
HAL Id: hal-01649547
https://hal.inria.fr/hal-01649547

Submitted on 27 Nov 2017

HAL is a multi-disciplinary open access
archive for the deposit and dissemination of sci-
entific research documents, whether they are pub-
lished or not. The documents may come from
teaching and research institutions in France or
abroad, or from public or private research centers.

L’archive ouverte pluridisciplinaire HAL, est
destinée au dépôt et à la diffusion de documents
scientifiques de niveau recherche, publiés ou non,
émanant des établissements d’enseignement et de
recherche français ou étrangers, des laboratoires
publics ou privés.

Control What You Include! Server-Side Protection
Against Third Party Web Tracking

Dolière Francis Somé, Nataliia Bielova, Tamara Rezk

To cite this version:
Dolière Francis Somé, Nataliia Bielova, Tamara Rezk. Control What You Include! Server-Side Pro-
tection Against Third Party Web Tracking. International Symposium on Engineering Secure Software
and Systems, Jul 2017, Bonn, Germany. pp.115-132, �10.1007/978-3-319-62105-0�. �hal-01649547�

https://hal.inria.fr/hal-01649547
https://hal.archives-ouvertes.fr


Control What You Include!

Server-Side Protection against Third Party Web Tracking

Dolière Francis Somé �, Nataliia Bielova, and Tamara Rezk

Université Côte d’Azur, Inria, France
{doliere.some,tamara.rezk,nataliia.bielova}@inria.fr

Abstract. Third party tracking is the practice by which third parties
recognize users accross different websites as they browse the web. Re-
cent studies show that more than 90% of Alexa top 500 websites [38]
contain third party content that is tracking its users across the web.
Website developers often need to include third party content in order to
provide basic functionality. However, when a developer includes a third
party content, she cannot know whether the third party contains tracking
mechanisms. If a website developer wants to protect her users from be-
ing tracked, the only solution is to exclude any third-party content, thus
trading functionality for privacy. We describe and implement a privacy-
preserving web architecture that gives website developers a control over
third party tracking: developers are able to include functionally useful
third party content, the same time ensuring that the end users are not
tracked by the third parties.

Keywords: Program rewriting techniques for security ·Security by design

1 Introduction

Third party tracking is the practice by which third parties recognize users accross
different websites as they browse the web. In recent years, tracking technologies
have been extensively studied and measured [28, 29, 31, 34, 36, 38] – researchers
have found that third parties embedded in websites use numerous technologies,
such as third-party cookies, HTML5 local storage, browser cache and device
fingerprinting that allow the third party to recognize users across websites [39]
and build browsing history profiles. Researchers found that more than 90% of
Alexa top 500 websites [38] contain third party web tracking content, while some
sites include as much as 34 distinct third party content [33].

But why do website developers include so many third party content (that
may track their users)? Though some third party content, such as images and
CSS [2] files can be copied to the main (first-party) site, such an approach has a
number of disadvantages for other kinds of content. Advertisement is the base of
the economic model in the web – without advertisements many website providers
will not be able to financially support their website maintenance. Third party
JavaScript libraries offer extra functionality: though copies of such libraries can



2 Dolière Francis Somé �, Nataliia Bielova, and Tamara Rezk

be stored on the main first party site, this solution will sacrifice maintenance
of these libraries when new versions are released. The developer would need to
manually check the new versions. Web mashups, as for example applications that
use hotel searching together with maps, are actually based on reusing third-
party content, as well as maps, and would not be able to provide their basic
functionality without including the third-party content. Including JavaScript
libraries, content for mashups or advertisements means that the web developers
cannot provide to the users the guarantee of non-tracking.

Except for ethical decision not to track users, from May 2018 the website
owners will have a legal obligation as well. The ePrivacy directive (also know as
‘cookie law’) will be updated to the regulation, and will make website owners
liable for third party tracking that takes place in their websites. This regulation
will be applied to all the services that are delivered to the natural persons lo-
cated in the European Union. This regulation will apply high penalties for any
violation. Hence, privacy compliance will be of high interest to all website owners
and developers, and today there is no automatic tool that can help to control
third party tracking.To keep a promise of non-tracking, the only solution today
is to exclude any third-party content1, thus trading functionality for privacy.

In this paper, we present a new web application architecture that allows
web developers to gain control over certain types of third party content. Our
solution is based on the automatic rewriting of the web application in such a
way that the third party requests are redirected to a trusted web server, with
a different domain than the main site. This trusted web server may be either
controlled by a trusted party, or by a main site owner – it is enough that the
trusted web server has a different domain. A trusted server is needed so that the
user’s browser will treat all redirected requests as third party requests, like in the
original web application. The trusted server automatically eliminates third-party
tracking cookies and other technologies.

In summary our contributions are:

– A classification of third party content that can and cannot be controlled by
the website developer.

– An analysis of third party tracking capabilities – we analyze two mechanisms:
recognition of a web user, and identification of the website she is visiting 2.

– A new architecture that allows to include third party content in web appli-
cations and eliminate stateful tracking.

– An implementation of our architecture, demonstrating its effectiveness at
preventing stateful third party tracking in several websites.

