10,533 research outputs found

    General Iteration graphs and Boolean automata circuits

    Get PDF
    This article is set in the field of regulation networks modeled by discrete dynamical systems. It focuses on Boolean automata networks. In such networks, there are many ways to update the states of every element. When this is done deterministically, at each time step of a discretised time flow and according to a predefined order, we say that the network is updated according to block-sequential update schedule (blocks of elements are updated sequentially while, within each block, the elements are updated synchronously). Many studies, for the sake of simplicity and with some biologically motivated reasons, have concentrated on networks updated with one particular block-sequential update schedule (more often the synchronous/parallel update schedule or the sequential update schedules). The aim of this paper is to give an argument formally proven and inspired by biological considerations in favour of the fact that the choice of a particular update schedule does not matter so much in terms of the possible and likely dynamical behaviours that networks may display

    Negative circuits and sustained oscillations in asynchronous automata networks

    Get PDF
    The biologist Ren\'e Thomas conjectured, twenty years ago, that the presence of a negative feedback circuit in the interaction graph of a dynamical system is a necessary condition for this system to produce sustained oscillations. In this paper, we state and prove this conjecture for asynchronous automata networks, a class of discrete dynamical systems extensively used to model the behaviors of gene networks. As a corollary, we obtain the following fixed point theorem: given a product XX of nn finite intervals of integers, and a map FF from XX to itself, if the interaction graph associated with FF has no negative circuit, then FF has at least one fixed point

    Fixed point theorems for Boolean networks expressed in terms of forbidden subnetworks

    Get PDF
    We are interested in fixed points in Boolean networks, {\em i.e.} functions ff from {0,1}n\{0,1\}^n to itself. We define the subnetworks of ff as the restrictions of ff to the subcubes of {0,1}n\{0,1\}^n, and we characterizes a class F\mathcal{F} of Boolean networks satisfying the following property: Every subnetwork of ff has a unique fixed point if and only if ff has no subnetwork in F\mathcal{F}. This characterization generalizes the fixed point theorem of Shih and Dong, which asserts that if for every xx in {0,1}n\{0,1\}^n there is no directed cycle in the directed graph whose the adjacency matrix is the discrete Jacobian matrix of ff evaluated at point xx, then ff has a unique fixed point. Then, denoting by C+\mathcal{C}^+ (resp. C−\mathcal{C}^-) the networks whose the interaction graph is a positive (resp. negative) cycle, we show that the non-expansive networks of F\mathcal{F} are exactly the networks of C+∪C−\mathcal{C}^+\cup \mathcal{C}^-; and for the class of non-expansive networks we get a "dichotomization" of the previous forbidden subnetwork theorem: Every subnetwork of ff has at most (resp. at least) one fixed point if and only if ff has no subnetworks in C+\mathcal{C}^+ (resp. C−\mathcal{C}^-) subnetwork. Finally, we prove that if ff is a conjunctive network then every subnetwork of ff has at most one fixed point if and only if ff has no subnetwork in C+\mathcal{C}^+.Comment: 40 page

    Dichotomy Results for Fixed-Point Existence Problems for Boolean Dynamical Systems

    Full text link
    A complete classification of the computational complexity of the fixed-point existence problem for boolean dynamical systems, i.e., finite discrete dynamical systems over the domain {0, 1}, is presented. For function classes F and graph classes G, an (F, G)-system is a boolean dynamical system such that all local transition functions lie in F and the underlying graph lies in G. Let F be a class of boolean functions which is closed under composition and let G be a class of graphs which is closed under taking minors. The following dichotomy theorems are shown: (1) If F contains the self-dual functions and G contains the planar graphs then the fixed-point existence problem for (F, G)-systems with local transition function given by truth-tables is NP-complete; otherwise, it is decidable in polynomial time. (2) If F contains the self-dual functions and G contains the graphs having vertex covers of size one then the fixed-point existence problem for (F, G)-systems with local transition function given by formulas or circuits is NP-complete; otherwise, it is decidable in polynomial time.Comment: 17 pages; this version corrects an error/typo in the 2008/01/24 versio

    Homogeneous and Scalable Gene Expression Regulatory Networks with Random Layouts of Switching Parameters

    Full text link
    We consider a model of large regulatory gene expression networks where the thresholds activating the sigmoidal interactions between genes and the signs of these interactions are shuffled randomly. Such an approach allows for a qualitative understanding of network dynamics in a lack of empirical data concerning the large genomes of living organisms. Local dynamics of network nodes exhibits the multistationarity and oscillations and depends crucially upon the global topology of a "maximal" graph (comprising of all possible interactions between genes in the network). The long time behavior observed in the network defined on the homogeneous "maximal" graphs is featured by the fraction of positive interactions (0≤η≤10\leq \eta\leq 1) allowed between genes. There exists a critical value ηc<1\eta_c<1 such that if η<ηc\eta<\eta_c, the oscillations persist in the system, otherwise, when η>ηc,\eta>\eta_c, it tends to a fixed point (which position in the phase space is determined by the initial conditions and the certain layout of switching parameters). In networks defined on the inhomogeneous directed graphs depleted in cycles, no oscillations arise in the system even if the negative interactions in between genes present therein in abundance (ηc=0\eta_c=0). For such networks, the bidirectional edges (if occur) influence on the dynamics essentially. In particular, if a number of edges in the "maximal" graph is bidirectional, oscillations can arise and persist in the system at any low rate of negative interactions between genes (ηc=1\eta_c=1). Local dynamics observed in the inhomogeneous scalable regulatory networks is less sensitive to the choice of initial conditions. The scale free networks demonstrate their high error tolerance.Comment: LaTeX, 30 pages, 20 picture

    Discrete time piecewise affine models of genetic regulatory networks

    Full text link
    We introduce simple models of genetic regulatory networks and we proceed to the mathematical analysis of their dynamics. The models are discrete time dynamical systems generated by piecewise affine contracting mappings whose variables represent gene expression levels. When compared to other models of regulatory networks, these models have an additional parameter which is identified as quantifying interaction delays. In spite of their simplicity, their dynamics presents a rich variety of behaviours. This phenomenology is not limited to piecewise affine model but extends to smooth nonlinear discrete time models of regulatory networks. In a first step, our analysis concerns general properties of networks on arbitrary graphs (characterisation of the attractor, symbolic dynamics, Lyapunov stability, structural stability, symmetries, etc). In a second step, focus is made on simple circuits for which the attractor and its changes with parameters are described. In the negative circuit of 2 genes, a thorough study is presented which concern stable (quasi-)periodic oscillations governed by rotations on the unit circle -- with a rotation number depending continuously and monotonically on threshold parameters. These regular oscillations exist in negative circuits with arbitrary number of genes where they are most likely to be observed in genetic systems with non-negligible delay effects.Comment: 34 page
    • …
    corecore