10,267 research outputs found

    Control What You Include! Server-Side Protection against Third Party Web Tracking

    Get PDF
    Third party tracking is the practice by which third parties recognize users accross different websites as they browse the web. Recent studies show that 90% of websites contain third party content that is tracking its users across the web. Website developers often need to include third party content in order to provide basic functionality. However, when a developer includes a third party content, she cannot know whether the third party contains tracking mechanisms. If a website developer wants to protect her users from being tracked, the only solution is to exclude any third-party content, thus trading functionality for privacy. We describe and implement a privacy-preserving web architecture that gives website developers a control over third party tracking: developers are able to include functionally useful third party content, the same time ensuring that the end users are not tracked by the third parties

    Characterizing Location-based Mobile Tracking in Mobile Ad Networks

    Full text link
    Mobile apps nowadays are often packaged with third-party ad libraries to monetize user data

    Service Oriented Computing Imperatives in Ad Hoc Wireless Settings

    Get PDF
    Service oriented computing is a new paradigm that is gaining popularity in dis-tributed computing environments due to its emphasis on highly specialized, modular and platform-agnostic code facilitating interoperability of systems. It borrows concepts from more mature paradigms such as object-oriented and component computing. This results in a progression from object-oriented computing to component computing and finally to service oriented computing, a new paradigm for designing and delivering software. Just as an object encapsulates state and behavior at a fine level of granularity, a service offers similar encapsulation at a larger scale. This evolution raises the level of abstraction at which systems are engineered, while preserving beneficial properties such as modularity, substitution and encapsulation. Every participant in a service oriented computing system is a provider or user of a service, or both. The service oriented computing paradigm is characterized by a minimalist philosophy, in that a user needs to carry only a small amount of code in its local storage, and exploits other services by discovering and using their capabilities to complete its assigned task. This chapter is the result of our experiences with designing and building service oriented computing frameworks for ad hoc wireless networks (Handorean & Roman, 2002). It examines the salient imperatives required to deliver a service oriented computing frame-work for ad hoc wireless networks. Ad hoc wireless networks are collections of hosts capable of wireless communication. Hosts within proximity of each other opportunistically form a network which changes due to host mobility. An ad hoc wireless network is a dynamic environment by necessity, which exhibits transient interactions, decoupled computing, physical mobility of hosts, and logical mobility of code. The network infrastructure is supported by the participating hosts themselves and there is no dependence on external, fixed resources. Ad hoc wireless environments are especially challenging to program when compared against other classes of fixed wireless environments because of the implications of mobility, i.e., frequent disconnections and inherent dynamism of the network on program execution. An important class of ad hoc mobile systems is based on small, portable devices, and this class of systems is the focus of this chapter. Such devices have limited storage capacity and battery power, which restricts the number of programs they can store and run locally. Service oriented computing offers a solution to this problem. By its very nature, service oriented computing is designed to facilitate sharing of capabilities while minimizing the amount of functionality a single host needs to maintain. Such a design is especially effective in ad hoc networks where storage space on individual hosts is at a premium, yet where the open environment allows a large number of hosts to contribute small functions resulting in a rich set of capabilities being available in the network as a whole. Service oriented computing has received much attention from researchers worldwide. However, most of this work has been focused on architectures and implementations for wired networks. Migrating service oriented computing to ad hoc networks is non-trivial and requires a systematic rethinking of core concepts. Many lessons have been learned from the work done in the wired setting, especially regarding description and matching of services. However, the more demanding environment of an ad hoc wireless network requires novel approaches to advertising, discovering and invoking services. We envision such ad hoc networks being used in a range of application domains, such as response coordination by firemen and police at disaster sites, or command and control of military units in a battlefield. Such scenarios demand reliability despite the dynamic nature of the underlying network. The motivation for this chapter is to understand the unique imperatives for a viable service oriented computing framework in ad hoc wireless settings, and to illustrate selected solution strategies. We begin by examining current technologies, algorithms and capabilities that have been implemented for use in wired networks as a baseline. We then extend these concepts to cater to the special challenges of service oriented computing in ad hoc networks and direct the reader’s attention to research issues in this area, presenting some of our own contributions in the process. The rest of the chapter is organized as follows. We describe existing service oriented computing architectures and the Semantic Web effort in the Background section. The section on Ad Hoc Wireless Network Perspective on Service Oriented Computing represents the main thrust of this chapter and discusses the elements of a service oriented computing framework, examining current technologies alongside our ideas on how these concepts may be applied to ad hoc networks. We cover potential areas of research in the Future Trends section. Finally, we summarize our findings in the Conclusion section

    Context Aware Service Oriented Computing in Mobile Ad Hoc Networks

    Get PDF
    These days we witness a major shift towards small, mobile devices, capable of wireless communication. Their communication capabilities enable them to form mobile ad hoc networks and share resources and capabilities. Service Oriented Computing (SOC) is a new emerging paradigm for distributed computing that has evolved from object-oriented and component-oriented computing to enable applications distributed within and across organizational boundaries. Services are autonomous computational elements that can be described, published, discovered, and orchestrated for the purpose of developing applications. The application of the SOC model to mobile devices provides a loosely coupled model for distributed processing in a resource-poor and highly dynamic environment. Cooperation in a mobile ad hoc environment depends on the fundamental capability of hosts to communicate with each other. Peer-to-peer interactions among hosts within communication range allow such interactions but limit the scope of interactions to a local region. Routing algorithms for mobile ad hoc networks extend the scope of interactions to cover all hosts transitively connected over multi-hop routes. Additional contextual information, e.g., knowledge about the movement of hosts in physical space, can help extend the boundaries of interactions beyond the limits of an island of connectivity. To help separate concerns specific to different layers, a coordination model between the routing layer and the SOC layer provides abstractions that mask the details characteristic to the network layer from the distributed computing semantics above. This thesis explores some of the opportunities and challenges raised by applying the SOC paradigm to mobile computing in ad hoc networks. It investigates the implications of disconnections on service advertising and discovery mechanisms. It addresses issues related to code migration in addition to physical host movement. It also investigates some of the security concerns in ad hoc networking service provision. It presents a novel routing algorithm for mobile ad hoc networks and a novel coordination model that addresses space and time explicitly

    AdSplit: Separating smartphone advertising from applications

    Full text link
    A wide variety of smartphone applications today rely on third-party advertising services, which provide libraries that are linked into the hosting application. This situation is undesirable for both the application author and the advertiser. Advertising libraries require additional permissions, resulting in additional permission requests to users. Likewise, a malicious application could simulate the behavior of the advertising library, forging the user's interaction and effectively stealing money from the advertiser. This paper describes AdSplit, where we extended Android to allow an application and its advertising to run as separate processes, under separate user-ids, eliminating the need for applications to request permissions on behalf of their advertising libraries. We also leverage mechanisms from Quire to allow the remote server to validate the authenticity of client-side behavior. In this paper, we quantify the degree of permission bloat caused by advertising, with a study of thousands of downloaded apps. AdSplit automatically recompiles apps to extract their ad services, and we measure minimal runtime overhead. We also observe that most ad libraries just embed an HTML widget within and describe how AdSplit can be designed with this in mind to avoid any need for ads to have native code
    corecore