2 Background and Motivation

Third party web tracking is the ability of a third party to re-identify users as
they browse the web and record their browsing history [34]. Tracking is often

1 For example, see https://duckduckgo.com/. 2 Tracking is often defined as the
ability of a third party to recognize a user through different websites. However, be-
ing able to identify the websites a user is interacting with is equally crucial for the
effectiveness of tracking.



Server-Side Protection against Third Party Web Tracking 3

Fig. 1. Third Party Tracking

done with the purpose of web analytics, targeted advertisement, or other forms
of personalization. The more a third party is prevalent among the websites a user
interacts with, the more precise is the browsing history collected by the tracker.
Tracking has often been conceived as the ability of a third party to recognize
the web user. However, for successful tracking, each user request should contain
two components:

User recognition is the information that allows tracker to recognize the user;
Website identification is the website which the user is visiting.

For example, when a user visits news.com, the browser may make additional
requests to facebook.com. As a result, Facebook learns about the user’s visit
to news.com. Figure 1 shows a hypothetical example of such tracking where
facebook.com is the third party.

Consider that a third party server, such as facebook.com hosts different con-
tent, and some of them are useful for the website developers. The web developer
of another website, say mysite.com, would like to include such functional content
from Facebook, such as Facebook ”Like” button, an image, or a useful JavaScript
library, but the developer does not want its users to be tracked by Facebook. If
the web developer simply includes third party Facebook content in his applica-
tion, all its users are likely to be tracked by cookie-based tracking. Notice that
each request to facebook.com also contains an HTTP Referrer header, automat-
ically attached by the browser. This header contains the website URL that the
user is visiting, which allows Facebook to build user’s browsing history profile.

The example demonstrates cookie-based tracking, which is extremely com-
mon [38]. Other types of third party tracking, that use client-side storage mech-
anisms, such as HTML5 LocalStorage, or cache, and device fingerprinting that
do not require any storage capabilities, are also becoming more and more pop-
ular [29].

Web Developer Perspective. A web developer may include third party con-
tent in her webpages, either because this content intentionally tracks users (for
example, for targeted advertising), or because this content is important for the
functioning of the web application. We therefore distinguish two kinds of third
party content from a web developer perspective: tracking and functional. Track-
ing content is intentionally embedded by website owner for tracking purposes.
Functional content is embedded in a webpage for other purposes than tracking:
for example, JavaScript libraries that provide additional functionality, such as



4 Dolière Francis Somé �, Nataliia Bielova, and Tamara Rezk

jQuery, or other components, such as maps. In this work, we focus on functional
content and investigate the following questions:

– What kind of third party content can be controlled from a server-side (web
developer) perspective?

– How to eliminate the two components of tracking (user recognition and web-
site identification) from functional third party content that websites embed?

2.1 Browsing Context

Browsers implement different specifications to securely fetch and aggregate third
party content. One widely used approach is the Same Origin Policy (SOP) [15],
a security mechanism designed for developers to isolate legacy content from
potentially untrusted third party content. An origin is defined as scheme, host
and port number, of the URL [21] of the third party content.

When a browser renders a webpage delivered by a first party, the page is
placed within a browsing context [1]. A browsing context represents an instance
of the browser in which a document such as a webpage is displayed to a user, for
instance browser tabs, and popup windows. Each browsing context contains 1)
a copy of the browser properties (such as browser name, version, device screen
etc), stored in a specific object; 2) other objects that depend on the origin of the
document according to SOP. For instance, the object document.cookie gives the
cookies related to the domain and path of the current context.

In-Context and Cross-Context Content. Certain types of content em-
bedded in a webpage, such as images, links, and scripts, are associated with the
context of the webpage, and we call them in-context content. Other types of con-
tent, such as <iframe>, <embed>, and <object> tags are associated with their own
browsing context, and we call them cross-context content. Usually, cross-context
content, such as <iframe> elements, cannot be visually distinguished from the
webpage in which they are embedded, however they are as autonomous as other
browsing contexts, such as tabs or windows. Table 1 shows different third party
content and their execution contexts.

Table 1. Third Party Content and Execution Context.

HTML Tags Third Party Content

in-context

<link> Stylesheets
<img> Images
<audio> Audios
<video> Videos
<form> Forms
<script> Scripts

cross-context
<(i)frame>, <frameset>, <a> Web pages
<object>, <embed>, <applet> Plugins and Web pages

The Same Origin Policy manages interactions between different browsing
contexts. In particular, it prevents in-context scripts from interacting with cross-



Server-Side Protection against Third Party Web Tracking 5

context iframes in case their origins are different. To communicate, they may use
inter-frame communication APIs such as postMessage [12].

2.2 Third Party Tracking

In this work, we consider only stateful tracking technologies – they require an
identifier to be stored client-side. The most common storage mechanism is cook-
ies, but others, such as HTML5 LocalStorage and browser cache can also be
used for stateful tracking. Figure 2 presents the well-known stateful tracking
mechanisms. We distinguish two components necessary for successful tracking:
user recognition and website identification. For each component, we describe the
capabilities of in-context and cross-context. We also distinguish passive track-
ing (through HTTP headers) and active tracking (through JavaScript or plugin
script).

