29,304 research outputs found

    Why some community forests are performing better than others: a case of forest user groups in Nepal

    Get PDF
    Management of many Nepalese forests has been devolved to local communities. Forest products, which are used by the community and which may also be traded, are essential contributors to community well-being. Forests are also important contributors of ecosystem services, such as flood protection and wildlife habitat. Nepalese communities were surveyed to measure flows of forest products from their community forests. A stochastic frontier analysis shows that communities are not producing forest products efficiently and there is potential for improvement. The results shows that forest products benefit and environmental performance are associated products. In addition, analysis reveals that factors such as social capital, support from government and knowledge in management contributes positively to the production efficiency. It is anticipated that these findings will contribute to community forest policy redesign and consequently to the welfare of communities.Community forestry, stochastic frontier, production efficiency, Nepal, Community/Rural/Urban Development, Environmental Economics and Policy, Farm Management, Productivity Analysis,

    KdV equation under periodic boundary conditions and its perturbations

    Full text link
    In this paper we discuss properties of the KdV equation under periodic boundary conditions, especially those which are important to study perturbations of the equation. Next we review what is known now about long-time behaviour of solutions for perturbed KdV equations

    Inhomogeneity growth in two-component fermionic systems

    Full text link
    The dynamics of fermionic many-body systems is investigated in the framework of Boltzmann-Langevin (BL) stochastic one-body approaches. Within the recently introduced BLOB model, we examine the interplay between mean-field effects and two-body correlations, of stochastic nature, for nuclear matter at moderate temperature and in several density conditions, corresponding to stable or mechanically unstable situations. Numerical results are compared to analytic expectations for the fluctuation amplitude of isoscalar and isovector densities, probing the link to the properties of the employed effective interaction, namely symmetry energy (for isovector modes) and incompressibility (for isoscalar modes). For unstable systems, clusterization is observed. The associated features are compared to analytical results for the typical length and time scales characterizing the growth of unstable modes in nuclear matter and for the isotopic variance of the emerging fragments. We show that the BLOB model is generally better suited than simplified approaches previously introduced to solve the BL equation, and it is therefore more advantageous in applications to open systems, like heavy ion collisions.Comment: 19 pages, 13 figure

    Nonlinear brain dynamics as macroscopic manifestation of underlying many-body field dynamics

    Full text link
    Neural activity patterns related to behavior occur at many scales in time and space from the atomic and molecular to the whole brain. Here we explore the feasibility of interpreting neurophysiological data in the context of many-body physics by using tools that physicists have devised to analyze comparable hierarchies in other fields of science. We focus on a mesoscopic level that offers a multi-step pathway between the microscopic functions of neurons and the macroscopic functions of brain systems revealed by hemodynamic imaging. We use electroencephalographic (EEG) records collected from high-density electrode arrays fixed on the epidural surfaces of primary sensory and limbic areas in rabbits and cats trained to discriminate conditioned stimuli (CS) in the various modalities. High temporal resolution of EEG signals with the Hilbert transform gives evidence for diverse intermittent spatial patterns of amplitude (AM) and phase modulations (PM) of carrier waves that repeatedly re-synchronize in the beta and gamma ranges at near zero time lags over long distances. The dominant mechanism for neural interactions by axodendritic synaptic transmission should impose distance-dependent delays on the EEG oscillations owing to finite propagation velocities. It does not. EEGs instead show evidence for anomalous dispersion: the existence in neural populations of a low velocity range of information and energy transfers, and a high velocity range of the spread of phase transitions. This distinction labels the phenomenon but does not explain it. In this report we explore the analysis of these phenomena using concepts of energy dissipation, the maintenance by cortex of multiple ground states corresponding to AM patterns, and the exclusive selection by spontaneous breakdown of symmetry (SBS) of single states in sequences.Comment: 31 page

    A Two-moment Radiation Hydrodynamics Module in Athena Using a Time-explicit Godunov Method

    Full text link
    We describe a module for the Athena code that solves the gray equations of radiation hydrodynamics (RHD), based on the first two moments of the radiative transfer equation. We use a combination of explicit Godunov methods to advance the gas and radiation variables including the non-stiff source terms, and a local implicit method to integrate the stiff source terms. We adopt the M1 closure relation and include all leading source terms. We employ the reduced speed of light approximation (RSLA) with subcycling of the radiation variables in order to reduce computational costs. Our code is dimensionally unsplit in one, two, and three space dimensions and is parallelized using MPI. The streaming and diffusion limits are well-described by the M1 closure model, and our implementation shows excellent behavior for a problem with a concentrated radiation source containing both regimes simultaneously. Our operator-split method is ideally suited for problems with a slowly varying radiation field and dynamical gas flows, in which the effect of the RSLA is minimal. We present an analysis of the dispersion relation of RHD linear waves highlighting the conditions of applicability for the RSLA. To demonstrate the accuracy of our method, we utilize a suite of radiation and RHD tests covering a broad range of regimes, including RHD waves, shocks, and equilibria, which show second-order convergence in most cases. As an application, we investigate radiation-driven ejection of a dusty, optically thick shell in the interstellar medium (ISM). Finally, we compare the timing of our method with other well-known iterative schemes for the RHD equations. Our code implementation, Hyperion, is suitable for a wide variety of astrophysical applications and will be made freely available on the Web.Comment: 30 pages, 29 figures, accepted for publication in ApJ

    On the Analytic Wavelet Transform

    Full text link
    An exact and general expression for the analytic wavelet transform of a real-valued signal is constructed, resolving the time-dependent effects of non-negligible amplitude and frequency modulation. The analytic signal is first locally represented as a modulated oscillation, demodulated by its own instantaneous frequency, and then Taylor-expanded at each point in time. The terms in this expansion, called the instantaneous modulation functions, are time-varying functions which quantify, at increasingly higher orders, the local departures of the signal from a uniform sinusoidal oscillation. Closed-form expressions for these functions are found in terms of Bell polynomials and derivatives of the signal's instantaneous frequency and bandwidth. The analytic wavelet transform is shown to depend upon the interaction between the signal's instantaneous modulation functions and frequency-domain derivatives of the wavelet, inducing a hierarchy of departures of the transform away from a perfect representation of the signal. The form of these deviation terms suggests a set of conditions for matching the wavelet properties to suit the variability of the signal, in which case our expressions simplify considerably. One may then quantify the time-varying bias associated with signal estimation via wavelet ridge analysis, and choose wavelets to minimize this bias
    • …
    corecore