116 research outputs found

    Advances in Stereo Vision

    Get PDF
    Stereopsis is a vision process whose geometrical foundation has been known for a long time, ever since the experiments by Wheatstone, in the 19th century. Nevertheless, its inner workings in biological organisms, as well as its emulation by computer systems, have proven elusive, and stereo vision remains a very active and challenging area of research nowadays. In this volume we have attempted to present a limited but relevant sample of the work being carried out in stereo vision, covering significant aspects both from the applied and from the theoretical standpoints

    Aerospace medicine and biology: A continuing bibliography with indexes (supplement 341)

    Get PDF
    This bibliography lists 133 reports, articles and other documents introduced into the NASA Scientific and Technical Information System during September 1990. Subject coverage includes: aerospace medicine and psychology, life support systems and controlled environments, safety equipment, exobiology and extraterrestrial life, and flight crew behavior and performance

    High resolution quantitative and functional MRI indicate lower myelination of thin and thick stripes in human secondary visual cortex

    Get PDF
    The characterization of cortical myelination is essential for the study of structure-function relationships in the human brain. However, knowledge about cortical myelination is largely based on post mortem histology, which generally renders direct comparison to function impossible. The repeating pattern of pale-thin-pale-thick stripes of cytochrome oxidase (CO) activity in the primate secondary visual cortex (V2) is a prominent columnar system which is known to be differentiable by myelin content as well. However, depending on the applied histological method, higher myelination in both thin/thick and pale stripes were found, respectively. We used quantitative magnetic resonance imaging (qMRI) in conjunction with functional magnetic resonance imaging (fMRI) at ultra-high field strength (7T) to localize and study myelination of stripes in several humans at sub-millimeter resolution in vivo. Thin and thick stripes were functionally localized by exploiting their sensitivity to color and binocular disparity, respectively. Resulting functional activation maps showed robust stripe patterns in V2 which enabled further comparison of quantitative relaxation parameters between stripe types. Thereby, we found lower longitudinal relaxation rates (R1) of thin and thick stripes compared to surrounding gray matter in the order of 1-2%, indicating higher myelination of pale stripes. No differences for effective transverse relaxation rates (R2*) were found. The study demonstrates the feasibility to investigate structure-function relationships in living humans within one cortical area at the level of columnar systems using qMRI

    Plan for the uniform mapping of earth resources and environmental complexes from Skylab imagery. Assessment of natural vegetation, environmental, and crop analogs

    Get PDF
    The author has identified the following significant results. For interpreting a wide range of natural vegetation analogs, S-190A color infrared and the ERTS-1 color composite were consistently more useful than were conventional color or black and white photos. Color infrared was superior for five vegetation analogs while color was superior for only three. The errors in identification appeared to associate more with black and white single band images than with multiband color. For rice crop analogs, spectral and spatial discriminations both contribute to the usefulness of images for data collection. Tests and subjective analyses conducted in this study indicated that the spectral bands exploited in color infrared film were the most useful for agricultural crop analysis. Accuracy of crop identification on any single date of Skylab images was less than that of multidate analysis due to differences in crop calendar, cultural practices used, rice variety, planting date, planting method, water use, fertilization, disease, or mechanical problems