User Recognition Website Identification
Passive Active Passive Active

in-context HTTP cookies
Cache-Control
Etag
Last-Modified

-
Referer
Origin

document.URL

document.location

window.location

cross-context

Flash LSOs
document.cookie

window.localStorage

window.indexedDB

Referer document.referrer

Fig. 2. Stateful tracking mechanisms

In-Context Tracking. In-context third party content is associated with the
browsing context of the webpage that embeds it (see Table 1).

Passively, such content may use HTTP headers to recognize a user and iden-
tify the visited website. When a webpage is rendered, the browser sends a request
to fetch all third party content embedded in that page. The responses from the
third party, along with the requested content, may contain HTTP headers that
are used for tracking. For example, the Set-cookie HTTP header tells the browser
to save third party cookies, that will be later on automatically attached to every
request to that third party in the Cookie header. Etag HTTP header and other
cache mechanisms like Last-Modified and Cache-Control HTTP headers may
also be used to store user identifiers [39] in a browser. To identify the visited
website, a third party can either check the Referer HTTP header, automatically
attached by the browser, or an Origin header3.

Actively, in-context third party content cannot use browser storage mecha-
nisms, such as cookies or HTML5 Local Storage associated to the third party
because of the limitations imposed by the SOP (see Section 2.1). For example,
if a third party script from third.com uses document.cookie API, it will read the
cookies of the main website, but not those of third.com. This allows tracking

3 Origin header is also automatically generated by the browser when the third party
content is trying to access data using Cross-Origin Resource Sharing [4] mechanism.



6 Dolière Francis Somé �, Nataliia Bielova, and Tamara Rezk

within the main website but does not allow tracking cross-sites [38]. For website
identification, third party active content, such as scripts, can use several APIs,
for example document.location.

Cross-Context Tracking. Cross-context content, such as iframe, is associ-
ated with the browsing context of the third party that provided this content.

Passively, the browser may transmit HTTP headers used for user recognition
and website identification, just like in the case of in-context content. Every third-
party request for cross-context content will contain the URL of the embedding
webpage in its Referer header.

Requests to fetch third party content further embedded inside a cross-context
(such as iframe) will carry, not the URL of the embedding webpage, but that of
the iframe in their Referer or Origin headers (in the case of CORS requests).
This prevents them from passively identifying the embedding webpage.

Actively, cross-context third party content can use a number of APIs to store
user identifiers in the browser. These APIs include cookies (document.cookie),
HTML5 LocalStorage (document.localStorage), IndexedDB, and Flash Local
Stored Objects (LSOs). For website identification, document.referrer API can
be used – it returns the value of the HTTP Referrer header transmitted in the
request to the cross-context third party.

Combining In-Context and Cross-Context Tracking. Imagine a third
party script from third.com embedded in a webpage – according to the context
and to the SOP, it is in-context. If the same webpage embeds a third party
iframe from third.com (cross-context), then because of SOP, such script and
iframe cannot interact directly. However, the can still communicate through
inter-frame communication APIs such as postMessage [12].

On one hand, the in-context script can easily identify the website using APIs
such as document.location. On the other hand, the cross-context iframe can
easily recognize the user by calling document.cookie. Therefore, if the iframe
and the script are allowed to communicate, they can exchange those partial
tracking information to fully track the user.

For example, a social widget, such as Facebook ”Like” button, or Google
”+1” button, may be included in webpages as a script. When the social widget
script is executed on the client-side, it loads additional scripts, and new browsing
contexts (iframes) allowing the third party to benefit from both in-context and
cross-context capabilities to track users.

3 Privacy-preserving Web Architecture

For third party tracking to be effective, two capabilities are needed: 1) the tracker
should be able to identify the website in which it is embedded, and 2) recognize
the user interacting with the website. Disabling only one of these two capabilities
for a given third party already prevents tracking. In order to mitigate stateful
tracking (see Section 2), we make the following design choices:

1. Preventing only user recognition for in-context. As show in Table 2,
in-context content cannot perform any active user recognition. We are left



Server-Side Protection against Third Party Web Tracking 7

with passive user recognition and (active and passive) website identification.
Preventing passive user recognition for such content (images, scripts, forms)
is possible by removing HTTP headers such as Cookie, Set-cookie, ETag that
are sent along with requests/responses to fetch those content.
Note that it is particularly difficult to prevent active website identification
because trying to alter or redefine document.location or window.location

APIs, will cause the main page to reload. Therefore, in-context active content
(scripts) can still perform active website identification. Nonetheless, since we
remove their user recognition capability, tracking is therefore prevented for
in-context content.

2. Preventing only website identification for cross-context. We pre-
vent passive website identification by instructing the browser not to send
the HTTP Referer header along with requests to fetch a cross-context con-
tent. Therefore, when the cross-context content gets loaded, the tracker is
unable to identify the website in which it is embedded in. Indeed, execut-
ing document.referrer returns an empty string instead of the URL of the
embedding page.
Because of the limitations of the SOP, a website owner has no control over
cross-context third party content, such as iframes. Therefore, active and pas-
sive user recognition can still happen in third party cross-context. We discuss
other possibilities to block some active user recognition APIs in Section 4.1.
Nonetheless, since website identification is not possible, tracking is therefore
prevented for cross-context third party content.

