We consider a model of large regulatory gene expression networks where the
thresholds activating the sigmoidal interactions between genes and the signs of
these interactions are shuffled randomly. Such an approach allows for a
qualitative understanding of network dynamics in a lack of empirical data
concerning the large genomes of living organisms. Local dynamics of network
nodes exhibits the multistationarity and oscillations and depends crucially
upon the global topology of a "maximal" graph (comprising of all possible
interactions between genes in the network). The long time behavior observed in
the network defined on the homogeneous "maximal" graphs is featured by the
fraction of positive interactions (0≤η≤1) allowed between genes.
There exists a critical value ηc<1 such that if η<ηc, the
oscillations persist in the system, otherwise, when η>ηc, it tends to
a fixed point (which position in the phase space is determined by the initial
conditions and the certain layout of switching parameters). In networks defined
on the inhomogeneous directed graphs depleted in cycles, no oscillations arise
in the system even if the negative interactions in between genes present
therein in abundance (ηc=0). For such networks, the bidirectional edges
(if occur) influence on the dynamics essentially. In particular, if a number of
edges in the "maximal" graph is bidirectional, oscillations can arise and
persist in the system at any low rate of negative interactions between genes
(ηc=1). Local dynamics observed in the inhomogeneous scalable regulatory
networks is less sensitive to the choice of initial conditions. The scale free
networks demonstrate their high error tolerance.Comment: LaTeX, 30 pages, 20 picture