    On the relationship between neuronal codes and mental models

    Get PDF
    Das übergeordnete Ziel meiner Arbeit an dieser Dissertation war ein besseres Verständnis des Zusammenhangs von mentalen Modellen und den zugrundeliegenden Prinzipien, die zur Selbstorganisation neuronaler Verschaltung führen. Die Dissertation besteht aus vier individuellen Publikationen, die dieses Ziel aus unterschiedlichen Perspektiven angehen. Während die Selbstorganisation von Sparse-Coding-Repräsentationen in neuronalem Substrat bereits ausgiebig untersucht worden ist, sind viele Forschungsfragen dazu, wie Sparse-Coding für höhere, kognitive Prozesse genutzt werden könnte noch offen. Die ersten zwei Studien, die in Kapitel 2 und Kapitel 3 enthalten sind, behandeln die Frage, inwieweit Repräsentationen, die mit Sparse-Coding entstehen, mentalen Modellen entsprechen. Wir haben folgende Selektivitäten in Sparse-Coding-Repräsentationen identifiziert: mit Stereo-Bildern als Eingangsdaten war die Repräsentation selektiv für die Disparitäten von Bildstrukturen, welche für das Abschätzen der Entfernung der Strukturen zum Beobachter genutzt werden können. Außerdem war die Repräsentation selektiv für die die vorherrschende Orientierung in Texturen, was für das Abschätzen der Neigung von Oberflächen genutzt werden kann. Mit optischem Fluss von Eigenbewegung als Eingangsdaten war die Repräsentation selektiv für die Richtung der Eigenbewegung in den sechs Freiheitsgraden. Wegen des direkten Zusammenhangs der Selektivitäten mit physikalischen Eigenschaften können Repräsentationen, die mit Sparse-Coding entstehen, als frühe sensorische Modelle der Umgebung dienen. Die kognitiven Prozesse hinter räumlichem Wissen ruhen auf mentalen Modellen, welche die Umgebung representieren. Wir haben in der dritten Studie, welche in Kapitel 4 enthalten ist, ein topologisches Modell zur Navigation präsentiert, Es beschreibt einen dualen Populations-Code, bei dem der erste Populations-Code Orte anhand von Orts-Feldern (Place-Fields) kodiert und der zweite Populations-Code Bewegungs-Instruktionen, basierend auf der Verknüpfung von Orts-Feldern, kodiert. Der Fokus lag nicht auf der Implementation in biologischem Substrat oder auf einer exakten Modellierung physiologischer Ergebnisse. Das Modell ist eine biologisch plausible, einfache Methode zur Navigation, welche sich an einen Zwischenschritt emergenter Navigations-Fähigkeiten in einer evolutiven Navigations-Hierarchie annähert. Unser automatisierter Test der Sehleistungen von Mäusen, welcher in Kapitel 5 beschrieben wird, ist ein Beispiel von Verhaltens-Tests im Wahrnehmungs-Handlungs-Zyklus (Perception-Action-Cycle). Das Ziel dieser Studie war die Quantifizierung des optokinetischen Reflexes. Wegen des reichhaltigen Verhaltensrepertoires von Mäusen sind für die Quantifizierung viele umfangreiche Analyseschritte erforderlich. Tiere und Menschen sind verkörperte (embodied) lebende Systeme und daher aus stark miteinander verwobenen Modulen oder Entitäten zusammengesetzt, welche außerdem auch mit der Umgebung verwoben sind. Um lebende Systeme als Ganzes zu studieren ist es notwendig Hypothesen, zum Beispiel zur Natur mentaler Modelle, im Wahrnehmungs-Handlungs-Zyklus zu testen. Zusammengefasst erweitern die Studien dieser Dissertation unser Verständnis des Charakters früher sensorischer Repräsentationen als mentale Modelle, sowie unser Verständnis höherer, mentalen Modellen für die räumliche Navigation. Darüber hinaus enthält es ein Beispiel für das Evaluieren von Hypothesn im Wahr\-neh\-mungs-Handlungs-Zyklus.The superordinate aim of my work towards this thesis was a better understanding of the relationship between mental models and the underlying principles that lead to the self-organization of neuronal circuitry. The thesis consists of four individual publications, which approach this goal from differing perspectives. While the formation of sparse coding representations in neuronal substrate has been investigated extensively, many research questions on how sparse coding may be exploited for higher cognitive processing are still open. The first two studies, included as chapter 2 and chapter 3, asked to what extend representations obtained with sparse coding match mental models. We identified the following selectivities in sparse coding representations: with stereo images as input, the representation was selective for the disparity of image structures, which can be used to infer the distance of structures to the observer. Furthermore, it was selective to the predominant orientation in textures, which can be used to infer the orientation of surfaces. With optic flow from egomotion as input, the representation was selective to the direction of egomotion in 6 degrees of freedom. Due to the direct relation between selectivity and physical properties, these representations, obtained with sparse coding, can serve as early sensory models of the environment. The cognitive processes behind spatial knowledge rest on mental models that represent the environment. We presented a topological model for wayfinding in the third study, included as chapter 4. It describes a dual population code, where the first population code encodes places by means of place fields, and the second population code encodes motion instructions based on links between place fields. We did not focus on an implementation in biological substrate or on an exact fit to physiological findings. The model is a biologically plausible, parsimonious method for wayfinding, which may be close to an intermediate step of emergent skills in an evolutionary navigational hierarchy. Our automated testing for visual performance in mice, included in chapter 5, is an example of behavioral testing in the perception-action cycle. The goal of this study was to quantify the optokinetic reflex. Due to the rich behavioral repertoire of mice, quantification required many elaborate steps of computational analyses. Animals and humans are embodied living systems, and therefore composed of strongly enmeshed modules or entities, which are also enmeshed with the environment. In order to study living systems as a whole, it is necessary to test hypothesis, for example on the nature of mental models, in the perception-action cycle. In summary, the studies included in this thesis extend our view on the character of early sensory representations as mental models, as well as on high-level mental models for spatial navigation. Additionally it contains an example for the evaluation of hypotheses in the perception-action cycle