3. Prevent communication between in-context and cross-context con-
tent. Our architecture proposes a way to block such communications that
can be done by postMessage API. We discuss the limitations of this approach
in Section 4.1.

To help web developers keep their promises of non-tracking and still include
third-party content in their web applications, we propose a new web application
architecture. This architecture allows web developers to 1) automatically rewrite
the URLs of all in-context third party content embedded in a web application, 2)
redirect those requests to a trusted third party server which 3) remove/disable
known stateful tracking mechanisms (see Section 2) for such content; 4) rewrite
and redirect cross-context requests to the trusted third party so as to prevent
website identification and communication with in-context scripts.

Figure 3 provides an overview of our web application architecture. It intro-
duces two new components fully controlled by the website owner.

Rewrite Server (Section 3.1) acts like a reverse proxy [14] for the original
web server. It rewrites the original web pages in such a way that all the requests
to fetch all the third party content that they embed are redirected through the
Middle Party Server before reaching the intended third party server.

Middle Party Server (Section 3.2) is at the core of our solution since it
intercepts all browser third party requests, removes tracking, then forwards them
to the intended third parties. From every response from a third party, the server
removes tracking information and forwards the response back to the browser. For



8 Dolière Francis Somé �, Nataliia Bielova, and Tamara Rezk

Fig. 3. Privacy-Preserving Web Architecture

in-context content such as images and scripts, the Middle Party Server prevents
user recognition and website identification, while for cross-context content such
as iframes, it prevents website identification and communication with other in-
context scripts.

3.1 Rewrite Server

The goal of the Rewrite Server is to rewrite the original content of the requested
webpages in such a way that all third party requests will be redirected to the Mid-
dle Party Server. It consists of three main components: static HTML rewriter for
HTML pages, static CSS rewriter and JavaScript injection component. Into each
webpage, we load a JavaScript code that insures that all dynamically generated
third party content are redirected to the Middle Party Server as well.

HTML and CSS Rewriter rewrites the URLs of static third party con-
tent embedded in original web pages and CSS files in order to redirect them to
the Middle Party Server. For example, the URL of a third-party script source
http://third.com/script.js is written so that it is instead fetched through
the Middle Party Server: http://middle.com/?src=http://third.com/script.js.
The HTML Rewriter component is implemented using the Jsdom HTML
parser [8], and CSS Rewriter, using the CSS parser [5] module for Node.js.

JavaScript Injection. The Rewrite Server also injects a script in all original
webpages after they are rewritten. This script controls APIs used to dynamically
inject content inside a webpage once the webpage is rendered in a browser. It
is available at https://webstats.inria.fr/sstp/dynamic.js. Table 2 shows
APIs that can be used to dynamically inject third party content within a web-
page. They are controlled using the injected script.

A Content Security Policy (CSP) [44] is injected in the response header
of each webpage in order to prevent third parties from bypassing the rewriting



Server-Side Protection against Third Party Web Tracking 9

Table 2. Injecting Dynamic Third Party Content

API Content

document.createElement inject content from Table 1
document.write any content
window.open Web pages(popups)
Image images
XMLHttpRequest any data
Fetch, Request any content
EventSource stream data
WebSocket websocket data

Fig. 4. Prevent Combining in-context and cross-context tracking

and redirection to the Middle Party Server. A CSP delivered with the webpage
controls the resources of that page by specifying which resources are allowed to
be loaded and executed. By limiting the resource origins to only those of the
Middle Party Server and the website own domain, we prevent third parties from
bypassing the redirection to the Middle Party Server in order to load content
directly from a third party server. Such attempts will get blocked by the browser
upon enforcement of the CSP of the page. The following listing gives the CSP
injected in all webpages, assuming that middle.com is the domain of the Middle
Party Server.

1 Content-Security-Policy: default-src ’self’

middle.com; object-src ’self’;

3.2 Middle Party

The main goal of the Middle Party is to proxy the requests and responses between
browsers and third parties in order to remove tracking information exchanged
between them. It functions differently for in-context and cross-context content.

In-Context content are scripts, images, etc. (see Table 1). Since a third
party script from http://third.com/script.js is rewritten by the Rewrite Server
to http://middle.com/?src=http://third.com/script.js, it is fetched through
the Middle Party Server. This hides the third party destination from the browser,
and therefore prevents it from attaching third party HTTP cookies to such
requests. Because the browser will still attach some tracking information to the



10 Dolière Francis Somé �, Nataliia Bielova, and Tamara Rezk

requests, then when the middle party receives a request URL from the browser,
it takes the following steps. Remove Tracking from request that are set by
the browser as HTTP headers. Among those headers are Etag, If-Modified-Since,
Cache-Control, Referer. Next, it makes a request to the third party in order to
get the content of the script http://third.com/script.js. Remove Tracking
from response returned by the third party. The headers that the third party
may send are Set-Cookie, Etag, Last-Modified, Cache-Control. CSS Rewriter
rewrites the response if the content is a CSS file, in order to also redirect to the
Middle Party Server any third party content that they may embed. Finally, the
response is returned back to the browser.

