born on the 1st of January 1992 in Athens, Greece.
He obtained his Diploma in Electrical and Computer Engineering with a
specialization in Electronics and Computers at the University of Patras,
Greece in 2015. He joined the Electronic Systems group of Eindhoven
University of Technology in 2016 as a PhD candidate. The results of this
PhD project are presented in this thesis.

	Contents
	Introduction
	Image processing applications
	Architectures and platforms
	Platform-aware compilation
	Optimization challenges
	Thesis contributions
	Thesis overview

	Image processing pipelines
	Algorithms
	Optimization strategies
	Optimization space
	Summary

	The Halide language and compiler
	Functional representation
	Scheduling
	Compilation flow and code generation
	Summary

	Scheduling memory-bound kernels in multi-core CPU platforms
	Introduction
	Related work
	Proposed method
	Experimental framework
	Experimental results
	Summary

	Reuse analysis for multi-stage pipelines
	Introduction
	Related work
	Motivational example and problem formulation
	Proposed method
	Experimental results
	Summary

	Efficient scheduling for GPGPUs
	Introduction
	Related work
	Problem statement
	GPU autoscheduler
	Evaluation and experimental results
	Summary

	Programming Tensor Cores from an image processing DSL
	Introduction
	Background information
	Related work
	Tensor Cores in Halide
	Evaluation
	Summary

	Conclusions and Future Work
	Bibliography
	Publications
	Tools
	Reuse Scheduler
	GPU Scheduler
	Tensor Core code generator

	Acknowledgments
	Curriculum Vitae