    A scheme for the uniform mapping and monitoring of earth resources and environmental complexes: An assessment of natural vegetation, environmental, and crop analogs

    Get PDF
    The author has identified the following significant results. A study was performed to develop and test a procedure for the uniform mapping and monitoring of natural ecosystems in the semi-arid and wood regions of the Sierra-Lahontan and Colorado Plateau areas, and for the estimating of rice crop production in the Northern Great Valley (Ca.) and the Louisiana Coastal Plain. ERTS-1 and high flight and low flight aerial photos were used in a visual photointerpretation scheme to identify vegetation complexes, map acreages, and evaluate crop vigor and stress. Results indicated that the vegetation analog concept is valid; that depending on the kind of vegetation and its density, analogs are interpretable at different levels in the hierarchical classification from second to the fourth level. The second level uses physiognomic growth form-structural criteria, and the fourth level uses floristic or taxonomic criteria, usually at generic level. It is recommended that analog comparisons should be made in relatively small test areas where large homogeneous examples can be found of each analog

    Change blindness: eradication of gestalt strategies

    Get PDF
    Arrays of eight, texture-defined rectangles were used as stimuli in a one-shot change blindness (CB) task where there was a 50% chance that one rectangle would change orientation between two successive presentations separated by an interval. CB was eliminated by cueing the target rectangle in the first stimulus, reduced by cueing in the interval and unaffected by cueing in the second presentation. This supports the idea that a representation was formed that persisted through the interval before being 'overwritten' by the second presentation (Landman et al, 2003 Vision Research 43149–164]. Another possibility is that participants used some kind of grouping or Gestalt strategy. To test this we changed the spatial position of the rectangles in the second presentation by shifting them along imaginary spokes (by ±1 degree) emanating from the central fixation point. There was no significant difference seen in performance between this and the standard task [F(1,4)=2.565, p=0.185]. This may suggest two things: (i) Gestalt grouping is not used as a strategy in these tasks, and (ii) it gives further weight to the argument that objects may be stored and retrieved from a pre-attentional store during this task

    Visual Cortex

    Get PDF
    The neurosciences have experienced tremendous and wonderful progress in many areas, and the spectrum encompassing the neurosciences is expansive. Suffice it to mention a few classical fields: electrophysiology, genetics, physics, computer sciences, and more recently, social and marketing neurosciences. Of course, this large growth resulted in the production of many books. Perhaps the visual system and the visual cortex were in the vanguard because most animals do not produce their own light and offer thus the invaluable advantage of allowing investigators to conduct experiments in full control of the stimulus. In addition, the fascinating evolution of scientific techniques, the immense productivity of recent research, and the ensuing literature make it virtually impossible to publish in a single volume all worthwhile work accomplished throughout the scientific world. The days when a single individual, as Diderot, could undertake the production of an encyclopedia are gone forever. Indeed most approaches to studying the nervous system are valid and neuroscientists produce an almost astronomical number of interesting data accompanied by extremely worthy hypotheses which in turn generate new ventures in search of brain functions. Yet, it is fully justified to make an encore and to publish a book dedicated to visual cortex and beyond. Many reasons validate a book assembling chapters written by active researchers. Each has the opportunity to bind together data and explore original ideas whose fate will not fall into the hands of uncompromising reviewers of traditional journals. This book focuses on the cerebral cortex with a large emphasis on vision. Yet it offers the reader diverse approaches employed to investigate the brain, for instance, computer simulation, cellular responses, or rivalry between various targets and goal directed actions. This volume thus covers a large spectrum of research even though it is impossible to include all topics in the extremely diverse field of neurosciences

    From local constraints to global binocular motion perception

    Get PDF
    Humans and many other predators have two eyes that are set a short distance apart so that an extensive region of the world is seen simultaneously by both eyes from slightly different points of view. Although the images of the world are essentially two-dimensional, we vividly see the world as three-dimensional. This is true for static as well as dynamic images. We discuss local constraints for the perception of three-dimensional binocular motion in a geometric-probabilistic framework. It is shown that Bayesian models of binocular 3D motion can explain perceptual bias under uncertainty and predict perceived velocity under ambiguity. The models exploit biologically plausible constraints of local motion and disparity processing in a binocular viewing geometry. Results from psychophysical experiments and an fMRI study support the idea that local constraints of motion and disparity processing are combined late in the visual processing hierarchy to establish perceived 3D motion direction. The methods and results reported here are likely to stimulate computational, psychophysical, and neuroscientific research because they address the fundamental issue of how 3D motion is represented in the human visual system
    corecore