Cross-context content are iframes, links, popups, etc. (see Table 1). The
Middle Party Server prevents website identification for cross-context content and
communication with in-context scripts. This is done by loading cross-context
content from another cross-context controlled by the Middle Party Server as
illustrated by Figure 4.

For instance, a third party iframe from http://third.com/page.html is rewrit-
ten to http:// middle.com/?emb=http://third.com/page.html. When the Middle
Party Server receives such a request URL from the browser, it takes the fol-
lowing actions: URL Rewriting. Instead of fetching directly the content of
http://third.com/page.html, the Middle Party Server generates a content
in which it puts the URL of the third party content as a hyperlink <a href

= "http://third.com/page.html" rel = "noreferrer noopener"></a>. The most
important part of this content is in the rel attribute value. Therefore, noreferrer
noopener instructs the browser not the send the Referer header when the link
http://third.com/page.html is followed client-side. JavaScript Injection mod-
ule adds a script to the content so that the link gets automatically followed once
the content is rendered by the browser. Once the link is followed, the browser
fetches the third party content directly on the third party server, without go-
ing through the Middle Party server anymore. Nonetheless, it does not include
the Referer header for identifying the website. Therefore, the document.referrer

API also returns an empty string inside the iframe context. This prevents it from
identifying the website. The third party server response is placed within a new
iframe nested within a context that belongs to the Middle Party, and not directly
within the site webpage. This prevents in-context scripts and the cross-context
content from exchanging tracking information as illustrated by Figure 4.

HTTPS Content. We recommend deploying the Middle Party Server as
an HTTPS server. Therefore, third party content originally served over HTTPS
(before rewriting) still get served over HTTPS even in the presence of the Middle
Party Server . Moreover, third party content originally served over HTTP would
get blocked by current browsers according to the Mixed Content policy [43]. With
an HTTPS Middle Party, HTTP third party requests will not be prevented from
loading since they are fetched over HTTPS through the Middle Party.

Multiple Redirections. A third party may attempt to circumvent our so-
lution by performing multiple redirections. This is commonly used in advertise-
ments (though ads are not in scope of this paper).



Server-Side Protection against Third Party Web Tracking 11

When a (third party) web server wants to perform a redirection to another
server, it usually does so by including in the response, a special HTTP Location
that indicates the server to which the next request will be sent. The Middle
Party Server prevents such circumvention by rewriting the Location header so
that the browser sends the next redirection request to the Middle Party Server
again. As a result, all the redirections pass via the Middle Party.

4 Implementation

We have implemented both the Rewrite Server and the Middle Party Server as
full Node.js [10] web servers supporting HTTP(S) protocols and web sockets.
Implementation details are available at https://webstats.inria.fr/sstp/.

Rewrite Server. In our implementation, we deploy the Rewrite Server on the
same physical machine as the original web application server. In order to do
so, we moved the original server on a different port number, and the Rewrite
Server on the initial port of the original server. Therefore, requests that are
sent by browsers reach first the Rewrite Server. It then simply forwards them to
the original server, which handles the request as usual and return a response to
the Rewrite Server. Then, HTML webpages, and CSS files are rewritten using
the HTML Rewriter and CSS Rewriter components respectively. To handle
dynamic third party content, we inject a script. And in order to prevent malicious
third parties from bypassing the redirection, we inject a CSP (See Section 3.1).

Middle Party. All requests to load third party contents embedded in a website
deploying our architecture will go through the Middle Party Server. In-Context
and cross-context contents are handled differently.

In-Context Contents are simply stripped off tracking information that
they carry from the browser to the third parties and vice versa. See Section 3 for
the list of tracking information that are removed from third party requests and
responses. In particular, third party CSS responses are rewritten, using the CSS
Rewriter component, to redirect to the Middle Party Server any third party
content that they may further embed. As in the case of the Rewrite Server, this
component is implemented using a CSS parser [5] for Node.js

Cross-Context contents are handled in a way that the original website
identity is not leaked to them. They are also prevented from communicating with
any in-context third party content to exchange tracking information. If the cross-
context URL was http://third.com/page.html, instead of making a request to
third.com, the Middle Party Server returns to the browser a response consisting
of rewriting the URL to

1 <a href="http: // third.com/page.html" rel="noreferrer

noopener"></a>.

and injecting the following script:



12 Dolière Francis Somé �, Nataliia Bielova, and Tamara Rezk

1 var third_party = document.getElementsByTagName("a")[0];

2 if(window.top == window.self){

3 third_party.target = "_blank";

4 third_party.click ();

5 window.close ();

6 }else{

7 var iframe = document.createElement("iframe");

8 iframe.name = "iframetarget";

9 document.body.appendChild(iframe);

10 third_party.target = "iframetarget";

11 third_party.click ();

12 }

Overall, when this response is rendered, the browser will not the Referer header
to the third party, and the third party is prevented from communicating with
in-context content, as explained in Section 3.2.

4.1 Discussion and Limitations

Our approach suffers from the following limitations. First, our implementation
prevents cross-context and in-context contents from communicating with each
other using postMessage API. However, in-context third party script can identify
the website a user visits via document.location.href API. Then the script can
include the website URL, say http://main.com, as a parameter of the URL of a
third party iframe, for example http://third.com/page.html?ref=http://main.com

and dynamically embed it in the webpage. In our architecture, this URL is
rewritten and routed to the Middle Party. Since, the Middle Party Server does
not inspect URL parameters, this information will reach the third party even
though the Referer is not sent with cross-context requests.

