435 research outputs found

    Motorized cart

    Get PDF
    Motorized cart is known as an effective tool and timeless that help people carry heavy loads. For farmers, it has an especially vital tool for moving goods. Oil palm farmers typically uses the wheelbarrow to move the oil palm fruit (Figure 10.1). However, there is a lack of equipment that should be further enhanced in capabilities. Motorized carts that seek to add automation to wheelbarrow as it is to help people save manpower while using it. At present, oil palm plantation industry is among the largest in Malaysia. However, in an effort to increase the prestige of the industry to a higher level there are challenges to be faced. Shortage of workers willing to work the farm for harvesting oil palm has given pain to manage oil palm plantations. Many have complained about the difficulty of hiring foreign workers and a high cost. Although there are tools that can be used to collect or transfer the proceeds of oil palm fruits such as carts available. However, these tools still have the disadvantage that requires high manpower to operate. Moreover, it is not suitable for all land surfaces and limited cargo space. Workload and manpower dependence has an impact on farmers' income

    Efficient Micro-Mobility using Intra-domain Multicast-based Mechanisms (M&M)

    Full text link
    One of the most important metrics in the design of IP mobility protocols is the handover performance. The current Mobile IP (MIP) standard has been shown to exhibit poor handover performance. Most other work attempts to modify MIP to slightly improve its efficiency, while others propose complex techniques to replace MIP. Rather than taking these approaches, we instead propose a new architecture for providing efficient and smooth handover, while being able to co-exist and inter-operate with other technologies. Specifically, we propose an intra-domain multicast-based mobility architecture, where a visiting mobile is assigned a multicast address to use while moving within a domain. Efficient handover is achieved using standard multicast join/prune mechanisms. Two approaches are proposed and contrasted. The first introduces the concept proxy-based mobility, while the other uses algorithmic mapping to obtain the multicast address of visiting mobiles. We show that the algorithmic mapping approach has several advantages over the proxy approach, and provide mechanisms to support it. Network simulation (using NS-2) is used to evaluate our scheme and compare it to other routing-based micro-mobility schemes - CIP and HAWAII. The proactive handover results show that both M&M and CIP shows low handoff delay and packet reordering depth as compared to HAWAII. The reason for M&M's comparable performance with CIP is that both use bi-cast in proactive handover. The M&M, however, handles multiple border routers in a domain, where CIP fails. We also provide a handover algorithm leveraging the proactive path setup capability of M&M, which is expected to outperform CIP in case of reactive handover.Comment: 12 pages, 11 figure

    Optimized Handover and Resource Management: An 802.21 Based Scheme to Optimize Handover and Resource Management in Hybrid Satellite-Terrestrial Networks

    Get PDF
    International audienceSatellite communications can provide fourth generation (4G) networks with large-scale coverage. However, their integration to 4G is challenging because satellite networks have not been designed with handover in mind. The setup of satellite links takes time, and so, handovers must be anticipated long before. This paper proposes a generic scheme based on the Institute of Electrical and Electronics Engineers 802.21 standard to optimize handover and resource management in hybrid satellite-terrestrial networks. Our solution, namely optimized handover and resource management (OHRM), uses the terrestrial interface to prepare handover, which greatly speeds up the establishment of the satellite link. We propose two mechanisms to minimize the waste of bandwidth due to wrong handover predictions. First, we leverage the support of 802.21 in the terrestrial access network to shorten the path of the signaling messages towards the satellite resource manager. Second, we cancel the restoration of the satellite resources when the terrestrial link rolls back. We use OHRM to interconnect a digital video broadcasting and a wireless 4G terrestrial network. However for the simulation tool, we use a WiMAX as the terrestrial technology to illustrate the schemes. The simulation results show that OHRM minimizes the handover delay and the signaling overhead in the terrestrial and satellite networks

    Optimization and Performance Analysis of High Speed Mobile Access Networks

    Get PDF
    The end-to-end performance evaluation of high speed broadband mobile access networks is the main focus of this work. Novel transport network adaptive flow control and enhanced congestion control algorithms are proposed, implemented, tested and validated using a comprehensive High speed packet Access (HSPA) system simulator. The simulation analysis confirms that the aforementioned algorithms are able to provide reliable and guaranteed services for both network operators and end users cost-effectively. Further, two novel analytical models one for congestion control and the other for the combined flow control and congestion control which are based on Markov chains are designed and developed to perform the aforementioned analysis efficiently compared to time consuming detailed system simulations. In addition, the effects of the Long Term Evolution (LTE) transport network (S1and X2 interfaces) on the end user performance are investigated and analysed by introducing a novel comprehensive MAC scheduling scheme and a novel transport service differentiation model

    L-band Digital Aeronautical Communications System (LDACS) draft-ietf-raw-ldacs-03

    Get PDF
    This document provides an overview of the architecture of the L-band Digital Aeronautical Communications System (LDACS), which provides a secure, scalable and spectrum efficient terrestrial data link for civil aviation. LDACS is a scheduled, reliable multi-application cellular broadband system with support for IPv6. LDACS shall provide a data link for IP network-based aircraft guidance. High reliability and availability for IP connectivity over LDACS are therefore essential

    L-band Digital Aeronautical Communications System (LDACS) draft-maeurer-raw-ldacs-06

    Get PDF
    This document provides an overview of the architecture of the L-band Digital Aeronautical Communications System (LDACS), which provides a secure, scalable and spectrum efficient terrestrial data link for civil aviation. LDACS is a scheduled, reliable multi-application cellular broadband system with support for IPv6. LDACS shall provide a data link for IP network-based aircraft guidance. High reliability and availability for IP connectivity over LDACS are therefore essential

    Aeronautical Situational Awareness - Airport Surface

    Get PDF
    This paper advocates for a specific design approach, based on simple principals, yet addresses challenges faced by the system engineers when designing complex data and information infrastructure. The document provides guidance for breaking out various work elements in the overall network architecture design, so that communication systems are conceived and effectively realized regardless of their location, size and local specifics. Although targeted at the Global Airspace System (GAS) and National Airspace System (NAS), this framework can be applied to any network-centric architecture

    Next-Generation Mobile Satellite Networks

    Get PDF
    • …
    corecore