1,227 research outputs found

    Locality of connective constants

    Get PDF
    The connective constant μ(G)\mu(G) of a quasi-transitive graph GG is the exponential growth rate of the number of self-avoiding walks from a given origin. We prove a locality theorem for connective constants, namely, that the connective constants of two graphs are close in value whenever the graphs agree on a large ball around the origin (and a further condition is satisfied). The proof exploits a generalized bridge decomposition of self-avoiding walks, which is valid subject to the assumption that the underlying graph is quasi-transitive and possesses a so-called unimodular graph height function

    Self-avoiding walks and connective constants

    Full text link
    The connective constant μ(G)\mu(G) of a quasi-transitive graph GG is the asymptotic growth rate of the number of self-avoiding walks (SAWs) on GG from a given starting vertex. We survey several aspects of the relationship between the connective constant and the underlying graph GG. \bullet We present upper and lower bounds for μ\mu in terms of the vertex-degree and girth of a transitive graph. \bullet We discuss the question of whether μϕ\mu\ge\phi for transitive cubic graphs (where ϕ\phi denotes the golden mean), and we introduce the Fisher transformation for SAWs (that is, the replacement of vertices by triangles). \bullet We present strict inequalities for the connective constants μ(G)\mu(G) of transitive graphs GG, as GG varies. \bullet As a consequence of the last, the connective constant of a Cayley graph of a finitely generated group decreases strictly when a new relator is added, and increases strictly when a non-trivial group element is declared to be a further generator. \bullet We describe so-called graph height functions within an account of "bridges" for quasi-transitive graphs, and indicate that the bridge constant equals the connective constant when the graph has a unimodular graph height function. \bullet A partial answer is given to the question of the locality of connective constants, based around the existence of unimodular graph height functions. \bullet Examples are presented of Cayley graphs of finitely presented groups that possess graph height functions (that are, in addition, harmonic and unimodular), and that do not. \bullet The review closes with a brief account of the "speed" of SAW.Comment: Accepted version. arXiv admin note: substantial text overlap with arXiv:1304.721

    Self-avoiding walks and amenability

    Full text link
    The connective constant μ(G)\mu(G) of an infinite transitive graph GG is the exponential growth rate of the number of self-avoiding walks from a given origin. The relationship between connective constants and amenability is explored in the current work. Various properties of connective constants depend on the existence of so-called 'graph height functions', namely: (i) whether μ(G)\mu(G) is a local function on certain graphs derived from GG, (ii) the equality of μ(G)\mu(G) and the asymptotic growth rate of bridges, and (iii) whether there exists a terminating algorithm for approximating μ(G)\mu(G) to a given degree of accuracy. In the context of amenable groups, it is proved that the Cayley graphs of infinite, finitely generated, elementary amenable groups support graph height functions, which are in addition harmonic. In contrast, the Cayley graph of the Grigorchuk group, which is amenable but not elementary amenable, does not have a graph height function. In the context of non-amenable, transitive graphs, a lower bound is presented for the connective constant in terms of the spectral bottom of the graph. This is a strengthening of an earlier result of the same authors. Secondly, using a percolation inequality of Benjamini, Nachmias, and Peres, it is explained that the connective constant of a non-amenable, transitive graph with large girth is close to that of a regular tree. Examples are given of non-amenable groups without graph height functions, of which one is the Higman group.Comment: v2 differs from v1 in the inclusion of further material concerning non-amenable graphs, notably an improved lower bound for the connective constan

    A Universal Approach to Vertex Algebras

    Full text link
    We characterize vertex algebras (in a suitable sense) as algebras over a certain graded co-operad. We also discuss some examples and categorical implications of this characterization.Comment: To appear in the Journal of Algebr

    The Expressive Power of k-ary Exclusion Logic

    Get PDF
    In this paper we study the expressive power of k-ary exclusion logic, EXC[k], that is obtained by extending first order logic with k-ary exclusion atoms. It is known that without arity bounds exclusion logic is equivalent with dependence logic. By observing the translations, we see that the expressive power of EXC[k] lies in between k-ary and (k+1)-ary dependence logics. We will show that, at least in the case of k=1, the both of these inclusions are proper. In a recent work by the author it was shown that k-ary inclusion-exclusion logic is equivalent with k-ary existential second order logic, ESO[k]. We will show that, on the level of sentences, it is possible to simulate inclusion atoms with exclusion atoms, and this way express ESO[k]-sentences by using only k-ary exclusion atoms. For this translation we also need to introduce a novel method for "unifying" the values of certain variables in a team. As a consequence, EXC[k] captures ESO[k] on the level of sentences, and we get a strict arity hierarchy for exclusion logic. It also follows that k-ary inclusion logic is strictly weaker than EXC[k]. Finally we will use similar techniques to formulate a translation from ESO[k] to k-ary inclusion logic with strict semantics. Consequently, for any arity fragment of inclusion logic, strict semantics is more expressive than lax semantics.Comment: Preprint of a paper in the special issue of WoLLIC2016 in Annals of Pure and Applied Logic, 170(9):1070-1099, 201
    corecore