Another limitation is that of dynamic CSS changes. For instance, changing
the background image via the style object of an element in the webpage is not
captured by the dynamic rewriting script injected in webpages. Therefore, if the
image was a third party image, the CSP will prevent it from loading.

Performance Overhead. There is a performance cost associated with the
Rewrite Server, which can be evaluated as the cost of introducing any reverse
proxy to a web application architecture (See Section 3.1). Rewriting contents
server-side and browser-side is also expensive in terms of performance. We believe
that server-side caching mechanisms, in particular for static webpages, may help
speed up the responsiveness of the Rewrite Server.

The Middle Party Server may also lead to performance overhead especially
for webpages with numerous third party contents. Therefore, it can be provided
as a service by a trusted external party, as it is the case for Content Distribution
Networks (CDNs) serving contents for many websites.

Extension to Stateless Tracking. Even though this work did not address
stateless tracking, such as device fingerprinting, our architecture already hides
several fingerprintable device properties and can be extended to several others:
1) The redirection to the Middle Party anonymizes the real IP addresses of users;



Server-Side Protection against Third Party Web Tracking 13

2) Some stateless tracking APIs such as window.navigator, window.screen, and
HTMLCanvasElement can be easily removed or randomized from the context of the
webpage to mitigate in-context fingerprinting.

Possibility to Blocking Active User Recognition in Cross-Context.
With the prevalence of third party tracking on the web, we have shown the chal-
lenges that a developer will face towards mitigating that. The sandbox attribute
for iframes help prevent access to security-sensitive APIs. As tracking has become
a hot concern, we suggest that similar mechanisms can help first party websites
tackle third party tracking. The sandbox attribute can for instance be extended
with specific values to tackle tracking. Nonetheless, the sandbox attribute can
be used to prevent cross-context from some stateful tracking mechanisms [9].

5 Evaluation and Case Study

Demo website. We have set up a demo website that embeds a collection of
third party content, both in-context and cross-context. In-context content in-
clude images, HTML5 audio and video, and a Google Map which further loads
dynamic content such as images, fonts, scripts, and CSS files. A Youtube video is
embedded as cross-context content in an iframe. The demo website is deployed at
https://sstp-rewriteproxy.inria.fr. With the deployment of our solution,
there is no change from a user perspective on how the demo website is ac-
cessed. Indeed, it is still accessible at https://sstp-rewriteproxy.inria.fr.
However from the server-side, it is the Rewrite Server which is now running at
https://sstp-rewriteproxy.inria.fr instead of the original server. It then
intercepts user requests and forwards them to the original server which has been
moved on port 8080 (http://sstp-rewriteproxy.inria.fr:8080), hidden from users
and the outside.

The Middle Party Server runs at https://sstp-middleparty.inria.fr.
With our architecture deployed, all requests to fetch third party content embed-
ded in the demo website are redirected to the Middle Party Server. For in-context
content, its removes any tracking information in the requests sent by the browser.
Then it forwards the requests to the third parties. Any tracking information set
by the third parties in the responses are also removed before being forwarded to
the browser. For the cross-context content (Youtube Video in our demo), it is
not directly loaded as an iframe inside the demo page. Instead, an iframe from
the Middle Party Server is created and embedded inside the demo webpage.
Then the Youtube video is automatically loaded in another iframe inside this
first iframe which context is that of Middle Party Server. During this process,
the Referer header is not leaked to Youtube (Section 3.2), preventing it from
identifying the demo website in which it is included. In the Appendix, we show
a screenshot of redirection requests to the Middle Party Server.

Real websites. Since we did not have access to real websites, we could
not install the Rewrite Server and evaluate our solution on them. We therefore
implemented a browser proxy based on a Node.js proxy [11], and included all
the logic of the Rewrite Server within the proxy. The proxy was deployed at



14 Dolière Francis Somé �, Nataliia Bielova, and Tamara Rezk

https://sstp-rewriteproxy.inria.fr:5555 and acts like the Rewrite Server
for real websites intercepting and forwarding requests to them, and rewriting
the responses in order to redirect them to our Middle Party Server deployed at
https://sstp-middleparty.inria.fr.

We then evaluated our solution on different kinds of websites: a news website
http://www.bbc.com, an entertainment website http://www.imdb.com, and a
shopping website http://verbaudet.fr. All three websites load content from
various third party domains. Visually, we did not notice any change in the behav-
iors of the websites. We also interacted with them in a standard way (clicking on
links on a news website, choosing products and putting them in the basket on the
shopping website) and the main functionalities of the websites were preserved.

Overall, these evaluation scenarios have helped us improve the solution, es-
pecially rewriting dynamically injected third party content. We believe that this
implementation will get even mature in the future when we will be able to con-
vince some website owners to deploy it.

Limitations of the evaluation on real websites.
The evaluation on the real websites may break some features or introduce

performances issues. Here, we discuss such problems and how to prevent them.
Third party identity (OpenID) providers such as Facebook or Google need

to use third party cookies in order to be able to authenticate users to websites
embedding them. Therefore, stripping off cookies can prevent users from suc-
cessfully logging in to the related websites. In a deployment scenario, we make
it possible for the developer to instruct the Rewrite Server not to rewrite such
third party identity provider content so that users can still log in.

Furthermore, it is common for websites to rely on Content Distribution Net-
works (CDNs), from which they load content for performance purposes. There-
fore, rewriting and redirecting CDNs requests to the Middle Party Server can
introduce performance issues. In this case also, a developer can declare a list of
CDNs which requests should not be rewritten by the Rewrite Server.

Finally, as one may have noticed, the real websites we have considered in our
evaluation scenario are all HTTP websites. We could not evaluate our solution
on real HTTPS websites because HTTPS requests and responses that arrive at
the browser proxy are encrypted. Therefore, we could not be able to rewrite
third party content that are embedded in such websites.

6 Related Work

A number of studies have demonstrated that third party tracking is very preva-
lent on the web today and analyzed the underlying tracking technologies [29,31,
34,38]. Lerner et al. [33] analyzed how third party tracking evolved for a period
of twenty years. Trackers have been categorized according to either their business
relationships with websites [34], their prominence [29, 31] or the user browsing
profile that they can build [38]. Mayer and Mitchell [34] grouped tracking mech-
anisms in two categories called stateful (cookie-based and super-cookies) and
stateless (fingerprinting). It is rather intuitive to convince ourselves about the



Server-Side Protection against Third Party Web Tracking 15

effectiveness of a stateful tracking, since it is based on unique identifiers that are
set in users browsers. Nonetheless, the efficacy of stateless mechanisms has been
extensively demonstrated. Since the pioneer work of Eckersley [28], new finger-
printing methods have been revealed in the literature [22–24,26,27,29,36,40,41].
A classification of fingerprinting techniques is provided in [42]. Those studies
have contributed to raising public awareness of tracking privacy threats. Mayer
and Mitchell [34] have shown that users are very sensitive to their online privacy,
thus hostile to third party tracking. Englehardt et al. [30] have demonstrated
that tracking can be used for surveillance purposes. The success of anti-tracking
defenses is yet another illustration that users are concerned about tracking [35].

There are a number of defenses that try to protect users against third party
tracking. First, major browser vendors do natively provide mechanisms for users
to block third party cookies or browse in private/incognito mode for instance.
More and more browsers even take a step further, considering privacy as a design
principle: Tor Browser [17], TrackingFree [37], Blink [32], CLIQZ [3].

But the most popular defenses are browser extensions. Being tightly in-
tegrated into browsers, they provide additional privacy features that are not
natively implemented in browsers. Well known privacy extensions are Discon-
nect [6], Ghostery [7], ShareMeNot [38], which is now part of PrivacyBadger [13],
uBlock Origin [20] and a relatively new MyTrackingChoices [25]. Merzdovnik
et al. [35] provide a large-scale evaluation of these anti-tracking defenses. Well
known trackers such as advertisers, which businesses heavily depend on tracking,
have also been taking steps towards limiting their own tracking capabilities [34].
The W3C is pushing forward the Do Not Track standard [18, 19] for users to
easily express their tracking preferences so that trackers may comply with them.
To the best of our knowledge, we are the first to investigate how a website owner
can embed third party content while preventing them from accidentally tracking
users. The idea of proxying requests within a webpage is inspired by web service
workers API [16], though this API is still a working draft which is currently
being tested in Mozilla Firefox and Google Chrome.

7 Conclusions

Most of the previous research analyzed third party tracking mechanisms, and
how to block tracking from a user perspective. In this work, we classified third
party tracking capabilities from a website developer perspective. We proposed a
new architecture for website developers that allows to embed third party content
while preserving users privacy. We implemented our solution, and evaluated it
on real websites to mitigate stateful tracking.

Appendix

Screenshots of the demo website map console.



16 Dolière Francis Somé �, Nataliia Bielova, and Tamara Rezk

Fig. 5. A demo page displaying a Google Maps

References

1. Browsing Contexts, https://www.w3.org/TR/html51/browsers.html
2. Cascading Style Sheets, https://www.w3.org/Style/CSS/
3. CLIQZ, https://cliqz.com
4. Cross-origin-resource sharing, https://developer.mozilla.org/en-US/docs/

Web/HTTP/Access_control_CORS

5. CSS Parser for Node.js, https://github.com/reworkcss/css
6. Disconnect, https://disconnect.me/
7. Ghostery, https://www.ghostery.com/
8. HTML Parser for Node.js, https://github.com/tmpvar/jsdom
9. Iframe Sandbox Attribute, https://www.w3.org/TR/2011/WD-html5-20110525/

the-iframe-element.html#attr-iframe-sandbox

10. Node.js, https://nodejs.org/en/
11. Node.js Proxy, https://newspaint.wordpress.com/2012/11/05/

node-js-http-and-https-proxy

12. PostMessage - Cross-Origin Iframe Secure Communication, https://developer.
mozilla.org/en-US/docs/Web/API/Window/postMessage

13. Privacy Badger, https://www.eff.org/fr/privacybadger
14. Reverse Proxy, https://en.wikipedia.org/wiki/Reverse_proxy
15. Same Origin Policy, https://www.w3.org/Security/wiki/Same_Origin_Policy
16. Service Worker API, https://developer.mozilla.org/en-US/docs/Web/API/

Service_Worker_API

17. Tor Browser, https://www.torproject.org/projects/torbrowser/design/
18. Tracking Compliance and Scope - https://www.w3.org/TR/tracking-compliance/
19. Tracking Preference Expression, https://www.w3.org/TR/tracking-dnt/
20. uBlock Origin, https://www.ublock.org/



Server-Side Protection against Third Party Web Tracking 17

21. URL, https://www.w3.org/TR/url
22. Abgrall, E., Traon, Y.L., Monperrus, M., Gombault, S., Heiderich, M., Ribault,

A.: XSS-FP: browser fingerprinting using HTML parser quirks. CoRR (2012)
23. Acar, G., Eubank, C., Englehardt, S., Juárez, M., Narayanan, A., Dı́az, C.: The

web never forgets: Persistent tracking mechanisms in the wild. In: Proc. of CCS
2014

24. Acar, G., Juárez, M., Nikiforakis, N., Dı́az, C., Gürses, S.F., Piessens, F., Preneel,
B.: FPDetective: dusting the web for fingerprinters. In: Proc. of CCS 2013

25. Achara, J.P., Parra-Arnau, J., Castelluccia, C.: Mytrackingchoices: Pacifying the
ad-block war by enforcing user privacy preferences. CoRR (2016)

26. Boda, K., Földes, Á.M., Gulyás, G.G., Imre, S.: User tracking on the web via
cross-browser fingerprinting. In: Proc. of the 16th NordSec. pp. 31–46 (2011)

27. Cao, Y., Li, S., Wijmans, E.: (cross-)browser fingerprinting via os and hardware
level features. In: Proc. of the 24th NDSS (2017)

28. Eckersley, P.: How Unique Is Your Web Browser? In: Proc. of the 2010 PETS
29. Englehardt, S., Narayanan, A.: Online tracking: A 1-million-site measurement and

analysis. In: Proc. of the 2016 CCS. pp. 1388–1401 (2016)
30. Englehardt, S., Reisman, D., Eubank, C., Zimmerman, P., Mayer, J., Narayanan,

A., Felten, E.W.: Cookies that give you away: The surveillance implications of web
tracking. In: Proc. of the 24th WWW. pp. 289–299 (2015)

31. Krishnamurthy, B., Wills, C.E.: Privacy diffusion on the web: a longitudinal per-
spective. In: Proc. of the 18th WWW. pp. 541–550 (2009)

32. Laperdrix, P., Rudametkin, W., Baudry, B.: Beauty and the beast: Diverting mod-
ern web browsers to build unique browser fingerprints. In: Proc. of IEEE SP 2016

33. Lerner, A., Simpson, A.K., Kohno, T., Roesner, F.: Internet jones and the raiders
of the lost trackers: An archaeological study of web tracking from 1996 to 2016.
In: Proc. of the 25th USENIX Security. Austin, TX (2016)

34. Mayer, J.R., Mitchell, J.C.: Third-party web tracking: Policy and technology. In:
Proc. of the 2012 IEEE SP. pp. 413–427 (2012)

35. Merzdovnik, G., Huber, M., Buhov, D., Nikiforakis, N., Neuner, S., Schmiedecker,
M., Weippl, E.: Block me if you can: A large-scale study of tracker-blocking tools.
In: Proc. of the 2nd EuroSP. Paris, France (2017)

36. Nikiforakis, N., Kapravelos, A., Joosen, W., Kruegel, C., Piessens, F., Vigna, G.:
Cookieless monster: Exploring the ecosystem of web-based device fingerprinting.
In: Proc. of the 2013 IEEE SP. pp. 541–555 (2013)

37. Pan, X., Cao, Y., Chen, Y.: I do not know what you visited last summer: Protecting
users from stateful third-party web tracking with trackingfree browser. In: Proc.
of the 22nd NDSS (2015)

38. Roesner, F., Kohno, T., Wetherall, D.: Detecting and defending against third-party
tracking on the web. In: Proc. of the 9th NSDI. pp. 155–168 (2012)

39. Soltani, A., Canty, S., Mayo, Q., Thomas, L., Hoofnagle, C.J.: Flash Cookies and
Privacy. In: AAAI spring symposium: intelligent information privacy management.
pp. 158–163 (2010)

40. Starov, O., Nikiforakis, N.: Extended tracking powers: Measuring the privacy dif-
fusion enabled by browser extensions. In: Proc. of the 2017 WWW

41. Takei, N., Saito, T., Takasu, K., Yamada, T.: Web browser fingerprinting using
only cascading style sheets. In: Proc. of the 10th BWCCA. pp. 57–63 (2015)

42. Upathilake, R., Li, Y., Matrawy, A.: A classification of web browser fingerprinting
techniques. In: Proc. of the 7th NTMS. pp. 1–5 (2015)

43. West, M.: Mixed Content (2016), https://www.w3.org/TR/mixed-content/
44. West, M., Barth, A., Veditz, D.: Content Security Policy Level 2 (2015)


